1
|
Li R, Fan C, Liu G, Duan H, Qian S. Cfhr1 gene deficiency exacerbates Staphylococcus aureus-induced sepsis and acute lung injury through complement alternative pathway hyperactivation. Biochem Biophys Res Commun 2024; 737:150466. [PMID: 39128222 DOI: 10.1016/j.bbrc.2024.150466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE To explore the role of excessive activation of the complement alternative pathway (AP) in acute lung injury (ALI) and sepsis induced by Staphylococcus aureus. Subsequently, we aimed to define the effects of Cfhr gene deletion on Factor H expression, AP activation, and the development of sepsis-induced ALI. METHODS A sepsis-induced ALI model was established in Cfhr1-knockout mice by tail vein injection of S. aureus. Sepsis scores, bacterial load in lungs, and cytokine and complement factor levels in blood and lung tissues were evaluated at 6, 12, and 24 h after model establishment. Real-time quantitative PCR and RNA sequencing (RNA-seq) were employed to assess the expression of complement pathway-associated molecules and identify differentially expressed genes (DEGs) related to immune responses. RESULTS Compared to wild-type mice, Cfhr1-knockout mice exhibited significantly increased C3a formation in lung tissues following S. aureus infection, indicating enhanced terminal complement pathway activation. Notably, these mice also had higher bacterial colony counts in the lungs, suggesting impaired S. aureus clearance. Transcriptome analysis provided further insights into the impact of Cfhr1 deletion on biological processes and signalling pathways involved in immune response regulation. CONCLUSION Cfhr1 deletion leads to excessive AP activation, exacerbating S. aureus-induced sepsis and ALI.
Collapse
Affiliation(s)
- Rubo Li
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China
| | - Chaonan Fan
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China
| | - Gang Liu
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China
| | - Hongnian Duan
- Baoding Hospital, Beijing Children's Hospital, Capital Medical University (Baoding Children's Hospital), China
| | - Suyun Qian
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China.
| |
Collapse
|
2
|
Jackson M, Vineberg S, Theis KR. The Epistemology of Bacterial Virulence Factor Characterization. Microorganisms 2024; 12:1272. [PMID: 39065041 PMCID: PMC11278562 DOI: 10.3390/microorganisms12071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The field of microbial pathogenesis seeks to identify the agents and mechanisms responsible for disease causation. Since Robert Koch introduced postulates that were used to guide the characterization of microbial pathogens, technological advances have substantially increased the capacity to rapidly identify a causative infectious agent. Research efforts currently focus on causation at the molecular level with a search for virulence factors (VFs) that contribute to different stages of the infectious process. We note that the quest to identify and characterize VFs sometimes lacks scientific rigor, and this suggests a need to examine the epistemology of VF characterization. We took this premise as an opportunity to explore the epistemology of VF characterization. In this perspective, we discuss how the characterization of various gene products that evolved to facilitate bacterial survival in the broader environment have potentially been prematurely mischaracterized as VFs that contribute to pathogenesis in the context of human biology. Examples of the reasoning that can affect misinterpretation, or at least a premature assignment of mechanistic causation, are provided. Our aim is to refine the categorization of VFs by emphasizing a broader biological view of their origin.
Collapse
Affiliation(s)
- Matthew Jackson
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Susan Vineberg
- Department of Philosophy, Wayne State University, Detroit, MI 48201, USA;
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
4
|
Wei X, Hu Y, Sun C, Wu S. Characterization of a Novel Antimicrobial Peptide Bacipeptin against Foodborne Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5283-5292. [PMID: 38429098 DOI: 10.1021/acs.jafc.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The increasing emergence of multidrug-resistant pathogens and development of biopreservatives in food industries has increased the demand of novel and safe antimicrobial agents. In this study, a marine bacterial strain Bacillus licheniformis M1 was isolated and exhibited obvious antimicrobial activities against foodborne pathogens, especially against methicillin-resistant Staphylococcus aureus. The antimicrobial agent was purified and identified as a novel antimicrobial peptide, which was designated as bacipeptin, and the corresponding mechanism was further investigated by electron microscopy observation and transcriptomic analysis with biochemical validation. The results showed that bacipeptin could reduce the virulence of methicillin-resistant Staphylococcus aureus and exerted its antimicrobial activity by interfering with histidine metabolism, inducing the accumulation of reactive oxygen species and down-regulating genes related to Na+/H+ antiporter and the cell wall, thus causing damage to the cell wall and membrane. Overall, our study provides a novel natural product against foodborne pathogens and discloses the corresponding action mechanism.
Collapse
Affiliation(s)
- Xiaotong Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Hu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
6
|
Misal SA, Ovhal SD, Li S, Karty JA, Tang H, Radivojac P, Reilly JP. Non-Specific Signal Peptidase Processing of Extracellular Proteins in Staphylococcus aureus N315. Proteomes 2023; 11:proteomes11010008. [PMID: 36810564 PMCID: PMC9944065 DOI: 10.3390/proteomes11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Staphylococcus aureus is one of the major community-acquired human pathogens, with growing multidrug-resistance, leading to a major threat of more prevalent infections to humans. A variety of virulence factors and toxic proteins are secreted during infection via the general secretory (Sec) pathway, which requires an N-terminal signal peptide to be cleaved from the N-terminus of the protein. This N-terminal signal peptide is recognized and processed by a type I signal peptidase (SPase). SPase-mediated signal peptide processing is the crucial step in the pathogenicity of S. aureus. In the present study, the SPase-mediated N-terminal protein processing and their cleavage specificity were evaluated using a combination of N-terminal amidination bottom-up and top-down proteomics-based mass spectrometry approaches. Secretory proteins were found to be cleaved by SPase, specifically and non-specifically, on both sides of the normal SPase cleavage site. The non-specific cleavages occur at the relatively smaller residues that are present next to the -1, +1, and +2 locations from the original SPase cleavage site to a lesser extent. Additional random cleavages at the middle and near the C-terminus of some protein sequences were also observed. This additional processing could be a part of some stress conditions and unknown signal peptidase mechanisms.
Collapse
Affiliation(s)
- Santosh A. Misal
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
- Correspondence: ; Tel.: +1-301-761-7277
| | - Shital D. Ovhal
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Sujun Li
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
| | - Jonathan A. Karty
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Haixu Tang
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
| | - Predrag Radivojac
- Luddy School of Informatics, Computing, and Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, IN 47408, USA
- Khoury College of Computer Sciences, Northeastern University, 177 Huntington Avenue, Boston, MA 02115, USA
| | - James P. Reilly
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Zhang X, Xiong T, Gao L, Wang Y, Liu L, Tian T, Shi Y, Zhang J, Zhao Z, Lu D, Luo P, Zhang W, Cheng P, Jing H, Gou Q, Zeng H, Yan D, Zou Q. Extracellular fibrinogen-binding protein released by intracellular Staphylococcus aureus suppresses host immunity by targeting TRAF3. Nat Commun 2022; 13:5493. [PMID: 36123338 PMCID: PMC9484707 DOI: 10.1038/s41467-022-33205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Many pathogens secrete effectors to hijack intracellular signaling regulators in host immune cells to promote pathogenesis. However, the pathogenesis of Staphylococcus aureus secretory effectors within host cells is unclear. Here, we report that Staphylococcus aureus secretes extracellular fibrinogen-binding protein (Efb) into the cytoplasm of macrophages to suppress host immunity. Mechanistically, RING finger protein 114, a host E3 ligase, mediates K27-linked ubiquitination of Efb at lysine 71, which facilitates the recruitment of tumor necrosis factor receptor associated factor (TRAF) 3. The binding of Efb to TRAF3 disrupts the formation of the TRAF3/TRAF2/cIAP1 (cellular-inhibitor-of-apoptosis-1) complex, which mediates K48-ubiquitination of TRAF3 to promote degradation, resulting in suppression of the inflammatory signaling cascade. Additionally, the Efb K71R mutant loses the ability to inhibit inflammation and exhibits decreased pathogenicity. Therefore, our findings identify an unrecognized mechanism of Staphylococcus aureus to suppress host defense, which may be a promising target for developing effective anti-Staphylococcus aureus immunomodulators. Staphylococcus aureus secrete numerous effectors to evade or inhibit the host immune response, yet the mechanism underlying the effectors ability to manipulate the signalling pathways of macrophages remain unclear. Authors utilise in vitro and in vivo models to explore the role of extracellular fibrinogen-binding protein (Efb) in immune response modulation and pathogenicity.
Collapse
Affiliation(s)
- Xiaokai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Tingrong Xiong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Lin Gao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.,Department of Basic Courses, NCO School, Third Military Medical University, Shijiazhuang, 050081, China
| | - Luxuan Liu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, China
| | - Tian Tian
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yun Shi
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China.
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
8
|
Ries JI, Heß M, Nouri N, Wichelhaus TA, Göttig S, Falcone FH, Kraiczy P. CipA mediates complement resistance of Acinetobacter baumannii by formation of a factor I-dependent quadripartite assemblage. Front Immunol 2022; 13:942482. [PMID: 35958553 PMCID: PMC9361855 DOI: 10.3389/fimmu.2022.942482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii is known to be one of the leading pathogens that cause severe nosocomial infections. To overcome eradication by the innate immune system during infection, A. baumannii developed a number of immune evasion strategies. Previously, we identified CipA as a plasminogen-binding and complement-inhibitory protein. Here we show that CipA inhibits all three complement activation pathways and interacts with key complement components C3, C3b, C4b, C5, Factor B, Factor D, and in particular Factor I. CipA also targets function of the C5 convertase as cleavage of C5 was impaired. Systematic screening of CipA variants identified two separate binding sites for C3b and a Factor I-interacting domain located at the C-terminus. Structure predictions using AlphaFold2 and binding analyses employing CipA variants lacking Factor I-binding capability confirmed that the orientation of the C-terminal domain is essential for the interaction with Factor I. Hence, our analyses point to a novel Factor I-dependent mechanisms of complement inactivation mediated by CipA of A. baumannii. Recruitment of Factor I by CipA initiates the assembly of a quadripartite complex following binding of either Factor H or C4b-binding protein to degrade C3b and C4b, respectively. Loss of Factor I binding in a CipA-deficient strain, or a strain producing a CipA variant lacking Factor I-binding capability, correlated with a higher susceptibility to human serum, indicating that recruitment of Factor I enables A. baumannii to resist complement-mediated killing.
Collapse
Affiliation(s)
- Julia I Ries
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Marie Heß
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Noura Nouri
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Franco H Falcone
- Institute for Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
9
|
Wallis S, Wolska N, Englert H, Posner M, Upadhyay A, Renné T, Eggleston I, Bagby S, Pula G. A peptide from the staphylococcal protein Efb binds P-selectin and inhibits the interaction of platelets with leukocytes. J Thromb Haemost 2022; 20:729-741. [PMID: 34846792 DOI: 10.1111/jth.15613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022]
Abstract
AIMS P-selectin is a key surface adhesion molecule for the interaction of platelets with leukocytes. We have shown previously that the N-terminal domain of Staphylococcus aureus extracellular fibrinogen-binding protein (Efb) binds to P-selectin and interferes with platelet-leukocyte aggregate formation. Here, we aimed to identify the minimal Efb motif required for binding platelets and to characterize its ability to interfering with the formation of platelet-leukocyte aggregates. METHODS AND RESULTS Using a library of synthetic peptides, we mapped the platelet-binding site to a continuous 20 amino acid stretch. The peptide Efb68-87 was able to bind to resting and, to a greater extent, thrombin-stimulated platelets in the absence of fibrinogen. Dot blots, pull-down assays and P-selectin glycoprotein ligand-1 (PSGL-1) competitive binding experiments identified P-selectin as the cellular docking site mediating Efb68-87 platelet binding. Accordingly, Efb68-87 did not bind to other blood cells and captured platelets from human whole blood under low shear stress conditions. Efb68-87 did not affect platelet activation as tested by aggregometry, flow cytometry and immunoblotting, but inhibited the formation of platelet-leukocyte aggregates (PLAs). Efb68-87 also interfered with the platelet-dependent stimulation of neutrophil extracellular traps (NETs) formation in vitro. CONCLUSIONS We have identified Efb68-87 as a novel selective platelet-binding peptide. Efb68-87 binds directly to P-selectin and inhibits interactions of platelets with leukocytes that lead to PLA and NET formation. As PLAs and NETs play a key role in thromboinflammation, Efb68-87 is an exciting candidate for the development of novel selective inhibitors of the proinflammatory activity of platelets.
Collapse
Affiliation(s)
- Stuart Wallis
- Departments of Biology and Biochemistry, University of Bath, Bath, UK
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Eppendorf - Hamburg, Hamburg, Germany
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Eppendorf - Hamburg, Hamburg, Germany
| | - Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Eppendorf - Hamburg, Hamburg, Germany
| | - Mareike Posner
- Departments of Biology and Biochemistry, University of Bath, Bath, UK
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Abhishek Upadhyay
- Departments of Biology and Biochemistry, University of Bath, Bath, UK
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Eppendorf - Hamburg, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ian Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Stefan Bagby
- Departments of Biology and Biochemistry, University of Bath, Bath, UK
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Eppendorf - Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 502] [Impact Index Per Article: 167.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
The impact of TiO 2 nanoparticle exposure on transmembrane cholesterol transport and enhanced bacterial infectivity in HeLa cells. Acta Biomater 2021; 135:606-616. [PMID: 34400307 DOI: 10.1016/j.actbio.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/04/2023]
Abstract
We have previously shown that exposure to TiO2 nanoparticles (NPs) reduces the resistance of HeLa cells to bacterial infection. Here we demonstrate that the increased infectivity is associated with enhanced asymmetry in the cholesterol distribution. We applied a live cell imaging method which uses tunable orthogonal cholesterol sensors to visualize and quantify in-situ cholesterol distribution between the two leaflets of the plasma membrane (PM). In the control culture, we found marked transbilayer asymmetry of cholesterol, with the concentration in the outer plasma membrane (OPM) being 13 ± 2-fold higher than that in the inner plasma membrane (IPM). Exposure of the culture to 0.1 mg/mL of rutile TiO2 NPs increased the asymmetry such that the concentration in the OPM was 51 ± 10 times higher, while the total cholesterol content increased only 21 ± 2%. This change in cholesterol gradient may explain the increase in bacterial infectivity in HeLa cells exposed to TiO2 NPs since many pathogens, including Staphylococcus aureus used in the present study, require cholesterol for proper membrane attachment and virulence. RT-PCR indicated that exposure to TiO2 was responsible for upregulation of the ABCA1 and ABCG1 mRNAs, which are responsible for the production of the cholesterol transporter proteins that facilitate cholesterol transport across cellular membranes. This was confirmed by the observation of an overall decrease in bacterial infection in ABCA1 knockout or methyl-β-cyclodextrin-treated HeLa cells, as regardless of TiO2 NP exposure. Hence rather than preventing bacterial infection, TiO2 nanoparticles upregulate genes associated with membrane cholesterol production and distribution, hence increasing infectivity. STATEMENT OF SIGNIFICANCE: A great deal of work has been done regarding the toxicology of the particles, especially focusing on detrimental outcomes associated with reactive oxygen species (ROS) production. In this paper we show unambiguously a very surprising result, namely the ability of these particles to enhance bacterial infection even at very small exposure levels, where none of the deleterious effects of ROS products can yet be detected. Using a new imaging technique, we are able to demonstrate, in operando, the effect of the particles on cholesterol generation and distribution in live HeLa cells. This paper also represents the first in a series where we explore other consequences of increased membrane cholesterol, due to particle exposure, which are known to have multiple other consequences on human tissue function and development.
Collapse
|
12
|
Abstract
Staphylococcus aureus is both a commensal and a pathogenic bacterium for humans. Its ability to induce severe infections is based on a wide range of virulence factors. S. aureus community-acquired pneumonia (SA-CAP) is rare and severe, and the contribution of certain virulence factors in this disease has been recognized over the past 2 decades. First, the factors involved in metabolism adaptation are crucial for S. aureus survival in the lower respiratory tract, and toxins and enzymes are required for it to cross the pulmonary epithelial barrier. S. aureus subsequently faces host defense mechanisms, including the epithelial barrier, but most importantly the immune system. Here, again, S. aureus uses myriad virulence factors to successfully escape from the host's defenses and takes advantage of them. The impact of S. aureus virulence, combined with the collateral damage caused by an overwhelming immune response, leads to severe tissue damage and adverse clinical outcomes. In this review, we summarize step by step all of the S. aureus factors implicated in CAP and described to date, and we provide an outlook for future research.
Collapse
Affiliation(s)
- Mariane Pivard
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
13
|
Schuler F, Barth PJ, Niemann S, Schaumburg F. A Narrative Review on the Role of Staphylococcus aureus Bacteriuria in S. aureus Bacteremia. Open Forum Infect Dis 2021; 8:ofab158. [PMID: 34189162 PMCID: PMC8233567 DOI: 10.1093/ofid/ofab158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/25/2021] [Indexed: 11/12/2022] Open
Abstract
Staphylococcus aureus bacteriuria (SABU) can occur in patients with S. aureus bacteremia (SAB). However, little is known on the (molecular) pathomechanisms of the renal passage of S. aureus. This review discusses the epidemiology and pathogenesis of SABU in patients with SAB and identifies knowledge gaps. The literature search was restricted to the English language. The prevalence of SABU in patients with SAB is 7.8%-39% depending on the study design. The main risk factor for SABU is urinary tract catheterization. SABU in SAB patients is associated with increased mortality. Given present evidence, hematogenous seeding-as seen in animal models-and the development of micro-abscesses best describe the translocation of S. aureus from blood to urine. Virulence factors that might be involved are adhesion factors, sortase A, and coagulase, among others. Other potential routes of bacterial translocation (eg, transcytosis, paracytosis, translocation via "Trojan horses") were identified as knowledge gaps.
Collapse
Affiliation(s)
- Franziska Schuler
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Peter J Barth
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
14
|
Alreshidi MM. Selected Metabolites Profiling of Staphylococcus aureus Following Exposure to Low Temperature and Elevated Sodium Chloride. Front Microbiol 2020; 11:834. [PMID: 32457719 PMCID: PMC7225588 DOI: 10.3389/fmicb.2020.00834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the main foodborne pathogens that can cause food poisoning. Due to this reason, one of the essential aspects of food safety focuses on bacterial adaptation and proliferation under preservative conditions. This study was aimed to determine the metabolic changes that can occur following the exposure of S. aureus to either low temperature conditions or elevated concentrations of sodium chloride (NaCl). The results revealed that most of the metabolites measured were reduced in cold-stressed cells, when compared to reference controls. The major reduction was observed in nucleotides and organic acids, whereas mannitol was significantly increased in response to low temperature. However, when S. aureus was exposed to elevated NaCl, a significant increase was observed in the metabolite levels, particularly purine and pyrimidine bases along with organic acids. The majority of carbohydrates remained constant in the cells grown under ideal conditions and those exposed to elevated NaCl concentrations. Partial least square discriminate analysis (PLS-DA) of the metabolomic data indicated that both, prolonged cold stress and osmotic stress conditions, generated cells with different metabolic profiles, in comparison to the reference controls. These results provide evidence that, when bacterial cells exposed to low temperatures or high concentrations of NaCl, experience in situ homeostatic alterations to adapt to new environmental conditions. These data supported the hypothesis that changes in metabolic homeostasis were critical to the adaptive processes required for survival under alterations in the environmental conditions.
Collapse
Affiliation(s)
- Mousa M Alreshidi
- Department of Biology, College of Science, University of Ha'il, Hail, Saudi Arabia
| |
Collapse
|
15
|
Metabolic Profiles of Clinical Strain of Staphylococcus aureus to Subtle Changes in the Environmental Parameters at Different Phases of Growth. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Handschuh J, Amore J, Müller AJ. From the Cradle to the Grave of an Infection: Host-Pathogen Interaction Visualized by Intravital Microscopy. Cytometry A 2019; 97:458-470. [PMID: 31777152 DOI: 10.1002/cyto.a.23938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/12/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
During infections, interactions between host immune cells and the pathogen occur in distinct anatomical locations and along defined time scales. This can best be assessed in the physiological context of an infection in the living tissue. Consequently, intravital imaging has enabled us to dissect the critical phases and events throughout an infection in real time in living tissues. Specifically, advances in visualizing specific cell types and individual pathogens permitted tracking the early events of tissue invasion of the pathogen, cellular interactions involved in the induction of the immune response as well the events implicated in clearance of the infection. In this respect, two vantage points have evolved since the initial employment of this technique in the field of infection biology. On the one hand, strategies acquired by the pathogen to establish within the host and circumvent or evade the immune defenses have been elucidated. On the other hand, analyzing infections from the immune system's perspective has led to insights into the dynamic cellular interactions that are involved in the initial recognition of the pathogen, immune induction as well as effector function delivery and immunopathology. Furthermore, an increasing interest in probing functional parameters in vivo has emerged, such as the analysis of pathogen reactivity to stress conditions imposed by the host organism in order to mediate clearance upon pathogen encounter. Here, we give an overview on recent intravital microscopy findings of host-pathogen interactions along the course of an infection, from both the immune system's and pathogen's perspectives. We also discuss recent developments and future perspectives in extracting intravital information beyond the localization of pathogens and their interaction with immune cells. Such reporter systems on the pathogen's physiological state and immune cell functions may prove useful in dissecting the functional dynamics of host-pathogen interactions. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Juliane Handschuh
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Jonas Amore
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| |
Collapse
|
17
|
Abstract
Staphylococcus aureus has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing S. aureus infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that S. aureus has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of S. aureus, such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how S. aureus evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of S. aureus are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins S. aureus is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.
Collapse
|
18
|
Manara S, Pasolli E, Dolce D, Ravenni N, Campana S, Armanini F, Asnicar F, Mengoni A, Galli L, Montagnani C, Venturini E, Rota-Stabelli O, Grandi G, Taccetti G, Segata N. Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of Staphylococcus aureus strains in a paediatric hospital. Genome Med 2018; 10:82. [PMID: 30424799 PMCID: PMC6234625 DOI: 10.1186/s13073-018-0593-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic pathogen and a leading cause of nosocomial infections. It can acquire resistance to all the antibiotics that entered the clinics to date, and the World Health Organization defined it as a high-priority pathogen for research and development of new antibiotics. A deeper understanding of the genetic variability of S. aureus in clinical settings would lead to a better comprehension of its pathogenic potential and improved strategies to contrast its virulence and resistance. However, the number of comprehensive studies addressing clinical cohorts of S. aureus infections by simultaneously looking at the epidemiology, phylogenetic reconstruction, genomic characterisation, and transmission pathways of infective clones is currently low, thus limiting global surveillance and epidemiological monitoring. METHODS We applied whole-genome shotgun sequencing (WGS) to 184 S. aureus isolates from 135 patients treated in different operative units of an Italian paediatric hospital over a timespan of 3 years, including both methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) from different infection types. We typed known and unknown clones from their genomes by multilocus sequence typing (MLST), Staphylococcal Cassette Chromosome mec (SCCmec), Staphylococcal protein A gene (spa), and Panton-Valentine Leukocidin (PVL), and we inferred their whole-genome phylogeny. We explored the prevalence of virulence and antibiotic resistance genes in our cohort, and the conservation of genes encoding vaccine candidates. We also performed a timed phylogenetic investigation for a potential outbreak of a newly emerging nosocomial clone. RESULTS The phylogeny of the 135 single-patient S. aureus isolates showed a high level of diversity, including 80 different lineages, and co-presence of local, global, livestock-associated, and hypervirulent clones. Five of these clones do not have representative genomes in public databases. Variability in the epidemiology is mirrored by variability in the SCCmec cassettes, with some novel variants of the type IV cassette carrying extra antibiotic resistances. Virulence and resistance genes were unevenly distributed across different clones and infection types, with highly resistant and lowly virulent clones showing strong association with chronic diseases, and highly virulent strains only reported in acute infections. Antigens included in vaccine formulations undergoing clinical trials were conserved at different levels in our cohort, with only a few highly prevalent genes fully conserved, potentially explaining the difficulty of developing a vaccine against S. aureus. We also found a recently diverged ST1-SCCmecIV-t127 PVL- clone suspected to be hospital-specific, but time-resolved integrative phylogenetic analysis refuted this hypothesis and suggested that this quickly emerging lineage was acquired independently by patients. CONCLUSIONS Whole genome sequencing allowed us to study the epidemiology and genomic repertoire of S. aureus in a clinical setting and provided evidence of its often underestimated complexity. Some virulence factors and clones are specific of disease types, but the variability and dispensability of many antigens considered for vaccine development together with the quickly changing epidemiology of S. aureus makes it very challenging to develop full-coverage therapies and vaccines. Expanding WGS-based surveillance of S. aureus to many more hospitals would allow the identification of specific strains representing the main burden of infection and therefore reassessing the efforts for the discovery of new treatments and clinical practices.
Collapse
Affiliation(s)
- Serena Manara
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Edoardo Pasolli
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Daniela Dolce
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Novella Ravenni
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Silvia Campana
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | | | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Carlotta Montagnani
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Elisabetta Venturini
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Guido Grandi
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Giovanni Taccetti
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, Italy.
| |
Collapse
|
19
|
Ahmed MM, Aboshanab KM, Ragab YM, Missiakas DM, Aly KA. The transmembrane domain of the Staphylococcus aureus ESAT-6 component EssB mediates interaction with the integral membrane protein EsaA, facilitating partially regulated secretion in a heterologous host. Arch Microbiol 2018; 200:1075-1086. [DOI: 10.1007/s00203-018-1519-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
|
20
|
Li C, Wu Y, Riehle A, Orian-Rousseau V, Zhang Y, Gulbins E, Grassmé H. Regulation of Staphylococcus aureus Infection of Macrophages by CD44, Reactive Oxygen Species, and Acid Sphingomyelinase. Antioxid Redox Signal 2018; 28:916-934. [PMID: 28747072 DOI: 10.1089/ars.2017.6994] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aims: Staphylococcus aureus plays an important role in sepsis, pneumonia, and wound infections. Acid sphingomyelinase (Asm)-deficient mice are highly susceptible to pulmonary S. aureus infections. Here, we investigated the role of CD44 as a molecule that mediates important aspects of the infection of macrophages with S. aureus. Results: We showed that CD44 activation by S. aureus stimulated Asm via the formation of reactive oxygen species, resulting in ceramide release, clustering of CD44 in ceramide-enriched membrane platforms, CD44/Asm-dependent activation of Rho family GTPases, translocation of phospho-ezrin/radixin/moesin to the plasma-membrane, and a rapid rearrangement of the actin cytoskeleton with cortical actin polymerization. Genetic deficiency of CD44 or Asm abrogated these signaling events and thereby reduced internalization of S. aureus into macrophages by 60-80%. Asm-deficient macrophages also exhibited reduced fusion of phagosomes with lysosomes, which prevented intracellular killing of S. aureus in macrophages and thereby allowed internalized S. aureus to replicate and cause severe pneumonia. Innovation and Conclusion: The CD44-Asm-ceramide system plays an important role in the infection of macrophages with S. aureus. Antioxid. Redox Signal. 28, 916-934.
Collapse
Affiliation(s)
- Cao Li
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Yuqing Wu
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Andrea Riehle
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | | | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
21
|
Lewis ML, Surewaard BGJ. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus. Cell Tissue Res 2017; 371:489-503. [PMID: 29204747 DOI: 10.1007/s00441-017-2737-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023]
Abstract
Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.
Collapse
Affiliation(s)
- Megan L Lewis
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bas G J Surewaard
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada. .,Department of Medical Microbiology, University Medical Centre, Utrecht, Netherlands.
| |
Collapse
|
22
|
Ivain L, Bordeau V, Eyraud A, Hallier M, Dreano S, Tattevin P, Felden B, Chabelskaya S. An in vivo reporter assay for sRNA-directed gene control in Gram-positive bacteria: identifying a novel sRNA target in Staphylococcus aureus. Nucleic Acids Res 2017; 45:4994-5007. [PMID: 28369640 PMCID: PMC5416835 DOI: 10.1093/nar/gkx190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/11/2017] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) play a major role in the regulation of various cellular functions. Most sRNAs interact with mRNA targets via an antisense mechanism, modifying their translation and/or degradation. Despite considerable progresses in discovering sRNAs in Gram-positive bacteria, their functions, for the most part, are unknown. This is mainly due to difficulties in identifying their targets. To aid in the identification of sRNA targets in Gram-positive bacteria, we set up an in vivo method for fast analysis of sRNA-mediated post-transcriptional control at the 5΄ regions of target mRNAs. The technology is based on the co-expression of an sRNA and a 5΄ sequence of an mRNA target fused to a green fluorescent protein (GFP) reporter. The system was challenged on Staphylococcus aureus, an opportunistic Gram-positive pathogen. We analyzed several established sRNA–mRNA interactions, and in addition, we identified the ecb mRNA as a novel target for SprX2 sRNA. Using our in vivo system in combination with in vitro experiments, we demonstrated that SprX2 uses an antisense mechanism to prevent ecb mRNA translation initiation. Furthermore, we used our reporter assay to validate sRNA regulations in other Gram-positive organisms, Bacillus subtilis and Listeria monocytogenes. Overall, our method is broadly applicable to challenge the predicted sRNA–mRNA interactions in Gram-positive bacteria.
Collapse
Affiliation(s)
- Lorraine Ivain
- Université de Rennes 1, Inserm U1230-UPRES EA 2311, Biochimie Pharmaceutique, Regulatory RNA and Medicine (RMM), 2 avenue du Prof. Léon Bernard, 35043 Rennes, France
| | - Valérie Bordeau
- Université de Rennes 1, Inserm U1230-UPRES EA 2311, Biochimie Pharmaceutique, Regulatory RNA and Medicine (RMM), 2 avenue du Prof. Léon Bernard, 35043 Rennes, France
| | - Alex Eyraud
- Université de Rennes 1, Inserm U1230-UPRES EA 2311, Biochimie Pharmaceutique, Regulatory RNA and Medicine (RMM), 2 avenue du Prof. Léon Bernard, 35043 Rennes, France
| | - Marc Hallier
- Université de Rennes 1, Inserm U1230-UPRES EA 2311, Biochimie Pharmaceutique, Regulatory RNA and Medicine (RMM), 2 avenue du Prof. Léon Bernard, 35043 Rennes, France
| | - Stéphane Dreano
- Université de Rennes 1, CNRS UMR 6290 IGDR, BIOSIT, Molecular Bases of Tumorigenesis: VHL Disease Team, 35043 Rennes, France
| | - Pierre Tattevin
- Université de Rennes 1, Inserm U1230-UPRES EA 2311, Biochimie Pharmaceutique, Regulatory RNA and Medicine (RMM), 2 avenue du Prof. Léon Bernard, 35043 Rennes, France
| | - Brice Felden
- Université de Rennes 1, Inserm U1230-UPRES EA 2311, Biochimie Pharmaceutique, Regulatory RNA and Medicine (RMM), 2 avenue du Prof. Léon Bernard, 35043 Rennes, France
| | - Svetlana Chabelskaya
- Université de Rennes 1, Inserm U1230-UPRES EA 2311, Biochimie Pharmaceutique, Regulatory RNA and Medicine (RMM), 2 avenue du Prof. Léon Bernard, 35043 Rennes, France
| |
Collapse
|
23
|
Amdahl H, Haapasalo K, Tan L, Meri T, Kuusela PI, van Strijp JA, Rooijakkers S, Jokiranta TS. Staphylococcal protein Ecb impairs complement receptor-1 mediated recognition of opsonized bacteria. PLoS One 2017; 12:e0172675. [PMID: 28273167 PMCID: PMC5342210 DOI: 10.1371/journal.pone.0172675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/08/2017] [Indexed: 01/01/2023] Open
Abstract
Staphyloccus aureus is a major human pathogen leading frequently to sepsis and soft tissue infections with abscesses. Multiple virulence factors including several immune modulating molecules contribute to its survival in the host. When S. aureus invades the human body, one of the first line defenses is the complement system, which opsonizes the bacteria with C3b and attract neutrophils by release of chemotactic peptides. Neutrophils express Complement receptor-1 [CR1, CD35) that interacts with the C3b-opsonized particles and thereby plays an important role in pathogen recognition by phagocytic cells. In this study we observed that a fraction of S. aureus culture supernatant prevented binding of C3b to neutrophils. This fraction consisted of S. aureus leukocidins and Efb. The C-terminus of Efb is known to bind C3b and shares significant sequence homology to the extracellular complement binding protein [Ecb). Here we show that S. aureus Ecb displays various mechanisms to block bacterial recognition by neutrophils. The presence of Ecb blocked direct interaction between soluble CR1 and C3b and reduced the cofactor activity of CR1 in proteolytic inactivation of C3b. Furthermore, Ecb could dose-dependently prevent recognition of C3b by cell-bound CR1 that lead to impaired phagocytosis of NHS-opsonized S. aureus. Phagocytosis was furthermore reduced in the presence of soluble CR1 [sCR1). These data indicate that the staphylococcal protein Ecb prevents recognition of C3b opsonized bacteria by neutrophil CR1 leading to impaired killing by phagocytosis and thereby contribute to immune evasion of S. aureus.
Collapse
Affiliation(s)
- Hanne Amdahl
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Lydia Tan
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Taru Meri
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pentti I. Kuusela
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Central Hospital Laboratory, Helsinki, Finland
| | - Jos A. van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Suzan Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (SR); (TSJ)
| | - T. Sakari Jokiranta
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
- * E-mail: (SR); (TSJ)
| |
Collapse
|
24
|
|
25
|
Hovingh ES, van den Broek B, Jongerius I. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion. Front Microbiol 2016; 7:2004. [PMID: 28066340 PMCID: PMC5167704 DOI: 10.3389/fmicb.2016.02004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.
Collapse
Affiliation(s)
- Elise S. Hovingh
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| | - Bryan van den Broek
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| |
Collapse
|
26
|
Is it true that plant-derived polyphenols are always beneficial for the human? In vitro study on Leonurus cardiaca extract properties in the context of the pathogenesis of Staphylococcus aureus infections. J Med Microbiol 2016; 65:1171-1181. [DOI: 10.1099/jmm.0.000332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
27
|
Ko YP, Flick MJ. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection. Semin Thromb Hemost 2016; 42:408-21. [PMID: 27056151 PMCID: PMC5514417 DOI: 10.1055/s-0036-1579635] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
28
|
Xu Y, Wei MT, Ou-Yang HD, Walker SG, Wang HZ, Gordon CR, Guterman S, Zawacki E, Applebaum E, Brink PR, Rafailovich M, Mironava T. Exposure to TiO2 nanoparticles increases Staphylococcus aureus infection of HeLa cells. J Nanobiotechnology 2016; 14:34. [PMID: 27102228 PMCID: PMC4840899 DOI: 10.1186/s12951-016-0184-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/10/2016] [Indexed: 01/02/2023] Open
Abstract
Background Titanium dioxide (TiO2) is one of the most common nanoparticles found in industry ranging from food additives to energy generation. Approximately four million tons of TiO2 particles are produced worldwide each year with approximately 3000 tons being produced in nanoparticulate form, hence exposure to these particles is almost certain. Results Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we have found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles significantly increased their risk of bacterial invasion. HeLa cells cultured with 0.1 mg/ml rutile and anatase TiO2 nanoparticles for 24 h prior to exposure to bacteria had 350 and 250 % respectively more bacteria per cell. The increase was attributed to bacterial polysaccharides absorption on TiO2 NPs, increased extracellular LDH, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40 % fewer bacteria, further increasing the risk of infection. Conclusions In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0184-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Xu
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ming-Tzo Wei
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - H Daniel Ou-Yang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Stephen G Walker
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hong Zhan Wang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Chris R Gordon
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | | | - Emma Zawacki
- University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Peter R Brink
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Miriam Rafailovich
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Tatsiana Mironava
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
29
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
30
|
Abstract
Coagulase (Coa) and Efb, secreted Staphylococcus aureus proteins, are important virulence factors in staphylococcal infections. Coa interacts with fibrinogen (Fg) and induces the formation of fibrin(ogen) clots through activation of prothrombin. Efb attracts Fg to the bacterial surface and forms a shield to protect the bacteria from phagocytic clearance. This communication describes the use of an array of synthetic peptides to identify variants of a linear Fg binding motif present in Coa and Efb which are responsible for the Fg binding activities of these proteins. This motif represents the first Fg binding motif identified for any microbial protein. We initially located the Fg binding sites to Coa’s C-terminal disordered segment containing tandem repeats by using recombinant fragments of Coa in enzyme-linked immunosorbent assay-type binding experiments. Sequence analyses revealed that this Coa region contained shorter segments with sequences similar to the Fg binding segments in Efb. An alanine scanning approach allowed us to identify the residues in Coa and Efb that are critical for Fg binding and to define the Fg binding motifs in the two proteins. In these motifs, the residues required for Fg binding are largely conserved, and they therefore constitute variants of a common Fg binding motif which binds to Fg with high affinity. Defining a specific motif also allowed us to identify a functional Fg binding register for the Coa repeats that is different from the repeat unit previously proposed. Staphylococcus aureus infections are a major health problem that affects an estimated 50 million people globally and causes the death of about 20,000 Americans each year. A number of experimental vaccines have been developed during the past years. However, these vaccines have all failed in clinical trials. The ability of S. aureus to form an Fg shield surrounding and protecting bacterial cells from clearance may explain why the vaccines are failing. Furthermore, S. aureus coagulase can induce the formation of a fibrin(ogen) shield in experimental abscess models which surrounds and protects bacteria in the microcolony from clearance. In this study, we identified for the first time a microbial Fg binding motif. Variants of this motif are present in coagulase and Efb. Our results provide a molecular basis for the rational design of inhibitors that could potentially prevent the formation of the obstructing Fg shield.
Collapse
|
31
|
Posner MG, Upadhyay A, Abubaker AA, Fortunato TM, Vara D, Canobbio I, Bagby S, Pula G. Extracellular Fibrinogen-binding Protein (Efb) from Staphylococcus aureus Inhibits the Formation of Platelet-Leukocyte Complexes. J Biol Chem 2015; 291:2764-76. [PMID: 26627825 PMCID: PMC4742742 DOI: 10.1074/jbc.m115.678359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular fibrinogen-binding protein (Efb) from Staphylococcus aureus inhibits platelet activation, although its mechanism of action has not been established. In this study, we discovered that the N-terminal region of Efb (Efb-N) promotes platelet binding of fibrinogen and that Efb-N binding to platelets proceeds via two independent mechanisms: fibrinogen-mediated and fibrinogen-independent. By proteomic analysis of Efb-interacting proteins within platelets and confirmation by pulldown assays followed by immunoblotting, we identified P-selectin and multimerin-1 as novel Efb interaction partners. The interaction of both P-selectin and multimerin-1 with Efb is independent of fibrinogen. We focused on Efb interaction with P-selectin. Excess of P-selectin extracellular domain significantly impaired Efb binding by activated platelets, suggesting that P-selectin is the main receptor for Efb on the surface of activated platelets. Efb-N interaction with P-selectin inhibited P-selectin binding to its physiological ligand, P-selectin glycoprotein ligand-1 (PSGL-1), both in cell lysates and in cell-free assays. Because of the importance of P-selectin-PSGL-1 binding in the interaction between platelets and leukocytes, we tested human whole blood and found that Efb abolishes the formation of platelet-monocyte and platelet-granulocyte complexes. In summary, we present evidence that in addition to its documented antithrombotic activity, Efb can play an immunoregulatory role via inhibition of P-selectin-PSGL-1-dependent formation of platelet-leukocyte complexes.
Collapse
Affiliation(s)
| | | | | | - Tiago M Fortunato
- Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom and
| | - Dina Vara
- Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom and
| | - Ilaria Canobbio
- the Department of Biology and Biotechnology, University of Pavia, 27100 Pavia PV, Italy
| | - Stefan Bagby
- From the Departments of Biology and Biochemistry and
| | - Giordano Pula
- Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom and
| |
Collapse
|
32
|
Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13:529-43. [PMID: 26272408 DOI: 10.1038/nrmicro3521] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus, a bacterial commensal of the human nares and skin, is a frequent cause of soft tissue and bloodstream infections. A hallmark of staphylococcal infections is their frequent recurrence, even when treated with antibiotics and surgical intervention, which demonstrates the bacterium's ability to manipulate innate and adaptive immune responses. In this Review, we highlight how S. aureus virulence factors inhibit complement activation, block and destroy phagocytic cells and modify host B cell and T cell responses, and we discuss how these insights might be useful for the development of novel therapies against infections with antibiotic resistant strains such as methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Vilasack Thammavongsa
- 1] Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA. [2] Regeneron Pharmaceuticals, 755 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
33
|
Boerhout E, Vrieling M, Benedictus L, Daemen I, Ravesloot L, Rutten V, Nuijten P, van Strijp J, Koets A, Eisenberg S. Immunization routes in cattle impact the levels and neutralizing capacity of antibodies induced against S. aureus immune evasion proteins. Vet Res 2015; 46:115. [PMID: 26411347 PMCID: PMC4584483 DOI: 10.1186/s13567-015-0243-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/18/2015] [Indexed: 12/28/2022] Open
Abstract
Vaccines against S. aureus bovine mastitis are scarce and show limited protection only. All currently available vaccines are applied via the parenteral (usually intramuscular) route. It is unknown, however, whether this route is the most suitable to specifically increase intramammary immunity to combat S. aureus at the site of infection. Hence, in the present study, immunization via mucosal (intranasal; IN), intramuscular (triangle of the neck; IM), intramammary (IMM) and subcutaneous (suspensory ligament; SC) routes were analyzed for their effects on the quantity of the antibody responses in serum and milk as well as the neutralizing capacity of the antibodies within serum. The experimental vaccine comprised the recombinant S. aureus immune evasion proteins extracellular fibrinogen-binding protein (Efb) and the leukotoxin subunit LukM in an oil-in-water adjuvant combined with a hydrogel and alginate. The highest titer increases for both Efb and LukM specific IgG1 and IgG2 antibody levels in serum and milk were observed following SC/SC immunizations. Furthermore, the harmful effects of Efb and leukotoxin LukMF’ on host-defense were neutralized by serum antibodies in a route-dependent manner. SC/SC immunization resulted in a significant increase in the neutralizing capacity of serum antibodies towards Efb and LukMF’, shown by increased phagocytosis of S. aureus and increased viability of bovine leukocytes. Therefore, a SC immunization route should be considered when aiming to optimize humoral immunity against S. aureus mastitis in cattle.
Collapse
Affiliation(s)
- Eveline Boerhout
- Ruminant Research and Development, MSD Animal Health, Wim de Körverstraat 35, 5830, AA, Boxmeer, The Netherlands. .,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands.
| | - Manouk Vrieling
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands. .,Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| | - Lindert Benedictus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands.
| | - Ineke Daemen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584, CL, Utrecht, The Netherlands.
| | - Lars Ravesloot
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584, CL, Utrecht, The Netherlands.
| | - Victor Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands. .,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - Piet Nuijten
- Ruminant Research and Development, MSD Animal Health, Wim de Körverstraat 35, 5830, AA, Boxmeer, The Netherlands.
| | - Jos van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| | - Ad Koets
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584, CL, Utrecht, The Netherlands. .,Department of Bacteriology and TSE, Central Veterinary Institute part of Wageningen UR, Edelhertweg 15, PO box 65, 8200, AB, Lelystad, The Netherlands.
| | - Susanne Eisenberg
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584, CL, Utrecht, The Netherlands.
| |
Collapse
|
34
|
Georgoutsou-Spyridonos M, Ricklin D, Pratsinis H, Perivolioti E, Pirmettis I, Garcia BL, Geisbrecht BV, Foukas PG, Lambris JD, Mastellos DC, Sfyroera G. Attenuation of Staphylococcus aureus-Induced Bacteremia by Human Mini-Antibodies Targeting the Complement Inhibitory Protein Efb. THE JOURNAL OF IMMUNOLOGY 2015; 195:3946-58. [PMID: 26342032 DOI: 10.4049/jimmunol.1500966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/12/2015] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus can cause a broad range of potentially fatal inflammatory complications (e.g., sepsis and endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular fibrinogen-binding protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for mAb-based antimicrobial therapeutics. In this study, we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mini-Abs that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface plasmon resonance-based kinetic analysis enabled the selection of mini-Abs with favorable Efb-binding profiles as therapeutic leads. Mini-Ab-mediated blockade of Efb attenuated S. aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release, and modulation of IL-6 secretion. Finally, these mini-Abs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way toward novel Ab-based therapeutics for S. aureus-related diseases.
Collapse
Affiliation(s)
- Maria Georgoutsou-Spyridonos
- Department of Biodiagnostic Sciences and Technologies, I/NRASTES, National Center for Scientific Research "Demokritos," 15310 Athens, Greece
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Haris Pratsinis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15310 Athens, Greece
| | - Eustathia Perivolioti
- Department of Clinical Microbiology, General Hospital "Evangelismos," 10676 Athens, Greece
| | - Ioannis Pirmettis
- Department of Biodiagnostic Sciences and Technologies, I/NRASTES, National Center for Scientific Research "Demokritos," 15310 Athens, Greece
| | - Brandon L Garcia
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| | - Periklis G Foukas
- 2nd Department of Pathology, University of Athens Medical School, Attikon University Hospital, 12462 Chaidari, Greece
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Dimitrios C Mastellos
- Department of Biodiagnostic Sciences and Technologies, I/NRASTES, National Center for Scientific Research "Demokritos," 15310 Athens, Greece
| | - Georgia Sfyroera
- Department of Biodiagnostic Sciences and Technologies, I/NRASTES, National Center for Scientific Research "Demokritos," 15310 Athens, Greece;
| |
Collapse
|
35
|
Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Curr Top Microbiol Immunol 2015; 409:441-489. [PMID: 26919864 DOI: 10.1007/82_2015_5017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Manouk Vrieling
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
36
|
|
37
|
Herwald H, Egesten A. Surveillance and countermeasures in innate immunity. J Innate Immun 2014; 6:1-2. [PMID: 24611159 DOI: 10.1159/000357491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Ko YP, Kuipers A, Freitag CM, Jongerius I, Medina E, van Rooijen WJ, Spaan AN, van Kessel KPM, Höök M, Rooijakkers SHM. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 2013; 9:e1003816. [PMID: 24348255 PMCID: PMC3861539 DOI: 10.1371/journal.ppat.1003816] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 10/21/2013] [Indexed: 01/01/2023] Open
Abstract
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. Staphylococcus aureus is a leading cause of severe bacterial infections in both hospital and community settings. Due to its increasing resistance to antibiotics, development of additional therapeutic strategies like vaccination is required to control this pathogen. Vaccination attempts against S. aureus have not been successful so far and an important reason may be the pathogen's elaborate repertoire of molecules that dampen the immune response. These evasion molecules not only suppress natural immunity but also hamper the current attempts to create effective vaccines. In this paper, we describe a novel mechanism by which S. aureus can prevent uptake by phagocytic immune cells. We discover that the secreted S. aureus protein Extracellular fibrinogen binding protein (Efb) generates a ‘capsule’-like shield around the bacterial surface through a dual interaction with the plasma proteins complement C3b and fibrinogen. The Efb-dependent fibrinogen shield masks important opsonic molecules like C3b and antibodies from binding to phagocyte receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of this anti-phagocytic shield.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Disease, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, Texas, United States of America
| | - Annemarie Kuipers
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claudia M. Freitag
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Utrecht University, Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht, The Netherlands
| | - Ilse Jongerius
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - András N. Spaan
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kok P. M. van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Magnus Höök
- Center for Infectious and Inflammatory Disease, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, Texas, United States of America
| | | |
Collapse
|
39
|
Amdahl H, Jongerius I, Meri T, Pasanen T, Hyvärinen S, Haapasalo K, van Strijp JA, Rooijakkers SH, Jokiranta TS. Staphylococcal Ecb protein and host complement regulator factor H enhance functions of each other in bacterial immune evasion. THE JOURNAL OF IMMUNOLOGY 2013; 191:1775-84. [PMID: 23863906 DOI: 10.4049/jimmunol.1300638] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is a major human pathogen causing more than a tenth of all septicemia cases and often superficial and deep infections in various tissues. One of the immune evasion strategies of S. aureus is to secrete proteins that bind to the central complement opsonin C3b. One of these, extracellular complement binding protein (Ecb), is known to interfere directly with functions of C3b. Because C3b is also the target of the physiological plasma complement regulator, factor H (FH), we studied the effect of Ecb on the complement regulatory functions of FH. We show that Ecb enhances acquisition of FH from serum onto staphylococcal surfaces. Ecb and FH enhance mutual binding to C3b and also the function of each other in downregulating complement activation. Both Ecb and the C-terminal domains 19-20 of FH bind to the C3d part of C3b. We show that the mutual enhancing effect of Ecb and FH on binding to C3b depends on binding of the FH domain 19 to the C3d part of C3b next to the binding site of Ecb on C3d. Our results show that Ecb, FH, and C3b form a tripartite complex. Upon exposure of serum-sensitive Haemophilus influenzae to human serum, Ecb protected the bacteria, and this effect was enhanced by the addition of the C-terminal domains 19-20 of FH. This finding indicates that the tripartite complex formation could give additional protection to bacteria and that S. aureus is thereby able to use host FH and bacterial Ecb in a concerted action to eliminate C3b at the site of infection.
Collapse
Affiliation(s)
- Hanne Amdahl
- Department of Bacteriology and Immunology, Haartman Institute, Research Programs Unit, Immunobiology, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Spaan AN, Surewaard BGJ, Nijland R, van Strijp JAG. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 2013; 67:629-50. [PMID: 23834243 DOI: 10.1146/annurev-micro-092412-155746] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogen Staphylococcus aureus is well adapted to its human host. Neutrophil-mediated killing is a crucial defense system against S. aureus; however, the pathogen has evolved many strategies to resist killing. We first describe the discrete steps of neutrophil activation and migration to the site of infection and the killing of microbes by neutrophils in general. We then highlight the different approaches utilized by S. aureus to resist the different steps of neutrophil attack. Various molecules are discussed in their evolutionary context. Most of the molecules secreted by S. aureus to combat neutrophil attacks at the site of infection show clear human specificity. Many elements of human neutrophil defenses appear redundant, and so the evasion strategies of staphylococci display redundant functions as well. All efforts by S. aureus to resist neutrophil-mediated killing stress the importance of these mechanisms in the pathophysiology of staphylococcal diseases. However, the highly human-specific nature of most host-pathogen interactions hinders the in vivo establishment of their contribution to staphylococcal pathophysiology.
Collapse
Affiliation(s)
- András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; , , ,
| | | | | | | |
Collapse
|
41
|
Liese J, Rooijakkers SHM, van Strijp JAG, Novick RP, Dustin ML. Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation. Cell Microbiol 2012; 15:891-909. [PMID: 23217115 DOI: 10.1111/cmi.12085] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/15/2022]
Abstract
Staphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN). To gain more insight into the dynamics of PMN migration and host-pathogen interactions in vivo, we used intravital two-photon (2-P) microscopy to visualize S. aureus skin infections in the mouse. Reporter S. aureus strains expressing fluorescent proteins were developed, which allowed for detection of the bacteria in vivo. By employing LysM-EGFP mice to visualize PMN, we observed the rapid appearance of PMN in the extravascular space of the dermis and their directed movement towards the focus of infection, which led to the delineation of an abscess within 1 day. Moreover, tracking of transferred labelled bone-marrow neutrophils showed that PMN localization to the site of infection is dependent on the presence of G-protein-coupled receptors on the PMN, whereas Interleukin-1 receptor was required on host cells other than PMN. Furthermore, the S. aureus complement inhibitor Ecb could block PMN accumulation at thesite of infection. Our results establish that 2-P microscopy is a powerful tool to investigate the orchestration of the immune cells, S. aureus location and gene expression in vivo on a single cell level.
Collapse
Affiliation(s)
- Jan Liese
- Program of Molecular Pathogenesis, Helen L and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York City, NY 10016, USA.
| | | | | | | | | |
Collapse
|
42
|
Laarman AJ, Mijnheer G, Mootz JM, van Rooijen WJM, Ruyken M, Malone CL, Heezius EC, Ward R, Milligan G, van Strijp JAG, de Haas CJC, Horswill AR, van Kessel KPM, Rooijakkers SHM. Staphylococcus aureus Staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J 2012; 31:3607-19. [PMID: 22850671 PMCID: PMC3433787 DOI: 10.1038/emboj.2012.212] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/11/2012] [Indexed: 02/07/2023] Open
Abstract
Neutrophil activation and recruitment to the site of infection are critical for host immunity. In humans, the cysteine protease Staphopain A of the pathogen S. aureus blocks this process by cleaving the chemokine receptor CXCR2. The CXC chemokine receptor 2 (CXCR2) on neutrophils, which recognizes chemokines produced at the site of infection, plays an important role in antimicrobial host defenses such as neutrophil activation and chemotaxis. Staphylococcus aureus is a successful human pathogen secreting a number of proteolytic enzymes, but their influence on the host immune system is not well understood. Here, we identify the cysteine protease Staphopain A as a chemokine receptor blocker. Neutrophils treated with Staphopain A are unresponsive to activation by all unique CXCR2 chemokines due to cleavage of the N-terminal domain, which can be neutralized by specific protease inhibitors. Moreover, Staphopain A inhibits neutrophil migration towards CXCR2 chemokines. By comparing a methicillin-resistant S. aureus (MRSA) strain with an isogenic Staphopain A mutant, we demonstrate that Staphopain A is the only secreted protease with activity towards CXCR2. Although the inability to cleave murine CXCR2 limits in-vivo studies, our data indicate that Staphopain A is an important immunomodulatory protein that blocks neutrophil recruitment by specific cleavage of the N-terminal domain of human CXCR2.
Collapse
Affiliation(s)
- Alexander J Laarman
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Biofilm-infected intracerebroventricular shunts elicit inflammation within the central nervous system. Infect Immun 2012; 80:3206-14. [PMID: 22753376 DOI: 10.1128/iai.00645-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Central nervous system catheter infections are a serious complication in the treatment of hydrocephalus. These infections are commonly caused by Staphylococcus epidermidis and Staphylococcus aureus, both known to form biofilms on the catheter surface. Our objective was to generate a novel murine model of central nervous system catheter-associated biofilm infection using a clinical S. aureus isolate and characterize the nature of the inflammatory response during biofilm growth. Silicone catheters were precoated with S. aureus to facilitate bacterial attachment, whereupon infected or sterile catheters were stereotactically inserted into the lateral ventricle of the brain in C57BL/6 mice and evaluated at regular intervals through day 21 postinsertion. Animals tolerated the procedure well, with no clinical signs of illness or bacterial growth seen in the control group. Bacterial titers associated with central nervous system catheters were significantly elevated compared to those from the surrounding parenchyma, consistent with biofilm formation and minimal planktonic spread of infection. Catheter-associated bacterial burdens progressively increased, with maximal colonization achieved at day 7 postinfection. Analysis of inflammatory infiltrates by fluorescence-activated cell sorting (FACS) revealed significant macrophage and neutrophil influx, which peaked at days 3 and 5 to 7, respectively. In contrast, there were no detectable immune infiltrates associated with tissues surrounding sterile catheters. Biofilm infection led to significant increases in chemokine (CXCL1 and CCL2) and proinflammatory cytokine (interleukin 17 [IL-17]) expression in tissues surrounding infected central nervous system catheters. Based on these results, we propose this approach is a valid animal model for further investigations of catheter-associated central nervous system shunt infections.
Collapse
|