1
|
Wang H, Qi L, Han H, Li X, Han M, Xing L, Li L, Jiang H. Nanomedicine regulating PSC-mediated intercellular crosstalk: Mechanisms and therapeutic strategies. Acta Pharm Sin B 2024; 14:4756-4775. [PMID: 39664424 PMCID: PMC11628839 DOI: 10.1016/j.apsb.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 12/13/2024] Open
Abstract
Pancreatic fibrosis (PF) is primarily distinguished by the stimulation of pancreatic stellate cells (PSCs) and excessive extracellular matrix deposition, which is the main barrier impeding drug delivery and distribution. Recently, nanomedicine, with efficient, targeted, and controllable drug release characteristics, has demonstrated enormous advantages in the regression of pancreas fibrotic diseases. Notably, paracrine signals from parenchymal and immune cells such as pancreatic acinar cells, islet cells, pancreatic cancer cells, and immune cells can directly or indirectly modulate PSC differentiation and activation. The intercellular crosstalk between PSCs and these cells has been a critical event involved in fibrogenesis. However, the connections between PSCs and other pancreatic cells during the progression of diseases have yet to be discussed. Herein, we summarize intercellular crosstalk in the activation of PSCs and its contribution to the development of common pancreatic diseases, including pancreatitis, pancreatic cancer, and diabetes. Then, we also examine the latest treatment strategies of nanomedicine and potential targets for PSCs crosstalk in fibrosis, thereby offering innovative insights for the design of antifibrotic nanomedicine. Ultimately, the enhanced understanding of PF will facilitate the development of more precise intervention strategies and foster individually tailored therapeutic approaches for pancreatic diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Han Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xuena Li
- College of Pharmacy, Yanbian University, Yanji 133000, China
| | - Mengmeng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing 210009, China
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Lian K, Zhang K, Kan C, Hou N, Han F, Sun X, Qiu H, Guo Z. Emerging therapeutic landscape: Incretin agonists in chronic kidney disease management. Life Sci 2024; 351:122801. [PMID: 38862060 DOI: 10.1016/j.lfs.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
The increasing incidence of chronic kidney disease (CKD) poses a significant public health concern, prompting heightened attention to its treatment. Incretins, including glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide, are intestinal peptides released after nutrient intake, known for their hypoglycemic effects in diabetes management. Recent advancements highlight the promising outcomes of GLP-1 receptor agonists in reducing CKD risk factors and improving renal outcomes. The multifaceted functions of GLP-1, such as its anti-obesity, anti-hypertensive, anti-hyperglycemic, anti-lipid, anti-inflammatory, and endothelial function protective properties, contribute to its potential as a therapeutic agent for CKD. Although experiments suggest the potential benefits of incretin in CKD, a comprehensive understanding of its specific mechanisms is still lacking. This review aims to provide a detailed examination of current evidence and potential future directions, emphasizing the promising yet evolving landscape of incretin agonists in the context of CKD.
Collapse
Affiliation(s)
- Kexin Lian
- Department of Nephropathy, Affiliated Hospital of Shandong Second Medical University, Weifang, China; Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| | - Zhentao Guo
- Department of Nephropathy, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| |
Collapse
|
3
|
Zhong J, Chen H, Liu Q, Zhou S, Liu Z, Xiao Y. GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation. J Pharm Anal 2024; 14:100917. [PMID: 38799233 PMCID: PMC11127228 DOI: 10.1016/j.jpha.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Many medical conditions, including hypertension, diabetes, obesity, sleep apnea, and heart failure (HF), increase the risk for AF. Cardiomyocytes have unique metabolic characteristics to maintain adenosine triphosphate production. Significant changes occur in myocardial metabolism in AF. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been used to control blood glucose fluctuations and weight in the treatment of type 2 diabetes mellitus (T2DM) and obesity. GLP-1RAs have also been shown to reduce oxidative stress, inflammation, autonomic nervous system modulation, and mitochondrial function. This article reviews the changes in metabolic characteristics in cardiomyocytes in AF. Although the clinical trial outcomes are unsatisfactory, the findings demonstrate that GLP-1 RAs can improve myocardial metabolism in the presence of various risk factors, lowering the incidence of AF.
Collapse
Affiliation(s)
- Jiani Zhong
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Hang Chen
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
4
|
Chang JT, Liang YJ, Leu JG. Glucagon-like peptide-1 receptor regulates receptor of advanced glycation end products in high glucose-treated rat mesangial cells. J Chin Med Assoc 2023; 86:39-46. [PMID: 36599141 DOI: 10.1097/jcma.0000000000000844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hyperglycemia-induced advanced glycation end products (AGEs) and receptor for AGEs (RAGEs) play major roles in diabetic nephropathy progression. In previous study, both glucagon-like peptide-1 (GLP-1) and peroxisome proliferator-activated receptors delta (PPARδ) agonists were shown to have anti-inflammatory effect on AGE-treated rat mesangial cells (RMCs). The interaction among PPARδ agonists, GLP-1, and AGE-RAGE axis is, however, still unclear. METHODS In this study, the individual and synergic effect of PPARδ agonist (L-165 041) and siRNA of GLP-1 receptor (GLP-1R) on the expression of GLP-1, GLP-1R, RAGE, and cell viability in AGE-treated RMCs were investigated. RESULTS L-165 041 enhanced GLP-1R mRNA and protein expression only in the presence of AGE. The expression of RAGE mRNA and protein was enhanced by AGE, attenuated by L-165 041, and siRNA of GLP-1R reversed L-165 041-induced inhibition. Cell viability was also inhibited by AGE. L-165 041 attenuated AGE-induced inhibition and siRNA GLP-1R diminished L-165 041 effect. CONCLUSION PPARδ agonists increase GLP-1R expression on RMC in the presence of AGE. PPARδ agonists also attenuate AGE-induced upregulated RAGE expression and downregulated cell viability. The effect of PPARδ agonists needs the cooperation of GLP-1R activation.
Collapse
Affiliation(s)
- Jui-Ting Chang
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
- Department & Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Jyh-Gang Leu
- College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
- Department & Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Chan ATP, Tang SCW. Advances in the management of diabetic kidney disease: beyond sodium-glucose co-transporter 2 inhibitors. Kidney Res Clin Pract 2022; 41:682-698. [PMID: 35977903 PMCID: PMC9731775 DOI: 10.23876/j.krcp.21.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 08/09/2023] Open
Abstract
Progress in the treatment of diabetic kidney disease (DKD) has been modest since the early trials on renin-angiotensin-aldosterone system inhibitors (RAASis). Although sodium-glucose co-transporter 2 inhibitors (SGLT2is) have revolutionized the management of DKD by lowering proteinuria and protecting organs, other novel treatment approaches with good evidence and efficacy that can be used in conjunction with a RAASi or SGLT2i in managing DKD have emerged in the past few years. This review discusses the evidence for glucagon-like peptide-1 receptor agonist, selective mineralocorticoid receptor antagonist, and selective endothelin A receptor antagonist, emerging treatment options for DKD beyond SGLT2 inhibition.
Collapse
Affiliation(s)
- Anthony T. P. Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Ni Y, Zheng L, Nan S, Ke L, Fu Z, Jin J. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1406-1420. [PMID: 36239349 PMCID: PMC9827797 DOI: 10.3724/abbs.2022140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
The role of gut-kidney crosstalk in the progression of diabetic nephropathy (DN) is receiving increasing concern. On one hand, the decline in renal function increases circulating uremic toxins and affects the composition and function of gut microbiota. On the other hand, intestinal dysbiosis destroys the epithelial barrier, leading to increased exposure to endotoxins, thereby exacerbating kidney damage by inducing systemic inflammation. Dietary inventions, such as higher fiber intake, prebiotics, probiotics, postbiotics, fecal microbial transplantation (FMT), and engineering bacteria and phages, are potential microbiota-based therapies for DN. Furthermore, novel diabetic agents, such as glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-dependent glucose transporter-2 (SGLT-2) inhibitors, may affect the progression of DN partly through gut microbiota. In the current review, we mainly summarize the evidence concerning the gut-kidney axis in the advancement of DN and discuss therapies targeting the gut microbiota, expecting to provide new insight into the clinical treatment of DN.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Liujie Zheng
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Sujie Nan
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Lehui Ke
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Juan Jin
- Urology & Nephrology CenterDepartment of NephrologyZhejiang Provincial People’s Hospital (Affiliated People’s HospitalHangzhou Medical College)Hangzhou310014China
| |
Collapse
|
7
|
Yang F, Luo X, Li J, Lei Y, Zeng F, Huang X, Lan Y, Liu R. Application of glucagon-like peptide-1 receptor antagonists in fibrotic diseases. Biomed Pharmacother 2022; 152:113236. [PMID: 35691154 DOI: 10.1016/j.biopha.2022.113236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Fibrosis can occur in various organs, leading to structural destruction, dysfunction, and even organ failure. Hence, organ fibrosis is being actively researched worldwide. Glucagon-like peptide-1 (GLP-1), a naturally occurring hormone, binds to a G-protein-coupled receptor widely distributed in the pancreas, kidney, lung, heart, gastrointestinal tract, and other organs. Synthetic GLP-1 analogs can be used as GLP-1 receptor agonists (GLP-1RAs) for treating diabetes mellitus. In recent years, GLP-1RAs have also been found to exert anti-inflammatory, antioxidant, and cardiovascular protective effects. GLP-1RAs have also been shown to inhibit fibrosis of solid organs, such as the lung, heart, liver, and kidney. In this review, we discuss the advancements in research on the role of GLP-1RAs in the fibrosis of the heart, lung, liver, kidney, and other organs to obtain new clues for treating organ fibrosis.
Collapse
Affiliation(s)
- Fuxun Yang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiu Luo
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiajia Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Lei
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunping Lan
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Rongan Liu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Sazgarnejad S, Yazdanpanah N, Rezaei N. Anti-inflammatory effects of GLP-1 in patients with COVID-19. Expert Rev Anti Infect Ther 2022; 20:373-381. [PMID: 34348067 PMCID: PMC8425436 DOI: 10.1080/14787210.2021.1964955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Understanding the pathogenesis and risk factors to control the coronavirus disease 2019 (COVID-19) is necessary. Due to the importance of the inflammatory pathways in the pathogenesis of COVID-19 patients, evaluating the effects of anti-inflammatory medications is important. Glucagon-like peptide 1 receptor agonist (GLP-1 RA) is awell-known glucose-lowering agent with anti-inflammatory effects. AREAS COVERED Resources were extracted from the PubMed database, using keywords such as glucagon-like peptide-1, GLP-1 RA, SARS-CoV-2, COVID-19, inflammation, in April2021. In this review, the effects of GLP-1RA in reducing inflammation and modifying risk factors of COVID-19 severe complications are discussed. However, GLP-1 is degraded by DPP-4 with aplasma half-life of about 2-5 minutes, which makes it difficult to measure GLP-1 plasma level in clinical settings. EXPERT OPINION Since no definitive treatment is available for COVID-19 so far, determining promising targets to design and/or repurpose effective medications is necessary.
Collapse
Affiliation(s)
- Saharnaz Sazgarnejad
- School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University Of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
| | - Niloufar Yazdanpanah
- School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
- Research Center For Immunodeficiencies, Children’s Medical Center, Tehran University Of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
- Research Center For Immunodeficiencies, Children’s Medical Center, Tehran University Of Medical Sciences, Tehran, Iran
- Department Of Immunology, School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Rayego-Mateos S, Morgado-Pascual JL, Lavoz C, Rodrigues-Díez RR, Márquez-Expósito L, Tejera-Muñoz A, Tejedor-Santamaría L, Rubio-Soto I, Marchant V, Ruiz-Ortega M. CCN2 Binds to Tubular Epithelial Cells in the Kidney. Biomolecules 2022; 12:biom12020252. [PMID: 35204752 PMCID: PMC8869303 DOI: 10.3390/biom12020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), is considered a fibrotic biomarker and has been suggested as a potential therapeutic target for kidney pathologies. CCN2 is a matricellular protein with four distinct structural modules that can exert a dual function as a matricellular protein and as a growth factor. Previous experiments using surface plasmon resonance and cultured renal cells have demonstrated that the C-terminal module of CCN2 (CCN2(IV)) interacts with the epidermal growth factor receptor (EGFR). Moreover, CCN2(IV) activates proinflammatory and profibrotic responses in the mouse kidney. The aim of this paper was to locate the in vivo cellular CCN2/EGFR binding sites in the kidney. To this aim, the C-terminal module CCN2(IV) was labeled with a fluorophore (Cy5), and two different administration routes were employed. Both intraperitoneal and direct intra-renal injection of Cy5-CCN2(IV) in mice demonstrated that CCN2(IV) preferentially binds to the tubular epithelial cells, while no signal was detected in glomeruli. Moreover, co-localization of Cy5-CCN2(IV) binding and activated EGFR was found in tubules. In cultured tubular epithelial cells, live-cell confocal microscopy experiments showed that EGFR gene silencing blocked Cy5-CCN2(IV) binding to tubuloepithelial cells. These data clearly show the existence of CCN2/EGFR binding sites in the kidney, mainly in tubular epithelial cells. In conclusion, these studies show that circulating CCN2(IV) can directly bind and activate tubular cells, supporting the role of CCN2 as a growth factor involved in kidney damage progression.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14071 Cordoba, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral Chile, Valdivia 5090000, Chile;
| | - Raúl R. Rodrigues-Díez
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Laura Márquez-Expósito
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Lucía Tejedor-Santamaría
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Irene Rubio-Soto
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Vanessa Marchant
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
10
|
Przezak A, Bielka W, Pawlik A. Incretins in the Therapy of Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms222212312. [PMID: 34830194 PMCID: PMC8617946 DOI: 10.3390/ijms222212312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic kidney disease is a microvascular complication that occurs in patients with diabetes. It is strongly associated with increased risk of kidney replacement therapy and all-cause mortality. Incretins are peptide hormones derived from the gastrointestinal tract, that besides causing enhancement of insulin secretion after oral glucose intake, participate in many other metabolic processes. Antidiabetic drug classes, such as dipeptidyl peptidase 4 inhibitors and glucagon-like peptide receptor agonists, which way of action is based on incretins facility, not only show glucose-lowering properties but also have nephroprotective functions. The aim of this article is to present the latest information about incretin-based therapy and its influence on diabetic kidney disease appearance and progression, point its potential mechanisms of kidney protection and focus on future therapeutic possibilities bound with these two antidiabetic drug classes.
Collapse
|
11
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
12
|
Fandiño J, Toba L, González-Matías LC, Diz-Chaves Y, Mallo F. GLP-1 receptor agonist ameliorates experimental lung fibrosis. Sci Rep 2020; 10:18091. [PMID: 33093510 PMCID: PMC7581713 DOI: 10.1038/s41598-020-74912-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal lung disease. This disease is characterized by an excessive accumulation of extracellular matrix deposition that modify normal lung physiology. Up to date, there are not efficient therapeutic tools to fight IPF. Glucagon-like peptide-1 receptor (GLP-1R) activation plays an essential role in lung functions in normal and in pathological conditions. The aim of the present study was to study the possible beneficial effects of the administration of the GLP-1R agonist, liraglutide, in the pathogenesis of the fibrotic process in an animal model of pulmonary fibrosis induced by bleomycin. We observed that liraglutide decreased mRNA expression of collagen, hydroxyproline and key enzymes for the synthesis of collagen. In addition, GLP-1R activation restored the ACE2 mRNA levels modulating the activities of the RAS components, increased the production of surfactant proteins (SFTPa1, SFTPb, SFTPc) and promoted an improvement in pulmonary and cardiac functionality, including a partial restoration of lung alveolar structure. Liraglutide effects are shown at both the pro-inflammatory and fibrosis phases of the experimental disease. For these reasons, GLP-1 might be regarded as a promising drug for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Juan Fandiño
- Laboratory of Endocrinology (LabEndo), The Biomedical Research Centre (CINBIO), University of Vigo, Campus Universitario de Vigo (CUVI), 36310, Vigo, Spain
| | - Laura Toba
- Laboratory of Endocrinology (LabEndo), The Biomedical Research Centre (CINBIO), University of Vigo, Campus Universitario de Vigo (CUVI), 36310, Vigo, Spain
| | - Lucas C González-Matías
- Laboratory of Endocrinology (LabEndo), The Biomedical Research Centre (CINBIO), University of Vigo, Campus Universitario de Vigo (CUVI), 36310, Vigo, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Endocrinology (LabEndo), The Biomedical Research Centre (CINBIO), University of Vigo, Campus Universitario de Vigo (CUVI), 36310, Vigo, Spain
| | - Federico Mallo
- Laboratory of Endocrinology (LabEndo), The Biomedical Research Centre (CINBIO), University of Vigo, Campus Universitario de Vigo (CUVI), 36310, Vigo, Spain.
| |
Collapse
|
13
|
Chen HY, Ho YJ, Chou HC, Liao EC, Tsai YT, Wei YS, Lin LH, Lin MW, Wang YS, Ko ML, Chan HL. The Role of Transforming Growth Factor-Beta in Retinal Ganglion Cells with Hyperglycemia and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186482. [PMID: 32899874 PMCID: PMC7554964 DOI: 10.3390/ijms21186482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
A characteristic of diabetes mellitus is hyperglycemia, which is considered with an emphasis on the diabetic retinopathy of progressive neurodegenerative disease. Retinal ganglion cells (RGCs) are believed to be important cells affected in the pathogenesis of diabetic retinopathy. Transforming growth factor-beta (TGF-β) is a neuroprotective protein that helps to withstand various neuronal injuries. To investigate the potential roles and regulatory mechanisms of TGF-β in hyperglycemia-triggered damage of RGCs in vitro, we established RGCs in 5.5, 25, 50, and 100 mM D-glucose supplemented media and focused on the TGF-β-related oxidative stress pathway in combination with hydrogen peroxide (H2O2). Functional experiments showed that TGF-β1/2 protein expression was upregulated in RGCs with hyperglycemia. The knockdown of TGF-β enhanced the accumulation of reactive oxygen species (ROS), inhibited the cell proliferation rate, and reduced glutathione content in hyperglycemia. Furthermore, the results showed that the TGF-β-mediated enhancement of antioxidant signaling was correlated with the activation of stress response proteins and the antioxidant pathway, such as aldehyde dehydrogenase 3A1 (ALDH3A1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), and hypoxia-inducible factor (HIF-1α). Summarizing, our results demonstrated that TGF-β keeps RGCs from hyperglycemia-triggered harm by promoting the activation of the antioxidant pathway, suggesting a potential anti-diabetic therapy for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yi-Jung Ho
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan;
| | - Hsiu-Chuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yi-Ting Tsai
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Li-Hsun Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yi-Shiuan Wang
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Mei-Lan Ko
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan;
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan;
- Correspondence: (M.-L.K.); (H.-L.C.); Tel.: +88-63-5326-151 (M.-L.K.); +88-63-5742-476 (H.-L.C.); Fax: +88-63-5324-584 (M.-L.K.); +88-63-5715-934 (H.-L.C.)
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
- Correspondence: (M.-L.K.); (H.-L.C.); Tel.: +88-63-5326-151 (M.-L.K.); +88-63-5742-476 (H.-L.C.); Fax: +88-63-5324-584 (M.-L.K.); +88-63-5715-934 (H.-L.C.)
| |
Collapse
|
14
|
Huang L, Lin T, Shi M, Chen X, Wu P. Liraglutide suppresses production of extracellular matrix proteins and ameliorates renal injury of diabetic nephropathy by enhancing Wnt/β-catenin signaling. Am J Physiol Renal Physiol 2020; 319:F458-F468. [PMID: 32715762 DOI: 10.1152/ajprenal.00128.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is involved in production of the extracellular matrix (ECM) by mesangial cells (MCs). Recent studies by us and others have demonstrated that glucagon-like peptide-1 receptor agonists (GLP-1RAs) have protective effects against diabetic nephropathy. The purpose of the present study was to investigate whether the Wnt/β-catenin signaling in MCs contributes to GLP-1RA-induced inhibition of ECM accumulation and mitigation of glomerular injury in diabetic nephropathy. In cultured human mesangial cells, liraglutide (a GLP-1RA) treatment significantly reduced high glucose (HG)-stimulated production of fibronectin, collagen type IV, and α-smooth muscle actin, and the liraglutide effects were significantly attenuated by XAV-939, a selective inhibitor of Wnt/β-catenin signaling. Furthermore, HG treatment significantly decreased protein abundance of Wnt4, Wnt5a, phospho-glycogen synthase kinase-3β, and β-catenin. These HG effects on Wnt/β-catenin signaling proteins were significantly blunted by liraglutide treatment. For in vivo experiments, we administered liraglutide (200 μg·kg-1·12 h-1) by subcutaneous injection to streptozocin-induced type 1 diabetic rats for 8 wk. Administration of liraglutide significantly improved elevated blood urine nitrogen, serum creatinine, and urinary albumin excretion rate and alleviated renal hypertrophy, mesangial expansion, and glomerular fibrosis in type 1 diabetic rats, whereas blood glucose level and body weight did not have significant changes. Consistent with the in vitro experiments, liraglutide treatment significantly reduced the diabetes-induced increases in glomerular fibronectin, collagen type IV, and α-smooth muscle actin and decreases in glomerular Wnt/β-catenin signaling proteins. These results suggest that liraglutide alleviated glomerular ECM accumulation and renal injury in diabetic nephropathy by enhancing Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Linjing Huang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Tingting Lin
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Meizhen Shi
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Xiuqing Chen
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Peiwen Wu
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Kawanami D, Takashi Y. GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Clinical Outcomes to Mechanisms. Front Pharmacol 2020; 11:967. [PMID: 32694999 PMCID: PMC7338581 DOI: 10.3389/fphar.2020.00967] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetic Kidney Disease (DKD) is the leading cause of end stage renal disease (ESRD) worldwide. Glucagon-like peptide 1 receptor agonists (GLP-1RAs) are now widely used in the treatment of patients with type 2 diabetes (T2D). A series of clinical and experimental studies demonstrated that GLP-1RAs have beneficial effects on DKD, independent of their glucose-lowering abilities, which are mediated by natriuresis, anti-inflammatory and anti-oxidative stress properties. Furthermore, GLP-1RAs have been shown to suppress renal fibrosis. Recent clinical trials have demonstrated that GLP-1RAs have beneficial effects on renal outcomes, especially in patients with T2D who are at high risk for CVD. These findings suggest that GLP-1RAs hold great promise in preventing the onset and progression of DKD. However, GLP-1RAs have only been shown to reduce albuminuria, and their ability to reduce progression to ESRD remains to be elucidated. In this review article, we highlight the current understanding of the clinical efficacy and the mechanisms underlying the effects of GLP-1RAs in DKD.
Collapse
Affiliation(s)
- Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yuichi Takashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
16
|
Chaudhari S, Yazdizadeh Shotorbani P, Tao Y, Davis ME, Mallet RT, Ma R. Inhibition of interleukin-6 on matrix protein production by glomerular mesangial cells and the pathway involved. Am J Physiol Renal Physiol 2020; 318:F1478-F1488. [PMID: 32390515 DOI: 10.1152/ajprenal.00043.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of immunological pathways and disturbances of extracellular matrix (ECM) dynamics are important contributors to the pathogenesis of chronic kidney diseases. Glomerular mesangial cells (MCs) are critical for homeostasis of glomerular ECM dynamics. Interleukin-6 (IL-6) can act as a pro/anti-inflammatory agent relative to cell types and conditions. This study investigated whether IL-6 influences ECM protein production by MCs and the regulatory pathways involved. Experiments were carried out in cultured human MCs (HMCs) and in mice. We found that overexpression of IL-6 and its receptor decreased the abundance of fibronectin and collagen type IV in MCs. ELISA and immunoblot analysis demonstrated that thapsigargin [an activator of store-operated Ca2+ entry (SOCE)], but not the endoplasmic reticulum stress inducer tunicamycin, significantly increased IL-6 content. This thapsigargin effect was abolished by GSK-7975A, a selective inhibitor of SOCE, and by silencing Orai1 (the channel protein mediating SOCE). Furthermore, inhibition of NF-κB pharmacologically and genetically significantly reduced SOCE-induced IL-6 production. Thapsigargin also stimulated nuclear translocation of the p65 subunit of NF-κB. Moreover, MCs overexpressing IL-6 and its receptor in HMCs increased the content of the glucagon-like peptide-1 receptor (GLP-1R), and IL-6 inhibition of fibronectin was attenuated by the GLP-1R antagonist exendin 9-39. In agreement with the HMC data, specific knockdown of Orai1 in MCs using the targeted nanoparticle delivery system in mice significantly reduced glomerular GLP-1R levels. Taken together, our results suggest a novel SOCE/NF-κB/IL-6/GLP-1R signaling pathway that inhibits ECM protein production by MCs.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | | | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
17
|
Yang Y, Kim J, Park H, Lee E, Yoon K. Pancreatic stellate cells in the islets as a novel target to preserve the pancreatic β-cell mass and function. J Diabetes Investig 2020; 11:268-280. [PMID: 31872946 PMCID: PMC7078117 DOI: 10.1111/jdi.13202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
There are numerous lines of clinical evidence that inhibition of the renin-angiotensin system (RAS) can prevent and delay the development of diabetes. Also, the role of RAS in the pathogenesis of diabetes, including insulin resistance and β-cell dysfunction, has been extensively investigated. Nevertheless, this role had not yet been fully shown. A variety of possible protective mechanisms for RAS blockers in the regulation of glucose homeostasis have been suggested. However, the direct effect on pancreatic islet fibrosis has only recently been spotlighted. Various degrees of islet fibrosis are often observed in the islets of patients with type 2 diabetes mellitus, which can be associated with a decrease in β-cell mass and function in these patients. Pancreatic stellate cells are thought to be deeply involved in this islet fibrosis. In this process, the activation of RAS in islets is shown to transform quiescent pancreatic stellate cells into the activated form, stimulates their proliferation and consequently leads to islet fibrotic destruction. In this article, we introduce existing clinical and experimental evidence for diabetes prevention through inhibition of RAS, and review the responsible local RAS signaling pathways in pancreatic stellate cells. Finally, we propose possible targets for the prevention of islet fibrosis.
Collapse
Affiliation(s)
- Yeoree Yang
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
| | - Ji‐Won Kim
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
| | - Heon‐Seok Park
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
| | - Eun‐Young Lee
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
| | - Kun‐Ho Yoon
- Division of Endocrinology and MetabolismDepartment of Internal MedicineCollege of MedicineSeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulKorea
| |
Collapse
|
18
|
Sukumaran V, Tsuchimochi H, Sonobe T, Waddingham MT, Shirai M, Pearson JT. Liraglutide treatment improves the coronary microcirculation in insulin resistant Zucker obese rats on a high salt diet. Cardiovasc Diabetol 2020; 19:24. [PMID: 32093680 PMCID: PMC7038553 DOI: 10.1186/s12933-020-01000-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity, hypertension and prediabetes contribute greatly to coronary artery disease, heart failure and vascular events, and are the leading cause of mortality and morbidity in developed societies. Salt sensitivity exacerbates endothelial dysfunction. Herein, we investigated the effect of chronic glucagon like peptide-1 (GLP-1) receptor activation on the coronary microcirculation and cardiac remodeling in Zucker rats on a high-salt diet (6% NaCl). METHODS Eight-week old Zucker lean (+/+) and obese (fa/fa) rats were treated with vehicle or liraglutide (LIRA) (0.1 mg/kg/day, s.c.) for 8 weeks. Systolic blood pressure (SBP) was measured using tail-cuff method in conscious rats. Myocardial function was assessed by echocardiography. Synchrotron contrast microangiography was then used to investigate coronary arterial vessel function (vessels 50-350 µm internal diameter) in vivo in anesthetized rats. Myocardial gene and protein expression levels of vasoactive factors, inflammatory, oxidative stress and remodeling markers were determined by real-time PCR and Western blotting. RESULTS We found that in comparison to the vehicle-treated fa/fa rats, rats treated with LIRA showed significant improvement in acetylcholine-mediated vasodilation in the small arteries and arterioles (< 150 µm diameter). Neither soluble guanylyl cyclase or endothelial NO synthase (eNOS) mRNA levels or total eNOS protein expression in the myocardium were significantly altered by LIRA. However, LIRA downregulated Nox-1 mRNA (p = 0.030) and reduced ET-1 protein (p = 0.044) expression. LIRA significantly attenuated the expressions of proinflammatory and profibrotic associated biomarkers (NF-κB, CD68, IL-1β, TGF-β1, osteopontin) and nitrotyrosine in comparison to fa/fa-Veh rats, but did not attenuate perivascular fibrosis appreciably. CONCLUSIONS In a rat model of metabolic syndrome, chronic LIRA treatment improved the capacity for NO-mediated dilation throughout the coronary macro and microcirculations and partially normalized myocardial remodeling independent of changes in body mass or blood glucose.
Collapse
Affiliation(s)
- Vijayakumar Sukumaran
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar. .,Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan. .,Department of Pharmacology, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan
| | - Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan
| | - Mark T Waddingham
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan.,Department of Advanced Medical Research in Pulmonary Hypertension, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564-8565, Japan.,Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| |
Collapse
|
19
|
Fang S, Cai Y, Lyu F, Zhang H, Wu C, Zeng Y, Fan C, Zou S, Zhang Y, Li P, Wang L, Guan M. Exendin-4 Improves Diabetic Kidney Disease in C57BL/6 Mice Independent of Brown Adipose Tissue Activation. J Diabetes Res 2020; 2020:9084567. [PMID: 32090125 PMCID: PMC7023845 DOI: 10.1155/2020/9084567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/06/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The role of exendin-4 in brown adipose tissue (BAT) activation was not very clear. This study is to verify the role of BAT involved in renal benefits of exendin-4 in diabetes mellitus (DM). METHODS In vivo, C57BL/6 mice were randomly divided into nondiabetic (control) and diabetic groups (DM). The diabetic mice were randomized into a control group (DM-Con), BAT-excision group (DM+Exc), exendin-4-treated group (DM+E4), and BAT-excision plus exendin-4-treated group (DM+Exc+E4). The weight, blood glucose and lipids, 24 h urine albumin and 8-OH-dG, and renal fibrosis were analyzed. In vitro, we investigated the role of exendin-4 in the differentiation process of 3T3-L1 and brown preadipocytes and its effect on the rat mesangial cells induced by oleate. RESULTS The expressions of UCP-1, PGC-1α, ATGL, and CD36 in BAT of DM mice were all downregulated, which could be upregulated by exendin-4 treatment with significant effects on ATGL and CD36. BAT-excision exacerbated high blood glucose (BG) with no significant effect on the serum lipid level. Exendin-4 significantly lowered the level of serum triglycerides (TG) and low-density lipoprotein- (LDL-) c, 24 h urine albumin, and 8-OH-dG; improved renal fibrosis and lipid accumulation; and activated renal AMP-activated protein kinase (AMPK) in diabetic mice regardless of BAT excision. In vitro, there was no significant effect of exendin-4 on brown or white adipogenesis. However, exendin-4 could improve lipid accumulation and myofibroblast-like phenotype transition of mesangial cells induced by oleate via activating the AMPK pathway. CONCLUSIONS Exendin-4 could decrease the renal lipid deposit and improve diabetic nephropathy via activating the renal AMPK pathway independent of BAT activation.
Collapse
MESH Headings
- 3T3-L1 Cells
- 8-Hydroxy-2'-Deoxyguanosine/urine
- Adenylate Kinase/metabolism
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipogenesis/drug effects
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/surgery
- Albuminuria
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Blotting, Western
- Body Weight/drug effects
- CD36 Antigens/drug effects
- CD36 Antigens/genetics
- Cholesterol, HDL/drug effects
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/drug effects
- Cholesterol, LDL/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Disease Models, Animal
- Exenatide/pharmacology
- Fibrosis
- Gene Expression/drug effects
- Incretins/pharmacology
- Kidney/drug effects
- Kidney/pathology
- Lipase/drug effects
- Lipase/genetics
- Mesangial Cells/drug effects
- Mesangial Cells/metabolism
- Mesangial Cells/pathology
- Mice
- Mice, Inbred C57BL
- Myofibroblasts/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/drug effects
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Random Allocation
- Rats
- Real-Time Polymerase Chain Reaction
- Triglycerides/metabolism
- Uncoupling Protein 1/drug effects
- Uncoupling Protein 1/genetics
Collapse
Affiliation(s)
- Shu Fang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Yingying Cai
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
- Women and Children's Hospital, Xiamen, Fujian, China 361003
| | - Fuping Lyu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
- Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China 361001
| | - Hongbin Zhang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark 2200
| | - Chunyan Wu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Yanmei Zeng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Cunxia Fan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
- Department of Endocrinology and Metabolism, Hainan General Hospital, Haikou, Hainan, China 570311
| | - Shaozhou Zou
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
- Department of Endocrinology, Dongguan TungWah Hospital, Guangdong, China 523900
| | - Yudan Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Ping Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Ling Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China 510515
| |
Collapse
|
20
|
Huang L, Ma R, Lin T, Chaudhari S, Shotorbani PY, Yang L, Wu P. Glucagon-like peptide-1 receptor pathway inhibits extracellular matrix production by mesangial cells through store-operated Ca 2+ channel. Exp Biol Med (Maywood) 2019; 244:1193-1201. [PMID: 31510798 DOI: 10.1177/1535370219876531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glomerular mesangial cell is the major source of mesangial matrix. Our previous study demonstrated that store-operated Ca2+ channel signaling suppressed extracellular matrix protein production by mesangial cells. Recent studies demonstrated that glucagon-like peptide-1 receptor (GLP-1R) pathway had renoprotective effects. However, the underlying mechanism(s) remains unclear. The present study was aimed to determine if activation of GLP-1R decreased extracellular matrix protein production by mesangial cells through upregulation of store-operated Ca2+ function. Experiments were conducted in cultured human mesangial cells. Liraglutide and exendin 9–39 were used to activate and inhibit GLP-1R, respectively. Store-operated Ca2+ function was estimated by evaluating the SOC-mediated Ca2+ entry (SOCE). We found that liraglutide treatment reduced high glucose-stimulated production of fibronectin and collagen IV. The inhibitory effects of liraglutide were not observed in the presence of exendin 9–39. Exendin-4, another GLP-1R agonist also blunted high glucose-stimulated fibronectin and collagen IV production. Treatment of human mesangial cells with liraglutide for 24 h significantly attenuated the high glucose-induced reduction of Orai1 protein. Consistently, Ca2+ imaging experiments showed that the inhibition of high glucose on SOCE was significantly attenuated by liraglutide. However, in the presence of exendin 9–39, liraglutide failed to reverse the high glucose effect. Furthermore, liraglutide effects on fibronectin and collagen IV protein abundance were significantly attenuated by GSK-7975A, a selective blocker of store-operated Ca2+. Taken together, our findings suggest that GLP-1R signaling inhibited high glucose-induced extracellular matrix protein production in mesangial cells by restoring store-operated Ca2+ function. Impact statement Diabetic kidney disease continues to be a major challenge to health care system in the world. There are no known therapies currently available that can cure the disease. The present study provided compelling evidence that activation of GLP-1R inhibited extracellular matrix protein production by glomerular mesangial cells. We further showed that the beneficial effect of GLP-1R was attributed to upregulation of store-operated Ca2+ channel function. Therefore, we identified a novel mechanism contributing to the renal protective effects of GLP-1R pathway. Activation of GLP-1R pathway and/or store-operated Ca2+ channel signaling in MCs could be an option for patients with diabetic kidney disease.
Collapse
Affiliation(s)
- Linjing Huang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tingting Lin
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Parisa Y Shotorbani
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Liyong Yang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China
| | - Peiwen Wu
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China
| |
Collapse
|
21
|
Sun Y, Shi X, Peng X, Li Y, Ma H, Li D, Cao X. MicroRNA-181a exerts anti-inflammatory effects via inhibition of the ERK pathway in mice with intervertebral disc degeneration. J Cell Physiol 2019; 235:2676-2686. [PMID: 31508816 DOI: 10.1002/jcp.29171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
Abstract
Enzymatic decomposition of extracellular matrix and possibly local inflammation may cause intervertebral disc degeneration (IDD). MicroRNAs have been reported to correlate with the development of IDD. In this experiment, we aim at finding out the role of miR-181a in the inflammation of IDD and the underlying mechanism. The targeting relationship between miR-181a and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was verified. Following the establishment of IDD mouse models, disc height index (DHI) and the change of DHI (%DHI) were measured. The functional role of miR-181a in IDD was determined using ectopic expression and depletion and reporter assay experiments. Expression of miR-181a, TRAIL, extracellular signal-regulated kinase (ERK) pathway-related genes and inflammatory factors was evaluated. Also, the expression of collagen I and collagen II was observed. miR-181a directly targeted TRAIL. IDD mice exhibited significant degeneration of the intervertebral disc. miR-181a was downregulated while TRAIL was upregulated in mice with IDD. miR-181a upregulation and the ERK pathway inhibition could reduce expression of TRAIL, ERK pathway-related genes, inflammatory factors, and collagen I, but promote collagen II expression. Our results reveal that upregulation of miR-181a protects against inflammatory response by inactivating the ERK pathway via suppression of TRAIL in IDD mice. These results point to miR-181a as a potential therapeutic target for the clinical management of IDD.
Collapse
Affiliation(s)
- Yanpeng Sun
- Department of Spinal Surgery, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Xiangqin Shi
- Department of Spinal Surgery, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Xiaodong Peng
- Department of Spinal Surgery, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Yanzhou Li
- Department of Intervention, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Husheng Ma
- Department of Spinal Surgery, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Dongfang Li
- Department of Spinal Surgery, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Xiangyang Cao
- Department of Spinal Surgery, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| |
Collapse
|
22
|
Magdaleno F, Blajszczak CC, Charles-Niño CL, Guadrón-Llanos AM, Vázquez-Álvarez AO, Miranda-Díaz AG, Nieto N, Islas-Carbajal MC, Rincón-Sánchez AR. Aminoguanidine reduces diabetes-associated cardiac fibrosis. Exp Ther Med 2019; 18:3125-3138. [PMID: 31572553 DOI: 10.3892/etm.2019.7921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Aminoguanidine (AG) inhibits advanced glycation end products (AGEs) and advanced oxidation protein products (AOPP) accumulated as a result of excessive oxidative stress in diabetes. However, the molecular mechanism by which AG reduces AGE-associated damage in diabetes is not well understood. Thus, we investigated whether AG supplementation mitigates oxidative-associated cardiac fibrosis in rats with type 2 diabetes mellitus (T2DM). Forty-five male Wistar rats were divided into three groups: Control, T2DM and T2DM+AG. Rats were fed with a high-fat, high-carbohydrate diet (HFCD) for 2 weeks and rendered diabetic using low-dose streptozotocin (STZ) (20 mg/kg), and one group was treated with AG (20 mg/kg) up to 25 weeks. In vitro experiments were performed in primary rat myofibroblasts to confirm the antioxidant and antifibrotic effects of AG and to determine if blocking the receptor for AGEs (RAGE) prevents the fibrogenic response in myofibroblasts. Diabetic rats exhibited an increase in cardiac fibrosis resulting from HFCD and STZ injections. By contrast, AG treatment significantly reduced cardiac fibrosis, α-smooth muscle actin (αSMA) and oxidative-associated Nox4 and Nos2 mRNA expression. In vitro challenge of myofibroblasts with AG under T2DM conditions reduced intra- and extracellular collagen type I expression and Pdgfb, Tgfβ1 and Col1a1 mRNAs, albeit with similar expression of Tnfα and Il6 mRNAs. This was accompanied by reduced phosphorylation of ERK1/2 and SMAD2/3 but not of AKT1/2/3 and STAT pathways. RAGE blockade further attenuated collagen type I expression in AG-treated myofibroblasts. Thus, AG reduces oxidative stress-associated cardiac fibrosis by reducing pERK1/2, pSMAD2/3 and collagen type I expression via AGE/RAGE signaling in T2DM.
Collapse
Affiliation(s)
- Fernando Magdaleno
- Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico.,Department of Pathology, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | | | - Claudia Lisette Charles-Niño
- Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico.,Department of Microbiology and Pathology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| | - Alma Marlene Guadrón-Llanos
- Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| | - Alan Omar Vázquez-Álvarez
- Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| | - Natalia Nieto
- Department of Pathology, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - María Cristina Islas-Carbajal
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| | - Ana Rosa Rincón-Sánchez
- Institute of Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, Guadalajara University, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
23
|
Sukumaran V, Tsuchimochi H, Sonobe T, Shirai M, Pearson JT. Liraglutide Improves Renal Endothelial Function in Obese Zucker Rats on a High-Salt Diet. J Pharmacol Exp Ther 2019; 369:375-388. [DOI: 10.1124/jpet.118.254821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/21/2019] [Indexed: 01/11/2023] Open
|
24
|
Abstract
The main cellular constituents in glomerular mesangium are mesangial cells, which account for approximately 30-40% of the total cells in the glomerulus. Together with the mesangial matrix, mesangial cells form the glomerular basement membrane (GBM) in the glomerulus, whose main function is to perform the filtration. Under the pathologic conditions, mesangial cells are activated, leading to hyperproliferation and excess extracellular matrix (ECM). Moreover, mesangial cells also secrete several kinds of inflammatory cytokines, adhesion molecules, chemokines, and enzymes, all of which participate in the process of renal glomerular fibrosis. During the past years, researchers have revealed the roles of mesangial cells and the associated signal pathways involved in renal fibrosis. In this section, we will discuss how mesangial cells are activated and its contributions to renal fibrosis, as well as the molecular mechanisms and novel anti-fibrotic agents. Full understanding of the contributions of mesangial cells to renal fibrosis will benefit the clinical drug developing.
Collapse
Affiliation(s)
- Jing-Hong Zhao
- Department of Nephrology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
25
|
Exendin-4 ameliorates high glucose-induced fibrosis by inhibiting the secretion of miR-192 from injured renal tubular epithelial cells. Exp Mol Med 2018; 50:1-13. [PMID: 29717107 PMCID: PMC5938044 DOI: 10.1038/s12276-018-0084-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/24/2017] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs), which contain microRNA (miRNA), constitute a novel means of cell communication that may contribute to the inevitable expansion of renal fibrosis during diabetic kidney disease (DKD). Exendin-4 is effective for treating DKD through its action on GLP1R. However, the effect of exendin-4 on EV miRNA expression and renal cell communication during the development of DKD remains unknown. In this study, we found that EVs derived from HK-2 cells pre-treated with exendin-4 and high glucose (Ex-HG), which were taken up by normal HK-2 cells, resulted in decreased levels of FN and Col-I compared with EVs from HK-2 cells pre-treated with HG alone. Furthermore, we found that pretreatment with HG and exendin-4 may have contributed to a decrease in miR-192 in both HK-2 cells and EVs in a p53-dependent manner. Finally, we demonstrated that the amelioration of renal fibrosis by exendin-4 occurred through a miR-192-GLP1R pathway, indicating a new pathway by which exendin-4 regulates GLP1R. The results of this study suggest that exendin-4 inhibits the transfer of EV miR-192 from HG-induced renal tubular epithelial cells to normal cells, thus inhibiting GLP1R downregulation and protecting renal cells. This study reports a new mechanism by which exendin-4 exerts a protective effect against DKD.
Collapse
|
26
|
Chang JT, Liang YJ, Hsu CY, Chen CY, Chen PJ, Yang YF, Chen YL, Pei D, Chang JB, Leu JG. Glucagon-like peptide receptor agonists attenuate advanced glycation end products-induced inflammation in rat mesangial cells. BMC Pharmacol Toxicol 2017; 18:67. [PMID: 29065926 PMCID: PMC5655807 DOI: 10.1186/s40360-017-0172-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/09/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hyperglycemia-induced advanced glycation end products (AGEs) and receptor for AGEs (RAGE) production play major roles in progression of diabetic nephropathy. Anti-RAGE effect of peroxisome proliferator-activated receptor-delta (PPARδ) agonists was shown in previous studies. PPARδ agonists also stimulate glucagon-like peptide-1 (GLP-1) secretion from human intestinal cells. METHODS In this study, the individual and synergic anti-inflammatory effects of GLP-1 receptor (exendin-4) and PPARδ (L-165,041) agonists in AGE-treated rat mesangial cells (RMC) were investigated. RESULTS The results showed both exendin-4 and L-165,041 significantly attenuated AGE-induced IL-6 and TNF-α production, RAGE expression, and cell death in RMC. Similar anti-inflammatory potency was seen between 0.3 nM exendin-4 and 1 μM L-165,041. Synergic effect of exendin-4 and L-165,041 was shown in inhibiting cytokines production, but not in inhibiting RAGE expression or cell death. CONCLUSIONS These results suggest that both GLP-1 receptor and PPARδ agonists have anti-inflammatory effect on AGE-treated rat mesangial cells.
Collapse
Affiliation(s)
- Jui-Ting Chang
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Chia-Yu Hsu
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Chao-Yi Chen
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Po-Jung Chen
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Yi-Feng Yang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, Medical School, Fu Jen Catholic University, New Taipei City, Taiwan
- Fu-Jen Catholic University School of Medicine, No. 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 24205 Taiwan
| | - Dee Pei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cardinal Tien Hospital, Medical School, Fu Jen Catholic University, New Taipei City, Taiwan
- Fu-Jen Catholic University School of Medicine, No. 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 24205 Taiwan
| | - Jin-Biou Chang
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Jyh-Gang Leu
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Fu-Jen Catholic University School of Medicine, No. 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 24205 Taiwan
| |
Collapse
|
27
|
Abstract
The gastrointestinal tract - the largest endocrine network in human physiology - orchestrates signals from the external environment to maintain neural and hormonal control of homeostasis. Advances in understanding entero-endocrine cell biology in health and disease have important translational relevance. The gut-derived incretin hormone glucagon-like peptide 1 (GLP-1) is secreted upon meal ingestion and controls glucose metabolism by modulating pancreatic islet cell function, food intake and gastrointestinal motility, amongst other effects. The observation that the insulinotropic actions of GLP-1 are reduced in type 2 diabetes mellitus (T2DM) led to the development of incretin-based therapies - GLP-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors - for the treatment of hyperglycaemia in these patients. Considerable interest exists in identifying effects of these drugs beyond glucose-lowering, possibly resulting in improved macrovascular and microvascular outcomes, including in diabetic kidney disease. As GLP-1 has been implicated as a mediator in the putative gut-renal axis (a rapid-acting feed-forward loop that regulates postprandial fluid and electrolyte homeostasis), direct actions on the kidney have been proposed. Here, we review the role of GLP-1 and the actions of associated therapies on glucose metabolism, the gut-renal axis, classical renal risk factors, and renal end points in randomized controlled trials of GLP-1 receptor agonists and DPP-4 inhibitors in patients with T2DM.
Collapse
|
28
|
Hasan AA, Hocher B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J Mol Endocrinol 2017; 59:R1-R10. [PMID: 28420715 DOI: 10.1530/jme-17-0005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membrane-bound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure- and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations.
Collapse
Affiliation(s)
- Ahmed A Hasan
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Department of BiochemistryFaculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Berthold Hocher
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Institut für Laboriatorumsmedizin IFLbBerlin, Germany
- Departments of Embryology and NephrologyBasic Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Diabetic nephropathy: Time to withhold development and progression - A review. J Adv Res 2017; 8:363-373. [PMID: 28540086 PMCID: PMC5430158 DOI: 10.1016/j.jare.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022] Open
Abstract
The recent discoveries in the fields of pathogenesis and management of diabetic nephropathy have revolutionized the knowledge about this disease. Little was added to the management of diabetic nephropathy after the introduction of renin angiotensin system blockers. The ineffective role of the renin- angiotensin system blockers in primary prevention of diabetic nephropathy in type 1 diabetes mellitus necessitated the search for other early therapeutic interventions that target alternative pathogenic mechanisms. Among the different classes of oral hypoglycemic agents, recent studies highlighted the distinguished mechanisms of sodium glucose transporter 2 blockers and dipeptidyl peptidase-4 inhibitors that settle their renoprotective actions beyond the hypoglycemic effects. The introduction of antioxidant and anti-inflammatory agents to this field had also added wealth of knowledge. However, many of these agents are still waiting well-designed clinical studies in order to prove their beneficial therapeutic role. The aim of this review of literature is to highlight the recent advances in understanding the pathogenesis, diagnosis, the established and the potential renoprotective therapeutic agents that would prevent the development or the progression of diabetic nephropathy.
Collapse
|
30
|
Wu X, Liang W, Guan H, Liu J, Liu L, Li H, He X, Zheng J, Chen J, Cao X, Li Y. Exendin-4 promotes pancreatic β-cell proliferation via inhibiting the expression of Wnt5a. Endocrine 2017; 55:398-409. [PMID: 27826714 DOI: 10.1007/s12020-016-1160-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023]
Abstract
Exendin-4, a glucagon-like peptide-1 receptor agonist, is currently regarded as an effective therapeutic strategy for type-2 diabetes. Previous studies indicated that exendin-4 promoted β cell proliferation. However, the underlying mechanisms remain largely unknown. Recently it was reported that exendin-4 promoted pancreatic β cell proliferation by regulating the expression level of Wnt4. The present study was designed to investigate whether other Wnt isoforms take part in accommodation of β-cell proliferation. We found that exendin-4 promotes the proliferation and suppresses the expression of Wnt5a in INS-1 cell line and C57Bl/6 mouse pancreatic β-cells. Further mechanistic study demonstrated that exendin-4 promoted INS-1 cell proliferation partly through down-regulating the expression of Wnt5a. Furthermore, Wnt5a could induce the activation of calmodulin-dependent protein kinase II in INS-1 cells, thereby decreasing the cellular stable β-catenin and its nuclear translocation, and finally reduce the expression of cyclin D1. In addition, we also found that both of the receptors (Frz-2 and Ror-2) mediated the effect of Wnt5a on β cell line INS-1 proliferation. Taken together, this study suggests that Wnt5a plays a critical role in exendin-4-induced β-cell proliferation, indicating that Wnt5a might be a novel regulator in counterbalance of β cell mass.
Collapse
Affiliation(s)
- Xinger Wu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Medical University, Guangzhou, China
| | - Weiwei Liang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juan Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liehua Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying He
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Zheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaopei Cao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Kim JW, Park SY, You YH, Ham DS, Lee SH, Yang HK, Jeong IK, Ko SH, Yoon KH. Suppression of ROS Production by Exendin-4 in PSC Attenuates the High Glucose-Induced Islet Fibrosis. PLoS One 2016; 11:e0163187. [PMID: 27977690 PMCID: PMC5157943 DOI: 10.1371/journal.pone.0163187] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/02/2016] [Indexed: 02/04/2023] Open
Abstract
Pancreatic stellate cells (PSCs) play a major role to fibrotic islet destruction observed in diabetic patients and animal model of diabetes. Exendin-4 (Ex-4) is a potent insulinotropic agent and has been approved for the treatment of type 2 diabetes. However, there have been no reports demonstrating the effects of Ex-4 on pancreatic islet fibrosis. In this study, Ex-4 treatment clearly attenuated fibrotic islet destruction and improved glucose tolerance and islet survival. GLP-1 receptor expression was upregulated during activation and proliferation of PSCs by hyperglycemia. The activation of PKA pathway by Ex-4 plays a role in ROS production and angiotensin II (Ang II) production. Exposure to high glucose stimulated ERK activation and Ang II-TGF- β1 production in PSCs. Interestingly, Ex-4 significantly reduced Ang II and TGF-β1 production by inhibition of ROS production but not ERK phosphorylation. Ex-4 may be useful not only as an anti-diabetic agent but also as an anti-fibrotic agent in type 2 diabetes due to its ability to inhibit PSC activation and proliferation and improve islet fibrosis in OLETF rats.
Collapse
Affiliation(s)
- Ji-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Shin-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Hye You
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Dong-Sik Ham
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Hae Kyung Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - In-Kyung Jeong
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, Catholic Research Institutes of Medical Science, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
32
|
Korbut AI, Klimontov VV. Incretin-based therapy: renal effects. DIABETES MELLITUS 2016; 19:53-63. [DOI: 10.14341/dm7727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Glucagon like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 (DPP-4) inhibitors are new classes of hypoglycemic agents with numerous pleiotropic effects. The review summarises data about the influence of GLP-1 analogues and DPP-4 inhibitors on structural and functional changes in diabetic kidneys. Growing evidence indicates that the kidney is one of the loci of the effects and degradation of GLP-1. The potency of the effects of GLP-1 in diabetic kidneys can be reduced by decrease in GLP-1 receptor expression or enhancement of GLP-1 degradation. In experimental models of diabetic nephropathy and non-diabetic renal injury, GLP-1 analogues and DPP-4 inhibitors slow the development of kidney fibrosis and prevent the decline of kidney function. The mechanisms of protective effect include hyperglycaemia reduction, enhancement of sodium excretion, suppression of inflammatory and fibrogenic signalling pathways, reduction of oxidative stress and apoptosis in the kidneys. In clinical studies, the urinary albumin excretion reduction rate while using the GLP-1 analogue and DPP-4 inhibitor treatment was demonstrated in patients with type 2 diabetes. Long-term impact of these agents on renal function in diabetes needs further investigations.
Collapse
|
33
|
Ding HH, Ni WJ, Tang LQ, Wei W. G protein-coupled receptors: potential therapeutic targets for diabetic nephropathy. J Recept Signal Transduct Res 2015; 36:411-421. [PMID: 26675443 DOI: 10.3109/10799893.2015.1122039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy, a lethal microvascular complication of diabetes mellitus, is characterized by progressive albuminuria, excessive deposition of extracellular matrix, thickened glomerular basement membrane, podocyte abnormalities, and podocyte loss. The G protein-coupled receptors (GPCRs) have attracted considerable attention in diabetic nephropathy, but the specific effects have not been elucidated yet. Likewise, abnormal signaling pathways are closely interrelated to the pathologic process of diabetic nephropathy, despite the fact that the mechanisms have not been explored clearly. Therefore, GPCRs and its mediated signaling pathways are essential for priority research, so that preventative strategies and potential targets might be developed for diabetic nephropathy. This article will give us comprehensive overview of predominant GPCR types, roles, and correlative signaling pathways in diabetic nephropathy.
Collapse
Affiliation(s)
- Hai-Hua Ding
- a Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui Province , People's Republic of China.,b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Wei-Jian Ni
- b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Li-Qin Tang
- b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Wei Wei
- a Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| |
Collapse
|
34
|
Kim DI, Park MJ, Heo YR, Park SH. Metformin ameliorates lipotoxicity-induced mesangial cell apoptosis partly via upregulation of glucagon like peptide-1 receptor (GLP-1R). Arch Biochem Biophys 2015; 584:90-7. [DOI: 10.1016/j.abb.2015.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023]
|
35
|
Zhong P, Wu L, Qian Y, Fang Q, Liang D, Wang J, Zeng C, Wang Y, Liang G. Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1230-41. [PMID: 25736300 DOI: 10.1016/j.bbadis.2015.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 01/09/2023]
Abstract
Increased oxidative stress and cardiac inflammation have been implicated in the pathogenesis of diabetic cardiomyopathy (DCM). We previously found that a novel chalcone derivative, L6H9, was able to reduce LPS-induced inflammatory response in macrophages. This study was designed to investigate its protective effects on DCM and the underlying mechanisms. H9C2 cells were cultured with DMEM containing 33 mmol/L of glucose in the presence or absence of L6H9. Pretreatment with L6H9 significantly reduced high glucose-induced inflammatory cytokine expression, ROS level increase, mitochondrial dysfunction, cell apoptosis, fibrosis, and hypertrophy in H9c2 cells, which may be mediated by NF-κB inhibition and Nrf2 activation. In mice with STZ-induced diabetes, oral administration of L6H9 at 20 mg/kg/day for 8 weeks significantly decreased the cardiac cytokine and ROS level, accompanied by decreasing cardiac apoptosis and hypertrophy, and, finally, improved histological abnormalities and fibrosis, without affecting the hyperglycemia. L6H9 also attenuated the diabetes-induced NF-κB activation and Nrf2 decrease in diabetic hearts. These results strongly suggest that L6H9 may have great therapeutic potential in the treatment of DCM via blockage of inflammation and oxidative stress. This study also provides a deeper understanding of the regulatory role of Nrf2 and NF-κB in DCM, indicating that they may be important therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, the 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Lianpin Wu
- Department of Cardiology, the 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dandan Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunlai Zeng
- Department of Cardiology, the 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
36
|
Kim DI, Park MJ, Choi JH, Lim SK, Choi HJ, Park SH. Hyperglycemia-induced GLP-1R downregulation causes RPE cell apoptosis. Int J Biochem Cell Biol 2015; 59:41-51. [DOI: 10.1016/j.biocel.2014.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 11/17/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
|
37
|
Arutyunova MS, Glazunova AM, Mikhaleva OV, Zuraeva ZT, Martynov SA, Klefortova II, Manchenko OV, Ulyanova IN, Ilyin AV, Shamkhalova MS, Shestakova MV. [Nonglycemic effects of incretins in patients with long-term type 1 diabetes mellitus and chronic kidney disease]. TERAPEVT ARKH 2015; 87:54-61. [PMID: 26978175 DOI: 10.17116/terarkh2015871054-61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To investigate the nonglycemic effects of incretins in patients with type 1 diabetes mellitus (DM1) of long duration (for more than 20 years) and chronic kidney disease. MATERIAL AND METHODS Seventy-five patients with varying degrees of diabetic nephropathy (DN) and without this condition, including patients receiving renal replacement therapy with programmed hemodialysis and those who had undergone kidney transplantation were examined. The levels of phosphorus-calcium metabolic indicators (calcium, phosphorus, parathyroid hormone, vitamin D, and fibroblast growth factor 23 (FGF-23)), the cardiac damage marker atrial natriuretic peptide, the proinflammatory markers monocyte chemoattractant protein 1 (MCP-1) and C-reactive protein (CRP) and the fibrotic marker transforming growth factor-β, as well as those of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) were estimated in addition to conventional examination methods. All the patients underwent cardiac multislice spiral computed tomography, by calculating the Agatston index (calcium index (CI)) reflecting the degree of coronary artery calcification. RESULTS The investigation revealed no relationship of GLP-1 and GIP levels to the presence and degree of DN in the patients of the study groups. GLP-1 was noted to be inversely related to patient age, indicating the diminished secretion of this peptide in older people. There was evidence that GLP-1 positively affected blood lipid composition (total cholesterol: r=-0,320; p<0.05) and the magnitude of coronary artery calcification (CI: r=-0.308; p<0.05). GIP showed a differently directed effect on the proinflammatory factors: fibrinogen (r=-0.264; p<0.05), CRP (r=-0.626; p<0.05), and FGF-23 (r=-0.341; p<0.05). CONCLUSION The investigation has demonstrated the nonglycemic effects of incretins that favorably affect the pathogenetic processes underlying the late complications of DM1. The findings point to the potential efficacy of incretin-based drugs in preventing and treating the late complications of DM, which necessitates the conduction of larger investigations.
Collapse
Affiliation(s)
- M S Arutyunova
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - A M Glazunova
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - O V Mikhaleva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - Z T Zuraeva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - S A Martynov
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - I I Klefortova
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - O V Manchenko
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - I N Ulyanova
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - A V Ilyin
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - M Sh Shamkhalova
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia
| | - M V Shestakova
- Endocrinology Research Centre, Ministry of Health of Russia, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
38
|
Wang S, Li B, Li C, Cui W, Miao L. Potential Renoprotective Agents through Inhibiting CTGF/CCN2 in Diabetic Nephropathy. J Diabetes Res 2015; 2015:962383. [PMID: 26421309 PMCID: PMC4572424 DOI: 10.1155/2015/962383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/28/2015] [Accepted: 03/25/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The development and progression of DN might involve multiple factors. Connective tissue growth factor (CCN2, originally known as CTGF) is the one which plays a pivotal role. Therefore, increasing attention is being paid to CCN2 as a potential therapeutic target for DN. Up to date, there are also many drugs or agents which have been shown for their protective effects against DN via different mechanisms. In this review, we only focus on the potential renoprotective therapeutic agents which can specifically abolish CCN2 expression or nonspecifically inhibit CCN2 expression for retarding the development and progression of DN.
Collapse
Affiliation(s)
- Songyan Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- Department of Nephrology, Jilin Province People's Hospital, Changchun 130021, China
| | - Bing Li
- Department of Nephrology, Jilin Province People's Hospital, Changchun 130021, China
| | - Chunguang Li
- Department of Urology, The 2nd Hospital of Changchun, Changchun 130061, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- *Lining Miao:
| |
Collapse
|
39
|
Artunc F, Lang F. Mineralocorticoid and SGK1-sensitive inflammation and tissue fibrosis. Nephron Clin Pract 2014; 128:35-9. [PMID: 25377230 DOI: 10.1159/000368267] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Effects of mineralocorticoids are not restricted to regulation of epithelial salt transport, extracellular volume and blood pressure; mineralocorticoids also influence a wide variety of seemingly unrelated functions such as inflammation and fibrosis. The present brief review addresses the role of mineralocorticoids in the orchestration of these latter processes. Mineralocorticoids foster inflammation as well as vascular, cardiac, renal and peritoneal fibrosis. Mechanisms involved in mineralocorticoid-sensitive inflammation and fibrosis include the serum- and glucocorticoid-inducible kinase 1 (SGK1), which is genomically upregulated by mineralocorticoids and transforming growth factor β (TGF-β), and stimulated by mineralocorticoid-sensitive phosphatidylinositide 3-kinase. SGK1 upregulates the inflammatory transcription factor nuclear factor-κB, which in turn stimulates the expression of diverse inflammatory mediators including connective tissue growth factor. Moreover, SGK1 inhibits the degradation of the TGF-β-dependent transcription factors Smad2/3. Mineralocorticoids foster the development of TH17 cells, which is compromised following SGK1 deletion. Excessive SGK1 expression is observed in a wide variety of fibrosing diseases including lung fibrosis, diabetic nephropathy, glomerulonephritis, obstructive kidney disease, experimental nephrotic syndrome, obstructive nephropathy, liver cirrhosis, fibrosing pancreatitis, peritoneal fibrosis, Crohn's disease and celiac disease. The untoward inflammatory and fibrosing effects of mineralocorticoids could be blunted or even reversed by mineralocorticoid receptor blockers, which may thus be considered in the treatment of inflammatory and/or fibrosing disease.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
40
|
Abstract
The incretin hormone, glucagon-like peptide-1 (GLP-1), stimulates insulin secretion and forms the basis of a new drug class for diabetes treatment. GLP-1 has several extra-pancreatic properties which include effects on kidney function. Although renal GLP-1 receptors have been identified, their exact localization and physiological role are incompletely understood. GLP-1 increases natriuresis through inhibition of the sodium-hydrogen ion exchanger isoform 3 in the proximal tubule. This may in part explain why GLP-1 receptor agonists have antihypertensive effects. Glomerular filtration rate is regulated by GLP-1, but the mechanisms are complex and may depend on e.g. glycaemic conditions. Atrial natriuretic peptide or the renin-angiotensin system may be involved in the signalling of GLP-1-mediated renal actions. Several studies in rodents have shown that GLP-1 therapy is renoprotective beyond metabolic improvements in models of diabetic nephropathy and acute kidney injury. Inhibition of renal inflammation and oxidative stress probably mediate this protection. Clinical studies supporting GLP-1-mediated renal protection exist, but they are few and with limitations. However, acute and chronic kidney diseases are major global health concerns and measures improving renal outcome are highly needed. Therefore, the renoprotective potential of GLP-1 therapy need to be thoroughly investigated in humans.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, 8000, Aarhus, Denmark,
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Incretin-based therapy with glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors is considered a promising therapeutic option for type 2 diabetes mellitus. Cumulative evidence, mainly from preclinical animal studies, reveals that incretin-based therapies also may elicit beneficial effects on kidney function. This review gives an overview of the physiology, pathophysiology, and pharmacology of the renal incretin system. RECENT FINDINGS Activation of GLP-1R in the kidney leads to diuretic and natriuretic effects, possibly through direct actions on renal tubular cells and sodium transporters. Moreover, there is evidence that incretin-based therapy reduces albuminuria, glomerulosclerosis, oxidative stress, and fibrosis in the kidney, partially through GLP-1R-independent pathways. Molecular mechanisms by which incretins exert their renal effects are understood incompletely, thus further studies are needed. SUMMARY The GLP-1R and DPP-4 are expressed in the kidney in various species. The kidney plays an important role in the excretion of incretin metabolites and most GLP-1R agonists and DPP-4 inhibitors, thus special attention is required when applying incretin-based therapy in renal impairment. Preclinical observations suggest direct renoprotective effects of incretin-based therapies in the setting of hypertension and other disorders of sodium retention, as well as in diabetic and nondiabetic nephropathy. Clinical studies are needed in order to confirm translational relevance from preclinical findings for treatment options of renal diseases.
Collapse
|
42
|
Tanaka T, Higashijima Y, Wada T, Nangaku M. The potential for renoprotection with incretin-based drugs. Kidney Int 2014; 86:701-11. [PMID: 25007170 DOI: 10.1038/ki.2014.236] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/26/2014] [Accepted: 05/15/2014] [Indexed: 01/18/2023]
Abstract
Incretin-based drugs, i.e., glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, are widely used for the treatment of type 2 diabetes. In addition to the primary role of incretins in stimulating insulin secretion from pancreatic β-cells, they have extra pancreatic functions beyond glycemic control. Indeed, recent studies highlight the potential beneficial effects of incretin-based therapy in diabetic kidney disease (DKD). Experimental studies using various diabetic models suggest that incretins protect the vascular endothelium from injury by binding to GLP-1 receptors, thereby ameliorating oxidative stress and the local inflammatory response, which reduces albuminuria and inhibits glomerular sclerosis. In addition, there is some evidence that GLP-1 receptor agonists and DPP-4 inhibitors mediate sodium excretion and diuresis to lower blood pressure. The pleiotropic actions of DPP-4 inhibitors are ascribed primarily to their effects on GLP-1 signaling, but other substrates of DPP-4, such as brain natriuretic peptide and stromal-derived factor-1α, may have roles. In this review, we summarize recent studies of the roles of incretin-based therapy in ameliorating DKD and its complications.
Collapse
Affiliation(s)
- Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Higashijima
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Wada
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Kitada M, Kanasaki K, Koya D. Clinical therapeutic strategies for early stage of diabetic kidney disease. World J Diabetes 2014; 5:342-356. [PMID: 24936255 PMCID: PMC4058738 DOI: 10.4239/wjd.v5.i3.342] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/08/2014] [Accepted: 04/17/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of chronic kidney disease, leading to end-stage renal disease and cardiovascular disease. The overall number of patients with DKD will continue to increase in parallel with the increasing global pandemic of type 2 diabetes. Based on landmark clinical trials, DKD has become preventable by controlling conventional factors, including hyperglycemia and hypertension, with multifactorial therapy; however, the remaining risk of DKD progression is still high. In this review, we show the importance of targeting remission/regression of microalbuminuria in type 2 diabetic patients, which may protect against the progression of DKD and cardiovascular events. To achieve remission/regression of microalbuminuria, several steps are important, including the early detection of microalbuminuria with continuous screening, targeting HbA1c < 7.0% for glucose control, the use of renin angiotensin system inhibitors to control blood pressure, the use of statins or fibrates to control dyslipidemia, and multifactorial treatment. Reducing microalbuminuria is therefore an important therapeutic goal, and the absence of microalbuminuria could be a pivotal biomarker of therapeutic success in diabetic patients. Other therapies, including vitamin D receptor activation, uric acid-lowering drugs, and incretin-related drugs, may also be promising for the prevention of DKD progression.
Collapse
|
44
|
Lang F, Stournaras C, Alesutan I. Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1. Mol Membr Biol 2014; 31:29-36. [PMID: 24417516 DOI: 10.3109/09687688.2013.874598] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is genomically upregulated by cell stress including energy depletion and hyperosmotic shock as well as a variety of hormones including glucocorticoids, mineralocorticoids and TGFβ. SGK1 is activated by insulin, growth factors and oxidative stress via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase PDK1 and mTOR. SGK1 is a powerful stimulator of Na(+)/K(+)-ATPase, carriers (e.g., NCC, NKCC, NHE1, NHE3, SGLT1, several amino acid transporters) and ion channels (e.g., ENaC, SCN5A, TRPV4-6, ORAI1/STIM1, ROMK, KCNE1/KCNQ1, GluR6, CFTR). Mechanisms employed by SGK1 in transport regulation include direct phosphorylation of target transport proteins, phosphorylation and thus activation of other transport regulating kinases, stabilization of membrane proteins by phosphorylation and thus inactivation of the ubiquitin ligase NEDD4-2, as well as stimulation of transport protein expression by upregulation transcription factors (e.g., nuclear factor kappa-B [NFκB]) and by fostering of protein translation. SGK1 sensitivity of pump, carrier and channel activities participate in the regulation of epithelial transport, cardiac and neuronal excitability, degranulation, platelet function, migration, cell proliferation and apoptosis. SGK1-sensitive functions do not require the presence of SGK1 but are markedly upregulated by SGK1. Accordingly, the phenotype of SGK1 knockout mice is mild. The mice are, however, less sensitive to excessive activation of transport by glucocorticoids, mineralocorticoids, insulin and inflammation. Moreover, excessive SGK1 activity contributes to the pathophysiology of hypertension, obesity, diabetes, thrombosis, stroke, inflammation, autoimmune disease, fibrosis and tumor growth.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Germany and
| | | | | |
Collapse
|
45
|
Li G, Li Y, Liu S, Shi Y, Chi Y, Liu G, Shan T. Gremlin aggravates hyperglycemia-induced podocyte injury by a TGFβ/smad dependent signaling pathway. J Cell Biochem 2013; 114:2101-13. [PMID: 23553804 DOI: 10.1002/jcb.24559] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
Gremlin is a bone morphogenic protein (BMP) antagonist and is elevated in diabetic kidney tissues. In the early course of diabetic nephropathy (DN), podocyte are injured. We studied the protein and gene expression of gremlin in mice podocytes cultured in hyperglycemia ambient. The role of gremlin on podocyte injury and the likely signaling pathways involved were determined. Expression of gremlin was visualized by confocal microscopy. Recombinant mouse gremlin and small interfering RNA (siRNA) targeting to gremlin1 identified the role played by gremlin on podocytes. Study of canonical (smad2/3) and non-canonical (p38MAPK and JNK1/2) transforming growth factor beta (TGFβ)/smad mediated signaling revealed the putative signaling mechanisms involved. Smad2/3 siRNA and TGFβ receptor inhibition (SB431542) were used to probe canonical TGFβ/smad signaling in gremlin-induced podocyte injury. Apoptosis of podocytes was measured by TUNEL assay. Gremlin expression was enhanced in high glucose cultured mouse podocytes, and was localized predominantly in the cytoplasm and negligibly on the cell membrane. Not only expression of nephrin and synaptopodin were decreased on treatment with gremlin, but also synaptopodin rearrangement and nephrin relocalization were evident. Knockdown gremlin1 or smad2/3 by siRNA, and inhibition of TGFβR (SB431542) attenuated podocyte injury. Inhibition of canonical TGF-β signal blocked the injury of gremlin on podocytes. In conclusion, gremlin was clearly elevated in high glucose cultured mouse podocytes, and likely employed endogenous canonical TGFβ1/Smad signaling to induce podocyte injury. Knockdown gremlin1 by siRNA may be clinically useful in the attenuation of podocyte injury.
Collapse
Affiliation(s)
- Guiying Li
- Department of Nephrology, Third Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Filippatos TD, Elisaf MS. Effects of glucagon-like peptide-1 receptor agonists on renal function. World J Diabetes 2013; 4:190-201. [PMID: 24147203 PMCID: PMC3797884 DOI: 10.4239/wjd.v4.i5.190] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/25/2013] [Accepted: 08/17/2013] [Indexed: 02/05/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists result in greater improvements in glycemic control than placebo and promote weight loss with minimal hypoglycemia in patients with type 2 diabetes mellitus. A number of case reports show an association of GLP-1 receptor agonists, mainly exenatide, with the development of acute kidney injury. The present review aims to present the available data regarding the effects of GLP-1 receptor agonists on renal function, their use in subjects with chronic renal failure and their possible association with acute kidney injury. Based on the current evidence, exenatide is eliminated by renal mechanisms and should not be given in patients with severe renal impairment or end stage renal disease. Liraglutide is not eliminated by renal or hepatic mechanisms, but it should be used with caution since there are only limited data in patients with renal or hepatic impairment. There is evidence from animal studies that GLP-1 receptor agonists exert protective role in diabetic nephropathy with mechanisms that seem to be independent of their glucose-lowering effect. Additionally, there is evidence that GLP-1 receptor agonists influence water and electrolyte balance. These effects may represent new ways to improve or even prevent diabetic nephropathy.
Collapse
|
47
|
Katagiri D, Hamasaki Y, Doi K, Okamoto K, Negishi K, Nangaku M, Noiri E. Protection of glucagon-like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection. J Am Soc Nephrol 2013; 24:2034-43. [PMID: 24092928 DOI: 10.1681/asn.2013020134] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Accumulating evidence of the beyond-glucose lowering effects of a gut-released hormone, glucagon-like peptide-1 (GLP-1), has been reported in the context of remote organ connections of the cardiovascular system. Specifically, GLP-1 appears to prevent apoptosis, and inhibition of dipeptidyl peptidase-4 (DPP-4), which cleaves GLP-1, is renoprotective in rodent ischemia-reperfusion injury models. Whether this renoprotection involves enhanced GLP-1 signaling is unclear, however, because DPP-4 cleaves other molecules as well. Thus, we investigated whether modulation of GLP-1 signaling attenuates cisplatin (CP)-induced AKI. Mice injected with 15 mg/kg CP had increased BUN and serum creatinine and CP caused remarkable pathologic renal injury, including tubular necrosis. Apoptosis was also detected in the tubular epithelial cells of CP-treated mice using immunoassays for single-stranded DNA and activated caspase-3. Treatment with a DPP-4 inhibitor, alogliptin (AG), significantly reduced CP-induced renal injury and reduced the renal mRNA expression ratios of Bax/Bcl-2 and Bim/Bcl-2. AG treatment increased the blood levels of GLP-1, but reversed the CP-induced increase in the levels of other DPP-4 substrates such as stromal cell-derived factor-1 and neuropeptide Y. Furthermore, the GLP-1 receptor agonist exendin-4 reduced CP-induced renal injury and apoptosis, and suppression of renal GLP-1 receptor expression in vivo by small interfering RNA reversed the renoprotective effects of AG. These data suggest that enhancing GLP-1 signaling ameliorates CP-induced AKI via antiapoptotic effects and that this gut-kidney axis could be a new therapeutic target in AKI.
Collapse
|
48
|
Russo E, Penno G, Prato SD. Managing diabetic patients with moderate or severe renal impairment using DPP-4 inhibitors: focus on vildagliptin. Diabetes Metab Syndr Obes 2013; 6:161-70. [PMID: 23650450 PMCID: PMC3639752 DOI: 10.2147/dmso.s28951] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) inhibitors are novel classified oral anti-diabetic drugs for the treatment of type 2 diabetes mellitus (T2DM) that provide important reduction in glycated hemoglobin, with a low risk for hypoglycemia and no weight gain. In T2DM patients with reduced renal function, adequate glycemic control is essential to delay the progress of kidney dysfunction, but they are at a greater risk of experiencing hypoglycemic events, especially with longer-acting sulfonylureas and meglitinides. OBJECTIVE To evaluate vildagliptin as an option to achieve glycemic control in T2DM patients with moderate or severe chronic kidney disease (CKD). METHODS A comprehensive search in the literature was performed using the term "vildagliptin." Original articles and reviews exploring our topic were carefully selected. RESULTS Vildagliptin provides effective glycemic control in patients with T2DM and CKD. Dose reductions are required for vildagliptin and other DPP-4 inhibitors, except linagliptin, in T2DM patients with moderate-to-severe CKD. Dose of vildagliptin had to be reduced by half (to 50 mg/day) both for moderate (estimated glomerular filtration rate [eGFR] ≥30 to ≤50 mL/min) and severe CKD (eGFR < 30 mL/min). Available results support a favorable efficacy, safety, and tolerability profile for vildagliptin in T2DM with moderate or severe renal failure. Preliminary data may suggest additional benefits beyond improvement of glycemic control. CONCLUSION Vildagliptin can be safely used in T2DM patients with varying degrees of renal impairment. Dose adjustments for renal impairment are required. Potential long-term renal benefit of vildagliptin needs to be further explored.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Clinical and Experimental Medicine, Section of Diabetes and
Metabolic Disease, Azienda Ospedaliero Universitaria di Pisa, and University of Pisa, Pisa,
Italy
| | - Giuseppe Penno
- Department of Clinical and Experimental Medicine, Section of Diabetes and
Metabolic Disease, Azienda Ospedaliero Universitaria di Pisa, and University of Pisa, Pisa,
Italy
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, Section of Diabetes and
Metabolic Disease, Azienda Ospedaliero Universitaria di Pisa, and University of Pisa, Pisa,
Italy
- Correspondence: Stefano Del Prato, Department of Clinical and
Experimental Medicine, Section of Diabetes and Metabolic Disease, University of Pisa, Via Paradisa
2, 56124 Pisa, Italy Tel +39 50 995103 Fax +39 50 541521 Email
| |
Collapse
|