1
|
Strnadel J, Valasek MA, Lin GY, Lin H, Tipps AMP, Woo SM, Fujimura K, Wang H, Choi S, Bui J, Hermosillo C, Jepsen K, Navarro MR, Kelber JA, Klemke RL, Bouvet M. Development of 3D-iNET ORION: a novel, pre-clinical, three-dimensional in vitro cell model for modeling human metastatic neuroendocrine tumor of the pancreas. Hum Cell 2024; 37:1593-1601. [PMID: 39103560 PMCID: PMC11341600 DOI: 10.1007/s13577-024-01113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Neuroendocrine tumors (NETs) of the pancreas are rare neoplasms that present complex challenges to diagnosis and treatment due to their indolent course. The incidence of pancreatic neuroendocrine tumors has increased significantly over the past two decades. A limited number of pancreatic neuroendocrine cell lines are currently available for the research. Here, we present 3D-iNET ORION, a novel 3-dimensional (spheroid) cell line, isolated from human pancreatic neuroendocrine tumor liver metastasis. Three-dimensionally grown (3D) cancer cell lines have gained interest over the past years as 3D cancer cell lines better recapitulate the in vivo structure of tumors, and are more suitable for in vitro and in vivo experiments. 3D-iNET ORION cancer cell line showed high potential to form tumorspheres when embedded in Matrigel matrix and expresses synaptophysin and EpCAM. Electron microscopy analysis of cancer cell line proved the presence of dense neurosecretory granules. When xenografted into athymic mice, 3D-iNET ORION cells produce slow-growing tumors, positive for chromogranin and synaptophysin. Human Core Exome Panel Analysis has shown that 3DiNET ORION cell line retains the genetic aberration profile detected in the original tumor. In conclusion, our newly developed neuroendocrine cancer cell line can be considered as a new research tool for in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Jan Strnadel
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, 036 01, Martin, Slovakia.
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA.
| | - Mark A Valasek
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
| | - Grace Y Lin
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
| | - Huahui Lin
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
| | | | - Sang Myung Woo
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
- Research Institute, Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang-si, Republic of Korea
| | - Ken Fujimura
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
| | - Huawei Wang
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
| | - Sunkyu Choi
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Jack Bui
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA
| | | | - Kristen Jepsen
- Institute for Genomic Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Michael R Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Jonathan A Kelber
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
- Department of Biology, Baylor University, Waco, TX, USA
| | - Richard L Klemke
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA
| | - Michael Bouvet
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, USA
| |
Collapse
|
2
|
Sakurai K, Ito H. Multifaced roles of the long non-coding RNA DRAIC in cancer progression. Life Sci 2024; 343:122544. [PMID: 38458555 DOI: 10.1016/j.lfs.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Long non-coding RNAs (lncRNA) are functional RNAs, with over 200 nucleotides in length and lacking protein-coding potential. Studies have indicated that lncRNAs are important gene regulators under physiological conditions. Aberrant lncRNA expression is associated with the initiation and progression of various diseases, including cancers. High-throughput transcriptome analyses have revealed thousands of lncRNAs as putative tumor suppressors or promoters in various cancers, but the detailed molecular mechanisms of each lncRNA remain unclear. Downregulated RNA In Cancer, inhibitor of cell invasion and migration (DRAIC) (also known as LOC145837 and RP11-279F6.1) is a lncRNA that inhibits or promotes cancer progression with several modes of action. DRAIC was originally identified as a tumor-suppressive lncRNA in prostate adenocarcinoma. Subsequent studies also revealed that it has an anti-tumor role in glioblastoma, triple-negative breast cancer, and stomach adenocarcinoma. However, DRAIC exhibits oncogenic functions in other malignancies, such as lung adenocarcinoma and esophageal carcinoma, indicating its highly context-dependent effects on cancer progression and clinical outcomes. DRAIC and its associated pathways regulate various biological processes, including proliferation, invasion, metastasis, autophagy, and neuroendocrine function. This review introduces the multifaceted roles of DRAIC, particularly in cancer progression, and discusses its biological significance and clinical implications.
Collapse
Affiliation(s)
- Kouhei Sakurai
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
3
|
Vitale G, Carra S, Alessi Y, Campolo F, Pandozzi C, Zanata I, Colao A, Faggiano A. Carcinoid Syndrome: Preclinical Models and Future Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24043610. [PMID: 36835022 PMCID: PMC9961914 DOI: 10.3390/ijms24043610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Carcinoid syndrome represents a debilitating paraneoplastic disease, caused by the secretion of several substances, occurring in about 10-40% of patients with well-differentiated neuroendocrine tumors (NETs). The main signs and symptoms associated with carcinoid syndrome are flushing, diarrhea, hypotension, tachycardia, bronchoconstriction, venous telangiectasia, dyspnea and fibrotic complications (mesenteric and retroperitoneal fibrosis, and carcinoid heart disease). Although there are several drugs available for the treatment of carcinoid syndrome, the lack of therapeutic response, poor tolerance or resistance to drugs are often reported. Preclinical models are indispensable tools for investigating the pathogenesis, mechanisms for tumor progression and new therapeutic approaches for cancer. This paper provides a state-of-the-art overview of in vitro and in vivo models in NETs with carcinoid syndrome, highlighting the future developments and therapeutic approaches in this field.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
- Correspondence: ; Tel.: +39-02-6191-12023; Fax: +39-02-6191-13033
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20100 Milan, Italy
| | - Ylenia Alessi
- Endocrine Unit, University Hospital “Gaetano Martino” of Messina, 98125 Messina, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carla Pandozzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Isabella Zanata
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Rome, Italy
| | | |
Collapse
|
4
|
Koffas A, Giakoustidis A, Papaefthymiou A, Bangeas P, Giakoustidis D, Papadopoulos VN, Toumpanakis C. Diagnostic work-up and advancement in the diagnosis of gastroenteropancreatic neuroendocrine neoplasms. Front Surg 2023; 10:1064145. [PMID: 36950054 PMCID: PMC10025557 DOI: 10.3389/fsurg.2023.1064145] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of neoplasms ranging from well-differentiated, slowly growing tumors to poorly differentiated carcinomas. These tumors are generally characterized by indolent course and quite often absence of specific symptoms, thus eluding diagnosis until at an advanced stage. This underscores the importance of establishing a prompt and accurate diagnosis. The gold-standard remains histopathology. This should contain neuroendocrine-specific markers, such as chromogranin A; and also, an estimate of the proliferation by Ki-67 (or MIB-1), which is pivotal for treatment selection and prognostication. Initial work-up involves assessment of serum Chromogranin A and in selected patients gut peptide hormones. More recently, the measurement of multiple NEN-related transcripts, or the detection of circulating tumor cells enhanced our current diagnostic armamentarium and appears to supersede historical serum markers, such as Chromogranin A. Standard imaging procedures include cross-sectional imaging, either computed tomography or magnetic resonance, and are combined with somatostatin receptor scintigraphy. In particular, the advent of 111In-DTPA-octreotide and more recently PET/CT and 68Ga-DOTA-Octreotate scans revolutionized the diagnostic landscape of NENs. Likewise, FDG PET represents an invaluable asset in the management of high-grade neuroendocrine carcinomas. Lastly, endoscopy, either conventional, or more advanced modalities such as endoscopic ultrasound, capsule endoscopy and enteroscopy, are essential for the diagnosis and staging of gastroenteropancreatic neuroendocrine neoplasms and are routinely integrated in clinical practice. The complexity and variability of NENs necessitate the deep understanding of the current diagnostic strategies, which in turn assists in offering optimal patient-tailored treatment. The current review article presents the diagnostic work-up of GEP-NENs and all the recent advances in the field.
Collapse
Affiliation(s)
- Apostolos Koffas
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Correspondence: Apostolos Koffas
| | - Alexandros Giakoustidis
- 1st Department of Surgery, General Hospital Papageorgiou, School of Medicine, Faculty of Medical Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Apostolis Papaefthymiou
- Pancreaticobiliary Medicine Unit, University College London Hospitals (UCLH), London, United Kingdom
| | - Petros Bangeas
- 1st Department of Surgery, General Hospital Papageorgiou, School of Medicine, Faculty of Medical Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Giakoustidis
- 1st Department of Surgery, General Hospital Papageorgiou, School of Medicine, Faculty of Medical Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Vasileios N Papadopoulos
- 1st Department of Surgery, General Hospital Papageorgiou, School of Medicine, Faculty of Medical Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Christos Toumpanakis
- Centre for Gastroenterology, Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
5
|
Establishment of Novel Neuroendocrine Carcinoma Patient-Derived Xenograft Models for Receptor Peptide-Targeted Therapy. Cancers (Basel) 2022; 14:cancers14081910. [PMID: 35454817 PMCID: PMC9033026 DOI: 10.3390/cancers14081910] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Gastroenteropancreatic neuroendocrine neoplasms (GEP NENs) are a family of rare cancers with rising incidence in recent years. GEP NEN tumor cells are difficult to propagate, and few cellular and patient-derived xenograft (PDX) models are available for testing new therapies and studying the heterogeneous nature of these cancers. Here, we described the establishment and characterization of two novel NEC cellular and PDX models (NEC913 and NEC1452). NEC913 PDX tumors express somatostatin receptor 2 (SSTR2), whereas NEC1452 PDX tumors are SSTR2 negative. As a proof-of-concept study, we demonstrated how these PDX models can be used for peptide imaging experiments targeting SSTR2 using fluorescently labelled octreotide. The NEC913 and NEC1452 PDX lines represent valuable new tools for accelerating the process of drug discovery for GEP NENs. Abstract Gastroenteropancreatic neuroendocrine neoplasms (GEP NENs) are rare cancers consisting of neuroendocrine carcinomas (NECs) and neuroendocrine tumors (NETs), which have been increasing in incidence in recent years. Few cell lines and pre-clinical models exist for studying GEP NECs and NETs, limiting the ability to discover novel imaging and treatment modalities. To address this gap, we isolated tumor cells from cryopreserved patient GEP NECs and NETs and injected them into the flanks of immunocompromised mice to establish patient-derived xenograft (PDX) models. Two of six mice developed tumors (NEC913 and NEC1452). Over 80% of NEC913 and NEC1452 tumor cells stained positive for Ki67. NEC913 PDX tumors expressed neuroendocrine markers such as chromogranin A (CgA), synaptophysin (SYP), and somatostatin receptor-2 (SSTR2), whereas NEC1452 PDX tumors did not express SSTR2. Exome sequencing revealed loss of TP53 and RB1 in both NEC tumors. To demonstrate an application of these novel NEC PDX models for SSTR2-targeted peptide imaging, the NEC913 and NEC1452 cells were bilaterally injected into mice. Near infrared-labelled octreotide was administered and the fluorescent signal was specifically observed for the NEC913 SSTR2 positive tumors. These 2 GEP NEC PDX models serve as a valuable resource for GEP NEN therapy testing.
Collapse
|
6
|
Doornebal EJ, Harris N, Riva A, Jagatia R, Pizanias M, Prachalias A, Menon K, Preziosi M, Zamalloa A, Miquel R, Zen Y, Orford MR, Eaton S, Heaton N, Ramage J, Palma E, Srirajaskanthan R, Chokshi S. Human Immunocompetent Model of Neuroendocrine Liver Metastases Recapitulates Patient-Specific Tumour Microenvironment. Front Endocrinol (Lausanne) 2022; 13:909180. [PMID: 35909511 PMCID: PMC9326114 DOI: 10.3389/fendo.2022.909180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroendocrine liver metastases (LM-NEN) develop in a considerable proportion of patients with gastroenteropancreatic neuroendocrine neoplasms. There is a paucity of experimental models that accurately recapitulate this complex metastatic human liver microenvironment precluding scientific and clinical advancements. Here, we describe the development of a novel personalised immunocompetent precision cut tumour slice (PCTS) model for LM-NEN using resected human liver tissue. The histological assessment throughout the culture demonstrated that slices maintain viability for at least 7 days and retain the cellular heterogeneity of the original tumour. Essential clinical features, such as patient-specific histoarchitecture, tumour grade, neuroendocrine differentiation and metabolic capacity, are preserved in the slices. The PCTS also replicate the tumor-specific immunological profile as shown by the innate and adaptive immunity markers analysis. Furthermore, the study of soluble immune checkpoint receptors in the culture supernatants proves that these immunomodulators are actively produced by LM-NEN and suggests that this process is epithelium-dependent. This model can be employed to investigate these pathways and provides a powerful platform for mechanistic, immunological and pre-clinical studies.
Collapse
Affiliation(s)
- Ewald Jan Doornebal
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Nicola Harris
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Antonio Riva
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Ravi Jagatia
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Michail Pizanias
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Andreas Prachalias
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Krishna Menon
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Melissa Preziosi
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Ane Zamalloa
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - Rosa Miquel
- Liver Histopathology Laboratory, Institute of Liver Studies, King’s College Hospital, London, United Kingdom
| | - Yoh Zen
- Liver Histopathology Laboratory, Institute of Liver Studies, King’s College Hospital, London, United Kingdom
| | - Michael Robert Orford
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Nigel Heaton
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
| | - John Ramage
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, King’s College Hospital, London, United Kingdom
| | - Elena Palma
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
- *Correspondence: Shilpa Chokshi, ; Elena Palma,
| | - Rajaventhan Srirajaskanthan
- Institute of Liver Studies, King’s College Hospital and King’s College London, London, United Kingdom
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, King’s College Hospital, London, United Kingdom
| | - Shilpa Chokshi
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom
- *Correspondence: Shilpa Chokshi, ; Elena Palma,
| |
Collapse
|
7
|
Herring B, Jang S, Whitt J, Goliwas K, Aburjania Z, Dudeja V, Ren B, Berry J, Bibb J, Frost A, Chen H, Rose JB, Jaskula-Sztul R. Ex Vivo Modeling of Human Neuroendocrine Tumors in Tissue Surrogates. Front Endocrinol (Lausanne) 2021; 12:710009. [PMID: 35002949 PMCID: PMC8734644 DOI: 10.3389/fendo.2021.710009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022] Open
Abstract
Few models exist for studying neuroendocrine tumors (NETs), and there are mounting concerns that the currently available array of cell lines is not representative of NET biology. The lack of stable patient-derived NET xenograft models further limits the scientific community's ability to make conclusions about NETs and their response to therapy in patients. To address these limitations, we propose the use of an ex vivo 3D flow-perfusion bioreactor system for culturing and studying patient-derived NET surrogates. Herein, we demonstrate the utility of the bioreactor system for culturing NET surrogates and provide methods for evaluating the efficacy of therapeutic agents on human NET cell line xenograft constructs and patient-derived NET surrogates. We also demonstrate that patient-derived NET tissues can be propagated using the bioreactor system and investigate the near-infrared (NIR) dye IR-783 for its use in monitoring their status within the bioreactor. The results indicate that the bioreactor system and similar 3D culture models may be valuable tools for culturing patient-derived NETs and monitoring their response to therapy ex vivo.
Collapse
Affiliation(s)
- Brendon Herring
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel Jang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kayla Goliwas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zviadi Aburjania
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joel Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James Bibb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andra Frost
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Zhang D, Hugo W, Redublo P, Miao H, Bergsneider M, Wang MB, Kim W, Yong WH, Heaney AP. A human ACTH-secreting corticotroph tumoroid model: Novel Human ACTH-Secreting Tumor Cell in vitro Model. EBioMedicine 2021; 66:103294. [PMID: 33773184 PMCID: PMC8024915 DOI: 10.1016/j.ebiom.2021.103294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cushing disease (CD), although rare, is a life-threatening disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma, which leads to excess adrenal-derived cortisol. Efficacious and safe medical therapies that control both hormonal hypersecretion and pituitary corticotroph tumor growth remain an unmet need in the management of CD. Translational research in pituitary tumors has been significantly hampered by limited quantities of surgically resected tissue for ex vivo studies, and unavailability of human pituitary tumor cell models. METHODS To characterize human corticotroph tumors at the cellular level, we employed single cell RNA-sequencing (scRNA-seq) to study 4 surgically resected tumors. We also used microarrays to compare individualized paired consecutive culture passages to understand transcriptional shifts as in vitro cultures lost ACTH secretion. Based on these findings, we then modified our in vitro culture methods to develop sustained ACTH-secreting human corticotroph tumoroid cultures. FINDINGS scRNA-seq identified 4 major cell populations, namely corticotroph tumor (73.6%), stromal (11.2%), progenitor (8.3%), and immune cells (6.8%). Microarray analysis revealed striking changes in extracellular matrix, cell adhesion and motility-related genes concordant with loss of ACTH secretion during conventional 2D culture. Based on these findings, we subsequently defined a series of crucial culture nutrients and scaffold modifications that provided a more favorable trophic and structural environment that could maintain ACTH secretion in in vitro human corticotroph tumor cultures for up to 4 months. INTERPRETATION Our human corticotroph tumoroid model is a significant advance in the field of pituitary tumors and will further enable translational research studies to identify critically needed therapies for CD. FUNDING This work was partly funded by NCI P50-CA211015 and the Warley Trust Foundation.
Collapse
Affiliation(s)
- Dongyun Zhang
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Willy Hugo
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Peter Redublo
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Hui Miao
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Marvin Bergsneider
- Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Marilene B Wang
- Departments of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Won Kim
- Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - William H Yong
- Departments of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Anthony P Heaney
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States; Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
9
|
Laskaratos FM, Levi A, Schwach G, Pfragner R, Hall A, Xia D, von Stempel C, Bretherton J, Thanapirom K, Alexander S, Ogunbiyi O, Watkins J, Luong TV, Toumpanakis C, Mandair D, Caplin M, Rombouts K. Transcriptomic Profiling of In Vitro Tumor-Stromal Cell Paracrine Crosstalk Identifies Involvement of the Integrin Signaling Pathway in the Pathogenesis of Mesenteric Fibrosis in Human Small Intestinal Neuroendocrine Neoplasms. Front Oncol 2021; 11:629665. [PMID: 33718208 PMCID: PMC7943728 DOI: 10.3389/fonc.2021.629665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Aim Analysis of the pathophysiology of mesenteric fibrosis (MF) in small intestinal neuroendocrine tumors (SI-NETs) in an in vitro paracrine model and in human SI-NET tissue samples. Methods An indirect co-culture model of SI-NET cells KRJ-I and P-STS with stromal cells HEK293 was designed to evaluate the paracrine effects on cell metabolic activity, gene expression by RT2 PCR Profilers to analyse cancer and fibrosis related genes, and RNA sequencing. The integrin signaling pathway, a specific Ingenuity enriched pathway, was further explored in a cohort of human SI-NET tissues by performing protein analysis and immunohistochemistry. Results RT Profiler array analysis demonstrated several genes to be significantly up- or down-regulated in a cell specific manner as a result of the paracrine effect. This was further confirmed by employing RNA sequencing revealing multiple signaling pathways involved in carcinogenesis and fibrogenesis that were significantly affected in these cell lines. A significant upregulation in the expression of various integrin pathway – related genes was identified in the mesenteric mass of fibrotic SI-NET as confirmed by RT-qPCR and immunohistochemistry. Protein analysis demonstrated downstream activation of the MAPK and mTOR pathways in some patients with fibrotic SI-NETs. Conclusion This study has provided the first comprehensive analysis of the crosstalk of SI-NET cells with stromal cells. A novel pathway – the integrin pathway – was identified and further validated and confirmed in a cohort of human SI-NET tissue featured by a dual role in fibrogenesis/carcinogenesis within the neoplastic fibrotic microenvironment.
Collapse
Affiliation(s)
- Faidon-Marios Laskaratos
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom.,Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Ana Levi
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Gert Schwach
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Roswitha Pfragner
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Andrew Hall
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Dong Xia
- Royal Veterinary College, University of London, London, United Kingdom
| | - Conrad von Stempel
- Radiology Department, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Josephine Bretherton
- Radiology Department, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Kessarin Thanapirom
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Sarah Alexander
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Olagunju Ogunbiyi
- Department of Colorectal Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Jennifer Watkins
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Tu Vinh Luong
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Christos Toumpanakis
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Dalvinder Mandair
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Martyn Caplin
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
10
|
Detjen K, Hammerich L, Özdirik B, Demir M, Wiedenmann B, Tacke F, Jann H, Roderburg C. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 2021; 111:217-236. [PMID: 32615560 DOI: 10.1159/000509864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare, heterogeneous group of tumors that originate from the endocrine system of the gastrointestinal tract and pancreas. GEP-NENs are subdivided according to their differentiation into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Since GEP-NENs represent rare diseases, only limited data from large prospective, randomized clinical trials are available, and recommendations for treatment of GEP-NEN are in part based on data from retrospective analyses or case series. In this context, tractable disease models that reflect the situation in humans and that allow to recapitulate the different clinical aspects and disease stages of GEP-NET or GEP-NEC are urgently needed. In this review, we highlight available data on mouse models for GEP-NEN. We discuss how these models reflect tumor biology of human disease and whether these models could serve as a tool for understanding the pathogenesis of GEP-NEN and for disease modeling and pharmacosensitivity assays, facilitating prediction of treatment response in patients. In addition, open issues applicable for future developments will be discussed.
Collapse
Affiliation(s)
- Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Henning Jann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany,
| |
Collapse
|
11
|
Mpilla GB, Philip PA, El-Rayes B, Azmi AS. Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations. World J Gastroenterol 2020; 26:4036-4054. [PMID: 32821069 PMCID: PMC7403797 DOI: 10.3748/wjg.v26.i28.4036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are known to be the second most common epithelial malignancy of the pancreas. PNETs can be listed among the slowest growing as well as the fastest growing human cancers. The prevalence of PNETs is deceptively low; however, its incidence has significantly increased over the past decades. According to the American Cancer Society’s estimate, about 4032 (> 7% of all pancreatic malignancies) individuals will be diagnosed with PNETs in 2020. PNETs often cause severe morbidity due to excessive secretion of hormones (such as serotonin) and/or overall tumor mass. Patients can live for many years (except for those patients with poorly differentiated G3 neuroendocrine tumors); thus, the prevalence of the tumors that is the number of patients actually dealing with the disease at any given time is fairly high because the survival is much longer than pancreatic ductal adenocarcinoma. Due to significant heterogeneity, the management of PNETs is very complex and remains an unmet clinical challenge. In terms of research studies, modest improvements have been made over the past decades in the identification of potential oncogenic drivers in order to enhance the quality of life and increase survival for this growing population of patients. Unfortunately, the majority of systematic therapies approved for the management of advanced stage PNETs lack objective response or at most result in modest benefits in survival. In this review, we aim to discuss the broad challenges associated with the management and the study of PNETs.
Collapse
Affiliation(s)
- Gabriel Benyomo Mpilla
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Philip Agop Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Bassel El-Rayes
- Department of Hematology Oncology, Emory Winship Institute, Atlanta, GA 30322, United States
| | - Asfar Sohail Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
12
|
CUX1-Transcriptional Master Regulator of Tumor Progression in Pancreatic Neuroendocrine Tumors. Cancers (Basel) 2020; 12:cancers12071957. [PMID: 32707646 PMCID: PMC7409270 DOI: 10.3390/cancers12071957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 02/01/2023] Open
Abstract
Recently, we identified the homeodomain transcription factor Cut homeobox 1 (CUX1) as mediator of tumour de-differentiation and metastatic behaviour in human insulinoma patients. In insulinomas, CUX1 enhanced tumour progression by stimulating proliferation and angiogenesis in vitro and in vivo. In patients with non-functional pancreatic neuroendocrine tumours (PanNET), however, the impact of CUX1 remains to be elucidated. Here, we analysed CUX1 expression in two large independent cohorts (n = 43 and n = 141 tissues) of non-functional treatment-naïve and pre-treated PanNET patients, as well as in the RIP1Tag2 mouse model of pancreatic neuroendocrine tumours. To further assess the functional role of CUX1, expression profiling of DNA damage-, proliferation- and apoptosis-associated genes was performed in CUX1-overexpressing Bon-1 cells. Validation of differentially regulated genes was performed in Bon-1 and QGP1 cells with knock-down and overexpression strategies. CUX1 expression assessed by a predefined immunoreactivity score (IRS) was significantly associated with shorter progression-free survival (PFS) of pre-treated PanNET patients (23 vs. 8 months; p = 0.005). In treatment-naïve patients, CUX1 was negatively correlated with grading and recurrence-free survival (mRFS of 39 versus 8 months; p = 0.022). In both groups, high CUX1 levels indicated a metastatic phenotype. Functionally, CUX1 upregulated expression of caspases and death associated protein kinase 1 (DAPK1), known as mediators of tumour progression and resistance to cytotoxic drugs. This was also confirmed in both cell lines and human tissues. In the RIP1Tag2 mouse model, CUX1 expression was associated with advanced tumour stage and resistance to apoptosis. In summary, we identified the transcription factor CUX1 as mediator of tumour progression in non-functional PanNET in vitro and in vivo, indicating that the CUX1-dependent signalling network is a promising target for future therapeutic intervention.
Collapse
|
13
|
Rodríguez-Remírez M, Del Puerto-Nevado L, Fernández Aceñero MJ, Ebrahimi-Nik H, Cruz-Ramos M, García-García L, Solanes S, Baños N, Molina-Roldán E, García-Foncillas J, Cebrián A. Strong Antitumor Activity of Bevacizumab and Aflibercept in Neuroendocrine Carcinomas: In-Depth Preclinical Study. Neuroendocrinology 2020; 110:50-62. [PMID: 31030198 DOI: 10.1159/000500591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuroendocrine carcinoma (NEC) is a rare and very aggressive tumor. It has been greatly understudied, and very little is known about optimal treatment strategy for patients with this disease. The purpose of this study was to evaluate in vivo whether anti-vascular endothelial growth factor (VEGF) drugs could be a therapeutic alternative for these tumors with a poor prognosis. METHODS We have developed 2 xenograft models using either human cell line derived from lung (H460) or from colon (COLO320) NEC to assess the effect of 2 antiangiogenic drugs, aflibercept and bevacizumab, on tumor growth and their pathological characteristics. Additionally, tumors were subjected to immunohistochemistry staining and proteins were measured with Western blot and ELISA. RESULTS Both aflibercept and bevacizumab showed significant antitumor activity (p < 0.001). In the H460 model, aflibercept resulted in 94% tumor growth inhibition (TGI) and bevacizumab treatment resulted in 72.2% TGI. Similarly, in the COLO320 model, aflibercept and bevacizumab resulted in 89.3 and 84% TGI, respectively. Moreover, antitumor activity occurs early after treatment initiation. Using Tumor Control Index score, which address the kinetics of tumor growth in a way comparable to the methods used in human clinical studies, we confirmed that both drugs inhibit significantly tumor growth. When tumor stabilization was evaluated, aflibercept shows higher ability to stabilize NEC tumors than bevacizumab. CONCLUSION Results derived from this study strongly support anti-VEGF therapies, especially aflibercept, as a novel therapeutic option in NECs. Further studies are necessary, but our observations encourage the evaluation of antiangiogenics in clinical trials combined with standard chemotherapy.
Collapse
Affiliation(s)
- María Rodríguez-Remírez
- Division of Translational Oncology, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Laura Del Puerto-Nevado
- Division of Translational Oncology, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - María Jesús Fernández Aceñero
- Servicio de Anatomía Patológica Hospital Clínico San Carlos, Departamento de Anatomía Patològica, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Hakimeh Ebrahimi-Nik
- Department of Immunology, The Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Marlid Cruz-Ramos
- Division of Translational Oncology, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Laura García-García
- Division of Translational Oncology, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Sonia Solanes
- Division of Translational Oncology, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Natalia Baños
- Division of Translational Oncology, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Elena Molina-Roldán
- Servicio de Anatomía Patológica Hospital Clínico San Carlos, Departamento de Anatomía Patològica, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Jesús García-Foncillas
- Division of Translational Oncology, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain
| | - Arancha Cebrián
- Division of Translational Oncology, Oncohealth Institute, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain,
| |
Collapse
|
14
|
Efficacy of a third-generation oncolytic herpes simplex virus in neuroendocrine tumor xenograft models. Oncotarget 2019; 10:7132-7141. [PMID: 31903171 PMCID: PMC6935252 DOI: 10.18632/oncotarget.27391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND: Few chemotherapies are available for neuroendocrine tumors, especially for highly malignant neuroendocrine cancers. The third-generation oncolytic herpes simplex virus type 1 (HSV-1) T-01 selectively replicates in tumor cells and shows cytotoxicity against tumor cells without damaging surrounding normal tissues. We examined the antitumor effect of T-01 to explore novel treatments for patients with neuroendocrine tumors. METHODS: The cytotoxicity of T-01 was tested in two human and one murine neuroendocrine tumor cell lines in vitro. Mouse models with subcutaneously implanted human neuroendocrine tumor QGP1 cells were used to investigate T-01 efficacy in vivo. RESULTS: T-01 showed cytotoxicity against the three cell lines in vitro. In xenograft models, the growth of tumors derived from QGP1 cells was inhibited by T-01 compared with control group. Although weight loss of mice was observed with tumor growth in the control group, it was suppressed by T-01 administration. The antitumor effects of T-01 were dependent on virus concentration and frequency of administration. CONCLUSIONS: T-01 effectively inhibits tumor cell proliferation in a poorly differentiated NEC mouse model. These results suggest that the third-generation oncolytic HSV-1 may serve as a novel treatment for patients with neuroendocrine tumors.
Collapse
|
15
|
Herring B, Whitt J, Aweda T, Ou J, Guenter R, Lapi S, Berry J, Chen H, Liu X, Rose JB, Jaskula-Sztul R. A growth model of neuroendocrine tumor surrogates and the efficacy of a novel somatostatin-receptor-guided antibody-drug conjugate: Perspectives on clinical response? Surgery 2019; 167:197-203. [PMID: 31543319 PMCID: PMC8162105 DOI: 10.1016/j.surg.2019.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND As patient-derived xenografts and other preclinical models of neuroendocrine tumors for testing personalized therapeutics are lacking, we have developed a perfused, 3D bioreactor model to culture tumor surrogates from patient-derived neuroendocrine tumors. This work evaluates the duration of surrogate culture and surrogate response to a novel antibody-drug conjugate. METHODS Twenty-seven patient-derived neuroendocrine tumors were cultured. Histologic sections of a pancreatic neuroendocrine tumor xenograft (BON-1) tumor were assessed for SSTR2 expression before tumor implantation into 2 bioreactors. One surrogate was treated with an antibody-drug conjugate composed of an anti-mitotic Monomethyl auristatin-E linked to a somatostatin receptor 2 antibody. Viability and therapeutic response were assessed by pre-imaging incubation with IR-783 and the RealTime-Glo AnnexinV Apoptosis and Necrosis Assay (Promega Corporation, Madison, WI) over 6 days. A primary human pancreatic neuroendocrine tumor was evaluated similarly. RESULTS Mean surrogate growth duration was 34.8 days. Treated BON-1 surrogates exhibited less proliferation (1.2 vs 1.9-fold) and greater apoptosis (1.5 vs 1.1-fold) than controls, whereas treated patient-derived neuroendocrine tumor bioreactors exhibited greater degrees of apoptosis (13- vs 9-fold) and necrosis (2.5- vs 1.6-fold). CONCLUSION Patient-derived neuroendocrine tumor surrogates can be cultured reliably within the bioreactor. This model can be used to evaluate the efficacy of antibody-guided chemotherapy ex vivo and may be useful for predicting clinical responses.
Collapse
Affiliation(s)
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham School of Medicine, AL
| | - Tolulope Aweda
- Department of Radiology, University of Alabama at Birmingham School of Medicine, AL
| | - Jianfa Ou
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Medicine, AL
| | | | - Suzanne Lapi
- Department of Radiology, University of Alabama at Birmingham School of Medicine, AL
| | - Joel Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Medicine, AL
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham School of Medicine, AL
| | - Xiaoguang Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Medicine, AL
| | - J Bart Rose
- Department of Surgery, University of Alabama at Birmingham School of Medicine, AL
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham School of Medicine, AL.
| |
Collapse
|
16
|
Asavasupreechar T, Saito R, Edwards DP, Sasano H, Boonyaratanakornkit V. Progesterone receptor isoform B expression in pulmonary neuroendocrine cells decreases cell proliferation. J Steroid Biochem Mol Biol 2019; 190:212-223. [PMID: 30926428 PMCID: PMC9968952 DOI: 10.1016/j.jsbmb.2019.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 11/22/2022]
Abstract
The progesterone receptor (PR) has been reported to play important roles in lung development and function, such as alveolarization, alveolar fluid clearance (AFC) and upper airway dilator muscle activity. In the lung, pulmonary neuroendocrine cells (PNECs) are important in the etiology and progression of lung neuroendocrine tumors (NETs). Women with lung NETs had significantly better survival rates than men, suggesting that sex steroids and their receptors, such as the PR, could be involved in the progression of lung NETs. The PR exists as two major isoforms, PRA and PRB. How the expression of different PR isoforms affects proliferation and the development of lung NETs is not well understood. To determine the role of the PR isoforms in PNECs, we constructed H727 lung NET cell models expressing PRB, PRA, Green Fluorescence Protein (GFP) (control). The expression of PRB significantly inhibited H727 cell proliferation better than that of PRA in the absence of progestin. The expression of the unrelated protein, GFP, had little to no effect on H727 cell proliferation. To better understand the role of the PR isoform in PNECs, we examined PR isoform expression in PNECs in lung tissues. A monoclonal antibody specific to the N-terminus of PRB (250H11 mAb) was developed to specifically recognize PRB, while a monoclonal antibody specific to a common N-terminus epitope present in both PRA and PRB (1294 mAb) was used to detect both PRA and PRB. Using these PR and PRB-specific antibodies, we demonstrated that PR (PRA&PRB) and PRB were expressed in the PNECs of the normal fetal and adult lung, with significantly higher PR expression in the fetal lung. Interestingly, PRB expression in the normal lung was associated with lower cell proliferation than PR expression, suggesting a distinct role of PRB in the PNECs. A better understanding of the molecular mechanism of PR and PR isoform signaling in lung NET cells may help in developing novel therapeutic strategies that will benefit lung NET patients in the future.
Collapse
Affiliation(s)
- Teeranut Asavasupreechar
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ryoko Saito
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dean P Edwards
- Departments of Molecular & Cellular Biology and Pathology & Immunology, Baylor College of Medicine, Houston, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Viroj Boonyaratanakornkit
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand; Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
17
|
Scarpa A. The landscape of molecular alterations in pancreatic and small intestinal neuroendocrine tumours. ANNALES D'ENDOCRINOLOGIE 2019; 80:153-158. [PMID: 31072588 DOI: 10.1016/j.ando.2019.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs) arise throughout the gut and feature varying biological behaviour and malignant potential. GEP-NENs include two genetically different entities, well-differentiated neuroendocrine tumours (NETs) and poorly differentiated neuroendocrine carcinomas (NEC). NECs are characterized by a dismal prognosis and by distinctive TP53 and RB1 inactivation which sets them apart from NETs. The latter, conversely, have a wide spectrum of aggressiveness and molecular alterations. Knowledge on their biology has recently expanded thanks to high-throughput studies focused on two important groups of well-differentiated neuroendocrine neoplasms: pancreatic (PanNETs) and small intestinal (SiNETs) tumours. PanNETs have been among the most studied also due to genetic syndromes featuring their onset. Research stemming from this observation has uncovered the inactivation of MEN1, VHL, TSC1/2, and the hyperactivation of the PI3K/mTOR pathway as distinctive biological features of these neoplasms. Next-Generation Sequencing added information on the role of telomere lengthening via ATRX/DAXX inactivation in a fraction of PanNETs, while other display shortened telomeres and recurrent chromosomal alterations. The data so far disclosed a heterogeneous combination of driver events, yet converging into four pathways including DNA damage repair, cell cycle regulation, PI3K/mTOR signalling and telomere maintenance. SiNETs showed a lesser relationship with mutational driver events, even in the case of familial cases. High throughput studies identified putative driver mutations in CDKN1 and APC which, however, were reported in a minor fraction (∼10%) of cases. Tumorigenesis of SiNETs seems to depend more on chromosomal alterations (loss of chromosome 8, gains at 4, 5 and 20) and epigenetic events, which converge to hyperactivate the PI3K/mTOR, MAPK and Wnt pathways. While calling for further integrative studies, these data lay previous and recent findings in a more defined frame and provide clinical research with several candidate markers for patient stratification and companion diagnostics.
Collapse
Affiliation(s)
- Aldo Scarpa
- RC-Net Centre for applied research on cancer, University and Hospital Trust of Verona, 37134 Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy.
| |
Collapse
|
18
|
Mafficini A, Scarpa A. Genetics and Epigenetics of Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr Rev 2019; 40:506-536. [PMID: 30657883 PMCID: PMC6534496 DOI: 10.1210/er.2018-00160] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs) are heterogeneous regarding site of origin, biological behavior, and malignant potential. There has been a rapid increase in data publication during the last 10 years, mainly driven by high-throughput studies on pancreatic and small intestinal neuroendocrine tumors (NETs). This review summarizes the present knowledge on genetic and epigenetic alterations. We integrated the available information from each compartment to give a pathway-based overview. This provided a summary of the critical alterations sustaining neoplastic cells. It also highlighted similarities and differences across anatomical locations and points that need further investigation. GEP-NENs include well-differentiated NETs and poorly differentiated neuroendocrine carcinomas (NECs). NENs are graded as G1, G2, or G3 based on mitotic count and/or Ki-67 labeling index, NECs are G3 by definition. The distinction between NETs and NECs is also linked to their genetic background, as TP53 and RB1 inactivation in NECs set them apart from NETs. A large number of genetic and epigenetic alterations have been reported. Recurrent changes have been traced back to a reduced number of core pathways, including DNA damage repair, cell cycle regulation, and phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling. In pancreatic tumors, chromatin remodeling/histone methylation and telomere alteration are also affected. However, also owing to the paucity of disease models, further research is necessary to fully integrate and functionalize data on deregulated pathways to recapitulate the large heterogeneity of behaviors displayed by these tumors. This is expected to impact diagnostics, prognostic stratification, and planning of personalized therapy.
Collapse
Affiliation(s)
- Andrea Mafficini
- ARC-Net Center for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Center for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
19
|
Yanagihara K, Kubo T, Iino Y, Mihara K, Morimoto C, Seyama T, Kuwata T, Ochiai A, Yokozaki H. Development and characterization of a cancer cachexia model employing a rare human duodenal neuroendocrine carcinoma-originating cell line. Oncotarget 2019; 10:2435-2450. [PMID: 31069007 PMCID: PMC6497432 DOI: 10.18632/oncotarget.26764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cachexia interferes with therapy and worsens patients' quality of life. Therefore, for a better understanding of cachexia, we aimed to establish a reliable cell line to develop a cachexia model. We recently established and characterized the TCC-NECT-2 cell line, derived from a Japanese patient with poorly differentiated neuroendocrine carcinoma of the duodenum (D-NEC). Subcutaneous xenograft of TCC-NECT-2 cells in mice resulted in tumor formation, angiogenesis, and 20% incidence of body weight (BW)-loss. Subsequently, we isolated a potent cachexia-inducing subline using stepwise selection and designated as AkuNEC. Orthotopic and s.c. implantation of AkuNEC cells into mice led to diminished BW, anorexia, skeletal muscle atrophy, adipose tissue loss, and decreased locomotor activity at 100% incidence. Additionally, orthotopic implantation of AkuNEC cells resulted in metastasis and angiogenesis. Serum IL-8 overproduction was observed, and levels were positively correlated with BW-loss and reduced adipose tissue and muscle volumes in tumor-bearing mice. However, shRNA knockdown of the IL-8 gene did not suppress tumor growth and cachexia in the AkuNEC model, indicating that IL-8 is not directly involved in cachexia induction. In conclusion, AkuNEC cells may serve as a useful model to study cachexia and D-NEC.
Collapse
Affiliation(s)
- Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba, Japan
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takanori Kubo
- Department of Life Sciences, Yasuda Women’s University Faculty of Pharmacy, Hiroshima, Japan
| | - Yuki Iino
- Division of Biomarker Discovery, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Keichiro Mihara
- Department of Hematology/Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Chie Morimoto
- Department of Living Science Nutrition Course, Matsuyama Shinonome Junior College, Matsuyama, Japan
| | - Toshio Seyama
- Department of Life Sciences, Yasuda Women’s University Faculty of Pharmacy, Hiroshima, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba, Japan
| | - Atsushi Ochiai
- Division of Biomarker Discovery, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
20
|
Molina-Cerrillo J, Grande E, Alonso-Gordoa T. Inhibition of Serotonin Synthesis May Have Antitumor Activity? Long-Term Efficacy in a Patient with Gastrointestinal Neuroendocrine Tumor. Oncologist 2019; 24:e597-e599. [PMID: 30877189 DOI: 10.1634/theoncologist.2018-0776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
In this article, we propose, based on a clinical case, the potential antitumor effect related to the inhibition of serotonin in neuroendocrine tumors (NETs). Currently, the only drug that exists for the symptomatic treatment of carcinoid syndrome refractory to somatostatin analogues is telotristat, based on its pivotal study, the TELESTAR trial. Based on the existing preclinical rationale, it seems that the inhibition of serotonin may have an antitumoral role in NETs. Briefly, serotonin may act as an autocrine growth factor of NETs, and it may also play an immunomodulatory role by enhancing macrophage polarization to an immunotolerant M2 phenotype. To our knowledge, this rationale for the possible antitumor effect of serotonin in NETs has not yet been published in the literature.
Collapse
Affiliation(s)
| | - Enrique Grande
- Medical Oncology Department, MD Cancer Center, Madrid, Spain
| | | |
Collapse
|
21
|
Pfanzagl B, Zevallos VF, Schuppan D, Pfragner R, Jensen-Jarolim E. Histamine causes influx via T-type voltage-gated calcium channels in an enterochromaffin tumor cell line: potential therapeutic target in adverse food reactions. Am J Physiol Gastrointest Liver Physiol 2019; 316:G291-G303. [PMID: 30540489 DOI: 10.1152/ajpgi.00261.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The P-STS human ileal neuroendocrine tumor cells, as a model for gut enterochromaffin cells, are strongly and synergistically activated by histamine plus acetylcholine (ACh), presumably via histamine 4 receptors, and weakly activated by histamine alone. Sensing these signals, enterochromaffin cells could participate in intestinal intolerance or allergic reactions to food constituents associated with elevated histamine levels. In this study we aimed to analyze the underlying molecular mechanisms. Inhibition by mepyramine and mibefradil indicated that histamine alone caused a rise in intracellular calcium concentration ([Ca2+]i) via histamine 1 receptors involving T-type voltage-gated calcium channels (VGCCs). Sensitivity to histamine was enhanced by pretreatment with the inflammatory cytokine tumor necrosis factor-α (TNF-α). In accordance with the relief it offers some inflammatory bowel disease patients, otilonium bromide, a gut-impermeable inhibitor of T-type (and L-type) VGCCs and muscarinic ACh receptors, efficiently inhibited the [Ca2+]i responses induced by histamine plus ACh or by histamine alone in P-STS cells. It will take clinical studies to show whether otilonium bromide has promise for the treatment of adverse food reactions. The cells did not react to the nutrient constituents glutamate, capsaicin, cinnamaldehyde, or amylase-trypsin inhibitors and the transient receptor potential channel vanilloid 4 agonist GSK-1016790A. The bacterial product butyrate evoked a rise in [Ca2+]i only when added together with ACh. Lipopolysaccharide had no effect on [Ca2+]i despite the presence of Toll-like receptor 4 protein. Our results indicate that inflammatory conditions with elevated levels of TNF-α might enhance histamine-induced serotonin release from intestinal neuroendocrine cells. NEW & NOTEWORTHY We show that histamine synergistically enhances the intracellular calcium response to the physiological agonist acetylcholine in human ileal enterochromaffin tumor cells. This synergistic activation and cell activation by histamine alone largely depend on T-type voltage-gated calcium channels and are inhibited by the antispasmodic otilonium bromide. The cells showed no response to wheat amylase-trypsin inhibitors, suggesting that enterochromaffin cells are not directly involved in nongluten wheat sensitivity.
Collapse
Affiliation(s)
- Beatrix Pfanzagl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna , Vienna , Austria
| | - Victor F Zevallos
- Division of Molecular and Translational Medicine, Department of Medicine I, Johannes Gutenberg University , Mainz , Germany
| | - Detlef Schuppan
- Division of Molecular and Translational Medicine, Department of Medicine I, Johannes Gutenberg University , Mainz , Germany
| | - Roswitha Pfragner
- Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz , Graz , Austria
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna , Vienna , Austria.,The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University Vienna , Vienna , Austria
| |
Collapse
|
22
|
ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat Med 2018; 24:1887-1898. [PMID: 30478421 DOI: 10.1038/s41591-018-0241-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 09/04/2018] [Indexed: 01/06/2023]
Abstract
Treatment of prostate cancer (PC) by androgen suppression promotes the emergence of aggressive variants that are androgen receptor (AR) independent. Here we identify the transcription factor ONECUT2 (OC2) as a master regulator of AR networks in metastatic castration-resistant prostate cancer (mCRPC). OC2 acts as a survival factor in mCRPC models, suppresses the AR transcriptional program by direct regulation of AR target genes and the AR licensing factor FOXA1, and activates genes associated with neural differentiation and progression to lethal disease. OC2 appears active in a substantial subset of human prostate adenocarcinoma and neuroendocrine tumors. Inhibition of OC2 by a newly identified small molecule suppresses metastasis in mice. These findings suggest that OC2 displaces AR-dependent growth and survival mechanisms in many cases where AR remains expressed, but where its activity is bypassed. OC2 is also a potential drug target in the metastatic phase of aggressive PC.
Collapse
|
23
|
Yanagihara K, Kubo T, Mihara K, Kuwata T, Ochiai A, Seyama T, Yokozaki H. Establishment of a novel cell line from a rare human duodenal poorly differentiated neuroendocrine carcinoma. Oncotarget 2018; 9:36503-36514. [PMID: 30559933 PMCID: PMC6284856 DOI: 10.18632/oncotarget.26367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
Poorly differentiated neuroendocrine carcinoma of the duodenum (D-NEC) is a rare cancer with poor prognosis. However, a D-NEC cell line has not yet been established to study the disease. We established a cell line, TCC-NECT-2, from the ascites tumor of a 59-year-old male Japanese patient with D-NEC. TCC-NECT-2 was positive for neuroendocrine markers, chromogranin A (CGA), cluster of differentiation 56 (CD56/NCAM), synaptophysin (SYN/p38), and neuron specific enolase (NSE). Cells exhibited retinoblastoma (RB) protein loss. Orthotopic implantation of TCC-NECT-2 cells into nu/nu mice resulted in tumor formation (incidence = 83.3%) with neuroendocrine characteristics, metastasis, and weight loss. BRAFV600E and TP53 mutations and C-MYC gene amplification were also observed in TCC-NECT-2. BRAFV600E-expressing TCC-NECT-2 cells were sensitive to BRAF inhibitor vemurafenib, and especially dabrafenib, in vitro, and were strongly inhibited in a dose-dependent manner. Dabrafenib treatment (30 mg/kg) in a xenograft model for 14 days significantly suppressed tumor growth (percent tumor growth inhibition, TGI% = 48.04). An enhanced therapeutic effect (TGI% = 95.81) was observed on combined treatment of dabrafenib and irinotecan (40 mg/kg). Therefore, TCC-NECT-2, the first reported cell line derived from D-NEC, might serve as a useful model to study the basic biology of D-NEC and translational applications for treatment.
Collapse
Affiliation(s)
- Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba, Japan.,Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takanori Kubo
- Department of Life Sciences, Yasuda Women's University Faculty of Pharmacy, Hiroshima, Japan
| | - Keichiro Mihara
- Department of Hematology/Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba, Japan
| | - Atsushi Ochiai
- Division of Biomarker Discovery, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Toshio Seyama
- Department of Life Sciences, Yasuda Women's University Faculty of Pharmacy, Hiroshima, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
24
|
Cuny T, de Herder W, Barlier A, Hofland LJ. Role of the tumor microenvironment in digestive neuroendocrine tumors. Endocr Relat Cancer 2018; 25:R519-R544. [PMID: 30306777 DOI: 10.1530/erc-18-0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) represent a group of heterogeneous tumors whose incidence increased over the past few years. Around half of patients already present with metastatic disease at the initial diagnosis. Despite extensive efforts, cytotoxic and targeted therapies have provided only limited efficacy for patients with metastatic GEP-NETs, mainly due to the development of a certain state of resistance. One factor contributing to both the failure of systemic therapies and the emergence of an aggressive tumor phenotype may be the tumor microenvironment (TME), comprising dynamic and adaptative assortment of extracellular matrix components and non-neoplastic cells, which surround the tumor niche. Accumulating evidence shows that the TME can simultaneously support both tumor growth and metastasis and contribute to a certain state of resistance to treatment. In this review, we summarize the current knowledge of the TME of GEP-NETs and discuss the current therapeutic agents that target GEP-NETs and those that could be of interest in the (near) future.
Collapse
Affiliation(s)
- Thomas Cuny
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Department of Endocrinology, Assistance Publique - Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Marseille, France
| | - Wouter de Herder
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anne Barlier
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Department of Endocrinology, Assistance Publique - Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Marseille, France
| | - Leo J Hofland
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Aristizabal Prada ET, Spöttl G, Maurer J, Lauseker M, Koziolek EJ, Schrader J, Grossman A, Pacak K, Beuschlein F, Auernhammer CJ, Nölting S. The role of GSK3 and its reversal with GSK3 antagonism in everolimus resistance. Endocr Relat Cancer 2018; 25:893-908. [PMID: 29895527 PMCID: PMC7439002 DOI: 10.1530/erc-18-0159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic neuroendocrine tumors (panNETs) are often inoperable at diagnosis. The mTORC1 inhibitor everolimus has been approved for the treatment of advanced NETs. However, the regular development of resistance to everolimus limits its clinical efficacy. We established two independent everolimus-resistant panNET (BON1) cell lines (BON1 RR1, BON1 RR2) to find potential mechanisms of resistance. After 24 weeks of permanent exposure to 10 nM everolimus, BON1 RR1 and BON1 RR2 showed stable resistance with cellular survival rates of 96.70% (IC50 = 5200 nM) and 92.30% (IC50 = 2500 nM), respectively. The control cell line showed sensitivity to 10 nM everolimus with cellular survival declining to 54.70% (IC50 = 34 nM). Both resistant cell lines did not regain sensitivity over time and showed persistent stable resistance after a drug holiday of 13 weeks. The mechanisms of resistance in our cell line model included morphological adaptations, G1 cell cycle arrest associated with reduced CDK1(cdc2) expression and decreased autophagy. Cellular migration potential was increased and indirectly linked to c-Met activation. GSK3 was over-activated in association with reduced baseline IRS-1 protein levels. Specific GSK3 inhibition strongly decreased BON1 RR1/RR2 cell survival. The combination of everolimus with the PI3Kα inhibitor BYL719 re-established everolimus sensitivity through GSK3 inhibition and restoration of autophagy. We suggest that GSK3 over-activation combined with decreased baseline IRS-1 protein levels and decreased autophagy may be a crucial feature of everolimus resistance, and hence, a possible therapeutic target.
Collapse
Affiliation(s)
- Elke Tatjana Aristizabal Prada
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Gerald Spöttl
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Julian Maurer
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Michael Lauseker
- Institute for Medical Information SciencesBiometry, and Epidemiology, Campus Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Eva Jolanthe Koziolek
- Department of Nuclear MedicineUniversity Medical Center Charité, Berlin, Germany
- German Cancer Consortium (DKTK)Heidelberg, Germany
- German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - Jörg Schrader
- I. Medizinische Klinik und PoliklinikUniversitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ashley Grossman
- Oxford Centre for DiabetesEndocrinology and Metabolism, University of Oxford, Oxford, UK
- Royal Free Hospital ENETS Centre of ExcellenceLondon, UK
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of Health, Bethesda, Maryland, USA
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
- Klinik für EndokrinologieDiabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich, Switzerland
| | - Christoph Joseph Auernhammer
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| | - Svenja Nölting
- Medizinische Klinik und Poliklinik IVInterdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München (KUM), Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
26
|
Aristizabal Prada ET, Heinzle V, Knösel T, Nölting S, Spöttl G, Maurer J, Spitzweg C, Angele M, Schmidt N, Beuschlein F, Stalla GK, Blaser R, Kuhn KA, Auernhammer CJ. Tropomyosin receptor kinase: a novel target in screened neuroendocrine tumors. Endocr Relat Cancer 2018; 25:547-560. [PMID: 29563190 DOI: 10.1530/erc-17-0201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 01/27/2023]
Abstract
Tropomyosin receptor kinase (Trk) inhibitors are investigated as a novel targeted therapy in various cancers. We investigated the in vitro effects of the pan-Trk inhibitor GNF-5837 in human neuroendocrine tumor (NET) cells. The human neuroendocrine pancreatic BON1, bronchopulmonary NCI-H727 and ileal GOT1 cell lines were treated with GNF-5837 alone and in combination with everolimus. Cell viability decreased in a time- and dose-dependent manner in GOT1 cells in response to GNF-5837 treatment, while treatment in BON1 and NCI-H727 cells showed no effect on cellular viability. Trk receptor expression determined GNF-5837 sensitivity. GNF-5837 caused downregulation of PI3K-Akt-mTOR signaling, Ras-Raf-MEK-ERK signaling, the cell cycle and increased apoptotic cell death. The combinational treatment of GNF-5837 with everolimus showed a significant enhancement in inhibition of cell viability vs single substance treatments, due to a cooperative PI3K-Akt-mTOR and Ras-Raf-MEK-ERK pathway downregulation, as well as an enhanced cell cycle component downregulation. Immunohistochemical staining for Trk receptors were performed using a tissue microarray containing 107 tumor samples of gastroenteropancreatic NETs. Immunohistochemical staining with TrkA receptor and pan-Trk receptor antibodies revealed a positive staining in pancreatic NETs in 24.2% (8/33) and 33.3% (11/33), respectively. We demonstrated that the pan-Trk inhibitor GNF-5837 has promising anti-tumoral properties in human NET cell lines expressing the TrkA receptor. Immunohistochemical or molecular screening for Trk expression particularly in pancreatic NETs might serve as predictive marker for molecular targeted therapy with Trk inhibitors.
Collapse
Affiliation(s)
- Elke Tatjana Aristizabal Prada
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
- Department of Internal Medicine 2, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Vera Heinzle
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
- Department of Internal Medicine 2, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Thomas Knösel
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
- Institute of Pathology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Svenja Nölting
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
- Department of Internal Medicine 2, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Gerald Spöttl
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
- Department of Internal Medicine 2, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Julian Maurer
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
- Department of Internal Medicine 2, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Christine Spitzweg
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
- Department of Internal Medicine 2, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Martin Angele
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Nina Schmidt
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
- Department of Internal Medicine 2, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Felix Beuschlein
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich, Switzerland
| | - Günter K Stalla
- Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rainer Blaser
- Institute of Medical Statistics and Epidemiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Klaus A Kuhn
- Institute of Medical Statistics and Epidemiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Christoph J Auernhammer
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
- Department of Internal Medicine 2, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
27
|
Lai ZY, Yeo HY, Chen YT, Chang KM, Chen TC, Chuang YJ, Chang SJ. PI3K inhibitor enhances the cytotoxic response to etoposide and cisplatin in a newly established neuroendocrine cervical carcinoma cell line. Oncotarget 2018; 8:45323-45334. [PMID: 28484083 PMCID: PMC5542189 DOI: 10.18632/oncotarget.17335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/12/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Neuroendocrine cervical carcinoma (NECC) is a rare and aggressive subtype of cervical cancer. To date, no NECC cell-based model is available, which hinders the development of new therapeutic strategies for NECC. In this study, we derived a new NECC cell line from an ex vivo biopsy and used it to explore novel drug combination approach for NECC. RESULTS The stable HM-1 cell line displayed high expression levels of the neuroendocrine marker, synaptophysin. HM-1 cell transplantation could induce tumor growth in nude mice. As expected, the combination of etoposide and cisplatin synergistically inhibited HM-1 cell proliferation. Strikingly, when etoposide and cisplatin were combined with PI3K inhibitor BEZ235, the growth of HM-1 cells was significantly reduced. Taken together, the data implied the combination of etoposide and cisplatin with BEZ235 not only inhibited HM-1 cell proliferation but also increased cell apoptosis. MATERIALS AND METHODS A NECC tissue sample from a 75-year-old female patient was processed to derive a primary cell line annotated as HM-1. The features of HM-1 were analyzed to establish its characteristic profile. Next, HM-1 was treated with PI3K inhibitors, BKM120 and/or BEZ235, in combination with two well-known genotoxic drugs, etoposide and/or cisplatin, to evaluate which combination could serve as a more effective treatment approach. Their inhibiting effects on HM-1 were evaluated by cell viability, apoptosis, and target kinase expression. CONCLUSIONS The newly established NECC cell line HM-1 could serve as a cell-based model for NECC research. The synergistic drug combination of PI3K inhibitor with genotoxic drugs might become a potential new treatment strategy against NECC.
Collapse
Affiliation(s)
- Zih-Yin Lai
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan (R.O.C.)
| | - Hsin-Yueh Yeo
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan (R.O.C.)
| | - Ya-Tse Chen
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan (R.O.C.)
| | - Kuo-Ming Chang
- Department of Pathology, Hsinchu MacKay Memorial Hospital, Hsinchu, 30071, Taiwan (R.O.C.)
| | - Tze-Chien Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, 10449, Taiwan (R.O.C.)
| | - Yung-Jen Chuang
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan (R.O.C.)
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, 30071, Taiwan (R.O.C.)
| |
Collapse
|
28
|
Hofving T, Arvidsson Y, Almobarak B, Inge L, Pfragner R, Persson M, Stenman G, Kristiansson E, Johanson V, Nilsson O. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines. Endocr Relat Cancer 2018; 25. [PMID: 29540494 PMCID: PMC8133373 DOI: 10.1530/erc-17-0445e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tobias Hofving
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Correspondence should be addressed to T Hofving:
| | - Yvonne Arvidsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bilal Almobarak
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Linda Inge
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Roswitha Pfragner
- Institute of Pathophysiology and Immunology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Marta Persson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Stenman
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Viktor Johanson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Hofving T, Arvidsson Y, Almobarak B, Inge L, Pfragner R, Persson M, Stenman G, Kristiansson E, Johanson V, Nilsson O. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines. Endocr Relat Cancer 2018; 25:367-380. [PMID: 29444910 PMCID: PMC5827037 DOI: 10.1530/erc-17-0445] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/15/2018] [Indexed: 12/23/2022]
Abstract
Experimental models of neuroendocrine tumour disease are scarce, and no comprehensive characterisation of existing gastroenteropancreatic neuroendocrine tumour (GEPNET) cell lines has been reported. In this study, we aimed to define the molecular characteristics and therapeutic sensitivity of these cell lines. We therefore performed immunophenotyping, copy number profiling, whole-exome sequencing and a large-scale inhibitor screening of seven GEPNET cell lines. Four cell lines, GOT1, P-STS, BON-1 and QGP-1, displayed a neuroendocrine phenotype while three others, KRJ-I, L-STS and H-STS, did not. Instead, these three cell lines were identified as lymphoblastoid. Characterisation of remaining authentic GEPNET cell lines by copy number profiling showed that GOT1, among other chromosomal alterations, harboured losses on chromosome 18 encompassing the SMAD4 gene, while P-STS had a loss on 11q. BON-1 had a homozygous loss of CDKN2A and CDKN2B, and QGP-1 harboured amplifications of MDM2 and HMGA2 Whole-exome sequencing revealed both disease-characteristic mutations (e.g. ATRX mutation in QGP-1) and, for patient tumours, rare genetic events (e.g. TP53 mutation in P-STS, BON-1 and QGP-1). A large-scale inhibitor screening showed that cell lines from pancreatic NETs to a greater extent, when compared to small intestinal NETs, were sensitive to inhibitors of MEK. Similarly, neuroendocrine NET cells originating from the small intestine were considerably more sensitive to a group of HDAC inhibitors. Taken together, our results provide a comprehensive characterisation of GEPNET cell lines, demonstrate their relevance as neuroendocrine tumour models and explore their therapeutic sensitivity to a broad range of inhibitors.
Collapse
Affiliation(s)
- Tobias Hofving
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Yvonne Arvidsson
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bilal Almobarak
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Linda Inge
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Roswitha Pfragner
- Institute of Pathophysiology and ImmunologyCenter for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Marta Persson
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Stenman
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical SciencesChalmers University of Technology, Gothenburg, Sweden
| | - Viktor Johanson
- Department of SurgeryInstitute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Blažević A, Hofland J, Hofland LJ, Feelders RA, de Herder WW. Small intestinal neuroendocrine tumours and fibrosis: an entangled conundrum. Endocr Relat Cancer 2018; 25:R115-R130. [PMID: 29233841 DOI: 10.1530/erc-17-0380] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
Small intestinal neuroendocrine tumours (SI-NETs) are neoplasms characterized by their ability to secrete biogenic amines and peptides. These cause distinct clinical pathology including carcinoid syndrome, marked by diarrhoea and flushing, as well as fibrosis, notably mesenteric fibrosis. Mesenteric fibrosis often results in significant morbidity by causing intestinal obstruction, oedema and ischaemia. Although advancements have been made to alleviate symptoms of carcinoid syndrome and prolong the survival of patients with SI-NETs, therapeutic options for patients with mesenteric fibrosis are still limited. As improved insight in the complex pathogenesis of mesenteric fibrosis is key to the development of new therapies, we evaluated the literature for known and putative mediators of fibrosis in SI-NETs. In this review, we discuss the tumour microenvironment, growth factors and signalling pathways involved in the complex process of fibrosis development and tumour progression in SI-NETs, in order to elucidate potential new avenues for scientific research and therapies to improve the management of patients suffering from the complications of mesenteric fibrosis.
Collapse
Affiliation(s)
- Anela Blažević
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus University Medical Center (Erasmus MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Johannes Hofland
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus University Medical Center (Erasmus MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Leo J Hofland
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus University Medical Center (Erasmus MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Richard A Feelders
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus University Medical Center (Erasmus MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Wouter W de Herder
- Department of Internal MedicineSector Endocrinology, ENETS Centre of Excellence, Erasmus University Medical Center (Erasmus MC) and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
31
|
Benten D, Behrang Y, Unrau L, Weissmann V, Wolters-Eisfeld G, Burdak-Rothkamm S, Stahl FR, Anlauf M, Grabowski P, Möbs M, Dieckhoff J, Sipos B, Fahl M, Eggers C, Perez D, Bockhorn M, Izbicki JR, Lohse AW, Schrader J. Establishment of the First Well-differentiated Human Pancreatic Neuroendocrine Tumor Model. Mol Cancer Res 2018; 16:496-507. [PMID: 29330294 DOI: 10.1158/1541-7786.mcr-17-0163] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/28/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Clinical options for systemic therapy of neuroendocrine tumors (NET) are limited. Development of new drugs requires suitable representative in vitro and in vivo model systems. So far, the unavailability of a human model with a well-differentiated phenotype and typical growth characteristics has impaired preclinical research in NET. Herein, we establish and characterize a lymph node-derived cell line (NT-3) from a male patient with well-differentiated pancreatic NET. Neuroendocrine differentiation and tumor biology was compared with existing NET cell lines BON and QGP-1. In vivo growth was assessed in a xenograft mouse model. The neuroendocrine identity of NT-3 was verified by expression of multiple NET-specific markers, which were highly expressed in NT-3 compared with BON and QGP-1. In addition, NT-3 expressed and secreted insulin. Until now, this well-differentiated phenotype is stable since 58 passages. The proliferative labeling index, measured by Ki-67, of 14.6% ± 1.0% in NT-3 is akin to the original tumor (15%-20%), and was lower than in BON (80.6% ± 3.3%) and QGP-1 (82.6% ± 1.0%). NT-3 highly expressed somatostatin receptors (SSTRs: 1, 2, 3, and 5). Upon subcutaneous transplantation of NT-3 cells, recipient mice developed tumors with an efficient tumor take rate (94%) and growth rate (139% ± 13%) by 4 weeks. Importantly, morphology and neuroendocrine marker expression of xenograft tumors resembled the original human tumor.Implications: High expression of somatostatin receptors and a well-differentiated phenotype as well as a slow growth rate qualify the new cell line as a relevant model to study neuroendocrine tumor biology and to develop new tumor treatments. Mol Cancer Res; 16(3); 496-507. ©2018 AACR.
Collapse
Affiliation(s)
- Daniel Benten
- I. Medical Department - Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Gastroenterology, Helios Klinik Duisburg, Duisburg, Germany
| | - Yasmin Behrang
- I. Medical Department - Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludmilla Unrau
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victoria Weissmann
- Department of General-, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General-, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Burdak-Rothkamm
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix R Stahl
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Patricia Grabowski
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charite Campus Benjamin Franklin, Berlin, Germany
| | - Markus Möbs
- Institute of Pathology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Jan Dieckhoff
- Department for Interventional and Diagnostic Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bence Sipos
- Department of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Martina Fahl
- I. Medical Department - Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Eggers
- I. Medical Department - Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Perez
- Department of General-, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximillian Bockhorn
- Department of General-, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General-, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- I. Medical Department - Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Schrader
- I. Medical Department - Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department of General-, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Aristizabal Prada ET, Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect 2018; 7:R1-R25. [PMID: 29146887 PMCID: PMC5754510 DOI: 10.1530/ec-17-0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy of advanced neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) system currently encompasses approved therapy with the mammalian target of rapamycin (mTOR) inhibitor everolimus and the multi-tyrosinkinase inhibitor sunitinib. However, clinical efficacy of these treatment strategies is limited by low objective response rates and limited progression-free survival due to tumour resistance. Further novel strategies for molecular targeted therapy of NETs of the GEP system are needed. This paper reviews preclinical research models and signalling pathways in NETs of the GEP system. Preclinical and early clinical data on putative novel targets for molecular targeted therapy of NETs of the GEP system are discussed, including PI3K, Akt, mTORC1/mTORC2, GSK3, c-Met, Ras-Raf-MEK-ERK, embryogenic pathways (Hedgehog, Notch, Wnt/beta-catenin, TGF-beta signalling and SMAD proteins), tumour suppressors and cell cycle regulators (p53, cyclin-dependent kinases (CDKs) CDK4/6, CDK inhibitor p27, retinoblastoma protein (Rb)), heat shock protein HSP90, Aurora kinase, Src kinase family, focal adhesion kinase and epigenetic modulation by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- E T Aristizabal Prada
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C J Auernhammer
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
33
|
Laskaratos F, Rombouts K, Caplin M, Toumpanakis C, Thirlwell C, Mandair D. Neuroendocrine tumors and fibrosis: An unsolved mystery? Cancer 2017; 123:4770-4790. [DOI: 10.1002/cncr.31079] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/02/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free HospitalLondon United Kingdom
| | - Martyn Caplin
- Neuroendocrine Tumour Unit, ENETS Centre of ExcellenceRoyal Free HospitalLondon United Kingdom
| | - Christos Toumpanakis
- Neuroendocrine Tumour Unit, ENETS Centre of ExcellenceRoyal Free HospitalLondon United Kingdom
| | - Christina Thirlwell
- Neuroendocrine Tumour Unit, ENETS Centre of ExcellenceRoyal Free HospitalLondon United Kingdom
- University College London Cancer InstituteUniversity College LondonLondon United Kingdom
| | - Dalvinder Mandair
- Neuroendocrine Tumour Unit, ENETS Centre of ExcellenceRoyal Free HospitalLondon United Kingdom
| |
Collapse
|
34
|
Abstract
Animal models of cancer have been instrumental in advancing our understanding of the biology of tumor initiation and progression, in studying gene function and in performing preclinical studies aimed at testing novel therapies. Several animal models of the MEN1 syndrome have been generated in different organisms by introducing loss-of-function mutations in the orthologues of the human MEN1 gene. In this review, we will discuss MEN1 and MEN1-like models in Drosophila, mice and rats. These model systems with their specific advantages and limitations have contributed to elucidate the function of Menin in tumorigenesis, which turned out to be remarkably conserved from flies to mammals, as well as the biology of the disease. Mouse models of MEN1 closely resemble the human disease in terms of tumor spectrum and associated hormonal changes, although individual tumor frequencies are variable. Rats affected by the MENX (MEN1-like) syndrome share some features with MEN1 patients albeit they bear a germline mutation in Cdkn1b (p27) and not in Men1 Both Men1-knockout mice and MENX rats have been exploited for therapy-response studies testing novel drugs for efficacy against neuroendocrine tumors (NETs) and have provided promising leads for novel therapies. In addition to presenting well-established models of MEN1, we also discuss potential models which, if implemented, might broaden even further our knowledge of neuroendocrine tumorigenesis. In the future, patient-derived xenografts in zebrafish or mice might allow us to expand the tool-box currently available for preclinical studies of MEN1-associated tumors.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
35
|
Cives M, Quaresmini D, Rizzo FM, Felici C, D'Oronzo S, Simone V, Silvestris F. Osteotropism of neuroendocrine tumors: role of the CXCL12/ CXCR4 pathway in promoting EMT in vitro. Oncotarget 2017; 8:22534-22549. [PMID: 28186979 PMCID: PMC5410243 DOI: 10.18632/oncotarget.15122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/24/2017] [Indexed: 12/28/2022] Open
Abstract
Neuroendocrine tumors (NETs) metastasize to the skeleton in approximately 20% of patients. We have previously shown that the epithelial-mesenchymal transition (EMT) regulates the NET osteotropism and that CXCR4 overexpression predicts bone spreading. Here, we unravel the molecular mechanisms linking the activation of the CXCL12/CXCR4 axis to the bone colonization of NETs using cell lines representative of pancreatic (BON1, CM, QGP1), intestinal (CNDT 2.5), and bronchial origin (H727). By combining flow cytometry and ELISA, BON1, CM and QGP1 cells were defined as CXCR4high/CXCL12low, while H727 and CNDT 2.5 were CXCR4low/CXCL12high. CXCL12 was inert on cell proliferation, but significantly increased the in vitro osteotropism of CXCR4high/CXCL12low cells, as assessed by transwell assays with or without Matrigel membranes. In these cells, CXCL12 induced in vitro a marked EMT-like transcriptional shift with acquirement of a mesenchymal shape. The nuclei of CXCR4high/CXCL12low NET cells were typically enriched in non-phosphorylated CXCR4, particularly upon agonist stimulation. Silencing of CXCR4 via siRNA prevented the CXCL12-induced EMT in CXCR4high/CXCL12low NET cell lines resulting in the abrogation of both migration and transcriptional mesenchymal patterns. Our data suggest that CXCL12 conveys EMT-promoting signals in NET cells through CXCR4, which in turn regulates transcriptional, morphologic and functional modifications resulting in enhanced in vitro osteotropism of NET cells. Unique functions of CXCR4 may be segregated in relation to its subcellular localization and may acquire potential relevance in future in vivo studies.
Collapse
Affiliation(s)
- Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Davide Quaresmini
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Francesca Maria Rizzo
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Valeria Simone
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", Bari, Italy
| |
Collapse
|
36
|
Pfanzagl B, Mechtcheriakova D, Meshcheryakova A, Aberle SW, Pfragner R, Jensen-Jarolim E. Activation of the ileal neuroendocrine tumor cell line P-STS by acetylcholine is amplified by histamine: role of H3R and H4R. Sci Rep 2017; 7:1313. [PMID: 28465562 PMCID: PMC5430954 DOI: 10.1038/s41598-017-01453-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/30/2017] [Indexed: 12/13/2022] Open
Abstract
Neuroendocrine tumors may present with pseudoallergic reactions like diarrhea and idiopathic anaphylaxis. Here we present the P-STS human ileal neuroendocrine cell line as a model cell line for these tumors. Neuroendocrine markers and changes in cytoplasmic calcium concentration ([Ca2+]i) in response to several possible activators of 5-hydroxytryptamine (5-HT) release were analyzed. P-STS cells still expressed chromogranin A and synaptophysin after 2 years of culture. Tryptophan hydroxylase 1 mRNA and a low amount of 5-HT were also detected. Acetylcholine (ACh) caused a rise in [Ca2+]i. Somatostatin inhibited, whereas histamine (HA) but not the HA receptor ligand betahistine enhanced activation by ACh. The [Ca2+]i response to ACh/HA was inhibited by the HA receptor H3 (H3R) agonist methimepip and by the antidepressant imipramine. Further [Ca2+]i response studies indicated the presence of H4Rs and of a functional calcium sensing receptor. High or low affinity IgE receptor protein or mRNA were not detected. Taken together, neuroendocrine markers and response to intestinal neurotransmitters approve the P-STS cell line as a valuable model for enterochromaffin cells. Enhancement of their ACh-induced pro-secretory response by HA, with a role for H3R and H4R, suggests an amplifying role of neuroendocrine cells in allergen-induced diarrhea or anaphylaxis.
Collapse
Affiliation(s)
- Beatrix Pfanzagl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, 1090, Austria.
| | - Diana Mechtcheriakova
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, 1090, Austria
| | - Anastasia Meshcheryakova
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, 1090, Austria
| | - Stephan W Aberle
- Department of Virology, Medical University of Vienna, Vienna, 1090, Austria
| | - Roswitha Pfragner
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz, 8010, Austria
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, 1090, Austria.
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, 1210, Austria.
| |
Collapse
|
37
|
Avniel-Polak S, Leibowitz G, Riahi Y, Glaser B, Gross DJ, Grozinsky-Glasberg S. Abrogation of Autophagy by Chloroquine Alone or in Combination with mTOR Inhibitors Induces Apoptosis in Neuroendocrine Tumor Cells. Neuroendocrinology 2016; 103:724-37. [PMID: 26619207 DOI: 10.1159/000442589] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/20/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Everolimus (RAD001), an mTORC1 inhibitor, demonstrated promising, but limited, anticancer effects in neuroendocrine tumors (NETs). Torin1 (a global mTOR inhibitor) and NVP-BEZ235 (a PI3K/mTOR inhibitor) seem to be more effective than RAD001. Autophagy, a degradation pathway that may promote tumor growth, is regulated by mTOR; mTOR inhibition results in stimulation of autophagy. Chloroquine (CQ) inhibits autophagy. AIM To explore the effect of CQ alone or in combination with RAD001, Torin1 or NVP-BEZ235 on autophagy and on NET cell viability, proliferation and apoptosis. METHODS The NET cell line BON1 was treated with CQ with or without different mTOR inhibitors. siRNA against ATG5/7 was used to genetically inhibit autophagy. Cellular viability was examined by XTT, proliferation by Ki-67 staining and cell cycles by flow cytometry. Apoptosis was analyzed by Western blotting for cleaved caspase 3 and staining for annexin V; autophagy was evaluated by Western blotting and immunostaining for LC3. RESULTS RAD001, Torin1, NVP-BEZ235 and CQ all decreased BON1 cell viability. The effect of RAD001 was smaller than that of the other mTOR inhibitors or CQ. Torin1 and NVP-BEZ235 markedly inhibited cell proliferation, without inducing apoptosis. CQ similarly decreased cell proliferation, while robustly increasing apoptosis. Treatment with Torin1 or NVP-BEZ235 together with CQ was additive on viability, without increasing CQ-induced apoptosis. Inhibition of autophagy by ATG5/7 knockdown increased apoptosis in the presence or absence of mTOR inhibitors, mimicking the CQ effects. CONCLUSION CQ inhibits NET growth by inducing apoptosis and by inhibiting cell proliferation, probably via inhibition of autophagy. CQ may potentiate the antitumor effect of mTOR inhibitors.
Collapse
Affiliation(s)
- Shani Avniel-Polak
- Neuroendocrine Tumor Unit, Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Boora GK, Kanwar R, Kulkarni AA, Pleticha J, Ames M, Schroth G, Beutler AS, Banck MS. Exome-level comparison of primary well-differentiated neuroendocrine tumors and their cell lines. Cancer Genet 2015; 208:374-81. [PMID: 26087898 DOI: 10.1016/j.cancergen.2015.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022]
Abstract
Neuroendocrine cancer cell lines are used to investigate therapeutic targets in neuroendocrine tumors (NET) and have been instrumental in the design of clinical trials targeting the PI3K/AKT/mTOR pathways, VEGF inhibitors, and somatostatin analogues. It remains unknown, however, whether the genomic makeup of NET cell lines reflect that of primary NET since comprehensive unbiased genome sequencing has not been performed on the cell lines. Four bronchopulmonary NET (BP-NET)-NCI-H720, NCI-H727, NCI-H835, and UMC11-and two pancreatic neuroendocrine tumors (panNET)-BON-1 and QGP1-were cultured. DNA was isolated, and exome sequencing was done. GATK and EXCAVATOR were used for bioinformatic analysis. We detected a total of 1,764 nonsynonymous single nucleotide variants at a rate of 8 per Mb in BP-NET and 4.3 per Mb in panNET cell lines, including 52 mutated COSMIC cancer genes in these cell lines, such as TP53, BRCA1, RB1, TSC2, NOTCH1, EP300, GNAS, KDR, STK11, and APC but not ATRX, DAXX, nor MEN1. Our data suggest that mutation rate, the pattern of copy number variations, and the mutational spectra in the BP-NET cell lines are more similar to the changes observed in small cell lung cancer than those found in primary BP-NET. Likewise, mutation rate and pattern including the absence of mutations in ATRX/DAXX, MEN1, and YY1 in the panNET cell lines BON1 and QGP1 suggest that these cell lines do not have the genetic signatures of a primary panNET. These results suggest that results from experiments with BP-NET and panNET cell lines need to be interpreted with caution.
Collapse
Affiliation(s)
- Ganesh K Boora
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Rahul Kanwar
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Amit A Kulkarni
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josef Pleticha
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Matthew Ames
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Andreas S Beutler
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Cancer Center, Rochester, MN, USA.
| | - Michaela S Banck
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Cancer Center, Rochester, MN, USA.
| |
Collapse
|
39
|
De Dosso S, Grande E, Barriuso J, Castellano D, Tabernero J, Capdevila J. The targeted therapy revolution in neuroendocrine tumors: in search of biomarkers for patient selection and response evaluation. Cancer Metastasis Rev 2014; 32:465-77. [PMID: 23589060 DOI: 10.1007/s10555-013-9421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The molecular events of tumorigenesis in neuroendocrine tumors are poorly understood. Understanding of the molecular alterations will lead to the identification of molecular markers, providing new targets for therapeutics. The purpose of this review was to critically analyze the genetic abnormalities in neuroendocrine tumors, with the aim of identifying biomarkers that indicate a response to agents developed against these targets and to serve as an understanding for the combinations of different active compounds. Human epidermal growth factor receptor 1/2 (EGFR and HER2), vascular endothelial growth factor receptors, hepatocyte growth factor receptor (c-Met), platelet-derived growth factor receptor, insulin-like growth factor, phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway, and heat shock proteins are all interesting candidate biomarkers with involvement in carcinogenesis and tumor evolution of several neoplasms, including neuroendocrine tumors. Some of them have already been evaluated both as targets and also as biomarkers in clinical trials conducted in advanced neuroendocrine tumor settings, and others should encourage further investigations into innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Sara De Dosso
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Brenner S, Klameth L, Riha J, Schölm M, Hamilton G, Bajna E, Ausch C, Reiner A, Jäger W, Thalhammer T, Buxhofer-Ausch V. Specific expression of OATPs in primary small cell lung cancer (SCLC) cells as novel biomarkers for diagnosis and therapy. Cancer Lett 2014; 356:517-24. [PMID: 25301452 DOI: 10.1016/j.canlet.2014.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/16/2014] [Accepted: 09/25/2014] [Indexed: 12/27/2022]
Abstract
The expression of organic anion transporting polypeptides (OATPs) was elucidated in cell lines from small cell lung cancer (SCLC) and lung carcinoids and in paraffin-embedded samples from primary and metastatic SCLCs. We found a strong relationship between OATP expression and the origin of the cells, as cells from primary or metastatic SCLC and carcinoid tumors differ with respect to OATP levels. OATP4A1 is most prominent in non-malignant lung tissue and in all SCLC and carcinoid cell lines and tissues, OATP5A1 is most prominent in metastatic cells, and OATP6A1 is most prominent in SCLC cell lines and tumors. Treatment with topotecan, etoposide and cisplatin caused significant changes in the expression patterns of OATP4A1, OATP5A1, OATP6A1, chromogranin and synaptophysin. This effect was also evident in GLC-14 cells from an untreated SCLC patient before chemotherapy compared to GLC-16/-19 chemoresistant tumor cells from this patient after therapy. mRNA expression of OATP4A1, 5A1 and 6A1 correlates with protein expression as confirmed by quantitative microscopic image analysis and Western blots. OATPs might be novel biomarkers for tumor progression and the development of metastasis in SCLC patients.
Collapse
Affiliation(s)
- Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Juliane Riha
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Madeleine Schölm
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Erika Bajna
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christoph Ausch
- Department of Surgery, Donauspital, Vienna, Austria; Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria
| | - Angelika Reiner
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria; Department of Pathology, Donauspital, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Veronika Buxhofer-Ausch
- Cluster for Translational Oncology, Ludwig Boltzmann Society, Vienna, Austria; Department of Internal Medicine 2, Donauspital, Vienna, Austria
| |
Collapse
|
41
|
Krieg A, Mersch S, Boeck I, Dizdar L, Weihe E, Hilal Z, Krausch M, Möhlendick B, Topp SA, Piekorz RP, Huckenbeck W, Stoecklein NH, Anlauf M, Knoefel WT. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines. PLoS One 2014; 9:e88713. [PMID: 24551139 PMCID: PMC3925161 DOI: 10.1371/journal.pone.0088713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022] Open
Abstract
Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) according to their proliferation index into G1- or G2-neuroendocrine tumors (NET) and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC). Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1) or lymph node metastases (NEC-DUE2) from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.
Collapse
Affiliation(s)
- Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Sabrina Mersch
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Inga Boeck
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Eberhard Weihe
- Institute of Anatomy and Cell Biology, Department of Molecular Neuroscience, Philipps University Marburg, Marburg, Germany
| | - Zena Hilal
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Markus Krausch
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Birte Möhlendick
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Stefan A. Topp
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Roland P. Piekorz
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Wolfgang Huckenbeck
- Institute of Forensic Medicine, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Nikolas H. Stoecklein
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Martin Anlauf
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfram T. Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|