1
|
Rodrigues GRD, Cyrillo JNSG, Mota LFM, Schmidt PI, Valente JPS, Oliveira ES, Albuquerque LG, Brito LF, Mercadante MEZ. Effect of genomic regions harboring putative lethal haplotypes on reproductive performance in closed experimental selection lines of Nellore cattle. Sci Rep 2025; 15:4113. [PMID: 39900660 PMCID: PMC11791054 DOI: 10.1038/s41598-025-88501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Lethal alleles are mutations in the genome that cause embryonic losses in affected homozygous embryos and, therefore, can negatively influence reproduction rates in commercial populations. Thus, this study aimed to identify genomic regions containing potential lethal haplotypes in Nellore breed; identify candidate genes located within these regions; and investigate the reproductive performance of heterozygous carriers of lethal haplotypes in Nellore cattle. Forty-five genomic regions harboring putative lethal haplotypes were identified, which overlap with 360 genes. Gene ontology analyses of these genes revealed biological processes associated with the development of sexual traits in males and females, key functions of the immune system, energy homeostasis, and embryonic development. The gene networks were involved in metabolic pathways including ovarian steroidogenesis, oocyte meiosis, and insulin secretion. Matings between carrier dam and carrier sire led to a reduction of up to -203.46% in pregnancy success probability, an increase of 275.15% in probability of pregnancy loss, 295.03% for stillbirth occurrence, and 301.40% for pre-weaning mortality when compared to non-carrier dam and sire matings. The results highlight the importance of identifying animals that are carriers of lethal haplotypes to avoid the propagation of these haplotypes in the population.
Collapse
Affiliation(s)
- Gustavo R D Rodrigues
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil.
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Joslaine N S G Cyrillo
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil
| | - Lúcio F M Mota
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
| | - Patrícia I Schmidt
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
| | - Júlia P S Valente
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil
| | - Eduarda S Oliveira
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
| | - Lúcia G Albuquerque
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
- National Council for Science and Technological Development, Brasilia, 71605-001, DF, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Maria E Z Mercadante
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil.
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil.
- National Council for Science and Technological Development, Brasilia, 71605-001, DF, Brazil.
| |
Collapse
|
2
|
Akhatova A, Jones C, Coward K, Yeste M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin Epigenetics 2025; 17:7. [PMID: 39819375 PMCID: PMC11740528 DOI: 10.1186/s13148-025-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm. Metabolic changes, such as high blood glucose levels and increased body weight, are commonly observed in the offspring of fathers subjected to chronic stress, in addition to an enhanced risk of depressive-like behaviour and increased sensitivity to stress in both the F0 and F1 generations. DNA methylation is correlated with alterations in sperm quality and the ability to fertilise oocytes, possibly via a differentially regulated MAKP81IP3 signalling pathway. Paternal exposure to toxic endocrine-disrupting chemicals (EDCs) is also linked to the transgenerational transmission of increased predisposition to disease, infertility, testicular disorders, obesity, and polycystic ovarian syndrome (PCOS) in females through epigenetic changes during gametogenesis. As the success of assisted reproductive technology (ART) is also affected by paternal diet, BMI, and alcohol consumption, its outcomes could be improved by modifying factors that are dependent on male lifestyle choices and environmental factors. This review discusses the importance of epigenetic signatures in sperm-including DNA methylation, histone retention, and sncRNA-for sperm functionality, early embryo development, and offspring health. We also discuss the mechanisms by which paternal lifestyle and environmental factors (obesity, smoking, EDCs, and stress) may impact the sperm epigenome.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- School of Medicine, Nazarbayev University, Zhanybek-Kerey Khan Street 5/1, 010000, Astana, Kazakhstan
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
3
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Krummeich J, Nardi L, Caliendo C, Aschauer D, Engelhardt V, Arlt A, Maier J, Bicker F, Kwiatkowski MD, Rolski K, Vincze K, Schneider R, Rumpel S, Gerber S, Schmeisser MJ, Schweiger S. Premature cognitive decline in a mouse model of tuberous sclerosis. Aging Cell 2024; 23:e14318. [PMID: 39192595 PMCID: PMC11634721 DOI: 10.1111/acel.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known about the influence of (impaired) neurodevelopment on cognitive aging. We here used a mouse model for tuberous sclerosis (TS) carrying a heterozygous deletion of the Tsc2 gene. Loss of Tsc2 function leads to mTOR hyperactivity in mice and patients. In a longitudinal behavioral analysis, we found premature decline of hippocampus-based cognitive functions together with a significant reduction of immediate early gene (IEG) expression. While we did not detect any morphological changes of hippocampal projections and synaptic contacts, molecular markers of neurodegeneration were increased and the mTOR signaling cascade was downregulated in hippocampal synaptosomes. Injection of IGF2, a molecule that induces mTOR signaling, could fully rescue cognitive impairment and IEG expression in aging Tsc2+/- animals. This data suggests that TS is an exhausting disease that causes erosion of the mTOR pathway over time and IGF2 is a promising avenue for treating age-related degeneration in mTORopathies.
Collapse
Affiliation(s)
- J. Krummeich
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Bioscientia Institut für Medizinische Diagnostik GmbH HumangenetikIngelheimGermany
| | - L. Nardi
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - C. Caliendo
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - D. Aschauer
- Institute of PhysiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - V. Engelhardt
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - A. Arlt
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Institute for Genomic Statistics and BioinformaticsUniversity of BonnBonnGermany
| | - J. Maier
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - F. Bicker
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | | | - K. Rolski
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - K. Vincze
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - R. Schneider
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - S. Rumpel
- Institute of PhysiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - S. Gerber
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - M. J. Schmeisser
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - S. Schweiger
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Leibniz Institute of Resilience ResearchMainzGermany
- Institute of Molecular BiologyMainzGermany
| |
Collapse
|
5
|
Sutter C, Haas C, Bode PK, Neubauer J, Dyrberg Andersen J. Exploratory DNA methylation analysis in post-mortem heart tissue of sudden unexplained death. Clin Epigenetics 2024; 16:167. [PMID: 39578896 PMCID: PMC11585171 DOI: 10.1186/s13148-024-01777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Sudden unexplained death (SUD) is a devastating event in the young. Despite efforts to identify causal genetic variants, many cases remain unexplained after genetic screening. This study aimed to investigate an alternative potential contributor to SUD by studying the human methylome using the MethylationEPIC v2.0 BeadChip kit in heart tissue from SUD cases. The genome-wide methylation results of the SUD cases were compared to the results of a control cohort. The SUD cases were divided into three main groups based on their autopsy reports, heart morphology and histopathology (primaryN: macroscopically and histologically normal heart; primaryCM: macroscopically or histologically abnormal heart, suspected cardiomyopathies; and secondary: myocardial damage due to other underlying conditions). The main focus of this study was to identify differentially methylated regions (DMRs) between the case groups and the control cohort. RESULTS We identified DMRs for both the primaryN and primaryCM groups, whereas the secondary group yielded no such results. In the primaryN cases, the corresponding genes for each DMR led to the identification of genes with common biological pathways. Some were associated with heart morphology (e.g. heart outflow tract morphogenesis or trabecular morphogenesis), but the majority belonged to more general cellular regulatory pathways (e.g. transcription coactivator activity, long non-coding RNAs, etc.). Although no common pathways were found for the primaryCM group, some common regulatory molecular functions were identified, such as p53 binding and transcription coactivator activity. CONCLUSIONS Our study is the first to investigate the whole human methylome in heart tissue of SUD cases. We propose that there are observable differences in the methylation patterns of the case groups that may have contributed to SUD. Still, further studies are required to improve our understanding of the impact of methylation levels on SUD risk and to pinpoint methylation-based screening opportunities for SUD relatives.
Collapse
Affiliation(s)
- Charlotte Sutter
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Peter K Bode
- Institute of Pathology, Cantonal Hospital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
7
|
Moreira JF, Solá S. Dynamics of Neurogenic Signals as Biological Switchers of Brain Plasticity. Stem Cell Rev Rep 2024; 20:2032-2044. [PMID: 39259446 PMCID: PMC11554707 DOI: 10.1007/s12015-024-10788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain's homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.
Collapse
Affiliation(s)
- João F Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
8
|
Gandhi G, Kodiappan R, Abdullah S, Teoh HK, Tai L, Cheong SK, Yeo WWY. Revealing the potential role of hsa-miR-663a in modulating the PI3K-Akt signaling pathway via miRNA microarray in spinal muscular atrophy patient fibroblast-derived iPSCs. J Neuropathol Exp Neurol 2024; 83:822-832. [PMID: 38894621 DOI: 10.1093/jnen/nlae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder due to deletion or mutation of survival motor neuron 1 (SMN1) gene. Although survival motor neuron 2 (SMN2) gene is still present in SMA patients, the production of full-length survival motor neuron (SMN) protein is insufficient owing to missing or mutated SMN1. No current disease-modifying therapies can cure SMA. The aim of this study was to explore microRNA (miRNA)-based therapies that may serve as a potential target for therapeutic intervention in delaying SMA progression or as treatment. The study screened for potentially dysregulated miRNAs in SMA fibroblast-derived iPSCs using miRNA microarray. Results from the miRNA microarray were validated using quantitative reverse transcription polymerase chain reaction. Bioinformatics analysis using various databases was performed to predict the potential putative gene targeted by hsa-miR-663a. The findings showed differential expression of hsa-miR-663a in SMA patients in relation to a healthy control. Bioinformatics analysis identified GNG7, IGF2, and TNN genes that were targeted by hsa-miR-663a to be involved in the PI3K-AKT pathway, which may be associated with disease progression in SMA. Thus, this study suggests the potential role of hsa-miR-663a as therapeutic target for the treatment of SMA patients in the near future.
Collapse
Affiliation(s)
- Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Radha Kodiappan
- Department of Research and Training, MAHSA Specialist Hospital, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Genetics & Regenerative Medicine Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Hoon Koon Teoh
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Lihui Tai
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- Cytopeutics Sdn. Bhd, Selangor, Malaysia
| | - Soon Keng Cheong
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Kuala Lumpur, Malaysia
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
Sandovici I, Fernandez-Twinn DS, Campbell N, Cooper WN, Sekita Y, Zvetkova I, Ferland-McCollough D, Prosser HM, Oyama LM, Pantaleão LC, Cimadomo D, Barbosa de Queiroz K, Cheuk CSK, Smith NM, Kay RG, Antrobus R, Hoelle K, Ma MKL, Smith NH, Geyer SH, Reissig LF, Weninger WJ, Siddle K, Willis AE, Lam BYH, Bushell M, Ozanne SE, Constância M. Overexpression of Igf2-derived Mir483 inhibits Igf1 expression and leads to developmental growth restriction and metabolic dysfunction in mice. Cell Rep 2024; 43:114750. [PMID: 39283743 PMCID: PMC7617298 DOI: 10.1016/j.celrep.2024.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo. We find that Mir483 expression is dependent on Igf2 transcription and the regulation of the Igf2/H19 imprinting control region. Transgenic Mir483 overexpression in utero causes fetal, but not placental, growth restriction through insulin-like growth factor 1 (IGF1) and IGF2 and also causes cardiovascular defects leading to fetal death. Overexpression of Mir483 post-natally results in growth stunting through IGF1 repression, increased hepatic lipid production, and excessive adiposity. IGF1 infusion rescues the post-natal growth restriction. Our findings provide insights into the function of Mir483 as a growth suppressor and metabolic regulator and suggest that it evolved within the INS-IGF2-H19 transcriptional region to limit excessive tissue growth through repression of IGF signaling.
Collapse
Affiliation(s)
- Ionel Sandovici
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Niamh Campbell
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Wendy N Cooper
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Yoichi Sekita
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ilona Zvetkova
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Lila M Oyama
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Departmento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Lucas C Pantaleão
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Danilo Cimadomo
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Karina Barbosa de Queiroz
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Cecilia S K Cheuk
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Nicola M Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella K L Ma
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Noel H Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stefan H Geyer
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Kenneth Siddle
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Susan E Ozanne
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Lee SM, Quek TPL, Seow CJ, Yeo PS. Non-Islet-Cell Tumor Hypoglycemia Secondary to Malignant Phyllodes Tumor of the Breast. AACE Clin Case Rep 2024; 10:193-197. [PMID: 39372821 PMCID: PMC11447540 DOI: 10.1016/j.aace.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 10/08/2024] Open
Abstract
Background/Objective Non-islet cell tumor hypoglycemia (NICTH) is an uncommon condition, of which only a few cases caused by malignant phyllodes tumor of the breast have been reported. We describe a case of NICTH secondary to malignant phyllodes tumor with good response to glucocorticoid therapy. Case Report A 62-year-old woman with a rapidly enlarging left breast mass presented with drowsiness and a capillary blood glucose level of 32.4 mg/dL. Her plasma glucose and insulin levels were 36.0 mg/dL (reference range, 72-144 mg/dL) and 0.6 mIU/L (reference range, 0.0-25.0 mIU/L), respectively. Her beta-hydroxybutyrate and c-peptide levels were undetectable. The insulin-like growth factor (IGF)-I and IGF-II levels were 37 μg/L (reference range, 43-220 μg/L) and 1062 ng/mL (reference range, 333-967 ng/mL), respectively, with an IGF-II:IGF-I molar ratio of 29.4. Prednisolone 30 mg per day was initiated with improvement in hypoglycemia. Outpatient flash glucose monitoring profile was stable with mild hypoglycemia (glucose level, 54-68.5 mg/dL) detected 5% of the time. The patient underwent left mastectomy with axillary clearance 4 weeks later. Histology was reported as malignant phyllodes tumor with extensive ductal carcinoma in situ. Prednisolone was stopped after surgery. The patient was treated with letrozole and adjuvant radiotherapy. There was no recurrence of hypoglycemia during the subsequent 24-month follow-up. Discussion The mainstay of treatment for NICTH is surgical resection of the culprit tumor. Although glucocorticoid treatment has also been widely used for NICTH, few reports have demonstrated efficacy for NICTH secondary to phyllodes tumor. Conclusion We report a rare case of malignant phyllodes tumor of the breast resulting in NICTH and demonstrated good response to glucocorticoids as a bridge to definitive surgery.
Collapse
Affiliation(s)
- Si Min Lee
- Endocrine Department, Changi General Hospital, Singapore
| | - Timothy Peng Lim Quek
- Endocrine Department, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Cherng Jye Seow
- Endocrine Department, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Pei Shan Yeo
- Endocrine Department, Tan Tock Seng Hospital, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
11
|
Rao SS, Kundapura SV, Dey D, Palaniappan C, Sekar K, Kulal A, Ramagopal UA. Cumulative phylogenetic, sequence and structural analysis of Insulin superfamily proteins provide unique structure-function insights. Mol Inform 2024; 43:e202300160. [PMID: 38973776 DOI: 10.1002/minf.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 07/09/2024]
Abstract
The insulin superfamily proteins (ISPs), in particular, insulin, IGFs and relaxin proteins are key modulators of animal physiology. They are known to have evolved from the same ancestral gene and have diverged into proteins with varied sequences and distinct functions, but maintain a similar structural architecture stabilized by highly conserved disulphide bridges. The recent surge of sequence data and the structures of these proteins prompted a need for a comprehensive analysis, which connects the evolution of these sequences (427 sequences) in the light of available functional and structural information including representative complex structures of ISPs with their cognate receptors. This study reveals (a) unusually high sequence conservation of IGFs (>90 % conservation in 184 sequences) and provides a possible structure-based rationale for such high sequence conservation; (b) provides an updated definition of the receptor-binding signature motif of the functionally diverse relaxin family members (c) provides a probable non-canonical C-peptide cleavage site in a few insulin sequences. The high conservation of IGFs appears to represent a classic case of resistance to sequence diversity exerted by physiologically important interactions with multiple partners. We also propose a probable mechanism for C-peptide cleavage in a few distinct insulin sequences and redefine the receptor-binding signature motif of the relaxin family. Lastly, we provide a basis for minimally modified insulin mutants with potential therapeutic application, inspired by concomitant changes observed in other insulin superfamily protein members supported by molecular dynamics simulation.
Collapse
Affiliation(s)
- Shrilakshmi Sheshagiri Rao
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shankar V Kundapura
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Debayan Dey
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Present address: Department of Biochemistry, Emory University School of Medicine, GA 30322, Atlanta, USA
| | - Chandrasekaran Palaniappan
- Department of Computational and Data Sciences, Indian Institute of Science, 560012, Bangalore, India
- Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, 560012, Bangalore, India
| | - Ananda Kulal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
| | - Udupi A Ramagopal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Department of Microbiology and FST, School of Science, GITAM University, 530045, Visakhapatnam, India
| |
Collapse
|
12
|
Xie Y, Xiao J, Ying Y, Liu J, Zhang L, Zeng X. Bioinformatic identification reveals a m6A-binding protein, IGF2BP2, as a novel tumor-promoting gene signature in thyroid carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5663-5676. [PMID: 38289368 DOI: 10.1007/s00210-024-02961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 08/18/2024]
Abstract
N6-methyladenosine (m6A) modification plays a crucial role in thyroid carcinoma (THCA). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) is a m6A-binding protein. We aimed to explore the effect of IGF2BP2 on the development of THCA. Differentially expressed genes (DEGs) were screened from GSE50901 and GSE60542 datasets. LinkedOmics, Genebank, and Sequence-based RNA Adenosine Methylation Site Predictor databases were employed to find potential m6A modification sites. Protein-protein interaction network and receiver-operating characteristic curves were applied to determine hub genes of THCA. ESTIMATE revealed the effect of IGF2BP2 on tumor immunity. The mRNA expression of IGF2BP2 was detected using real-time quantitative polymerase chain reaction. The viability, migration, and invasion were assessed by Cell Counting Kit-8, wound healing, and transwell assays. A total of 166 common DEGs were identified from GSE50901 and GSE60542 datasets. One m6A-related gene, IGF2BP2, was differentially expressed in THCA and selected as the research target. The hub genes (CD44, DCN, CXCL12, ICAM1, SDC4, KIT, CTGF, and FMOD) were identified with high prediction values for THCA. Subsequently, the target genes of IGF2BP2, SDC4, and ICAM1, which had potential m6A modification sites, were screened out based on the hub genes. IGF2BP2 was upregulated in THCA and IGF2BP2 expression was positively correlated with immune infiltration in THCA. Additionally, knockdown of IGF2BP2 inhibited the proliferation, invasion, and migration of THCA cells. IGF2BP2 has a contributory effect on the progression of THCA, which is a novel biomarker and a therapeutic target for THCA.
Collapse
Affiliation(s)
- Yang Xie
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Thyroid Tumor, Ganzhou, China
| | - Junqi Xiao
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yong Ying
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Jiafeng Liu
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Leiying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangtai Zeng
- Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China.
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, China.
- Ganzhou Key Laboratory of Thyroid Tumor, Ganzhou, China.
| |
Collapse
|
13
|
Yalçıntaş YM, Duman H, López JMM, Portocarrero ACM, Lombardo M, Khallouki F, Koch W, Bordiga M, El-Seedi H, Raposo A, Alves JLDB, Karav S. Revealing the Potency of Growth Factors in Bovine Colostrum. Nutrients 2024; 16:2359. [PMID: 39064802 PMCID: PMC11279796 DOI: 10.3390/nu16142359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Colostrum is a nutritious milk synthesized by mammals during the postpartum period, and its rich bioactive components has led to a global increase in the consumption of bovine colostrum as a supplement. Bovine colostrum contains key components such as immunoglobulins, oligosaccharides, lactoferrin and lysozyme. It is a special supplement source due to its natural, high bioavailability and high concentrations of growth factors. Growth factors are critical to many physiological functions, and considering its presence in the colostrum, further research must be conducted on its safe application in many bodily disorders. Growth factors contribute to wound healing, muscle and bone development, and supporting growth in children. Additionally, the molecular mechanisms have been explored, highlighting the growth factors roles in cell proliferation, tissue regeneration, and the regulation of immune responses. These findings are crucial for understanding the potential health effects of bovine colostrum, ensuring its safe use, and forming a basis for future clinical applications. This review article examines the growth factors concentration in bovine colostrum, their benefits, clinical studies, and molecular mechanisms.
Collapse
Affiliation(s)
- Yalçın Mert Yalçıntaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (Y.M.Y.); (H.D.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (Y.M.Y.); (H.D.)
| | - Jose M. Miranda López
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (J.M.M.L.); (A.C.M.P.)
| | - Alicia C. Mondragón Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (J.M.M.L.); (A.C.M.P.)
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy;
| | - Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Biology Department, Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, Errachidia 50050, Morocco;
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Faculty of Pharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland;
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy;
| | - Hesham El-Seedi
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Jose Luiz de Brito Alves
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (Y.M.Y.); (H.D.)
| |
Collapse
|
14
|
Yundung Y, Mohammed S, Paneni F, Reutersberg B, Rössler F, Zimmermann A, Pelisek J. Transcriptomics analysis of long non-coding RNAs in smooth muscle cells from patients with peripheral artery disease and diabetes mellitus. Sci Rep 2024; 14:8615. [PMID: 38616192 PMCID: PMC11016542 DOI: 10.1038/s41598-024-59164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for peripheral arterial disease (PAD), and PAD is an independent predictor of cardiovascular disorders (CVDs). Growing evidence suggests that long non-coding RNAs (lncRNAs) significantly contribute to disease development and underlying complications, particularly affecting smooth muscle cells (SMCs). So far, no study has focused on transcriptome analysis of lncRNAs in PAD patients with and without DM. Tissue samples were obtained from our Vascular Biobank. Due to the sample's heterogeneity, expression analysis of lncRNAs in whole tissue detected only ACTA2-AS1 with a 4.9-fold increase in PAD patients with DM. In contrast, transcriptomics of SMCs revealed 28 lncRNAs significantly differentially expressed between PAD with and without DM (FDR < 0.1). Sixteen lncRNAs were of unknown function, six were described in cancer, one connected with macrophages polarisation, and four were associated with CVDs, mainly with SMC function and phenotypic switch (NEAT1, MIR100HG, HIF1A-AS3, and MRI29B2CHG). The enrichment analysis detected additional lncRNAs H19, CARMN, FTX, and MEG3 linked with DM. Our study revealed several lncRNAs in diabetic PAD patients associated with the physiological function of SMCs. These lncRNAs might serve as potential therapeutic targets to improve the function of SMCs within the diseased tissue and, thus, the clinical outcome.
Collapse
Affiliation(s)
- Yankey Yundung
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Shafeeq Mohammed
- Department of Cardiology/Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Francesco Paneni
- Department of Cardiology/Center for Translational and Experimental Cardiology (CTEC), University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Benedikt Reutersberg
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Fabian Rössler
- Department of Surgery and Transplantation, University Hospital Zurich, Zürich, Switzerland
| | - Alexander Zimmermann
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland
| | - Jaroslav Pelisek
- Experimental Vascular Surgery/Department of Vascular Surgery, University Hospital Zurich/University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
15
|
Liu X, Teng Y, Li H, Luo D, Li H, Shen J, Du S, Zhang Y, Wang D, Jing J. Identification of IGF2 promotes skin wound healing by co-expression analysis. Int Wound J 2024; 21:e14862. [PMID: 38572823 PMCID: PMC10993366 DOI: 10.1111/iwj.14862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.
Collapse
Affiliation(s)
- Xingyan Liu
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ying Teng
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Huan Li
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
| | - Ding Luo
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
| | - Hongkun Li
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jinghan Shen
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Simin Du
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Yuyue Zhang
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Dali Wang
- Department of Burns and Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jie Jing
- School and Hospital of Stomatology, Zunyi Medical UniversityZunyiChina
| |
Collapse
|
16
|
Sato Y, Watanabe Y, Morisaki T, Hayashi S, Otsubo Y, Ochiai Y, Mizoguchi K, Takao Y, Yamada M, Mizuuchi Y, Nakamura M, Kubo M. Beckwith-Wiedemann syndrome with juvenile fibrous nodules and lobular breast tumors: a case report and review of the literature. Surg Case Rep 2024; 10:69. [PMID: 38514513 PMCID: PMC10957838 DOI: 10.1186/s40792-024-01865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) is a genomic imprinting disorder caused by diverse genetic and/or epigenetic disorders of chromosome 11p15.5. BWS presents with a variety of clinical features, including overgrowth and an increased risk of embryonal tumors. Notably however, reports of patients with BWS and breast tumors are rare, and the association between these conditions is still unclear. Insulin-like growth factor-2 (IGF2) expression is known to be associated with the development of various cancers, including breast cancer, and patients with BWS with specific subtypes of molecular defects are known to show characteristic clinical features and IGF2 overexpression. CASE PRESENTATION A 17-year-old girl who had been diagnosed with BWS based on an umbilical hernia, hyperinsulinemia, and left hemihypertrophy at birth, visited our department with a gradually swelling left breast. Her left breast was markedly larger than her right breast on visual examination. Imaging examinations showed two tumors measuring about 10 cm each in the left breast, and she was diagnosed with juvenile fibroadenoma following core needle biopsy. The two breast tumors were removed surgically and the patient remained alive with no recurrence. The final diagnosis was juvenile fibroadenoma without malignant findings. Immunohistochemical staining using IGF2 antibody revealed overexpression of IGF2 in the cytoplasm of ductal epithelial cells. Because of her clinical features and IGF2 overexpression, molecular defects of 11p15.5 including a possible genetic background of paternal uniparental disomy of chromosome 11 or hypermethylation of imprinting center 1 was suspected. CONCLUSIONS In this case, overexpression of IGF2 suggested a possible relationship between BWS and breast tumors. Moreover, the characteristic clinical features and IGF2 staining predicted the subtype of 11p15.5 molecular defects in this patient.
Collapse
Affiliation(s)
- Yo Sato
- Departments of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yusuke Watanabe
- Departments of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takafumi Morisaki
- Department of Breast Surgical Oncology, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Saori Hayashi
- Department of Breast Surgical Oncology, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshiki Otsubo
- Department of Breast Surgical Oncology, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yurina Ochiai
- Department of Breast Surgical Oncology, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kimihisa Mizoguchi
- Departments of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuka Takao
- Departments of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Mai Yamada
- Departments of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yusuke Mizuuchi
- Departments of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Masafumi Nakamura
- Departments of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Makoto Kubo
- Departments of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
- Department of Breast Surgical Oncology, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan.
| |
Collapse
|
17
|
Klimentova J, Rehulka P, Stulik J, Vozandychova V, Rehulkova H, Jurcova I, Lazarova M, Aiglova R, Dokoupil J, Hrecko J, Pudil R. Proteomic Profiling of Dilated Cardiomyopathy Plasma Samples ─ Searching for Biomarkers with Potential to Predict the Outcome of Therapy. J Proteome Res 2024; 23:971-984. [PMID: 38363107 PMCID: PMC10913098 DOI: 10.1021/acs.jproteome.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Determination of the prognosis and treatment outcomes of dilated cardiomyopathy is a serious problem due to the lack of valid specific protein markers. Using in-depth proteome discovery analysis, we compared 49 plasma samples from patients suffering from dilated cardiomyopathy with plasma samples from their healthy counterparts. In total, we identified 97 proteins exhibiting statistically significant dysregulation in diseased plasma samples. The functional enrichment analysis of differentially expressed proteins uncovered dysregulation in biological processes like inflammatory response, wound healing, complement cascade, blood coagulation, and lipid metabolism in dilated cardiomyopathy patients. The same proteome approach was employed in order to find protein markers whose expression differs between the patients well-responding to therapy and nonresponders. In this case, 45 plasma proteins revealed statistically significant different expression between these two groups. Of them, fructose-1,6-bisphosphate aldolase seems to be a promising biomarker candidate because it accumulates in plasma samples obtained from patients with insufficient treatment response and with worse or fatal outcome. Data are available via ProteomeXchange with the identifier PXD046288.
Collapse
Affiliation(s)
- Jana Klimentova
- Faculty
of Military Health Sciences, Department of Molecular Pathology and
Biology, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| | - Pavel Rehulka
- Faculty
of Military Health Sciences, Department of Molecular Pathology and
Biology, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
| | - Jiri Stulik
- Faculty
of Military Health Sciences, Department of Molecular Pathology and
Biology, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
- Charles
University, Faculty of Medicine in Hradec Kralove, Simkova 870, Hradec Kralove 50003, Czech Republic
| | - Vera Vozandychova
- Faculty
of Military Health Sciences, Department of Molecular Pathology and
Biology, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| | - Helena Rehulkova
- Faculty
of Military Health Sciences, Department of Molecular Pathology and
Biology, University of Defence, Trebesska 1575, Hradec Kralove 50001, Czech Republic
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| | - Ivana Jurcova
- Institute
for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, Prague 14021, Czech Republic
| | - Marie Lazarova
- Department
of Internal Medicine I − Cardiology, Faculty of Medicine and
Dentistry, Palacky University and University
Hospital Olomouc, Zdravotniku 248/7, Olomouc 77900, Czech Republic
| | - Renata Aiglova
- Department
of Internal Medicine I − Cardiology, Faculty of Medicine and
Dentistry, Palacky University and University
Hospital Olomouc, Zdravotniku 248/7, Olomouc 77900, Czech Republic
| | - Jiri Dokoupil
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| | - Juraj Hrecko
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| | - Radek Pudil
- The
first Department of Internal Medicine − Cardioangiology, Medical Faculty of Charles University in Hradec Kralove
and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 50005, Czech Republic
| |
Collapse
|
18
|
Szablewski L. Insulin Resistance: The Increased Risk of Cancers. Curr Oncol 2024; 31:998-1027. [PMID: 38392069 PMCID: PMC10888119 DOI: 10.3390/curroncol31020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Insulin resistance, also known as impaired insulin sensitivity, is the result of a decreased reaction of insulin signaling to blood glucose levels. This state is observed when muscle cells, adipose tissue, and liver cells, improperly respond to a particular concentration of insulin. Insulin resistance and related increased plasma insulin levels (hyperinsulinemia) may cause metabolic impairments, which are pathological states observed in obesity and type 2 diabetes mellitus. Observations of cancer patients confirm that hyperinsulinemia is a major factor influencing obesity, type 2 diabetes, and cancer. Obesity and diabetes have been reported as risks of the initiation, progression, and metastasis of several cancers. However, both of the aforementioned pathologies may independently and additionally increase the cancer risk. The state of metabolic disorders observed in cancer patients is associated with poor outcomes of cancer treatment. For example, patients suffering from metabolic disorders have higher cancer recurrence rates and their overall survival is reduced. In these associations between insulin resistance and cancer risk, an overview of the various pathogenic mechanisms that play a role in the development of cancer is discussed.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5 Str., 02-004 Warsaw, Poland
| |
Collapse
|
19
|
Sakarin S, Rungsipipat A, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S, Surachetpong SD. Proteomic analysis of pulmonary arteries and lung tissues from dogs affected with pulmonary hypertension secondary to degenerative mitral valve disease. PLoS One 2024; 19:e0296068. [PMID: 38181036 PMCID: PMC10769092 DOI: 10.1371/journal.pone.0296068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
In dogs with degenerative mitral valve disease (DMVD), pulmonary hypertension (PH) is a common complication characterized by abnormally elevated pulmonary arterial pressure (PAP). Pulmonary arterial remodeling is the histopathological changes of pulmonary artery that has been recognized in PH. The underlying mechanisms that cause this arterial remodeling are poorly understood. This study aimed to perform shotgun proteomics to investigate changes in protein expression in pulmonary arteries and lung tissues of DMVD dogs with PH compared to normal control dogs and DMVD dogs without PH. Tissue samples were collected from the carcasses of 22 small-sized breed dogs and divided into three groups: control (n = 7), DMVD (n = 7) and DMVD+PH groups (n = 8). Differentially expressed proteins were identified, and top three upregulated and downregulated proteins in the pulmonary arteries of DMVD dogs with PH including SIK family kinase 3 (SIK3), Collagen type I alpha 1 chain (COL1A1), Transforming growth factor alpha (TGF-α), Apoptosis associated tyrosine kinase (AATYK), Hepatocyte growth factor activator (HGFA) and Tyrosine-protein phosphatase non-receptor type 13 (PTPN13) were chosen. Results showed that some of the identified proteins may play a role in the pathogenesis of pulmonary arterial remodeling. This study concluded shotgun proteomics has potential as a tool for exploring candidate proteins associated with the pathogenesis of PH secondary to DMVD in dogs.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | |
Collapse
|
20
|
D’Occhio MJ, Campanile G, Baruselli PS, Porto Neto LR, Hayes BJ, Snr AC, Fortes MRS. Pleomorphic adenoma gene1 in reproduction and implication for embryonic survival in cattle: a review. J Anim Sci 2024; 102:skae103. [PMID: 38586898 PMCID: PMC11056886 DOI: 10.1093/jas/skae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/05/2024] [Indexed: 04/09/2024] Open
Abstract
The pleomorphic adenoma gene1 (PLAG1) encodes a DNA-binding, C2H2 zinc-finger protein which acts as a transcription factor that regulates the expression of diverse genes across different organs and tissues; hence, the name pleomorphic. Rearrangements of the PLAG1 gene, and/or overexpression, are associated with benign tumors and cancers in a variety of tissues. This is best described for pleomorphic adenoma of the salivary glands in humans. The most notable expression of PLAG1 occurs during embryonic and fetal development, with lesser expression after birth. Evidence has accumulated of a role for PLAG1 protein in normal early embryonic development and placentation in mammals. PLAG1 protein influences the expression of the ike growth factor 2 (IGF2) gene and production of IGF2 protein. IGF2 is an important mitogen in ovarian follicles/oocytes, embryos, and fetuses. The PLAG1-IGF2 axis, therefore, provides one pathway whereby PLAG1 protein can influence embryonic survival and pregnancy. PLAG1 also influences over 1,000 other genes in embryos including those associated with ribosomal assembly and proteins. Brahman (Bos indicus) heifers homozygous for the PLAG1 variant, rs109815800 (G > T), show greater fertility than contemporary heifers with either one, or no copy, of the variant. Greater fertility in heifers homozygous for rs109815800 could be the result of early puberty and/or greater embryonic survival. The present review first looks at the broader roles of the PLAG1 gene and PLAG1 protein and then focuses on the emerging role of PLAG1/PLAG1 in embryonic development and pregnancy. A deeper understanding of factors which influence embryonic development is required for the next transformational increase in embryonic survival and successful pregnancy for both in vivo and in vitro derived embryos in cattle.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Faculty of Veterinary Medicine and Animal Science, Department of Animal Reproduction, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Alf Collins Snr
- CBV Brahman, Marlborough, Central Queensland, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Pandey K, Bessières B, Sheng SL, Taranda J, Osten P, Sandovici I, Constancia M, Alberini CM. Neuronal activity drives IGF2 expression from pericytes to form long-term memory. Neuron 2023; 111:3819-3836.e8. [PMID: 37788670 PMCID: PMC10843759 DOI: 10.1016/j.neuron.2023.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Investigations of memory mechanisms have been, thus far, neuron centric, despite the brain comprising diverse cell types. Using rats and mice, we assessed the cell-type-specific contribution of hippocampal insulin-like growth factor 2 (IGF2), a polypeptide regulated by learning and required for long-term memory formation. The highest level of hippocampal IGF2 was detected in pericytes, the multi-functional mural cells of the microvessels that regulate blood flow, vessel formation, the blood-brain barrier, and immune cell entry into the central nervous system. Learning significantly increased pericytic Igf2 expression in the hippocampus, particularly in the highly vascularized stratum lacunosum moleculare and stratum moleculare layers of the dentate gyrus. Igf2 increases required neuronal activity. Regulated hippocampal Igf2 knockout in pericytes, but not in fibroblasts or neurons, impaired long-term memories and blunted the learning-dependent increase of neuronal immediate early genes (IEGs). Thus, neuronal activity-driven signaling from pericytes to neurons via IGF2 is essential for long-term memory.
Collapse
Affiliation(s)
- Kiran Pandey
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Susan L Sheng
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Julian Taranda
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constancia
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
22
|
Chen L, Zhong XL, Cao WY, Mao ML, Liu DD, Liu WJ, Zu XY, Liu JH. IGF2/IGF2R/Sting signaling as a therapeutic target in DSS-induced ulcerative colitis. Eur J Pharmacol 2023; 960:176122. [PMID: 37863414 DOI: 10.1016/j.ejphar.2023.176122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease with increasing prevalence and incidence. Current treatments for ulcerative colitis are not generally applicative and are often accompanied by side effects. IGF2 is an endogenous protein that plays roles in anti-inflammation and stemness maintenance, but little is known about its mechanism and function in the progression of ulcerative colitis. In this study, mouse recombinant IGF2 was used in a mouse model of ulcerative colitis established by DSS. IGF2 expression was reduced in colon tissues but not plasma of DSS-induced colitis mice. IGF2R expression was also decreased in colitis colons, which was then elevated by recombinant IGF2. Recombinant IGF2 alleviated colon injury in colitis, which was evaluated by colon shortening, body weight loss and DAI score. IGF2 treatment also relieved the inflammatory response in colitis, which was assessed by the spleen weight index, MPO activity and proinflammatory cytokine expression and was also detected in LPS-stimulated RAW264.7 cells in vitro. Moreover, IGF2R was predicted and further verified to interact with the Sting protein, and the cGAS-Sting pathway as a key pathway for stemness regulation, was upregulated in colonic colons, which was blocked by IGF2 treatment. Additionally, IGF2 treatment can maintain colonic stemness and further repair colonic tight junction function in DSS-induced colitis. In conclusion, IGF2/IGF2R downregulated the cGAS-Sting pathway to sustain colonic stemness and barrier integrity to protect against ulcerative colitis induced by DSS.
Collapse
Affiliation(s)
- Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiao-Lin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ming-Li Mao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan-Dan Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Jia Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xu-Yu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of Tumor Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
23
|
Vicha A, Jencova P, Novakova-Kodetova D, Stolova L, Voriskova D, Vyletalova K, Broz P, Drahokoupilova E, Guha A, Kopecká M, Krskova L. Changes on chromosome 11p15.5 as specific marker for embryonal rhabdomyosarcoma? Genes Chromosomes Cancer 2023; 62:732-739. [PMID: 37530573 DOI: 10.1002/gcc.23194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Rhabdomyosarcomas (RMS) constitute a heterogeneous spectrum of tumors with respect to clinical behavior and tumor morphology. The paternal uniparental disomy (pUPD) of 11p15.5 is a molecular change described mainly in embryonal RMS. In addition to LOH, UPD, the MLPA technique (ME030kit) also determines copy number variants and methylation of H19 and KCNQ1OT1 genes, which have not been systematically investigated in RMS. All 127 RMS tumors were divided by histology and PAX status into four groups, pleomorphic histology (n = 2); alveolar RMS PAX fusion-positive (PAX+; n = 39); embryonal RMS (n = 70) and fusion-negative RMS with alveolar pattern (PAX-RMS-AP; n = 16). The following changes were detected; negative (n = 21), pUPD (n = 75), gain of paternal allele (n = 9), loss of maternal allele (n = 9), hypermethylation of H19 (n = 6), hypomethylation of KCNQ1OT1 (n = 6), and deletion of CDKN1C (n = 1). We have shown no difference in the frequency of pUPD 11p15.5 in all groups. Thus, we have proven that changes in the 11p15.5 are not only specific to the embryonal RMS (ERMS), but are often also present in alveolar RMS (ARMS). We have found changes that have not yet been described in RMS. We also demonstrated new potential diagnostic markers for ERMS (paternal duplication and UPD of whole chromosome 11) and for ARMS PAX+ (hypomethylation KCNQ1OT1).
Collapse
Affiliation(s)
- Ales Vicha
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Pavla Jencova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Daniela Novakova-Kodetova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Lucie Stolova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Dagmar Voriskova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Kristyna Vyletalova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Petr Broz
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
- BIOXSYS, Ústí nad Labem, Czech Republic
| | - Eva Drahokoupilova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Anasuya Guha
- Department of Otorhinolaryngology, 3rd Faculty of Medicine, Charles University in Prague and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Marie Kopecká
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Lenka Krskova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
24
|
Haybar H, Sadati NS, Purrahman D, Mahmoudian-Sani MR, Saki N. lncRNA TUG1 as potential novel biomarker for prognosis of cardiovascular diseases. Epigenomics 2023; 15:1273-1290. [PMID: 38088089 DOI: 10.2217/epi-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are among the leading causes of death. In light of the high prevalence and mortality of CVDs, it is imperative to understand the molecules involved in CVD pathogenesis and the signaling pathways that they initiate. This may facilitate the development of more precise and expedient diagnostic techniques, the identification of more effective prognostic molecules and the identification of potential therapeutic targets. Numerous studies have examined the role of lncRNAs, such as TUG1, in CVD pathogenesis in recent years. According to this review article, TUG1 can be considered a biomarker for predicting the prognosis of CVD.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjes Sadat Sadati
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Zhou X, Tan B, Gui W, Zhou C, Zhao H, Lin X, Li H. IGF2 deficiency promotes liver aging through mitochondrial dysfunction and upregulated CEBPB signaling in D-galactose-induced aging mice. Mol Med 2023; 29:161. [PMID: 38017373 PMCID: PMC10685569 DOI: 10.1186/s10020-023-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Liver aging, marked by cellular senescence and low-grade inflammation, heightens susceptibility to chronic liver disease and worsens its prognosis. Insulin-like growth factor 2 (IGF2) has been implicated in numerous aging-related diseases. Nevertheless, its role and underlying molecular mechanisms in liver aging remain largely unexplored. METHODS The expression of IGF2 was examined in the liver of young (2-4 months), middle-aged (9-12 months), and old (24-26 months) C57BL/6 mice. In vivo, we used transgenic IGF2f/f; Alb-Cre mice and D-galactose-induced aging model to explore the role of IGF2 in liver aging. In vitro, we used specific short hairpin RNA against IGF2 to knock down IGF2 in AML12 cells. D-galactose and hydrogen peroxide treatment were used to induce AML12 cell senescence. RESULTS We observed a significant reduction of IGF2 levels in the livers of aged mice. Subsequently, we demonstrated that IGF2 deficiency promoted senescence phenotypes and senescence-associated secretory phenotypes (SASPs), both in vitro and in vivo aging models. Moreover, IGF2 deficiency impaired mitochondrial function, reducing mitochondrial respiratory capacity, mitochondrial membrane potential, and nicotinamide adenine dinucleotide (NAD)+/NADH ratio, increasing intracellular and mitochondrial reactive oxygen species levels, and disrupting mitochondrial membrane structure. Additionally, IGF2 deficiency markedly upregulated CCAAT/enhancer-binding protein beta (CEBPB). Notably, inhibiting CEBPB reversed the senescence phenotypes and reduced SASPs induced by IGF2 deficiency. CONCLUSIONS In summary, our findings strongly suggest that IGF2 deficiency promotes liver aging through mitochondrial dysfunction and upregulated CEBPB signaling. These results provide compelling evidence for considering IGF2 as a potential target for interventions aimed at slowing down the process of liver aging.
Collapse
Affiliation(s)
- Xiaohai Zhou
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bowen Tan
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Gui
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caiping Zhou
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanxin Zhao
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xihua Lin
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Li
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
27
|
Lin P, Xu M, Yang Q, Chen M, Guo S. Inoculation of Freund's adjuvant in European eel (Anguilla anguilla) revealed key KEGG pathways and DEGs of host anti-Edwardsiella anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108708. [PMID: 36997037 DOI: 10.1016/j.fsi.2023.108708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Freund's complete (FCA) and incomplete adjuvants (FIA), generally applied in subunit fishery vaccine, have not been explored on the molecular mechanism of the nonspecific immune enhancement. In this study, we examined the RNA-seq in the spleen of European eel (Anguilla anguilla) inoculated with FCA and FIA (FCIA group) to elucidate the key KEGG pathways and differential expressed genes (DEGs) in the process of Edwardsiella anguillarum infection and A. anguilla anti-E. anguillarum infection using genome-wide transcriptome. After eels were challenged by E. anguillarum at 28 d post the first inoculation (dpi), compared to the control uninfected eels (Con group), the control infected eels (Con_inf group) showed severe pathological changes in the liver, kidney and spleen, although infected eels post the inoculation of FCIA (FCIA_inf group) also formed slight bleeding. Compared to the FCIA_inf group, there was more than 10 times colony forming unit (cfu) in the Con_inf group per 100 μg spleen, kidney or blood, and the relative percent survival (RPS) of eels was 44.4% in FCIA_inf vs Con_inf. Compared to the Con group, the SOD activity in the FCIA group increased significantly in the liver and spleen. Using high-throughput transcriptomics, DEGs were identified and 29 genes were verified using fluorescence real-time polymerase chain reaction (qRT-PCR). The result of DEGs clustering showed 9 samples in 3 groups of Con, FCIA and FCIA_inf were similar, contrast to distinct differences of 3 samples in the Con_inf group. We found 3795 up and 3548 down regulated DEGs in the compare of FCIA_inf vs Con_inf, of which 5 enriched KEGG pathways of "Lysosome", "Autophagy", "Apoptosis", "C-type lectin receptor signaling" and "Insulin signaling" were ascertained, and 26 of 30 top GO terms in the compare were significantly enriched. Finally, protein-protein interactions between the DEGs of the 5 KEGG pathways and other DEGs were explored using Cytoscape 3.9.1. The compare of FCIA_inf vs Con_inf showed 110 DEGs from the 5 pathways and 718 DEGs from other pathways formed total of 9747° in a network, of which 9 hub DEGs play vital roles in anti-infection or apoptosis. Together, the interaction networks revealed that 9 DEGs involved in the 5 pathways underlies the key process of A. anguilla anti-E. anguillarum infection or host cell apoptosis.
Collapse
Affiliation(s)
- Peng Lin
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Ming Xu
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
| | - Qiuhua Yang
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Minxia Chen
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
| | - Songlin Guo
- Fisheries College, Jimei University /Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China.
| |
Collapse
|
28
|
Fernandes TFDC, Conde PDS, Brasil FDB, Oliveira MRD. Impact of Maternal Folic Acid Supplementation on Descendants' Kidney in Adulthood. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2023; 45:207-214. [PMID: 37224843 PMCID: PMC10208730 DOI: 10.1055/s-0043-1769001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Supplementation with folic acid (FA) during gestation has been recommended by medical society all over the world, but some studies have shown that intake of high folic acid diet may unleash damages to the descendants. OBJECTIVES Describing the effects of maternal supplementation with FA during gestation on offspring's kidney at late life stages. DATA SOURCE It is a systematic review by which were consulted the following databases: Medline, through Pubmed, Lilacs, and SciELO. The research was performed using the keywords "Folic acid", "Gestation" and "Kidney". STUDY SELECTION Eight studies were regarded for this systematic review. DATA COLLECTION Only studies that evaluated folic acid consumption during gestation and its effects exclusively on descendants' kidney at several phases of life were regarded. RESULTS Gestational FA intake did not change the renal volume, glomerular filtration rate and the expression of some essential genes in the kidney of puppies whose dams were supplemented with FA. Maternal consumption of double FA plus selenium diet was effective in preserving antioxidant enzymes activity in the kidney of descendants from mothers exposed to alcohol. FA supplementation decreased some gross anomalies in the puppies caused by teratogenic drug despite of had not been effective in preventing some renal architectural damages. CONCLUSION FA supplementation did not cause renal toxicity; it exerted an antioxidant protective effect and mitigated some renal disorders caused by severe aggressions.
Collapse
|
29
|
Kaneko N, Ishikawa T, Nomura K. Effects of the short-term fasting and refeeding on growth-related genes in Japanese eel (Anguilla japonica) larvae. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110826. [PMID: 36608929 DOI: 10.1016/j.cbpb.2023.110826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
The Japanese eel (Anguilla japonica) spends a long period as the leptocephalus larval form under current rearing conditions. The duration of the larval stage until metamorphosis is influenced by body size and growth; however, little knowledge exists of the regulatory mechanism of growth in eel larvae. The present study focused on growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding protein (IGFBP) as the central regulators of growth in teleost fishes and transforming growth factor-beta 3 (TGF-β3) as a possible key modulator of muscle growth and body component synthesis. Japanese eel IGFBP-1a and TGF-β3, comprising 264 and 411 amino acids, respectively, were cloned. Short-term (5-day) fasting and refeeding experiments were performed to understand changes in growth-related genes affected by nutritional status. The relative expression of gh increased with fasting and subsequently decreased with refeeding to the basal levels of the fed control. Relative igf-1 and igf-2 expression levels were high in the fasted group. Relative igf-1 was reduced after 2-day refeeding, whereas igf-2 decreased to the basal level after 1-day refeeding, suggesting that IGF-1 and IGF-2 might be regulated independently and contribute to postnatal growth in eel larvae. Relative igfbp-1a expression was sharply increased by fasting, whereas tgf-β3 showed high and low values in the fed and fasted groups, respectively. Relative igfbp-1a and tgf-β3 levels were negatively and positively correlated with body size, respectively. These results suggest that igfbp-1a and tgf-β3 are potential indices of growth for exploring optimal rearing conditions to shorten the larval stage in Japanese eels.
Collapse
Affiliation(s)
- Nobuto Kaneko
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie 516-0193, Japan.
| | - Takashi Ishikawa
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie 516-0193, Japan
| | - Kazuharu Nomura
- Fisheries Technology Institute, Nansei Field Station, Japan Fisheries Research and Education Agency, Minamiise, Mie 516-0193, Japan
| |
Collapse
|
30
|
Maxia C, Isola M, Grecu E, Cuccu A, Scano A, Orrù G, Di Girolamo N, Diana A, Murtas D. Synergic Action of Insulin-like Growth Factor-2 and miRNA-483 in Pterygium Pathogenesis. Int J Mol Sci 2023; 24:ijms24054329. [PMID: 36901760 PMCID: PMC10002351 DOI: 10.3390/ijms24054329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Pterygium is a multifactorial disease in which UV-B is speculated to play a key role by inducing oxidative stress and phototoxic DNA damage. In search for candidate molecules that are useful for justifying the intense epithelial proliferation observed in pterygium, our attention has been focused on Insulin-like Growth Factor 2 (IGF-2), mainly detected in embryonic and fetal somatic tissues, which regulate metabolic and mitogenic functions. The binding between IGF-2 and its receptor Insulin-like Growth Factor 1 Receptor (IGF-1R) activates the PI3K-AKT pathway, which leads to the regulation of cell growth, differentiation, and the expression of specific genes. Since IGF2 is regulated by parental imprinting, in different human tumors, the IGF2 Loss of Imprinting (LOI) results in IGF-2- and IGF2-derived intronic miR-483 overexpression. Based on these activities, the purpose of this study was to investigate the overexpression of IGF-2, IGF-1R, and miR-483. Using an immunohistochemical approach, we demonstrated an intense colocalized epithelial overexpression of IGF-2 and IGF-1R in most pterygium samples (Fisher's exact test, p = 0.021). RT-qPCR gene expression analysis confirmed IGF2 upregulation and demonstrated miR-483 expression in pterygium compared to normal conjunctiva (253.2-fold and 12.47-fold, respectively). Therefore, IGF-2/IGF-1R co-expression could suggest their interplay through the two different paracrine/autocrine IGF-2 routes for signaling transfer, which would activate the PI3K/AKT signaling pathway. In this scenario, miR-483 gene family transcription might synergically reinforce IGF-2 oncogenic function through its boosting pro-proliferative and antiapoptotic activity.
Collapse
Affiliation(s)
- Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence:
| | - Michela Isola
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Eleonora Grecu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Alberto Cuccu
- Department of Surgical Science, Eye Clinic, Azienda Ospedaliero-Universitaria (AOU), 09123 Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Sciences, Molecular Biology Service Laboratory, University of Cagliari, 09123 Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Sciences, Molecular Biology Service Laboratory, University of Cagliari, 09123 Cagliari, Italy
| | - Nick Di Girolamo
- Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 4385, Australia
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
31
|
Somatic, Genetic and Epigenetic Changes in Nephrogenic Rests and Their Role in the Transformation to Wilms Tumors, a Systematic Review. Cancers (Basel) 2023; 15:cancers15051363. [PMID: 36900155 PMCID: PMC10000075 DOI: 10.3390/cancers15051363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE To review somatic genetic changes in nephrogenic rests (NR), which are considered to be precursor lesions of Wilms tumors (WT). METHODS This systematic review is written according to the PRISMA statement. PubMed and EMBASE were systematically searched for articles in the English language studying somatic genetic changes in NR between 1990 and 2022. RESULTS Twenty-three studies were included in this review, describing 221 NR of which 119 were pairs of NR and WT. Single gene studies showed mutations in WT1 and WTX, but not CTNNB1 to occur in both NR and WT. Studies investigating chromosomal changes showed loss of heterozygosity of 11p13 and 11p15 to occur in both NR and WT, but loss of 7p and 16q occurred in WT only. Methylome-based studies found differential methylation patterns between NR, WT, and normal kidney (NK). CONCLUSIONS Over a 30-year time frame, few studies have addressed genetic changes in NR, likely hampered by technical and practical limitations. A limited number of genes and chromosomal regions have been implicated in the early pathogenesis of WT, exemplified by their occurrence in NR, including WT1, WTX, and genes located at 11p15. Further studies of NR and corresponding WT are urgently needed.
Collapse
|
32
|
Sun H, Liu Y, Zhang Y, Wang Y, Zhao Y, Liu Y. Insulin-like growth factor 2 hypermethylation in peripheral blood leukocytes and colorectal cancer risk and prognosis: a propensity score analysis. Front Oncol 2023; 13:971435. [PMID: 37213278 PMCID: PMC10198613 DOI: 10.3389/fonc.2023.971435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Background To comprehensively assess and validate the associations between insulin-like growth factor 2 (IGF2) gene methylation in peripheral blood leukocytes (PBLs) and colorectal cancer (CRC) risk and prognosis. Methods The association between IGF2 methylation in PBLs and CRC risk was initially evaluated in a case-control study and then validated in a nested case-control study and a twins' case-control study, respectively. Meanwhile, an initial CRC patient cohort was used to assess the effect of IGF2 methylation on CRC prognosis and then the finding was validated in the EPIC-Italy CRC cohort and TCGA datasets. A propensity score (PS) analysis was performed to control for confounders, and extensive sensitivity analyses were performed to assess the robustness of our findings. Results PBL IGF2 hypermethylation was associated with an increased risk of CRC in the initial study (ORPS-adjusted, 2.57, 95% CI: 1.65 to 4.03, P<0.0001), and this association was validated using two independent external datasets (ORPS-adjusted, 2.21, 95% CI: 1.28 to 3.81, P=0.0042 and ORPS-adjusted, 10.65, 95% CI: 1.26 to 89.71, P=0.0295, respectively). CRC patients with IGF2 hypermethylation in PBLs had significantly improved overall survival compared to those patients with IGF2 hypomethylation (HRPS-adjusted, 0.47, 95% CI: 0.29 to 0.76, P=0.0019). The prognostic signature was also observed in the EPIC-Italy CRC cohort, although the HR did not reach statistical significance (HRPS-adjusted, 0.69, 95% CI: 0.37 to 1.27, P=0.2359). Conclusions IGF2 hypermethylation may serve as a potential blood-based predictive biomarker for the identification of individuals at high risk of developing CRC and for CRC prognosis.
Collapse
Affiliation(s)
- HongRu Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - YanLong Liu
- Department of Colorectal Surgery, The Third Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - YuXue Zhang
- Department of Hygiene Microbiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yibaina Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - YaShuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - YuPeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: YuPeng Liu,
| |
Collapse
|
33
|
Abruzzese GA, Arbocco FCV, Ferrer MJ, Silva AF, Motta AB. Role of Hormones During Gestation and Early Development: Pathways Involved in Developmental Programming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:31-70. [PMID: 37466768 DOI: 10.1007/978-3-031-32554-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Accumulating evidence suggests that an altered maternal milieu and environmental insults during the intrauterine and perinatal periods of life affect the developing organism, leading to detrimental long-term outcomes and often to adult pathologies through programming effects. Hormones, together with growth factors, play critical roles in the regulation of maternal-fetal and maternal-neonate interfaces, and alterations in any of them may lead to programming effects on the developing organism. In this chapter, we will review the role of sex steroids, thyroid hormones, and insulin-like growth factors, as crucial factors involved in physiological processes during pregnancy and lactation, and their role in developmental programming effects during fetal and early neonatal life. Also, we will consider epidemiological evidence and data from animal models of altered maternal hormonal environments and focus on the role of different tissues in the establishment of maternal and fetus/infant interaction. Finally, we will identify unresolved questions and discuss potential future research directions.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fiorella Campo Verde Arbocco
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, Mendoza, Argentina
- Laboratorio de Reproducción y Lactancia, IMBECU, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - María José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
34
|
Wang C, Yang Y, Liu Y, Zhang Y, Song J, Wang H, Li G, Wang X, Gong S, Chen S, He D. Molecular characterization, expression pattern and genetic variant of insulin-like growth factor 2 mRNA-binding protein 3 gene in goose ( Anser cygnoides). JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Cui Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Yunzhou Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Yi Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Yuting Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, People’s Republic of China
| | - Jiawei Song
- Xiangshan Animal Husbandry and Veterinary General Station, Ningbo, People’s Republic of China
| | - Huiying Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Guangquan Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Xianze Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Shaoming Gong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Shufang Chen
- NingBo Academy of Agricultural Sciences, Ningbo, People’s Republic of China
| | - Daqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
35
|
Li J, Jiang XJ, Wang QH, Wu XL, Qu Z, Song T, Wan WG, Zheng XX, Yi X. Data-independent acquisition proteomics reveals circulating biomarkers of coronary chronic total occlusion in humans. Front Cardiovasc Med 2022; 9:960105. [PMID: 36561774 PMCID: PMC9764215 DOI: 10.3389/fcvm.2022.960105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction The pathophysiology of coronary chronic total occlusion (CTO) has not been fully elucidated. Methods In the present study, we aimed to investigate the potential plasma biomarkers associated with the pathophysiologic progression of CTO and identify protein dynamics in the plasma of CTO vessels immediately after successful revascularization. We quantitatively analyzed the plasma proteome profiles of controls (CON, n = 10) and patients with CTO pre- and post- percutaneous coronary intervention (PCI) (CTO, n = 10) by data-independent acquisition proteomics. We performed enzyme-linked immunosorbent assay (ELISA) to further confirm the common DEPs in the two-group comparisons (CON vs. CTO and CTO vs. CTO-PCI). Results A total of 1936 proteins with 69 differentially expressed proteins (DEPs) were detected in the plasma of patients with CTO through quantitative proteomics analysis. For all these DEPs, gene ontology (GO) analysis and protein-protein interaction (PPI) analysis were performed. The results showed that most of the proteins were related to the negative regulation of proteolysis, regulation of peptidase activity, negative regulation of hydrolase activity, humoral immune response, and lipid location. Furthermore, we identified 1927 proteins with 43 DEPs in the plasma of patients with CTO vessels after immediately successful revascularization compared to pre-PCI. GO analysis revealed that the above DEPs were enriched in the biological processes of extracellular structure organization, protein activation cascade, negative regulation of response to external stimulus, plasminogen activation, and fibrinolysis. More importantly, we generated a Venn diagram to identify the common DEPs in the two-group comparisons. Seven proteins, ADH4, CSF1, galectin, LPL, IGF2, IgH, and LGALS1, were found to be dynamically altered in plasma during the pathophysiological progression of CTO vessels and following successful revascularization, moreover, CSF1 and LGALS1 were validated via ELISA. Conclusions The results of this study reveal a dynamic pattern of the molecular response after CTO vessel immediate reperfusion, and identified seven proteins which would be the potential targets for novel therapeutic strategies to prevent coronary CTO.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xue-Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qun-Hui Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Medical College, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xing-Liang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhe Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tao Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei-Guo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiao-Xin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Cardiovascular Research Institute, Wuhan University, Wuhan, China,Hubei Key Laboratory of Cardiology, Wuhan, China,*Correspondence: Xin Yi
| |
Collapse
|
36
|
Buckels EJ, Hsu HL, Buchanan CM, Matthews BG, Lee KL. Genetic ablation of the preptin-coding portion of Igf2 impairs pancreatic function in female mice. Am J Physiol Endocrinol Metab 2022; 323:E467-E479. [PMID: 36459047 DOI: 10.1152/ajpendo.00401.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preptin is a 34-amino acid peptide derived from the E-peptide of pro-insulin-like growth factor 2 and is co-secreted with insulin from β-cells. Little is understood about the effects of endogenous preptin on whole body glucose metabolism. We developed a novel mouse model in which the preptin portion of Igf2 was genetically ablated in all tissues, hereafter referred to as preptin knockout (KO), and tested the hypothesis that the removal of preptin will lead to a decreased insulin response to a metabolic challenge. Preptin KO and wild-type (WT) mice underwent weekly fasting blood glucose measurements, intraperitoneal insulin tolerance tests (ITT) at 9, 29, and 44 wk of age, and an oral glucose tolerance test (GTT) at 45 wk of age. Preptin KO mice of both sexes had similar Igf2 exon 2-3 mRNA expression in the liver and kidney compared with WT mice, but Igf2 exon 3-4 (preptin) expression was not detectable. Western blot analysis of neonatal serum indicated that processing of pro-IGF2 translated from the KO allele may be altered. Preptin KO mice had similar body weight, body composition, β-cell area, and fasted glucose concentrations compared with WT mice in both sexes up to 47 wk of age. Female KO mice had a diminished ability to mount an insulin response following glucose stimulation in vivo. This effect was absent in male KO mice. Although preptin is not essential for glucose homeostasis, when combined with previous in vitro and ex vivo findings, these data show that preptin positively impacts β-cell function.NEW & NOTEWORTHY This is the first study to describe a model in which the preptin-coding portion of the Igf2 gene has been genetically ablated in mice. The mice do not show reduced size at birth associated with Igf2 knockout suggesting that IGF2 functionality is maintained, yet we demonstrate a change in the processing of mature Igf2. Female knockout mice have diminished glucose-stimulated insulin secretion, whereas the insulin response in males is not different to wild type.
Collapse
Affiliation(s)
- E J Buckels
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - H-L Hsu
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
| | - C M Buchanan
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - B G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - K L Lee
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| |
Collapse
|
37
|
Mohammed NI, Alzubaidi ZF, Khudhair M. THE RELEVANCE OF RS6777038 AND RS6444082 OF IGF2BP2 GENE POLYMORPHISM AND TYPE 2 DIABETES MELLITUS: A CASE CONTROL STUDY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2811-2816. [PMID: 36591772 DOI: 10.36740/wlek202211215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim: We investigate IGF2BP2 gene polymorphisms (rs6777038 and rs6444082) association with T2DM of Iraqi sample. PATIENTS AND METHODS Materials and methods: The study involves 800 participants that divided to a healthy control group (400) and T2DM patients (400). Fasting blood sugar (FBS), triglycerides (Tgs), high-density lipoprotein cholesterol (HDL-Ch), total cholesterol (T-Ch), low-density lipoprotein cholesterol (LDL-Ch), and fasting insulin measured for both participant groups. IGF2BP2 gene has been genotyped for polymorphisms, rs6777038 and rs6444082 using the PCR-RFLP technique. RESULTS Results: Logistic regression analysis testing for rs6777038 revealed that the genotype and allele frequency differ significantly (p=0.009) between T2DM and control group. In codominant model, TT genotype carriers had higher risks for diabetes than control also in the recessive model TT genotype significantly had higher risk for diabetes than control group. The other models of rs6777038 failed to reveal significant differences. The rs6777038 genotypes as codominant model showed significant differences with phenotypic characters of BMI, insulin and HOMA-IR. As well as, this SNP as dominant model showed significant differences with fasting insulin and HOMA-IR. However, rs6444082 genotypes only as dominant model reveal significant variation with HOMA-IR. CONCLUSION Conclusions: This study confirmed the variant rs6777038 of IGF2BP2 possibly associated with T2DM risks and some anthropometric parameters such as lower fasting insulin, HOMA-IR and BMI in Iraqi T2DM participants.
Collapse
Affiliation(s)
- Noaman Ibadi Mohammed
- DEPARTMENT OF PHYSIOLOGY, BIOCHEMISTRY AND PHARMACOLOGY, FACULTY OF VETERINARY MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Zubaida Falih Alzubaidi
- DEPARTMENT OF CLINICAL AND LABORATORY SCIENCES, FACULTY OF PHARMACY, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Muneer Khudhair
- DEPARTMENT OF LAB INVESTIGATIONS, FACULTY OF SCIENCES, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
38
|
Jacob Y, Anderton RS, Cochrane Wilkie JL, Rogalski B, Laws SM, Jones A, Spiteri T, Hince D, Hart NH. Genetic Variants within NOGGIN, COL1A1, COL5A1, and IGF2 are Associated with Musculoskeletal Injuries in Elite Male Australian Football League Players: A Preliminary Study. SPORTS MEDICINE - OPEN 2022; 8:126. [PMID: 36219268 PMCID: PMC9554075 DOI: 10.1186/s40798-022-00522-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Australian Football is a dynamic team sport that requires many athletic traits to succeed. Due to this combination of traits, as well as technical skill and physicality, there are many types of injuries that could occur. Injuries are not only a hindrance to the individual player, but to the team as a whole. Many strength and conditioning personnel strive to minimise injuries to players to accomplish team success. PURPOSE To investigate whether selected polymorphisms have an association with injury occurrence in elite male Australian Football players. METHODS Using DNA obtained from 46 elite male players, we investigated the associations of injury-related polymorphisms across multiple genes (ACTN3, CCL2, COL1A1, COL5A1, COL12A1, EMILIN1, IGF2, NOGGIN, SMAD6) with injury incidence, severity, type (contact and non-contact), and tissue (muscle, bone, tendon, ligament) over 7 years in one Australian Football League team. RESULTS A significant association was observed between the rs1372857 variant in NOGGIN (p = 0.023) and the number of total muscle injuries, with carriers of the GG genotype having a higher estimated number of injuries, and moderate, or combined moderate and high severity rated total muscle injuries. The COL5A1 rs12722TT genotype also had a significant association (p = 0.028) with the number of total muscle injuries. The COL5A1 variant also had a significant association with contact bone injuries (p = 0.030), with a significant association being found with moderate rated injuries. The IGF2 rs3213221-CC variant was significantly associated with a higher estimated number of contact tendon injuries per game (p = 0.028), while a higher estimated number of total ligament (p = 0.019) and non-contact ligament (p = 0.002) injuries per game were significantly associated with carriage of the COL1A1 rs1800012-TT genotype. CONCLUSIONS Our preliminary study is the first to examine associations between genetic variants and injury in Australian Football. NOGGIN rs1372857-GG, COL5A1 rs12722-TT, IGF2 rs3213221-CC, and COL1A1 rs1800012-TT genotypes held various associations with muscle-, bone-, tendon- and ligament-related injuries of differing severities. To further increase our understanding of these, and other, genetic variant associations with injury, competition-wide AFL studies that use more players and a larger array of gene candidates is essential.
Collapse
Affiliation(s)
- Ysabel Jacob
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Ryan S. Anderton
- grid.266886.40000 0004 0402 6494Institute for Health Research, University of Notre Dame Australia, Perth, WA Australia ,grid.266886.40000 0004 0402 6494School of Health Science, University of Notre Dame Australia, Perth, WA Australia
| | - Jodie L. Cochrane Wilkie
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia ,grid.1038.a0000 0004 0389 4302Exercise Medicine Research Institute, Edith Cowan University, WA Perth, Australia
| | | | - Simon M. Laws
- grid.1038.a0000 0004 0389 4302Centre for Precision Health, Edith Cowan University, Perth, WA Australia ,grid.1038.a0000 0004 0389 4302Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia ,grid.1032.00000 0004 0375 4078School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA Australia
| | - Anthony Jones
- West Coast Eagles Football Club, Perth, WA Australia
| | - Tania Spiteri
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia
| | - Dana Hince
- grid.266886.40000 0004 0402 6494Institute for Health Research, University of Notre Dame Australia, Perth, WA Australia
| | - Nicolas H. Hart
- grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Perth, WA Australia ,grid.266886.40000 0004 0402 6494Institute for Health Research, University of Notre Dame Australia, Perth, WA Australia ,grid.1038.a0000 0004 0389 4302Exercise Medicine Research Institute, Edith Cowan University, WA Perth, Australia ,grid.1014.40000 0004 0367 2697Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, SA Australia ,grid.1024.70000000089150953Faculty of Health, School of Nursing, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
39
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
40
|
Lloyd DT, Skinner HG, Maguire R, Murphy SK, Motsinger-Reif AA, Hoyo C, House JS. Clomifene and Assisted Reproductive Technology in Humans Are Associated with Sex-Specific Offspring Epigenetic Alterations in Imprinted Control Regions. Int J Mol Sci 2022; 23:10450. [PMID: 36142363 PMCID: PMC9499479 DOI: 10.3390/ijms231810450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Children conceived with assisted reproductive technology (ART) have an increased risk of adverse outcomes, including congenital malformations and imprinted gene disorders. In a retrospective North Carolina-based-birth-cohort, we examined the effect of ovulation drugs and ART on CpG methylation in differentially methylated CpGs in known imprint control regions (ICRs). Nine ICRs containing 48 CpGs were assessed for methylation status by pyrosequencing in mixed leukocytes from cord blood. After restricting to non-smoking, college-educated participants who agreed to follow-up, ART-exposed (n = 27), clomifene-only-exposed (n = 22), and non-exposed (n = 516) groups were defined. Associations of clomifene and ART with ICR CpG methylation were assessed with linear regression and stratifying by offspring sex. In males, ART was associated with hypomethylation of the PEG3 ICR [β(95% CI) = -1.46 (-2.81, -0.12)] and hypermethylation of the MEG3 ICR [3.71 (0.01, 7.40)]; clomifene-only was associated with hypomethylation of the NNAT ICR [-5.25 (-10.12, -0.38)]. In female offspring, ART was associated with hypomethylation of the IGF2 ICR [-3.67 (-6.79, -0.55)]. Aberrant methylation of these ICRs has been associated with cardiovascular disease and metabolic and behavioral outcomes in children. The results suggest that the increased risk of adverse outcomes in offspring conceived through ART may be due in part to altered methylation of ICRs. Larger studies utilizing epigenome-wide interrogation are warranted.
Collapse
Affiliation(s)
- Dillon T. Lloyd
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Harlyn G. Skinner
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Rachel Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Duke University, Durham, NC 27701, USA
| | - Alison A. Motsinger-Reif
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - John S. House
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
41
|
Fowler EW, van Venrooy EJ, Witt RL, Jia X. A TGFβR inhibitor represses keratin-7 expression in 3D cultures of human salivary gland progenitor cells. Sci Rep 2022; 12:15008. [PMID: 36056161 PMCID: PMC9440137 DOI: 10.1038/s41598-022-19253-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Salivary gland tissue engineering offers an attractive alternative for the treatment of radiation-induced xerostomia. Key to the success of this approach is the maintenance and expansion of secretory acinar cells in vitro. However, recent studies revealed that in vitro culture of primary salivary gland epithelial cells led to undesirable upregulation of the expression of keratin-7 (K7), a marker of ductal phenotype and frequently associated with cellular stress. We have previously shown that hyaluronic acid (HA)-based, RGDSP-decorated hydrogels support the 3D growth and assembly of primary human salivary gland stem/progenitor cells (hS/PCs). Here, we investigate whether the RGDSP culture also promotes K7 expression, and if so, what factors govern the K7 expression. Compared to hS/PCs maintained in blank HA gels, those grown in RGDSP cultures expressed a significantly higher level of K7. In other tissues, various transforming growth factor-β (TGF-β) superfamily members are reported to regulate K7 expression. Similarly, our immunoblot array and ELISA experiments confirmed the increased expression of TGF-β1 and growth/differentiation factor-15 (GDF-15) in RGDSP cultures. However, 2D model studies show that only TGF-β1 is required to induce K7 expression in hS/PCs. Immunocytochemical analysis of the intracellular effectors of TGF-β signaling, SMAD 2/3, further confirmed the elevated TGF-β signaling in RGDSP cultures. To maximize the regenerative potential of h/SPCs, cultures were treated with a pharmacological inhibitor of TGF-β receptor, A83-01. Our results show that A83-01 treatment can repress K7 expression not only in 3D RGDSP cultures but also under 2D conditions with exogenous TGF-β1. Collectively, we provide a link between TGF-β signaling and K7 expression in hS/PC cultures and demonstrate the effectiveness of TGF-β inhibition to repress K7 expression while maintaining the ability of RGDSP-conjugated HA gels to facilitate the rapid development of amylase expressing spheroids. These findings represent an important step towards regenerating salivary function with a tissue-engineered salivary gland.
Collapse
Affiliation(s)
- Eric W Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| | - Emmett J van Venrooy
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Robert L Witt
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, DE, 19713, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
42
|
Daigneault BW. Insights to maternal regulation of the paternal genome in mammalian livestock embryos: A mini-review. Front Genet 2022; 13:909804. [PMID: 36061209 PMCID: PMC9437210 DOI: 10.3389/fgene.2022.909804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
This mini-review focuses on current knowledge regarding maternal regulation of the paternal genome in early embryos of mammalian livestock species. Emphasis has been placed on regulatory events described for maternally imprinted genes and further highlights transcriptional regulation of the post-fertilization paternal genome by maternal factors. Specifically, the included content aims to summarize genomic and epigenomic contributions of paternally expressed genes, their regulation by the maternal embryo environment, and chromatin structure that are indispensable for early embryo development. The accumulation of current knowledge will summarize conserved allelic function among species to include molecular and genomic studies across large domestic animals and humans with reference to founding experimental animal models.
Collapse
|
43
|
Talaat IM, Kim B. A brief glimpse of a tangled web in a small world: Tumor microenvironment. Front Med (Lausanne) 2022; 9:1002715. [PMID: 36045917 PMCID: PMC9421133 DOI: 10.3389/fmed.2022.1002715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
A tumor is a result of stepwise accumulation of genetic and epigenetic alterations. This notion has deepened the understanding of cancer biology and has introduced the era of targeted therapies. On the other hand, there have been a series of attempts of using the immune system to treat tumors, dating back to ancient history, to sporadic reports of inflamed tumors undergoing spontaneous regression. This was succeeded by modern immunotherapies and immune checkpoint inhibitors. The recent breakthrough has broadened the sight to other players within tumor tissue. Tumor microenvironment is a niche or a system orchestrating reciprocal and dynamic interaction of various types of cells including tumor cells and non-cellular components. The output of this complex communication dictates the functions of the constituent elements present within it. More complicated factors are biochemical and biophysical settings unique to TME. This mini review provides a brief guide on a range of factors to consider in the TME research.
Collapse
Affiliation(s)
- Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Byoungkwon Kim
- Department of Pathology, H.H. Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
44
|
RNA-Binding Proteins in the Regulation of Adipogenesis and Adipose Function. Cells 2022; 11:cells11152357. [PMID: 35954201 PMCID: PMC9367552 DOI: 10.3390/cells11152357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic represents a critical public health issue worldwide, as it is a vital risk factor for many diseases, including type 2 diabetes (T2D) and cardiovascular disease. Obesity is a complex disease involving excessive fat accumulation. Proper adipose tissue accumulation and function are highly transcriptional and regulated by many genes. Recent studies have discovered that post-transcriptional regulation, mainly mediated by RNA-binding proteins (RBPs), also plays a crucial role. In the lifetime of RNA, it is bound by various RBPs that determine every step of RNA metabolism, from RNA processing to alternative splicing, nucleus export, rate of translation, and finally decay. In humans, it is predicted that RBPs account for more than 10% of proteins based on the presence of RNA-binding domains. However, only very few RBPs have been studied in adipose tissue. The primary aim of this paper is to provide an overview of RBPs in adipogenesis and adipose function. Specifically, the following best-characterized RBPs will be discussed, including HuR, PSPC1, Sam68, RBM4, Ybx1, Ybx2, IGF2BP2, and KSRP. Characterization of these proteins will increase our understanding of the regulatory mechanisms of RBPs in adipogenesis and provide clues for the etiology and pathology of adipose-tissue-related diseases.
Collapse
|
45
|
IGF2: Development, Genetic and Epigenetic Abnormalities. Cells 2022; 11:cells11121886. [PMID: 35741015 PMCID: PMC9221339 DOI: 10.3390/cells11121886] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
In the 30 years since the first report of parental imprinting in insulin-like growth factor 2 (Igf2) knockout mouse models, we have learnt much about the structure of this protein, its role and regulation. Indeed, many animal and human studies involving innovative techniques have shed light on the complex regulation of IGF2 expression. The physiological roles of IGF-II have also been documented, revealing pleiotropic tissue-specific and developmental-stage-dependent action. Furthermore, in recent years, animal studies have highlighted important interspecies differences in IGF-II function, gene expression and regulation. The identification of human disorders due to impaired IGF2 gene expression has also helped to elucidate the major role of IGF-II in growth and in tumor proliferation. The Silver-Russell and Beckwith-Wiedemann syndromes are the most representative imprinted disorders, as they constitute both phenotypic and molecular mirrors of IGF2-linked abnormalities. The characterization of patients with either epigenetic or genetic defects altering IGF2 expression has confirmed the central role of IGF-II in human growth regulation, particularly before birth, and its effects on broader body functions, such as metabolism or tumor susceptibility. Given the long-term health impact of these rare disorders, it is important to understand the consequences of IGF2 defects in these patients.
Collapse
|
46
|
Higgs JA, Quinn AP, Seely KD, Richards Z, Mortensen SP, Crandall CS, Brooks AE. Pathophysiological Link between Insulin Resistance and Adrenal Incidentalomas. Int J Mol Sci 2022; 23:ijms23084340. [PMID: 35457158 PMCID: PMC9032410 DOI: 10.3390/ijms23084340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/22/2022] Open
Abstract
Adrenal incidentalomas are incidentally discovered adrenal masses greater than one centimeter in diameter. An association between insulin resistance and adrenal incidentalomas has been established. However, the pathophysiological link between these two conditions remains incompletely characterized. This review examines the literature on the interrelationship between insulin resistance and adrenal masses, their subtypes, and related pathophysiology. Some studies show that functional and non-functional adrenal masses elicit systemic insulin resistance, whereas others conclude the inverse. Insulin resistance, hyperinsulinemia, and the anabolic effects on adrenal gland tissue, which have insulin and insulin-like growth factor-1 receptors, offer possible pathophysiological links. Conversely, autonomous adrenal cortisol secretion generates visceral fat accumulation and insulin resistance. Further investigation into the mechanisms and timing of these two pathologies as they relate to one another is needed and could be valuable in the prevention, detection, and treatment of both conditions.
Collapse
Affiliation(s)
- Jordan A. Higgs
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Alyssa P. Quinn
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
- Correspondence:
| | - Zeke Richards
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Shad P. Mortensen
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Cody S. Crandall
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Amanda E. Brooks
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA;
| |
Collapse
|
47
|
Kondo T, Aoki H, Otsuka Y, Kawaguchi Y, Waguri-Nagaya Y, Aoyama M. Insulin-like growth factor 2 promotes osteoclastogenesis increasing inflammatory cytokine levels under hypoxia. J Pharmacol Sci 2022; 149:93-99. [DOI: 10.1016/j.jphs.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
|
48
|
Chen JJ, Wu DR, Lin WS, Chen IC, Liu JF, Chen HL, Lin CH. Impact of Scaling and Periodontal Treatment during Pregnancy on the Risk of Adverse Birth Outcomes. J Pers Med 2022; 12:137. [PMID: 35207626 PMCID: PMC8877129 DOI: 10.3390/jpm12020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Adverse pregnancy outcomes (APOs) are associated with periodontal disease owing to the induction of a chronic systemic inflammatory response. Hence, knowledge of periodontal status during pregnancy is important in order to reduce the risk of APOs. The aim of this study was to compare the risk of APOs in women with and without periodontal disease to ascertain whether regular scaling performed prior to pregnancy improves the risk of APOs. METHOD This case-control study enrolled1,386,887 pregnant women from the National Health Insurance Research Database who gave birth to their first child between 1 January 2004 and 31 December 2014. The study population included mothers who gave birth to low birth weight (LBW) and non-LBW newborns, totaling 86,958 and 1,299,929, respectively. Scaling and periodontal emergency treatment during and before pregnancy were assessed. Univariable and multivariable logistic regression analyses were performed to identify the associations between periodontal treatment and LBW risk. RESULTS Compared with the comparison cohort, the pregnant women who didnot have periodontal emergency treatment or scaling treatment during pregnancy exhibited a significantly increased risk of LBW than those who had treatment. Women who underwent scaling within the2 years before pregnancy or during pregnancy had a lower risk of delivering a LBW baby (odds ratio (OR), 0.93; 95% confidence interval (CI), 0.91-0.94). In the normal group, the mothers who had periodontal emergency treatment within the2 years before pregnancy or during pregnancy had a higher risk of delivering a LBW baby (OR, 1.05; 95% CI, 1.02-1.08). In those who had scaling treatment, a lower risk of delivering a LBW baby was noted (OR, 0.95; 95% CI, 0.93-0.97). CONCLUSION The risk of LBW was significantly increased in women who underwent periodontal treatment, and our findings suggested that periodontal disease is an important risk factor for preterm LBW babies in an East Asian population.
Collapse
Affiliation(s)
- Jhih-Jhen Chen
- Department of Dentistry, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (J.-J.C.); (D.-R.W.)
| | - Dai-Rong Wu
- Department of Dentistry, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (J.-J.C.); (D.-R.W.)
| | - Wei-Szu Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (W.-S.L.); (I.-C.C.)
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (W.-S.L.); (I.-C.C.)
| | - Jeng-Fen Liu
- Department of Pediatric Dentistry, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
- School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hui-Ling Chen
- Department of Dentistry, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (J.-J.C.); (D.-R.W.)
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (W.-S.L.); (I.-C.C.)
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei112303, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 40705, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
49
|
Loid P, Lipsanen-Nyman M, Ala-Mello S, Hannula-Jouppi K, Kere J, Mäkitie O, Muurinen M. Case report: A novel de novo IGF2 missense variant in a Finnish patient with Silver-Russell syndrome. Front Pediatr 2022; 10:969881. [PMID: 36268036 PMCID: PMC9578642 DOI: 10.3389/fped.2022.969881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Silver-Russell syndrome (SRS, OMIM 180860) is a rare imprinting disorder characterized by intrauterine and postnatal growth restriction, feeding difficulties in early childhood, characteristic facial features, and body asymmetry. The molecular cause most commonly relates to hypomethylation of the imprinted 11p15.5 IGF2/H19 domain but remains unknown in about 40% of the patients. Recently, heterozygous paternally inherited pathogenic variants in IGF2, the gene encoding insulin-like growth factor 2 (IGF2), have been identified in patients with SRS. We report a novel de novo missense variant in IGF2 (c.122T > G, p.Leu41Arg) on the paternally derived allele in a 16-year-old boy with a clinical diagnosis of SRS. The missense variant was identified by targeted exome sequencing and predicted pathogenic by multiple in silico tools. It affects a highly conserved residue on a domain that is important for binding of other molecules. Our finding expands the spectrum of disease-causing variants in IGF2. Targeted exome sequencing is a useful diagnostic tool in patients with negative results of common diagnostic tests for SRS.
Collapse
Affiliation(s)
- Petra Loid
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Marita Lipsanen-Nyman
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Sirpa Ala-Mello
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Katariina Hannula-Jouppi
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Outi Mäkitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Mari Muurinen
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Karimi-Zarchi M, Zanbagh L, Javaheri A, Tabatabaei RS, Abbasi H, Meibodi B, Hadadan A, Bahrami R, Mirjalili SR, Neamatzadeh H. Association of Insulin-like Growth Factor-II Apa1 and MspI Polymorphisms with Intrauterine Growth Restriction Risk. Fetal Pediatr Pathol 2021; 40:605-611. [PMID: 32249650 DOI: 10.1080/15513815.2020.1745970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BackgroundInsulin-like growth factor-II (IGF-II) has a prominent role in fetal growth and development. The aim of this study was to investigate the association of IGF-II Apa1 and MspI polymorphisms with intrauterine growth restriction (IUGR) risk. Methods: A total of 45 infants with IUGR and 45 infants appropriate for gestational (AGA) were enrolled. Genotyping of Apa1 and MspI polymorphisms was assayed by PCR-RFLP approach. Results: The heterozygote genotype (AG) of IGF-II Apa1 CT was associated with an increased risk of IUGR. Genotypes and alleles of IGF-II MspI polymorphism had no significant association with IUGR susceptibility (P > 0.05). Conclusions: The current study suggests that IGF-II Apa1 polymorphism is associated with an increased risk of IUGR, while IGF-II MspI showed no association with IUGR. Thus, IGF-II Apa1 polymorphism could be used as a relevant molecular marker to identify the fetus at risk of developing IUGR.
Collapse
Affiliation(s)
- Mojgan Karimi-Zarchi
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran.,Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Zanbagh
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Obstetrics and Gynecology, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Atiyeh Javaheri
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Sadat Tabatabaei
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hajar Abbasi
- Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Meibodi
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amaneh Hadadan
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Mirjalili
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Mother and Newborn Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Genetic, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|