1
|
Petrea (Cliveți) CL, Ciortea DA, Candussi IL, Gurău G, Matei NM, Bergheș SE, Chirila SI, Berbece SI. A Study of Hydroelectrolytic and Acid-Base Disturbances in MIS-C Patients: A Perspective on Antidiuretic Hormone Secretion. Curr Issues Mol Biol 2024; 46:11438-11459. [PMID: 39451561 PMCID: PMC11505753 DOI: 10.3390/cimb46100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
COVID-19-associated multisystem inflammatory syndrome in children (MIS-C) is a rare autoimmune disorder characterized by a range of polymorphic manifestations, similar to but distinct from other well-known inflammatory syndromes in children. We conducted a retrospective-descriptive study in which we summarized the clinical presentation of, biomarker variations in, and complications occurring in patients diagnosed with MIS-C, admitted to the Emergency Clinical Hospital for Children "Sf. Ioan", Galati, between July 2020 and June 2024. A total of 36 children met the MIS-C classification criteria according to the WHO-approved case definitions. A total of 41.7% (n = 15) were male and 58.3% (n = 21) were female. The median age of the study group was 4 years (IQR: 1.75-9.25 years). Surgical involvement was suspected in 16.7% (n = 6) of the patients, while 52.8% (n = 19) required intensive care. Clinically, fever was the most common symptom present in 89% (n = 32) of the cases. Gastrointestinal disorders were also common, with 50% (n = 18) presenting with inappetence, 42% (n = 15) with vomiting, and 39% (n = 14) with abdominal pain from admission, which worsened over time. Paraclinically, all patients exhibited signs of inflammation, and 86.1% (n = 31) had hydroelectrolytic and acid-base imbalances. The median hospital stay was 10 days (IQR: 7-12 days), with a stagnant clinical course in most cases. The inflammatory mechanisms in MIS-C, which can affect the secretion of antidiuretic hormone (ADH), were correlated with hydroelectrolytic disturbances and may lead to severe complications. For this reason, it is imperative to evaluate hydroelectrolytic disorders in the context of MIS-C and use diagnostic and prognostic biomarkers to develop effective therapeutic management strategies, ultimately improving the quality of life of affected children.
Collapse
Affiliation(s)
- Carmen Loredana Petrea (Cliveți)
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 800008 Galati, Romania; (C.L.P.); (G.G.); (S.-E.B.)
- Emergency Clinical Hospital for Children “Sf. Ioan”, 800487 Galati, Romania
| | - Diana-Andreea Ciortea
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 800008 Galati, Romania; (C.L.P.); (G.G.); (S.-E.B.)
- Emergency Clinical Hospital for Children “Maria Sklodowska Curie”, 041451 Bucharest, Romania
| | - Iuliana-Laura Candussi
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 800008 Galati, Romania; (C.L.P.); (G.G.); (S.-E.B.)
- Emergency Clinical Hospital for Children “Sf. Ioan”, 800487 Galati, Romania
| | - Gabriela Gurău
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 800008 Galati, Romania; (C.L.P.); (G.G.); (S.-E.B.)
- Emergency Clinical Hospital for Children “Sf. Ioan”, 800487 Galati, Romania
| | - Nicoleta Mădălina Matei
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 800008 Galati, Romania; (C.L.P.); (G.G.); (S.-E.B.)
- Emergency Clinical Hospital for Children “Sf. Ioan”, 800487 Galati, Romania
| | - Simona-Elena Bergheș
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 800008 Galati, Romania; (C.L.P.); (G.G.); (S.-E.B.)
| | | | - Sorin Ion Berbece
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 800008 Galati, Romania; (C.L.P.); (G.G.); (S.-E.B.)
| |
Collapse
|
2
|
Rajagopalan S, Dobre M, Dazard JE, Vergara-Martel A, Connelly K, Farkouh ME, Gaztanaga J, Conger H, Dever A, Razavi-Nematollahi L, Fares A, Pereira G, Edwards-Glenn J, Cameron M, Cameron C, Al-Kindi S, Brook RD, Pitt B, Weir M. Mineralocorticoid Receptor Antagonism Prevents Aortic Plaque Progression and Reduces Left Ventricular Mass and Fibrosis in Patients With Type 2 Diabetes and Chronic Kidney Disease: The MAGMA Trial. Circulation 2024; 150:663-676. [PMID: 39129649 PMCID: PMC11503525 DOI: 10.1161/circulationaha.123.067620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/12/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Persistent mineralocorticoid receptor activation is a pathologic response in type 2 diabetes and chronic kidney disease. Whereas mineralocorticoid receptor antagonists are beneficial in reducing cardiovascular complications, direct mechanistic pathways for these effects in humans are lacking. METHODS The MAGMA trial (Mineralocorticoid Receptor Antagonism Clinical Evaluation in Atherosclerosis) was a randomized, double-blind, placebo-controlled trial in patients with high-risk type 2 diabetes with chronic kidney disease (not receiving dialysis) on maximum tolerated renin-angiotensin system blockade. The primary end point was change in thoracic aortic wall volume, expressed as absolute or percent value (ΔTWV or ΔPWV), using 3T magnetic resonance imaging at 12 months. Secondary end points were changes in left ventricle (LV) mass; LV fibrosis, measured as a change in myocardial native T1; and 24-hour ambulatory and central aortic blood pressures. Tertiary end points included plasma proteomic changes in 7596 plasma proteins using an aptamer-based assay. RESULTS A total of 79 patients were randomized to placebo (n=42) or 25 mg of spironolactone daily (n=37). After a modified intent-to-treat, including available baseline data of study end points, patients who completed the trial protocol were included in the final analyses. At the 12-month follow-up, the average change in PWV was 7.1±10.7% in the placebo group and 0.87±10.0% in the spironolactone group (P=0.028), and ΔTWV was 1.2±1.7 cm3 in the placebo group and 0.037±1.9 cm3 in the spironolactone group (P=0.022). Change in LV mass was 3.1±8.4 g in the placebo group and -5.8±8.4 g in the spironolactone group (P=0.001). Changes in LV T1 values were significantly different between the placebo and spironolactone groups (26.0±41.9 ms in the placebo group versus a decrease of -10.1±36.3 ms in the spironolactone group; P=6.33×10-4). Mediation analysis revealed that the spironolactone effect on thoracic aortic wall volume and myocardial mass remained significant after adjustment for ambulatory and central blood pressures. Proteomic analysis revealed a dominant effect of spironolactone on pathways involving oxidative stress, inflammation, and leukocyte activation. CONCLUSIONS Among patients with diabetes with moderate to severe chronic kidney disease at elevated cardiovascular risk, treatment with spironolactone prevented progression of aortic wall volume and resulted in regression of LV mass and favorable alterations in native T1, suggesting amelioration of left-ventricular fibrosis. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT02169089.
Collapse
Affiliation(s)
- Sanjay Rajagopalan
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Mirela Dobre
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Jean-Eudes Dazard
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Armando Vergara-Martel
- University Hospitals, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Kim Connelly
- St. Michael’s Hospital, University of Toronto, Toronto, CA
| | | | - Juan Gaztanaga
- New York University Langone Health School of Medicine, Winthrop, Mineola, NY
| | | | - Ann Dever
- University Hospitals, Cleveland, OH, USA
| | | | - Anas Fares
- University Hospitals, Cleveland, OH, USA
| | | | | | - Mark Cameron
- Case Western Reserve University, Cleveland, OH, USA
| | | | - Sadeer Al-Kindi
- Debakey Heart and Vascular Center Houston Methodist Hospital, Houston TX
| | - Robert D. Brook
- University of Michigan Frankel Cardiovascular Center, Detroit, MI
| | | | - Matthew Weir
- Division of Nephrology, University of Maryland Medical Center, Baltimore, MD
| |
Collapse
|
3
|
Apte M, Zambre S, Pisar P, Roy B, Tupe R. Decoding the role of aldosterone in glycation-induced diabetic complications. Biochem Biophys Res Commun 2024; 721:150107. [PMID: 38781658 DOI: 10.1016/j.bbrc.2024.150107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Pratiksha Pisar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
4
|
Xian Y, Wang X, Chang Y, Qiang P, Han Y, Hao J, Gao X, Shimosawa T, Xu Q, Yang F. Esaxerenone Attenuates Aldosterone-Induced Mitochondrial Damage-Mediated Pyroptosis in Mouse Aorta and Rat Vascular Smooth Muscle Cells. Life (Basel) 2024; 14:967. [PMID: 39202709 PMCID: PMC11355590 DOI: 10.3390/life14080967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) injury caused by the inflammatory response plays a key role in cardiovascular disease (CVD), and the vasoprotective effects of mineralocorticoid receptor blockers (MRBs) support the role of mineralocorticoid receptor (MR) activation. METHODS C57BL/6 mice and VSMCs isolated from rats were treated with aldosterone and esaxerenone. Caspase-1, GSDMD-N, IL-1β, and NR3C2 expression and DNA damage in aortic VSMCs were detected using immunohistochemistry, Western blotting, and TUNEL staining. Mitochondrial changes were detected by transmission electron microscopy (TEM). Reactive oxygen species (ROS), MitoTracker, JC-I, mitochondrial respiratory chain complexes I-V, and NR3C2 were detected using immunofluorescence and flow cytometry. Pyroptosis was detected with scanning electron microscopy (SEM). RESULTS After aldosterone treatment, the number of TUNEL-positive cells increased significantly, and the expression of caspase-1, GSDMD-N, and IL-1β increased. TEM revealed mitochondrial damage, and SEM revealed specific pyroptotic changes, such as cell membrane pore changes and cytoplasmic extravasation. Increased ROS levels and nuclear translocation of NR3C2 were also observed. These pyroptosis-related changes were reversed by esaxerenone. CONCLUSIONS Aldosterone activates the MR and mediates mitochondrial damage, thereby inducing pyroptosis in VSMCs via the NLRP3/caspase-1 pathway. Esaxerenone inhibits MR activation and reduces mitochondrial damage and oxidative stress, thereby inhibiting pyroptosis.
Collapse
Affiliation(s)
- Yunqian Xian
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.X.); (X.W.); (P.Q.); (Y.H.); (X.G.)
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.C.); (J.H.)
| | - Xuan Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.X.); (X.W.); (P.Q.); (Y.H.); (X.G.)
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.C.); (J.H.)
| | - Yi Chang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.C.); (J.H.)
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Panpan Qiang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.X.); (X.W.); (P.Q.); (Y.H.); (X.G.)
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.C.); (J.H.)
| | - Yutong Han
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.X.); (X.W.); (P.Q.); (Y.H.); (X.G.)
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.C.); (J.H.)
| | - Juan Hao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.C.); (J.H.)
| | - Xiaomeng Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.X.); (X.W.); (P.Q.); (Y.H.); (X.G.)
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.C.); (J.H.)
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita 286-8686, Chiba, Japan;
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.X.); (X.W.); (P.Q.); (Y.H.); (X.G.)
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.C.); (J.H.)
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (Y.C.); (J.H.)
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
5
|
Zhao R, Hong L, Shi G, Ye H, Lou X, Zhou X, Yao J, Shi X, An J, Sun M. Mineralocorticoid promotes intestinal inflammation through receptor dependent IL17 production in ILC3s. Int Immunopharmacol 2024; 130:111678. [PMID: 38368773 DOI: 10.1016/j.intimp.2024.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Aldosterone is a key mineralocorticoid involved in regulating the concentration of blood electrolytes and physiological volume balance. Activation of mineralocorticoid receptor (MR) has been recently reported to participate in adaptive and innate immune responses under inflammation. Here, we evaluated the role of aldosterone and MR in inflammation bowel diseases (IBD). Aldosterone elevated in the colon of DSS-induced colitis mice. Aldosterone addition induced IL17 production and ROS/RNS level in group 3 innate lymphoid cells (ILC3s) and exacerbated intestinal injury. A selective mineralocorticoid receptor antagonism, eplerenone, inhibited IL17-producing ILC3s and its ROS/RNS production, protected mice from DSS-induced colitis. Mice lacking Nr3c2 (MR coding gene) in ILC3s exhibited decreased IL17 and ROS/RNS production, which alleviated colitis and colitis-associated colorectal cancer (CAC). Further experiments revealed that MR could directly bind to IL17A promoter and facilitate its transcription, which could be enhanced by aldosterone. Thus, our findings demonstrated the critical role of aldosterone-MR-IL17 signaling in ILC3s and gut homeostasis, indicating the therapeutic strategy of eplerenone in IBD clinical trial.
Collapse
Affiliation(s)
- Rongchuan Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Lei Hong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China; Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital. No. 1 Lijiang Road, Suzhou 215153, China
| | - Guohua Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Hong Ye
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Xinqi Lou
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital. No. 1 Lijiang Road, Suzhou 215153, China
| | - Xinying Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Jinyu Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Xiaohua Shi
- Digestive Department, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital. No. 1 Lijiang Road, Suzhou 215153, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
6
|
Verma S, Pandey A, Pandey AK, Butler J, Lee JS, Teoh H, Mazer CD, Kosiborod MN, Cosentino F, Anker SD, Connelly KA, Bhatt DL. Aldosterone and aldosterone synthase inhibitors in cardiorenal disease. Am J Physiol Heart Circ Physiol 2024; 326:H670-H688. [PMID: 38133623 DOI: 10.1152/ajpheart.00419.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Modulation of the renin-angiotensin-aldosterone system is a foundation of therapy for cardiovascular and kidney diseases. Excess aldosterone plays an important role in cardiovascular disease, contributing to inflammation, fibrosis, and dysfunction in the heart, kidneys, and vasculature through both genomic and mineralocorticoid receptor (MR)-mediated as well as nongenomic mechanisms. MR antagonists have been a key therapy for attenuating the pathologic effects of aldosterone but are associated with some side effects and may not always adequately attenuate the nongenomic effects of aldosterone. Aldosterone is primarily synthesized by the CYP11B2 aldosterone synthase enzyme, which is very similar in structure to other enzymes involved in steroid biosynthesis including CYP11B1, a key enzyme involved in glucocorticoid production. Lack of specificity for CYP11B2, off-target effects on the hypothalamic-pituitary-adrenal axis, and counterproductive increased levels of bioactive steroid intermediates such as 11-deoxycorticosterone have posed challenges in the development of early aldosterone synthase inhibitors such as osilodrostat. In early-phase clinical trials, newer aldosterone synthase inhibitors demonstrated promise in lowering blood pressure in patients with treatment-resistant and uncontrolled hypertension. It is therefore plausible that these agents offer protection in other disease states including heart failure or chronic kidney disease. Further clinical evaluation will be needed to clarify the role of aldosterone synthase inhibitors, a promising class of agents that represent a potentially major therapeutic advance.
Collapse
Affiliation(s)
- Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Avinash Pandey
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Arjun K Pandey
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- University of Mississippi, Jackson, Mississippi, United States
| | - John S Lee
- LJ Biosciences, LLC, Rockville, Maryland, United States
- PhaseBio Pharmaceuticals, Malvern, Pennsylvania, United States
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, Kansas City, Missouri, United States
- University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | | - Stefan D Anker
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kim A Connelly
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart, Icahn School of Medicine at Mount Sinai Health System, New York, New York, United States
| |
Collapse
|
7
|
Chan M, Ghadieh C, Irfan I, Khair E, Padilla N, Rebeiro S, Sidgreaves A, Patravale V, Disouza J, Catanzariti R, Pont L, Williams K, De Rubis G, Mehndiratta S, Dhanasekaran M, Dua K. Exploring the influence of the microbiome on the pharmacology of anti-asthmatic drugs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:751-762. [PMID: 37650889 PMCID: PMC10791706 DOI: 10.1007/s00210-023-02681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
The microbiome is increasingly implicated in playing a role in physiology and pharmacology; in this review, we investigate the literature on the possibility of bacterial influence on the pharmacology of anti-asthmatic drugs, and the potential impact this has on asthmatic patients. Current knowledge in this area of research reveals an interaction between the gut and lung microbiome and the development of asthma. The influence of microbiome on the pharmacokinetics and pharmacodynamics of anti-asthmatic drugs is limited; however, understanding this interaction will assist in creating a more efficient treatment approach. This literature review highlighted that bioaccumulation and biotransformation in the presence of certain gut bacterial strains could affect drug metabolism in anti-asthmatic drugs. Furthermore, the bacterial richness in the lungs and the gut can influence drug efficacy and could also play a role in drug response. The implications of the above findings suggest that the microbiome is a contributing factor to an individuals' pharmacological response to anti-asthmatic drugs. Hence, future directions for research should follow investigating how these processes affect asthmatic patients and consider the role of the microbiome on drug efficacy and modify treatment guidelines accordingly.
Collapse
Affiliation(s)
- Michael Chan
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chloe Ghadieh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Isphahan Irfan
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Eamen Khair
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Natasha Padilla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sanshya Rebeiro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Annabel Sidgreaves
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Maharashtra, 416113, India
| | - Rachelle Catanzariti
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Lisa Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
8
|
Wang Y, Guo D, Winkler R, Lei X, Wang X, Messina J, Luo J, Lu H. Development of novel liver-targeting glucocorticoid prodrugs. MEDICINE IN DRUG DISCOVERY 2024; 21:100172. [PMID: 38390434 PMCID: PMC10883687 DOI: 10.1016/j.medidd.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Background Glucocorticoids (GCs) are widely used in the treatment of inflammatory liver diseases and sepsis, but GC's various side effects on extrahepatic tissues limit their clinical benefits. Liver-targeting GC therapy may have multiple advantages over systemic GC therapy. The purpose of this study was to develop novel liver-targeting GC prodrugs as improved treatment for inflammatory liver diseases and sepsis. Methods A hydrophilic linker or an ultra-hydrophilic zwitterionic linker carboxylic betaine (CB) was used to bridge cholic acid (CA) and dexamethasone (DEX) to generate transporter-dependent liver-targeting GC prodrugs CA-DEX and the highly hydrophilic CA-CB-DEX. The efficacy of liver-targeting DEX prodrugs and DEX were determined in primary human hepatocytes (PHH), macrophages, human whole blood, and/or mice with sepsis induced by cecal ligation and puncture. Results CA-DEX was moderately water soluble, whereas CA-CB-DEX was highly water soluble. CA-CB-DEX and CA-DEX displayed highly transporter-dependent activities in reporter assays. Data mining found marked dysregulation of many GR-target genes important for lipid catabolism, cytoprotection, and inflammation in patients with severe alcoholic hepatitis. These key GR-target genes were similarly and rapidly (within 6 h) induced or down-regulated by CA-CB-DEX and DEX in PHH. CA-CB-DEX had much weaker inhibitory effects than DEX on endotoxin-induced cytokines in mouse macrophages and human whole blood. In contrast, CA-CB-DEX exerted more potent anti-inflammatory effects than DEX in livers of septic mice. Conclusions CA-CB-DEX demonstrated good hepatocyte-selectivity in vitro and better anti-inflammatory effects in vivo. Further test of CA-CB-DEX as a novel liver-targeting GC prodrug for inflammatory liver diseases and sepsis is warranted.
Collapse
Affiliation(s)
- Yazheng Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojing Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer Messina
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
9
|
Abedini A, Sánchez-Navaro A, Wu J, Klötzer KA, Ma Z, Poudel B, Doke T, Balzer MS, Frederick J, Cernecka H, Liu H, Liang X, Vitale S, Kolkhof P, Susztak K. Single-cell transcriptomics and chromatin accessibility profiling elucidate the kidney-protective mechanism of mineralocorticoid receptor antagonists. J Clin Invest 2024; 134:e157165. [PMID: 37906287 PMCID: PMC10760974 DOI: 10.1172/jci157165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Mineralocorticoid excess commonly leads to hypertension (HTN) and kidney disease. In our study, we used single-cell expression and chromatin accessibility tools to characterize the mineralocorticoid target genes and cell types. We demonstrated that mineralocorticoid effects were established through open chromatin and target gene expression, primarily in principal and connecting tubule cells and, to a lesser extent, in segments of the distal convoluted tubule cells. We examined the kidney-protective effects of steroidal and nonsteroidal mineralocorticoid antagonists (MRAs), as well as of amiloride, an epithelial sodium channel inhibitor, in a rat model of deoxycorticosterone acetate, unilateral nephrectomy, and high-salt consumption-induced HTN and cardiorenal damage. All antihypertensive therapies protected against cardiorenal damage. However, finerenone was particularly effective in reducing albuminuria and improving gene expression changes in podocytes and proximal tubule cells, even with an equivalent reduction in blood pressure. We noted a strong correlation between the accumulation of injured/profibrotic tubule cells expressing secreted posphoprotein 1 (Spp1), Il34, and platelet-derived growth factor subunit b (Pdgfb) and the degree of fibrosis in rat kidneys. This gene signature also showed a potential for classifying human kidney samples. Our multiomics approach provides fresh insights into the possible mechanisms underlying HTN-associated kidney disease, the target cell types, the protective effects of steroidal and nonsteroidal MRAs, and amiloride.
Collapse
Affiliation(s)
- Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea Sánchez-Navaro
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Junnan Wu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Konstantin A. Klötzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bibek Poudel
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael S. Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Julia Frederick
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hana Cernecka
- Bayer AG, Pharmaceuticals, Research and Development, Cardiovascular Research, Wuppertal, Germany
| | - Hongbo Liu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xiujie Liang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Steven Vitale
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter Kolkhof
- Bayer AG, Pharmaceuticals, Research and Development, Cardiovascular Research, Wuppertal, Germany
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine
- Institute for Diabetes, Obesity, and Metabolism, and
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Wang Q, Schäfer SC, Haefliger JA, Maillard MP, Alonso F. Dietary Potassium Supplementation Reduces Chronic Kidney Lesions Independent of Blood Pressure in Deoxycorticosterone-Acetate and High Sodium Chloride-Treated Mice. Int J Mol Sci 2023; 24:16858. [PMID: 38069178 PMCID: PMC10705941 DOI: 10.3390/ijms242316858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 12/18/2023] Open
Abstract
We have previously shown that an excess of deoxycorticosterone acetate and high sodium chloride intake (DOCA/salt) in one-renin gene mice induces a high urinary Na/K ratio, hypokalemia, and cardiac and renal hypertrophy in the absence of hypertension. Dietary potassium supplementation prevents DOCA/salt-induced pathological processes. In the present study, we further study whether DOCA/salt-treated mice progressively develop chronic inflammation and fibrosis in the kidney and whether dietary potassium supplementation can reduce the DOCA/salt-induced renal pathological process. Results showed that (1) long-term DOCA/salt-treated one-renin gene mice developed severe kidney injuries including tubular/vascular hypertrophy, mesangial/interstitial/perivascular fibrosis, inflammation (lymphocyte's immigration), proteinuria, and high serum creatinine in the absence of hypertension; (2) there were over-expressed mRNAs of plasminogen activator inhibitor-1 (PAI-1), fibronectin, collagen type I and III, interferon-inducible protein-10 (IP-10), monocyte chemotactic protein-1 (MCP1), transforming growth factor-β (TGF-β), tumor necrosis factor-alpha (TNF-α), osteopontin, Nuclear factor kappa B (NF-κB)/P65, and intercellular adhesion molecule (ICAM)-1; and (3) dietary potassium supplementation normalized urinary Na/K ratio, hypokalemia, proteinuria, and serum creatinine, reduced renal hypertrophy, inflammations, and fibrosis, and down-regulated mRNA expression of fibronectin, Col-I and III, TGF-β, TNF-α, osteopontin, and ICAM without changes in the blood pressure. The results provide new evidence that potassium and sodium may modulate proinflammatory and fibrotic genes, leading to chronic renal lesions independent of blood pressure.
Collapse
Affiliation(s)
- Qing Wang
- Division of Nephrology and Hypertension, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| | - Stephan C. Schäfer
- Institute for Pathology, Uniklink Köln, Kerpener Strasse 62, 50937 Köln, Germany;
| | - Jacques-Antoine Haefliger
- Department of Biomedical Sciences, Faculty of Biology and Medicine, Lausanne University, Bugnon 7a, 1005 Lausanne, Switzerland;
| | - Marc P. Maillard
- Division of Nephrology and Hypertension, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| | - Florian Alonso
- BioTis, Université de Bordeaux, INSERM U1026, 146 Rue Léo Saignat, 33076 Bordeaux, Cedex, France;
| |
Collapse
|
11
|
Pu Y, Yang G, Pan X, Zhou Y, Zhong A, Ding N, Su Y, Peng W, Zeng M, Guo T, Chai X. Higher plasma aldosterone concentrations in patients with aortic diseases and hypertension: a retrospective observational study. Eur J Med Res 2023; 28:541. [PMID: 38008731 PMCID: PMC10676595 DOI: 10.1186/s40001-023-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Aortic diseases remain a highly perilous macrovascular condition. The relationship between circulating aldosterone and aortic diseases is rarely explored, thus we investigated the difference in plasma aldosterone concentration (PAC) between patients with and without aortic disease in hypertensive people. METHODS We analyzed 926 patients with hypertension, ranging in age from 18 to 89 years, who had their PAC measured from the hospital's electronic database. The case group and control group were defined based on inclusion and exclusion criteria. The analysis included general information, clinical data, biochemical data, and medical imaging examination results as covariates. To further evaluate the difference in PAC between primary hypertension patients with aortic disease and those without, we used multivariate logistic regression analysis and also employed propensity score matching to minimize the influence of confounding factors. RESULTS In total, 394 participants were included in the analysis, with 66 individuals diagnosed with aortic diseases and 328 in the control group. The participants were predominantly male (64.5%) and over the age of 50 (68.5%), with an average PAC of 19.95 ng/dL. After controlling for confounding factors, the results showed hypertension patients with aortic disease were more likely to have high PAC levels than those without aortic disease (OR = 1.138, 95% CI [1.062 to 1.238]). Subgroup analysis revealed consistent relationship between PAC and primary hypertensive patients with aortic disease across the different stratification variables. Additionally, hypertensive patients with aortic disease still have a risk of higher PAC levels than those without aortic disease, even after propensity score matching. CONCLUSIONS The results of this study suggest that primary hypertensive patients with aortic diseases have elevated levels of PAC, but the causal relationship between PAC and aortic disease requires further study.
Collapse
Affiliation(s)
- Yuting Pu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaogao Pan
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Aifang Zhong
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning Ding
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingjie Su
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Peng
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengping Zeng
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tuo Guo
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Chilton RJ, Silva-Cardoso J. Mineralocorticoid receptor antagonists in cardiovascular translational biology. Cardiovasc Endocrinol Metab 2023; 12:e0289. [PMID: 37614245 PMCID: PMC10443768 DOI: 10.1097/xce.0000000000000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 08/25/2023]
Abstract
This review examines the role of mineralocorticoid receptor antagonists (MRAs) in cardiovascular biology and the molecular mechanisms involved in mineralocorticoid receptor antagonism. The data discussed suggest that MRAs can play an important role in decreasing the impact of inflammation and fibrosis on cardiorenal outcomes. Evidence derived from major randomized clinical trials demonstrates that steroidal MRAs reduce mortality in patients with heart failure and reduced ejection fraction. Initial positive findings observed in patients with chronic kidney disease and type 2 diabetes (T2D) indicate the possible mechanisms of action of nonsteroidal MRAs, and the clinical benefits for patients with cardiorenal disease and T2D. This article supports the application of basic science concepts to expand our understanding of the molecular mechanisms of action involved in pathophysiology. This approach encourages the development of treatment options before diseases clinically manifest. Video Abstract: http://links.lww.com/CAEN/A42.
Collapse
Affiliation(s)
- Robert J. Chilton
- Department of Medicine, Janey & Dolph Briscoe Division of Cardiology, Long School of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - José Silva-Cardoso
- Heart Failure and Transplant Clinic, Cardiology Service, São João University Hospital Centre, Porto, Portugal
| |
Collapse
|
13
|
Papaefthymiou A, Doulberis M, Karafyllidou K, Chatzimichael E, Deretzi G, Exadaktylos AK, Sampsonas F, Gelasakis A, Papamichos SI, Kotronis G, Gialamprinou D, Vardaka E, Polyzos SA, Kountouras J. Effect of spironolactone on pharmacological treatment of nonalcoholic fatty liver disease. Minerva Endocrinol (Torino) 2023; 48:346-359. [PMID: 34669319 DOI: 10.23736/s2724-6507.21.03564-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) was recently renamed to metabolic (dysfunction)-associated fatty liver disease (MAFLD) to better characterize its pathogenic origin. NAFLD represents, at least in western societies, a potential epidemic with raising prevalence. Its multifactorial pathogenesis is partially unraveled and till now there is no approved pharmacotherapy for NAFLD. A plethora of various choices are investigated in clinical trials, targeting an arsenal of different pathways and molecules. Since the mineralocorticoid receptor (MR) and renin-angiotensin-aldosterone system (RAAS) appear to be implicated in NAFLD, within this concise review, we focus on a rather classical and inexpensive pharmacological agent, spironolactone. We present the current lines of evidence of MR and RAAS-related preclinical models and human trials reporting an association with NAFLD. In conclusion, evidence about spironolactone of RAAS is commented, as potential future pharmacological management of NAFLD.
Collapse
Affiliation(s)
- Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larisa, Larisa, Greece -
- School of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece -
- School of Medicine, First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Greece -
| | - Michael Doulberis
- School of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- School of Medicine, First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Emergency Medicine, University Hospital Inselspital of Bern, Bern, Switzerland
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University, Kantonsspital Aarau, Aarau, Switzerland
| | - Kyriaki Karafyllidou
- Department of Pediatrics, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Eleftherios Chatzimichael
- Department of Psychiatry, Psychotherapy and Psychosomatics, Center for Integrative Psychiatry, Psychiatric University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Greece
| | | | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Athanasios Gelasakis
- Department of Animal Science, Laboratory of Anatomy and Physiology of Farm Animals, Agricultural University of Athens, Athens, Greece
| | - Spyros I Papamichos
- Blood Transfusion Service Eastern Switzerland, Swiss Red Cross, St. Gallen, Switzerland
| | - Georgios Kotronis
- Department of Internal Medicine, General Hospital Aghios Pavlos of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Gialamprinou
- Second Neonatal Department and NICU, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Elisabeth Vardaka
- School of Health Sciences, Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Stergios A Polyzos
- School of Medicine, First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jannis Kountouras
- School of Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Figueroa SM, Bertocchio JP, Nakamura T, El-Moghrabi S, Jaisser F, Amador CA. The Mineralocorticoid Receptor on Smooth Muscle Cells Promotes Tacrolimus-Induced Renal Injury in Mice. Pharmaceutics 2023; 15:pharmaceutics15051373. [PMID: 37242615 DOI: 10.3390/pharmaceutics15051373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Tacrolimus (Tac) is a calcineurin inhibitor commonly used as an immunosuppressor after solid organ transplantation. However, Tac may induce hypertension, nephrotoxicity, and an increase in aldosterone levels. The activation of the mineralocorticoid receptor (MR) is related to the proinflammatory status at the renal level. It modulates the vasoactive response as they are expressed on vascular smooth muscle cells (SMC). In this study, we investigated whether MR is involved in the renal damage generated by Tac and if the MR expressed in SMC is involved. Littermate control mice and mice with targeted deletion of the MR in SMC (SMC-MR-KO) were administered Tac (10 mg/Kg/d) for 10 days. Tac increased the blood pressure, plasma creatinine, expression of the renal induction of the interleukin (IL)-6 mRNA, and expression of neutrophil gelatinase-associated lipocalin (NGAL) protein, a marker of tubular damage (p < 0.05). Our study revealed that co-administration of spironolactone, an MR antagonist, or the absence of MR in SMC-MR-KO mice mitigated most of the unwanted effects of Tac. These results enhance our understanding of the involvement of MR in SMC during the adverse reactions of Tac treatment. Our findings provided an opportunity to design future studies considering the MR antagonism in transplanted subjects.
Collapse
Affiliation(s)
- Stefanny M Figueroa
- Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Jean-Philippe Bertocchio
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Toshifumi Nakamura
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Soumaya El-Moghrabi
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Frédéric Jaisser
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Cristián A Amador
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7510156, Chile
| |
Collapse
|
15
|
Fujii W, Shibata S. Mineralocorticoid Receptor Antagonists for Preventing Chronic Kidney Disease Progression: Current Evidence and Future Challenges. Int J Mol Sci 2023; 24:ijms24097719. [PMID: 37175424 PMCID: PMC10178637 DOI: 10.3390/ijms24097719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Regulation and action of the mineralocorticoid receptor (MR) have been the focus of intensive research over the past 80 years. Genetic and physiological/biochemical analysis revealed how MR and the steroid hormone aldosterone integrate the responses of distinct tubular cells in the face of environmental perturbations and how their dysregulation compromises fluid homeostasis. In addition to these roles, the accumulation of data also provided unequivocal evidence that MR is involved in the pathophysiology of kidney diseases. Experimental studies delineated the diverse pathological consequences of MR overactivity and uncovered the multiple mechanisms that result in enhanced MR signaling. In parallel, clinical studies consistently demonstrated that MR blockade reduces albuminuria in patients with chronic kidney disease. Moreover, recent large-scale clinical studies using finerenone have provided evidence that the non-steroidal MR antagonist can retard the kidney disease progression in diabetic patients. In this article, we review experimental data demonstrating the critical importance of MR in mediating renal injury as well as clinical studies providing evidence on the renoprotective effects of MR blockade. We also discuss areas of future investigation, which include the benefit of non-steroidal MR antagonists in non-diabetic kidney disease patients, the identification of surrogate markers for MR signaling in the kidney, and the search for key downstream mediators whereby MR blockade confers renoprotection. Insights into these questions would help maximize the benefit of MR blockade in subjects with kidney diseases.
Collapse
Affiliation(s)
- Wataru Fujii
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
16
|
Sun JY, Du LJ, Shi XR, Zhang YY, Liu Y, Wang YL, Chen BY, Liu T, Zhu H, Liu Y, Ruan CC, Gan Z, Ying H, Yin Z, Gao PJ, Yan X, Li RG, Duan SZ. An IL-6/STAT3/MR/FGF21 axis mediates heart-liver cross-talk after myocardial infarction. SCIENCE ADVANCES 2023; 9:eade4110. [PMID: 37018396 PMCID: PMC10075967 DOI: 10.1126/sciadv.ade4110] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The liver plays a protective role in myocardial infarction (MI). However, very little is known about the mechanisms. Here, we identify mineralocorticoid receptor (MR) as a pivotal nexus that conveys communications between the liver and the heart during MI. Hepatocyte MR deficiency and MR antagonist spironolactone both improve cardiac repair after MI through regulation on hepatic fibroblast growth factor 21 (FGF21), illustrating an MR/FGF21 axis that underlies the liver-to-heart protection against MI. In addition, an upstreaming acute interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway transmits the heart-to-liver signal to suppress MR expression after MI. Hepatocyte Il6 receptor deficiency and Stat3 deficiency both aggravate cardiac injury through their regulation on the MR/FGF21 axis. Therefore, we have unveiled an IL-6/STAT3/MR/FGF21 signaling axis that mediates heart-liver cross-talk during MI. Targeting the signaling axis and the cross-talk could provide new strategies to treat MI and heart failure.
Collapse
Affiliation(s)
- Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xue-Rui Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu-Yao Zhang
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yong-Li Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing 210061, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, Guangdong, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China
| |
Collapse
|
17
|
Nguyen LT, Ta TV, Bui AT, Vo SN, Nguyen NLT. Nutritional Status, Refeeding Syndrome and Some Associated Factors of Patients at COVID-19 Hospital in Vietnam. Nutrients 2023; 15:1760. [PMID: 37049600 PMCID: PMC10096600 DOI: 10.3390/nu15071760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Multisystem inflammatory syndrome is associated with COVID-19 and can result in reduced food intake, increased muscle catabolism, and electrolyte imbalance. Therefore COVID-19 patients are at high risk of being malnourished and of refeeding syndrome. The present study aimed to determine the prevalence and correlates of malnutrition and refeeding syndrome (RS) among COVID-19 patients in Hanoi, Vietnam. This prospective cohort study analyzed data from 1207 patients who were treated at the COVID-19 hospital of Hanoi Medical University (HMUH COVID-19) between September 2021 and March 2022. Nutritional status was evaluated by the Global Leadership Initiative on Malnutrition (GLIM) and laboratory markers. GLIM-defined malnutrition was found in 614 (50.9%) patients. Among those with malnutrition, 380 (31.5%) and 234 (19.4%) had moderate and severe malnutrition, respectively. The prevalence of risk of RS was 346 (28.7%). Those with severe and critical COVID symptoms are more likely to be at risk of RS compared to those with mild or moderate COVID, and having severe and critical COVID-19 infection increased the incidence of RS by 2.47 times, compared to mild and moderate disease. There was an association between levels of COVID-19, older ages, comorbidities, the inability of eating independently, hypoalbuminemia and hyponatremia with malnutrition. The proportion of COVID-19 patients who suffered from malnutrition was high. These results underscore the importance of early nutritional screening and assessment in COVID-19 patients, especially those with severe and critical infection.
Collapse
Affiliation(s)
- Linh Thuy Nguyen
- Hanoi Medical University Hospital, Hanoi Medical University, 1st Ton That Tung, Dong Da District, Hanoi 100000, Vietnam
- Department of Nutrition and Food Safety, School of Training Preventive Medicine and Public Health, Hanoi Medical University, 1st Ton That Tung, Dong Da District, Hanoi 100000, Vietnam
| | - Thanh Van Ta
- Hanoi Medical University Hospital, Hanoi Medical University, 1st Ton That Tung, Dong Da District, Hanoi 100000, Vietnam
| | - An Tuong Bui
- Hanoi Medical University Hospital, Hanoi Medical University, 1st Ton That Tung, Dong Da District, Hanoi 100000, Vietnam
| | - Sy Nam Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hai Ba Trung District, Hanoi 100000, Vietnam
- College of Engineering and Computer Science, VinUniversity, Gia Lam District, Hanoi 100000, Vietnam
| | - Ngoc-Lan Thi Nguyen
- Hanoi Medical University Hospital, Hanoi Medical University, 1st Ton That Tung, Dong Da District, Hanoi 100000, Vietnam
| |
Collapse
|
18
|
Kim DL, Lee SE, Kim NH. Renal Protection of Mineralocorticoid Receptor Antagonist, Finerenone, in Diabetic Kidney Disease. Endocrinol Metab (Seoul) 2023; 38:43-55. [PMID: 36891650 PMCID: PMC10008664 DOI: 10.3803/enm.2022.1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023] Open
Abstract
Chronic kidney disease (CKD) is the most common cause of end-stage renal disease in patients with type 2 diabetes mellitus (T2DM). CKD increases the risk of cardiovascular diseases; therefore, its prevention and treatment are important. The prevention of diabetic kidney disease (DKD) can be achieved through intensive glycemic control and blood pressure management. Additionally, DKD treatment aims to reduce albuminuria and improve kidney function. In patients with T2DM, renin-angiotensin-aldosterone system inhibitors, sodium glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can delay the progression of DKD. Hence, there is a need for novel treatments that can effectively suppress DKD progression. Finerenone is a first-in-class nonsteroidal mineralocorticoid receptor antagonist with clinically proven efficacy in improving albuminuria, estimated glomerular filtration rate, and risk of cardiovascular events in early and advanced DKD. Therefore, finerenone is a promising treatment option to delay DKD progression. This article reviews the mechanism of renal effects and major clinical outcomes of finerenone in DKD.
Collapse
Affiliation(s)
- Dong-Lim Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seung-Eun Lee
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Corresponding author: Nan Hee Kim Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan 15355, Korea Tel: +82-31-412-4274, Fax: +82-31-412-6770, E-mail:
| |
Collapse
|
19
|
Morita R, Tsukamoto S, Obata S, Yamada T, Uneda K, Uehara T, Rehman ME, Azushima K, Wakui H, Tamura K. Effects of sodium-glucose cotransporter 2 inhibitors, mineralocorticoid receptor antagonists, and their combination on albuminuria in diabetic patients. Diabetes Obes Metab 2023; 25:1271-1279. [PMID: 36633511 DOI: 10.1111/dom.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
AIMS Diabetes mellitus (DM) is the leading cause of chronic kidney disease. Albuminuria is associated with an increased risk of cardiovascular mortality. Sodium-glucose cotransporter 2 inhibitors (SGLT2-Is) and mineralocorticoid receptor antagonists (MRAs) protect against albuminuria; however, their combined effects on albuminuria are unclear. We performed a network meta-analysis to investigate the effects of SGLT2-Is, MRAs and their combination on albuminuria in type 2 DM. METHODS We systematically searched PubMed, Medline, EMBASE and the Cochrane Library from inception up to 20 November 2022. We selected randomized control and crossover trials that compared MRAs, SGLT2-Is, MRAs + SGLT2-Is, or a placebo in patients with type 2 DM with a urinary albumin-creatinine ratio (UACR) ≥30 mg/g creatinine. The primary outcome was the change in the UACR. RESULTS This meta-analysis analysed 17 studies with 34 412 patients. The use of combination treatment with SGLT2-Is and MRAs was associated with lower albuminuria compared with the use of SGLT2-Is, MRAs, or the placebo alone [mean difference (95% CI): -34.19 (-27.30; -41.08), -32.25 (-24.53; -39.97) and -65.22 (-57.97; -72.47), respectively]. Treatment with SGLT2-Is or MRAs alone caused a significant reduction in UACR compared with the placebo [mean difference (95% CI): -31.03 (-28.35; -33.72) and -32.97 (-29.68; -36.27), respectively]. The effects of MRAs on the UACR are comparable with those of SGLT2-Is. Sensitivity analyses showed similar results. CONCLUSION Combination therapy with SGLT2-Is and MRAs was associated with lower albuminuria in patients with type 2 DM compared with monotherapy with SGLT2-Is or MRAs alone.
Collapse
Affiliation(s)
- Ryutaro Morita
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shota Obata
- Department of Medicine, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Takayuki Yamada
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Kampo Medicine, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Tatsuki Uehara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Muhammad Ebad Rehman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
20
|
Prameswari HS, Putra ICS, Raffaello WM, Nathaniel M, Suhendro AS, Khalid AF, Pranata R. Managing Covid-19 in patients with heart failure: current status and future prospects. Expert Rev Cardiovasc Ther 2022; 20:807-828. [PMID: 36185009 DOI: 10.1080/14779072.2022.2132230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION COVID-19 may contribute to decompensation of previously stable chronic HF or cause a de-novo heart failure, which may come from the hyperinflammatory response and subsequent increase in metabolic demand. AREAS COVERED Two independent investigators searched MEDLINE (via PubMed), Europe PMC, and ScienceDirect databases with the following search terms: COVID-19, heart failure, COVID-19 drugs, heart failure drugs, and device therapy. All of the included full-text articles were rigorously evaluated by both authors in case there was disagreement about whether research should be included or not. In total, 157 studies were included and underwent extensive reading by the authors. EXPERT OPINION The World Health Organization (WHO) and the National Institute of Health (NIH) have published COVID-19 drug recommendations, although recommendations for HF-specific drug choices in COVID-19 are still lacking. We hope that this review can answer the void of comprehensive research data regarding the management options of HF in the COVID-19 condition so that clinicians can at least choose a more beneficial therapy or avoid combination therapies that have a high burden of side effects on HF; thus, morbidity and mortality in COVID-19 patients with HF may be reduced.
Collapse
Affiliation(s)
- Hawani Sasmaya Prameswari
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Iwan Cahyo Santosa Putra
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Michael Nathaniel
- School of Medicine and Health Sciences Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Adrian Sebastian Suhendro
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Achmad Fitrah Khalid
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Raymond Pranata
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
21
|
Narrative Review: Glucocorticoids in Alcoholic Hepatitis—Benefits, Side Effects, and Mechanisms. J Xenobiot 2022; 12:266-288. [PMID: 36278756 PMCID: PMC9589945 DOI: 10.3390/jox12040019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Alcoholic hepatitis is a major health and economic burden worldwide. Glucocorticoids (GCs) are the only first-line drugs recommended to treat severe alcoholic hepatitis (sAH), with limited short-term efficacy and significant side effects. In this review, I summarize the major benefits and side effects of GC therapy in sAH and the potential underlying mechanisms. The review of the literature and data mining clearly indicate that the hepatic signaling of glucocorticoid receptor (GR) is markedly impaired in sAH patients. The impaired GR signaling causes hepatic down-regulation of genes essential for gluconeogenesis, lipid catabolism, cytoprotection, and anti-inflammation in sAH patients. The efficacy of GCs in sAH may be compromised by GC resistance and/or GC’s extrahepatic side effects, particularly the side effects of intestinal epithelial GR on gut permeability and inflammation in AH. Prednisolone, a major GC used for sAH, activates both the GR and mineralocorticoid receptor (MR). When GC non-responsiveness occurs in sAH patients, the activation of MR by prednisolone might increase the risk of alcohol abuse, liver fibrosis, and acute kidney injury. To improve the GC therapy of sAH, the effort should be focused on developing the biomarker(s) for GC responsiveness, liver-targeting GR agonists, and strategies to overcome GC non-responsiveness and prevent alcohol relapse in sAH patients.
Collapse
|
22
|
Paul B, Sterner ZR, Bhawal R, Anderson ET, Zhang S, Buchholz DR. Impaired negative feedback and death following acute stress in glucocorticoid receptor knockout Xenopus tropicalis tadpoles. Gen Comp Endocrinol 2022; 326:114072. [PMID: 35697317 DOI: 10.1016/j.ygcen.2022.114072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Blood glucocorticoid levels are regulated by the hypothalamo-pituitary-adrenal/interrenal axis (HPA axis in mammals, HPI axis in amphibians), and negative feedback by glucocorticoid signaling is a key player in that regulation. Glucocorticoid and mineralocorticoid receptors (GR and MR) mediate negative feedback in mammals, but little is known about nuclear receptor-mediated feedback in amphibians. Because amphibians have only one corticosteroidogenic cell type responsible for glucocorticoid and mineralocorticoid production, we hypothesized that GR knockout (GRKO) tadpoles have elevated levels of glucocorticoids and mineralocorticoids as well as axis components regulating their production. We also examined the response to stress and potential for increased aldosterone signaling in GRKO tadpoles. We found that GRKO tadpoles have severe hyperactivity of the HPI axis, namely high mRNA expression levels of pomc, cyp17a1, cyp21a2, cyp11b2, and star, and high tissue content of corticosterone, aldosterone, 17-hydroxyprogesterone, 21-deoxycortisol, and progesterone. Such aberrant HPI activity was accompanied by reduced survival after acute temperature shock and shaking stress. Like mammalian models of HPA hyperactivity, GRKO tadpoles have high MR mRNA expression levels in brain, kidney, heart, and skin and high levels of the inflammatory cytokine tnf-α and the profibrotic factor tgf-β in kidneys. This study showed GR is critical for negative feedback to the amphibian HPI axis and for survival from acute stressors. This study also showed GRKO tadpoles exhibit altered expression/overproduction of regulators of salt-water homeostasis and associated biomarkers of kidney disease.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Zachary R Sterner
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, United States
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, United States
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, United States.
| |
Collapse
|
23
|
Kolkhof P, Lawatscheck R, Filippatos G, Bakris GL. Nonsteroidal Mineralocorticoid Receptor Antagonism by Finerenone-Translational Aspects and Clinical Perspectives across Multiple Organ Systems. Int J Mol Sci 2022; 23:9243. [PMID: 36012508 PMCID: PMC9408839 DOI: 10.3390/ijms23169243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Perception of the role of the aldosterone/mineralocorticoid receptor (MR) ensemble has been extended from a previously renal epithelial-centered focus on sodium and volume homeostasis to an understanding of their role as systemic modulators of reactive oxygen species, inflammation, and fibrosis. Steroidal MR antagonists (MRAs) are included in treatment paradigms for resistant hypertension and heart failure with reduced ejection fraction, while more recently, the nonsteroidal MRA finerenone was shown to reduce renal and cardiovascular outcomes in two large phase III trials (FIDELIO-DKD and FIGARO-DKD) in patients with chronic kidney disease and type 2 diabetes, respectively. Here, we provide an overview of the pathophysiologic role of MR overactivation and preclinical evidence with the nonsteroidal MRA finerenone in a range of different disease models with respect to major components of the aggregate mode of action, including interfering with reactive oxygen species generation, inflammation, fibrosis, and hypertrophy. We describe a time-dependent effect of these mechanistic components and the potential modification of major clinical parameters, as well as the impact on clinical renal and cardiovascular outcomes as observed in FIDELIO-DKD and FIGARO-DKD. Finally, we provide an outlook on potential future clinical indications and ongoing clinical studies with finerenone, including a combination study with a sodium-glucose cotransporter-2 inhibitor.
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiology Precision Medicines, Research & Early Development, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Robert Lawatscheck
- Clinical Development, Bayer AG, Müller Straße 178, Building P300, 13342 Berlin, Germany
| | - Gerasimos Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Mikras Asias 75, 115 27 Athina, Greece
| | - George L. Bakris
- Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| |
Collapse
|
24
|
Shaikh A, Ray J, Campbell KN. Role of Finerenone in the Treatment of Diabetic Kidney Disease: Patient Selection and Clinical Perspectives. Ther Clin Risk Manag 2022; 18:753-760. [PMID: 35937973 PMCID: PMC9346301 DOI: 10.2147/tcrm.s325916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes is the leading cause of chronic and end stage kidney disease globally. Despite recent advances in therapies for diabetic kidney disease (DKD), there remains a critical need for additional options to improve renal and cardiovascular outcomes. Mineralocorticoid overactivation contributes to inflammation and fibrosis which in turn leads to progression of DKD. Finerenone, a novel non-steroidal mineralocorticoid receptor antagonist, has shown promising cardiac and renoprotective benefits in DKD. The utility of finerenone in the real world will require appropriate patient selection and patient monitoring by clinicians.
Collapse
Affiliation(s)
- Aisha Shaikh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justina Ray
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirk N Campbell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Howard ZM, Gomatam CK, Piepho AB, Rafael-Fortney JA. Mineralocorticoid Receptor Signaling in the Inflammatory Skeletal Muscle Microenvironments of Muscular Dystrophy and Acute Injury. Front Pharmacol 2022; 13:942660. [PMID: 35837290 PMCID: PMC9273774 DOI: 10.3389/fphar.2022.942660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a striated muscle degenerative disease due to loss of functional dystrophin protein. Loss of dystrophin results in susceptibility of muscle membranes to damage, leading to muscle degeneration and continuous inflammation and fibrosis that further exacerbate pathology. Long-term glucocorticoid receptor (GR) agonist treatment, the current standard-of-care for DMD, modestly improves prognosis but has serious side effects. The mineralocorticoid receptor (MR), a ligand-activated transcription factor present in many cell types, has been implicated as a therapeutic target for DMD. MR antagonists (MRAs) have fewer side effects than GR agonists and are used clinically for heart failure. MRA efficacy has recently been demonstrated for DMD cardiomyopathy and in preclinical studies, MRAs also alleviate dystrophic skeletal muscle pathology. MRAs lead to improvements in muscle force and membrane stability and reductions in degeneration, inflammation, and fibrosis in dystrophic muscles. Myofiber-specific MR knockout leads to most of these improvements, supporting an MR-dependent mechanism of action, but MRAs additionally stabilize myofiber membranes in an MR-independent manner. Immune cell MR signaling in dystrophic and acutely injured normal muscle contributes to wound healing, and myeloid-specific MR knockout is detrimental. More research is needed to fully elucidate MR signaling in striated muscle microenvironments. Direct comparisons of genomic and non-genomic effects of glucocorticoids and MRAs on skeletal muscles and heart will contribute to optimal temporal use of these drugs, since they compete for binding conserved receptors. Despite the advent of genetic medicines, therapies targeting inflammation and fibrosis will be necessary to achieve optimal patient outcomes.
Collapse
|
26
|
Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, Uribarri J. Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney Int 2022; 102:248-260. [PMID: 35661785 DOI: 10.1016/j.kint.2022.05.012] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease has a high global disease burden and substantially increases risk of kidney failure and cardiovascular events. Despite treatment, there is substantial residual risk of disease progression with existing therapies. Therefore, there is an urgent need to better understand the molecular mechanisms driving diabetic kidney disease to help identify new therapies that slow progression and reduce associated risks. Diabetic kidney disease is initiated by diabetes-related disturbances in glucose metabolism, which then trigger other metabolic, hemodynamic, inflammatory, and fibrotic processes that contribute to disease progression. This review summarizes existing evidence on the molecular drivers of diabetic kidney disease onset and progression, focusing on inflammatory and fibrotic mediators-factors that are largely unaddressed as primary treatment targets and for which there is increasing evidence supporting key roles in the pathophysiology of diabetic kidney disease. Results from recent clinical trials highlight promising new drug therapies, as well as a role for dietary strategies, in treating diabetic kidney disease.
Collapse
Affiliation(s)
- Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care, Spokane, Washington, USA; Institute of Translational Health Sciences, Kidney Research Institute, and Nephrology Division, University of Washington, Seattle, Washington, USA.
| | - Rajiv Agarwal
- Nephrology Division, Indiana University School of Medicine, Indianapolis, Indiana, USA; Nephrology Division, VA Medical Center, Indianapolis, Indiana, USA
| | - Charles E Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George L Bakris
- American Heart Association Comprehensive Hypertension Center at the University of Chicago Medicine, Chicago, Illinois, USA
| | - Frank C Brosius
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Kolkhof
- Cardiovascular Precision Medicines, Pharmaceuticals, Research & Development, Bayer AG, Wuppertal, Germany
| | - Jaime Uribarri
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
27
|
Zhang CJ, Li H, Xiong YZ, Chang Y, Yang F, Ma XL, Wang XT, Shimosawa T, Ji ES, Xu QY. Chronic intermittent hypoxia induces renal fibrosis through MR activation. Exp Gerontol 2022; 163:111780. [DOI: 10.1016/j.exger.2022.111780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
|
28
|
Howard ZM, Rastogi N, Lowe J, Hauck JS, Ingale P, Gomatam C, Gomez-Sanchez CE, Gomez-Sanchez EP, Bansal SS, Rafael-Fortney JA. Myeloid mineralocorticoid receptors contribute to skeletal muscle repair in muscular dystrophy and acute muscle injury. Am J Physiol Cell Physiol 2022; 322:C354-C369. [PMID: 35044859 PMCID: PMC8858682 DOI: 10.1152/ajpcell.00411.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
Abstract
Suppressing mineralocorticoid receptor (MR) activity with MR antagonists is therapeutic for chronic skeletal muscle pathology in Duchenne muscular dystrophy (DMD) mouse models. Although mechanisms underlying clinical MR antagonist efficacy for DMD cardiomyopathy and other cardiac diseases are defined, mechanisms in skeletal muscles are not fully elucidated. Myofiber MR knockout improves skeletal muscle force and a subset of dystrophic pathology. However, MR signaling in myeloid cells is known to be a major contributor to cardiac efficacy. To define contributions of myeloid MR in skeletal muscle function and disease, we performed parallel assessments of muscle pathology, cytokine levels, and myeloid cell populations resulting from myeloid MR genetic knockout in muscular dystrophy and acute muscle injury. Myeloid MR knockout led to lower levels of C-C motif chemokine receptor 2 (CCR2)-expressing macrophages, resulting in sustained myofiber damage after acute injury of normal muscle. In acute injury, myeloid MR knockout also led to increased local muscle levels of the enzyme that produces the endogenous MR agonist aldosterone, further supporting important contributions of MR signaling in normal muscle repair. In muscular dystrophy, myeloid MR knockout altered cytokine levels differentially between quadriceps and diaphragm muscles, which contain different myeloid populations. Myeloid MR knockout led to higher levels of fibrosis in dystrophic diaphragm. These results support important contributions of myeloid MR signaling to skeletal muscle repair in acute and chronic injuries and highlight the useful information gained from cell-specific genetic knockouts to delineate mechanisms of pharmacological efficacy.
Collapse
MESH Headings
- Aldosterone/metabolism
- Animals
- Barium Compounds
- Chlorides
- Cytokines/genetics
- Cytokines/metabolism
- Diaphragm/immunology
- Diaphragm/metabolism
- Diaphragm/pathology
- Disease Models, Animal
- Female
- Fibrosis
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice, Inbred mdx
- Mice, Knockout
- Muscular Diseases/chemically induced
- Muscular Diseases/immunology
- Muscular Diseases/metabolism
- Muscular Diseases/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/immunology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Quadriceps Muscle/immunology
- Quadriceps Muscle/metabolism
- Quadriceps Muscle/pathology
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Zachary M Howard
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Neha Rastogi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - J Spencer Hauck
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Pratham Ingale
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Chetan Gomatam
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Celso E Gomez-Sanchez
- Jackson Department of Veterans Affairs Medical Center, Jackson, Mississippi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shyam S Bansal
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
29
|
The Nephrotoxin Puromycin Aminonucleoside Induces Injury in Kidney Organoids Differentiated from Induced Pluripotent Stem Cells. Cells 2022; 11:cells11040635. [PMID: 35203286 PMCID: PMC8870209 DOI: 10.3390/cells11040635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), which can progress to end stage renal disease (ESRD), are a worldwide health burden. Organ transplantation or kidney dialysis are the only effective available therapeutic tools. Therefore, in vitro models of kidney diseases and the development of prospective therapeutic options are urgently needed. Within the kidney, the glomeruli are involved in blood filtration and waste excretion and are easily affected by changing cellular conditions. Puromycin aminonucleoside (PAN) is a nephrotoxin, which can be employed to induce acute glomerular damage and to model glomerular disease. For this reason, we generated kidney organoids from three iPSC lines and treated these with PAN in order to induce kidney injury. Morphological observations revealed the disruption of glomerular and tubular structures within the kidney organoids upon PAN treatment, which were confirmed by transcriptome analyses. Subsequent analyses revealed an upregulation of immune response as well as inflammatory and cell-death-related processes. We conclude that the treatment of iPSC-derived kidney organoids with PAN induces kidney injury mediated by an intertwined network of inflammation, cytoskeletal re-arrangement, DNA damage, apoptosis and cell death. Furthermore, urine-stem-cell-derived kidney organoids can be used to model kidney-associated diseases and drug discovery.
Collapse
|
30
|
Lumbers ER, Head R, Smith GR, Delforce SJ, Jarrott B, H. Martin J, Pringle KG. The interacting physiology of COVID-19 and the renin-angiotensin-aldosterone system: Key agents for treatment. Pharmacol Res Perspect 2022; 10:e00917. [PMID: 35106954 PMCID: PMC8929333 DOI: 10.1002/prp2.917] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 interacting with its receptor, angiotensin-converting enzyme 2 (ACE2), turns the host response to viral infection into a dysregulated uncontrolled inflammatory response. This is because ACE2 limits the production of the peptide angiotensin II (Ang II) and SARS-CoV-2, through the destruction of ACE2, allows the uncontrolled production of Ang II. Recovery from trauma requires activation of both a tissue response to injury and activation of a whole-body response to maintain tissue perfusion. Tissue and circulating renin-angiotensin systems (RASs) play an essential role in the host response to infection and injury because of the actions of Ang II, mediated via its AT1 receptor. Both tissue and circulating arms of the renin angiotensin aldosterone system's (RAAS) response to injury need to be regulated. The effects of Ang II and the steroid hormone, aldosterone, on fluid and electrolyte homeostasis and on the circulation are controlled by elaborate feedback networks that respond to alterations in the composition and volume of fluids within the circulatory system. The role of Ang II in the tissue response to injury is however, controlled mainly by its metabolism and conversion to Ang-(1-7) by the enzyme ACE2. Ang-(1-7) has effects that are contrary to Ang II-AT1 R mediated effects. Thus, destruction of ACE2 by SARS-CoV-2 results in loss of control of the pro-inflammatory actions of Ang II and tissue destruction. Therefore, it is the response of the host to SARS-CoV-2 that is responsible for the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Eugenie R. Lumbers
- School of Biomedical Sciences & PharmacyUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Richard Head
- University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Gary R. Smith
- VP System PracticeInternational Society for the System SciencesPontypoolUK
| | - Sarah J. Delforce
- School of Biomedical Sciences & PharmacyUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Bevyn Jarrott
- Florey Institute of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jennifer H. Martin
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Centre for Drug Repurposing and Medicines ResearchClinical PharmacologyUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Kirsty G. Pringle
- School of Biomedical Sciences & PharmacyUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
31
|
Sueta D, Yamamoto E, Usuku H, Suzuki S, Nakamura T, Matsui K, Akasaka T, Shiosakai K, Sugimoto K, Tsujita K. Rationale and Design of the Efficacy and Safety of Esaxerenone in Hypertensive Patients With Left Ventricular Hypertrophy (ESES-LVH) Study ― Protocol for a Multicenter, Open-Label, Exploratory Interventional Study ―. Circ Rep 2022; 4:99-104. [PMID: 35178486 PMCID: PMC8811229 DOI: 10.1253/circrep.cr-21-0122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/07/2021] [Accepted: 01/01/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Daisuke Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University
| | - Hiroki Usuku
- Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Science, Kumamoto University
| | - Satoru Suzuki
- Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Science, Kumamoto University
| | - Taishi Nakamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kumamoto University
| | - Kunihiko Matsui
- Community, Family, and General Medicine, Faculty of Life Sciences, Graduate School of Medical Science, Kumamoto University
| | | | | | | | - Kenichi Tsujita
- Center for Metabolic Regulation of Healthy Aging, Graduate School of Medical Science, Kumamoto University
| | | |
Collapse
|
32
|
Schreier B, Zipprich A, Uhlenhaut H, Gekle M. Mineralocorticoid receptor in non-alcoholic fatty liver disease. Br J Pharmacol 2021; 179:3165-3177. [PMID: 34935140 DOI: 10.1111/bph.15784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Liver diseases are the fourth common death in Europe responsible for about 2 million death per year worldwide. Among the known detrimental causes for liver dysfunction are virus infections, intoxications and obesity. The mineralocorticoid receptor (MR) is a ligand-dependent transcription factor activated by aldosterone or glucocorticoids but also by pathological milieu factors. Canonical actions of the MR take place in epithelial cells of kidney, colon and sweat glands and contribute to sodium reabsorption, potassium secretion and extracellular volume homeostasis. The non-canonical functions can be initiated by inflammation or an altered micro milieu leading to fibrosis, hypertrophy and remodeling in various tissues. This narrative review summarizes the evidence regarding the role of MR in portal hypertension, non-alcoholic fatty liver disease, liver fibrosis and cirrhosis, demonstrating that inhibition of the MR in vivo seems to be beneficial for liver function and not just for volume regulation. Unfortunately, the underlying molecular mechanisms are still not completely understood.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Medical Faculty of the Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Friedrich-Schiller-University Jena, Jena, Germany
| | - Henriette Uhlenhaut
- TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Medical Faculty of the Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
33
|
Kawanami D, Takashi Y, Muta Y, Oda N, Nagata D, Takahashi H, Tanabe M. Mineralocorticoid Receptor Antagonists in Diabetic Kidney Disease. Front Pharmacol 2021; 12:754239. [PMID: 34790127 PMCID: PMC8591525 DOI: 10.3389/fphar.2021.754239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease (ESKD) worldwide. Mineralocorticoid receptor (MR) plays an important role in the development of DKD. A series of preclinical studies revealed that MR is overactivated under diabetic conditions, resulting in promoting inflammatory and fibrotic process in the kidney. Clinical studies demonstrated the usefulness of MR antagonists (MRAs), such as spironolactone and eplerenone, on DKD. However, concerns regarding their selectivity for MR and hyperkalemia have remained for these steroidal MRAs. Recently, nonsteroidal MRAs, including finerenone, have been developed. These agents are highly selective and have potent anti-inflammatory and anti-fibrotic properties with a low risk of hyperkalemia. We herein review the current knowledge and future perspectives of MRAs in DKD treatment.
Collapse
Affiliation(s)
- Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yuichi Takashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yoshimi Muta
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Naoki Oda
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Dai Nagata
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hiroyuki Takahashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
34
|
Kumar S, Sur S, Perez J, Demos C, Kang DW, Kim CW, Hu S, Xu K, Yang J, Jo H. Atorvastatin and blood flow regulate expression of distinctive sets of genes in mouse carotid artery endothelium. CURRENT TOPICS IN MEMBRANES 2021; 87:97-130. [PMID: 34696890 DOI: 10.1016/bs.ctm.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Hypercholesterolemia is a well-known pro-atherogenic risk factor and statin is the most effective anti-atherogenic drug that lowers blood cholesterol levels. However, despite systemic hypercholesterolemia, atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), while the stable flow (s-flow) regions are spared. Given their predominant effects on endothelial function and atherosclerosis, we tested whether (1) statin and flow regulate the same or independent sets of genes and (2) statin can rescue d-flow-regulated genes in mouse artery endothelial cells in vivo. To test the hypotheses, C57BL/6 J mice (8-week-old male, n=5 per group) were pre-treated with atorvastatin (10mg/kg/day, Orally) or vehicle for 5 days. Thereafter, partial carotid ligation (PCL) surgery to induce d-flow in the left carotid artery (LCA) was performed, and statin or vehicle treatment was continued. The contralateral right carotid artery (RCA) remained exposed to s-flow to be used as the control. Two days or 2 weeks post-PCL surgery, endothelial-enriched RNAs from the LCAs and RCAs were collected and subjected to microarray gene expression analysis. Statin treatment in the s-flow condition (RCA+statin versus RCA+vehicle) altered the expression of 667 genes at 2-day and 187 genes at 2-week timepoint, respectively (P<0.05, fold change (FC)≥±1.5). Interestingly, statin treatment in the d-flow condition (LCA+statin versus LCA+vehicle) affected a limited number of genes: 113 and 75 differentially expressed genes at 2-day and 2-week timepoint, respectively (P<0.05, FC≥±1.5). In contrast, d-flow in the vehicle groups (LCA+vehicle versus RCA+vehicle) differentially regulated 4061 genes at 2-day and 3169 genes at 2-week timepoint, respectively (P<0.05, FC≥±1.5). Moreover, statin treatment did not reduce the number of flow-sensitive genes (LCA+statin versus RCA+statin) compared to the vehicle groups: 1825 genes at 2-day and 3788 genes at 2-week, respectively, were differentially regulated (P<0.05, FC≥±1.5). These results revealed that both statin and d-flow regulate expression of hundreds or thousands of arterial endothelial genes, respectively, in vivo. Further, statin and d-flow regulate independent sets of endothelial genes. Importantly, statin treatment did not reverse d-flow-regulated genes except for a small number of genes. These results suggest that both statin and flow play important independent roles in atherosclerosis development and highlight the need to consider their therapeutic implications for both.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Sanjoli Sur
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Julian Perez
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Chan Woo Kim
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Sarah Hu
- Thrombosis Research Unit, Bristol Myers Squibb, Lawrence, NJ, United States
| | - Ke Xu
- Thrombosis Research Unit, Bristol Myers Squibb, Lawrence, NJ, United States
| | - Jing Yang
- Thrombosis Research Unit, Bristol Myers Squibb, Lawrence, NJ, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States; Division of Cardiology, Emory University, Atlanta, GA, United States.
| |
Collapse
|
35
|
Mahadik N, Bhattacharya D, Padmanabhan A, Sakhare K, Narayan KP, Banerjee R. Targeting steroid hormone receptors for anti-cancer therapy-A review on small molecules and nanotherapeutic approaches. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1755. [PMID: 34541822 DOI: 10.1002/wnan.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The steroid hormone receptors (SHRs) among nuclear hormone receptors (NHRs) are steroid ligand-dependent transcription factors that play important roles in the regulation of transcription of genes promoted via hormone responsive elements in our genome. Aberrant expression patterns and context-specific regulation of these receptors in cancer, have been routinely reported by multiple research groups. These gave an window of opportunity to target those receptors in the context of developing novel, targeted anticancer therapeutics. Besides the development of a plethora of SHR-targeting synthetic ligands and the availability of their natural, hormonal ligands, development of many SHR-targeted, anticancer nano-delivery systems and theranostics, especially based on small molecules, have been reported. It is intriguing to realize that these cytoplasmic receptors have become a hot target for cancer selective delivery. This is in spite of the fact that these receptors do not fall in the category of conventional, targetable cell surface bound or transmembrane receptors that enjoy over-expression status. Glucocorticoid receptor (GR) is one such exciting SHR that in spite of it being expressed ubiquitously in all cells, we discovered it to behave differently in cancer cells, thus making it a truly druggable target for treating cancer. This review selectively accumulates the knowledge generated in the field of SHR-targeting as a major focus for cancer treatment with various anticancer small molecules and nanotherapeutics on progesterone receptor, mineralocorticoid receptor, and androgen receptor while selectively emphasizing on GR and estrogen receptor. This review also briefly highlights lipid-modification strategy to convert ligands into SHR-targeted cancer nanotherapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Namita Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Akshaya Padmanabhan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
36
|
Chifu I, Detomas M, Dischinger U, Kimpel O, Megerle F, Hahner S, Fassnacht M, Altieri B. Management of Patients With Glucocorticoid-Related Diseases and COVID-19. Front Endocrinol (Lausanne) 2021; 12:705214. [PMID: 34594302 PMCID: PMC8476969 DOI: 10.3389/fendo.2021.705214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health crisis affecting millions of people worldwide. SARS-CoV-2 enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2) after being cleaved by the transmembrane protease serine 2 (TMPRSS2). In addition to the lung, gastrointestinal tract and kidney, ACE2 is also extensively expressed in endocrine tissues, including the pituitary and adrenal glands. Although glucocorticoids could play a central role as immunosuppressants during the cytokine storm, they can have both stimulating and inhibitory effects on immune response, depending on the timing of their administration and their circulating levels. Patients with adrenal insufficiency (AI) or Cushing's syndrome (CS) are therefore vulnerable groups in relation to COVID-19. Additionally, patients with adrenocortical carcinoma (ACC) could also be more vulnerable to COVID-19 due to the immunosuppressive state caused by the cancer itself, by secreted glucocorticoids, and by anticancer treatments. This review comprehensively summarizes the current literature on susceptibility to and outcome of COVID-19 in AI, CS and ACC patients and emphasizes potential pathophysiological mechanisms of susceptibility to COVID-19 as well as the management of these patients in case of SARS-CoV-2. Finally, by performing an in silico analysis, we describe the mRNA expression of ACE2, TMPRSS2 and the genes encoding their co-receptors CTSB, CTSL and FURIN in normal adrenal and adrenocortical tumors (both adenomas and carcinomas).
Collapse
Affiliation(s)
- Irina Chifu
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Mario Detomas
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Ulrich Dischinger
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Otilia Kimpel
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Felix Megerle
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Stefanie Hahner
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
- Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Finsen SH, Hansen MR, Hoffmann‐Petersen J, Højgaard HF, Mortensen SP. Eight weeks of mineralocorticoid blockade does not improve insulin sensitivity in type 2 diabetes. Physiol Rep 2021; 9:e14971. [PMID: 34350730 PMCID: PMC8339527 DOI: 10.14814/phy2.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Individuals with type 2 diabetes have an increased risk of cardiovascular disease. A correlation between plasma aldosterone and hyperinsulinemia has been demonstrated in vivo, and hyperinsulinemia and insulin resistance are independently associated with the development of cardiovascular complications. We investigated if mineralocorticoid blockade (Eplerenone) improves insulin sensitivity in individuals with type 2 diabetes compared to healthy controls. We included 13 participants with type 2 diabetes (<5 years; male/female, Caucasians) and 10 healthy control participants (male/female, Caucasians). On 2 experimental days, before and at the end of the 8 weeks of treatment with mineralocorticoid blockade, a two-stage hyperinsulinemic-isoglycemic clamp (20 and 50 mU∙m-2 min-1 ) was performed for the determination of insulin sensitivity. No change in insulin sensitivity was detected at the end of the mineralocorticoid blockade in the individuals with type 2 diabetes or the healthy controls. Both before and at the end of the treatment with mineralocorticoid blockade, the individuals with type 2 diabetes had a lower insulin sensitivity compared to healthy controls. In conclusion, mineralocorticoid receptor blockade does not appear to improve insulin sensitivity in individuals with type 2 diabetes. CLINICAL TRIAL REGISTRATION: NCT03017703. https://clinicaltrials.gov/ct2/show/NCT03017703.
Collapse
Affiliation(s)
- Stine H. Finsen
- Department of Cardiovascular and Renal ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mie R. Hansen
- Department of Cardiovascular and Renal ResearchUniversity of Southern DenmarkOdenseDenmark
| | | | | | - Stefan P. Mortensen
- Department of Cardiovascular and Renal ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
38
|
Yang M, Ma F, Guan M. Role of Steroid Hormones in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Metabolites 2021; 11:metabo11050320. [PMID: 34067649 PMCID: PMC8156407 DOI: 10.3390/metabo11050320] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and may progress to cirrhosis or even hepatocellular carcinoma. A number of steroid hormones are important regulators of lipid homeostasis through fine tuning the expression of genes related to lipid synthesis, export, and metabolism. Dysregulation of such pathways has been implicated in the pathogenesis of NAFLD. The aim of this review is to clarify the potential impact of steroid hormones on NAFLD. We also highlight potential interventions through modulating steroid hormone levels or the activities of their cognate receptors as therapeutic strategies for preventing NAFLD.
Collapse
Affiliation(s)
- Meng Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Biochemistry and Molecular Biology, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China;
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Feng Ma
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Correspondence: ; Tel.: +86-755-86585232
| |
Collapse
|
39
|
Pourfridoni M, Abbasnia SM, Shafaei F, Razaviyan J, Heidari-Soureshjani R. Fluid and Electrolyte Disturbances in COVID-19 and Their Complications. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6667047. [PMID: 33937408 PMCID: PMC8060100 DOI: 10.1155/2021/6667047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) is the cause of an acute respiratory illness which has spread around the world. The virus infects the host by binding to the angiotensin-converting enzyme 2 (ACE2) receptors. Due to the presence of ACE2 receptors in the kidneys and gastrointestinal (GI) tract, kidneys and GI tract damage arising from the virus can be seen in patients and can cause acute conditions such as acute kidney injury (AKI) and digestive problems for the patient. One of the complications of kidneys and GI involvement in COVID-19 is fluid and electrolyte disturbances. The most common ones of these disorders are hyponatremia, hypernatremia, hypokalemia, hypocalcemia, hypochloremia, hypervolemia, and hypovolemia, which if left untreated, cause many problems for patients and even increase mortality. Fluid and electrolyte disturbances are more common in hospitalized and intensive care patients. Children are also at greater risk for fluid and electrolyte disturbances complications. Therefore, clinicians should pay special attention to the fluid and electrolyte status of patients. Changes in fluid and electrolyte levels can be a good indicator of disease progression.
Collapse
Affiliation(s)
| | | | - Fateme Shafaei
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Javad Razaviyan
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | | |
Collapse
|
40
|
Lee JF, Berzan E, Sridhar VS, Odutayo A, Cherney DZ. Cardiorenal Protection in Diabetic Kidney Disease. Endocrinol Metab (Seoul) 2021; 36:256-269. [PMID: 33873265 PMCID: PMC8090466 DOI: 10.3803/enm.2021.987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Over the last 5 years there have been many new developments in the management of diabetic kidney disease. Glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-glucose cotransporter-2 (SGLT2) inhibitors were initially used for glycemic control, but more recent studies have now shown that their benefits extend to cardiovascular and kidney outcomes. The recent addition of data on the novel mineralocorticoid receptor antagonist (MRA) gives us another approach to further decrease the residual risk of diabetic kidney disease progression. In this review we describe the mechanism of action, key studies, and possible adverse effects related to these three classes of medications. The management of type 2 diabetes now includes an increasing number of medications for the management of comorbidities in a patient population at significant risk of cardiovascular disease and progression of chronic kidney disease. It is from this perspective that we seek to outline the rationale for the sequential and/or combined use of SGLT2 inhibitors, GLP-1 RA and MRAs in patients with type 2 diabetes for heart and kidney protection.
Collapse
Affiliation(s)
- Jason F. Lee
- Toronto General Hospital Research Institute, University Health Network, ON, Canada
- Division of Nephrology, Department of Medicine, University of Toronto, ON, Canada
| | - Ecaterina Berzan
- Toronto General Hospital Research Institute, University Health Network, ON, Canada
- Division of Nephrology, Department of Medicine, University of Toronto, ON, Canada
| | - Vikas S. Sridhar
- Toronto General Hospital Research Institute, University Health Network, ON, Canada
- Division of Nephrology, Department of Medicine, University of Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, ON, Canada
| | - Ayodele Odutayo
- Division of Nephrology, Department of Medicine, University of Toronto, ON, Canada
- Applied Health Research Centre, Li Ka Shing Knowledge Institute of St Michael’s Hospital, ON, Canada
| | - David Z.I. Cherney
- Toronto General Hospital Research Institute, University Health Network, ON, Canada
- Division of Nephrology, Department of Medicine, University of Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Finsen SH, Hansen MR, Hansen PBL, Mortensen SP. Aldosterone Induces Vasoconstriction in Individuals with Type 2 Diabetes: Effect of Acute Antioxidant Administration. J Clin Endocrinol Metab 2021; 106:e1262-e1270. [PMID: 33247722 DOI: 10.1210/clinem/dgaa867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Individuals with type 2 diabetes have an increased risk of endothelial dysfunction and cardiovascular disease. Plasma aldosterone could contribute by reactive oxygen species-dependent mechanisms by inducing a shift in the balance between a vasoconstrictor and vasodilator response to aldosterone. OBJECTIVE We aimed to investigate the acute vascular effects of aldosterone in individuals with type 2 diabetes compared with healthy controls and if infusion of an antioxidant (n-acetylcysteine [NAC]) would alter the vascular response. METHODS In a case-control design, 12 participants with type 2 diabetes and 14 healthy controls, recruited from the general community, were studied. Leg hemodynamics were measured before and during aldosterone infusion (0.2 and 5 ng min-1 [L leg volume]-1) for 10 minutes into the femoral artery with and without coinfusion of NAC (125 mg kg-1 hour-1 followed by 25 mg kg-1 hour-1). Leg blood flow and arterial blood pressure was measured, and femoral arterial and venous blood samples were collected. RESULTS Compared with the control group, leg blood flow and vascular conductance decreased during infusion of aldosterone at the high dose in individuals with type 2 diabetes, whereas coinfusion of NAC attenuated this response. Plasma aldosterone increased in both groups during aldosterone infusion and there was no difference between groups at baseline or during the infusions. CONCLUSION These results suggests that type 2 diabetes is associated with a vasoconstrictor response to physiological levels of infused aldosterone and that the antioxidant NAC diminishes this response.
Collapse
Affiliation(s)
- Stine Høyer Finsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark
| | - Mie Rytz Hansen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark
| | | | - Stefan P Mortensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark
| |
Collapse
|
42
|
Irvin MR, Aggarwal P, Claas SA, de las Fuentes L, Do AN, Gu CC, Matter A, Olson BS, Patki A, Schwander K, Smith JD, Srinivasasainagendra V, Tiwari HK, Turner AJ, Nickerson DA, Rao DC, Broeckel U, Arnett DK. Whole-Exome Sequencing and hiPSC Cardiomyocyte Models Identify MYRIP, TRAPPC11, and SLC27A6 of Potential Importance to Left Ventricular Hypertrophy in an African Ancestry Population. Front Genet 2021; 12:588452. [PMID: 33679876 PMCID: PMC7933688 DOI: 10.3389/fgene.2021.588452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Indices of left ventricular (LV) structure and geometry represent useful intermediate phenotypes related to LV hypertrophy (LVH), a predictor of cardiovascular (CV) disease (CVD) outcomes. Methods and Results: We conducted an exome-wide association study of LV mass (LVM) adjusted to height2.7, LV internal diastolic dimension (LVIDD), and relative wall thickness (RWT) among 1,364 participants of African ancestry (AAs) in the Hypertension Genetic Epidemiology Network (HyperGEN). Both single-variant and gene-based sequence kernel association tests were performed to examine whether common and rare coding variants contribute to variation in echocardiographic traits in AAs. We then used a data-driven procedure to prioritize and select genes for functional validation using a human induced pluripotent stem cell cardiomyocyte (hiPSC-CM) model. Three genes [myosin VIIA and Rab interacting protein (MYRIP), trafficking protein particle complex 11 (TRAPPC11), and solute carrier family 27 member 6 (SLC27A6)] were prioritized based on statistical significance, variant functional annotations, gene expression in the hiPSC-CM model, and prior biological evidence and were subsequently knocked down in the hiPSC-CM model. Expression profiling of hypertrophic gene markers in the knockdowns suggested a decrease in hypertrophic expression profiles. MYRIP knockdowns showed a significant decrease in atrial natriuretic factor (NPPA) and brain natriuretic peptide (NPPB) expression. Knockdowns of the heart long chain fatty acid (FA) transporter SLC27A6 resulted in downregulated caveolin 3 (CAV3) expression, which has been linked to hypertrophic phenotypes in animal models. Finally, TRAPPC11 knockdown was linked to deficient calcium handling. Conclusions: The three genes are biologically plausible candidates that provide new insight to hypertrophic pathways.
Collapse
Affiliation(s)
- Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Praful Aggarwal
- Department of Pediatrics, Children’s Research Institute, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Steven A. Claas
- College of Public Health, University of Kentucky, Lexington, KY, United States
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine and Division of Biostatistics, Washington University, St. Louis, MO, United States
| | - Anh N. Do
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - C. Charles Gu
- Division of Biostatistics, Washington University, St. Louis, MO, United States
| | - Andrea Matter
- Department of Pediatrics, Children’s Research Institute, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Benjamin S. Olson
- Department of Pediatrics, Children’s Research Institute, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Karen Schwander
- Division of Biostatistics, Washington University, St. Louis, MO, United States
| | - Joshua D. Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amy J. Turner
- Department of Pediatrics, Children’s Research Institute, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Dabeeru C. Rao
- Division of Biostatistics, Washington University, St. Louis, MO, United States
| | - Ulrich Broeckel
- Department of Pediatrics, Children’s Research Institute, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
43
|
Ahmed MM, Tazyeen S, Alam A, Farooqui A, Ali R, Imam N, Tamkeen N, Ali S, Malik MZ, Ishrat R. Deciphering key genes in cardio-renal syndrome using network analysis. Bioinformation 2021; 17:86-100. [PMID: 34393423 PMCID: PMC8340714 DOI: 10.6026/97320630017086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Abstract
Cardio-renal syndrome (CRS) is a rapidly recognized clinical entity which refers to the inextricably connection between heart and renal impairment, whereby abnormality to one organ directly promotes deterioration of the other one. Biological markers help to gain insight into the pathological processes for early diagnosis with higher accuracy of CRS using known clinical findings. Therefore, it is of interest to identify target genes in associated pathways implicated linked to CRS. Hence, 119 CRS genes were extracted from the literature to construct the PPIN network. We used the MCODE tool to generate modules from network so as to select the top 10 modules from 23 available modules. The modules were further analyzed to identify 12 essential genes in the network. These biomarkers are potential emerging tools for understanding the pathophysiologic mechanisms for the early diagnosis of CRS. Ontological analysis shows that they are rich in MF protease binding and endo-peptidase inhibitor activity. Thus, this data help increase our knowledge on CRS to improve clinical management of the disease.
Collapse
Affiliation(s)
- Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Rafat Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Nikhat Imam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Naaila Tamkeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-1100067, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
44
|
Kotfis K, Lechowicz K, Drożdżal S, Niedźwiedzka-Rystwej P, Wojdacz TK, Grywalska E, Biernawska J, Wiśniewska M, Parczewski M. COVID-19-The Potential Beneficial Therapeutic Effects of Spironolactone during SARS-CoV-2 Infection. Pharmaceuticals (Basel) 2021; 14:ph14010071. [PMID: 33477294 PMCID: PMC7830835 DOI: 10.3390/ph14010071] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
In March 2020, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was declared a global pandemic by the World Health Organization (WHO). The clinical course of the disease is unpredictable but may lead to severe acute respiratory infection (SARI) and pneumonia leading to acute respiratory distress syndrome (ARDS). It has been shown that pulmonary fibrosis may be one of the major long-term complications of COVID-19. In animal models, the use of spironolactone was proven to be an important drug in the prevention of pulmonary fibrosis. Through its dual action as a mineralocorticoid receptor (MR) antagonist and an androgenic inhibitor, spironolactone can provide significant benefits concerning COVID-19 infection. The primary effect of spironolactone in reducing pulmonary edema may also be beneficial in COVID-19 ARDS. Spironolactone is a well-known, widely used and safe anti-hypertensive and antiandrogenic medication. It has potassium-sparing diuretic action by antagonizing mineralocorticoid receptors (MRs). Spironolactone and potassium canrenoate, exerting combined pleiotropic action, may provide a therapeutic benefit to patients with COVID-19 pneumonia through antiandrogen, MR blocking, antifibrotic and anti-hyperinflammatory action. It has been proposed that spironolactone may prevent acute lung injury in COVID-19 infection due to its pleiotropic effects with favorable renin–angiotensin–aldosterone system (RAAS) and ACE2 expression, reduction in transmembrane serine protease 2 (TMPRSS2) activity and antiandrogenic action, and therefore it may prove to act as additional protection for patients at highest risk of severe pneumonia. Future prospective clinical trials are warranted to evaluate its therapeutic potential.
Collapse
Affiliation(s)
- Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
- Correspondence: ; Tel.: +48-91-466-11-44
| | - Kacper Lechowicz
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Sylwester Drożdżal
- Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | | | - Tomasz K. Wojdacz
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Jowita Biernawska
- Department of Anesthesiology and Intensive Therapy, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
| | - Magda Wiśniewska
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland;
| |
Collapse
|
45
|
Le Billan F, Perrot J, Carceller E, Travers S, Viengchareun S, Kolkhof P, Lombès M, Fagart J. Antagonistic effects of finerenone and spironolactone on the aldosterone-regulated transcriptome of human kidney cells. FASEB J 2021; 35:e21314. [PMID: 33417258 DOI: 10.1096/fj.202002043rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022]
Abstract
Aldosterone, the main mineralocorticoid hormone in humans, plays a pivotal role in the control of water and salt reabsorption via activation of the mineralocorticoid receptor (MR). Alterations in MR signaling pathway lead to renal dysfunction, including chronic kidney disease and renal fibrosis, that can be prevented or treated with mineralocorticoid receptor antagonists (MRAs). Here, we used RNA-Sequencing to analyze effects of two MRAs, spironolactone and finerenone, on the aldosterone-induced transcriptome of a human renal cell line stably expressing the MR. Bioinformatics analysis of the data set reveals the identity of hundreds of genes induced or repressed by aldosterone. Their regulation is modulated in a time-dependent manner and, for the induced genes, depends on the aldosterone-driven direct binding of the MR onto its genomic targets that we have previously characterized. Although both MRAs block aldosterone-induced as well as aldosterone-repressed genes qualitatively similarly, finerenone has a quantitatively more efficient antagonism on some aldosterone-induced genes. Our data provide the first complete transcriptome for aldosterone on a human renal cell line and identifies pro-inflammatory markers (IL6, IL11, CCL7, and CXCL8) as aldosterone-repressed genes.
Collapse
Affiliation(s)
- Florian Le Billan
- Physiologie et Physiopathologie Endocriniennes, Inserm, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Julie Perrot
- Physiologie et Physiopathologie Endocriniennes, Inserm, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Elena Carceller
- Physiologie et Physiopathologie Endocriniennes, Inserm, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Simon Travers
- Physiologie et Physiopathologie Endocriniennes, Inserm, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Say Viengchareun
- Physiologie et Physiopathologie Endocriniennes, Inserm, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Peter Kolkhof
- Preclinical Research Cardiovascular, Pharmaceuticals, Research & Development, Bayer AG, Wuppertal, Germany
| | - Marc Lombès
- Physiologie et Physiopathologie Endocriniennes, Inserm, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jérôme Fagart
- Physiologie et Physiopathologie Endocriniennes, Inserm, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
46
|
Lattanzio MR, Weir MR. Hyperaldosteronism: How Current Concepts Are Transforming the Diagnostic and Therapeutic Paradigm. KIDNEY360 2020; 1:1148-1156. [PMID: 35368778 PMCID: PMC8815485 DOI: 10.34067/kid.0000922020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/16/2020] [Indexed: 06/14/2023]
Abstract
Nearly seven decades have elapsed since the clinical and biochemical features of primary hyperaldosteronism (PA) were described by Conn. PA is now widely recognized as the most common form of secondary hypertension. PA has a strong correlation with cardiovascular disease and failure to recognize and/or properly diagnose this condition has profound health consequences. With proper identification and management, PA has the potential to be surgically cured in a proportion of affected individuals. The diagnostic pursuit for PA is not a simplistic endeavor, particularly because an enhanced understanding of the disease process is continually redefining the diagnostic and treatment algorithm. These new concepts have emerged in all areas of this clinical condition, including identification, diagnosis, and treatment. Here, we review the recent advances in this field and summarize the effect these advances have on both diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Michael R. Lattanzio
- Division of Nephrology, Department of Medicine, The Chester County Hospital/University of Pennsylvania Health System, Philadelphia, Pennsylvania
| | - Matthew R. Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
47
|
Ab Ghani NS, Emrizal R, Makmur H, Firdaus-Raih M. Side chain similarity comparisons for integrated drug repositioning and potential toxicity assessments in epidemic response scenarios: The case for COVID-19. Comput Struct Biotechnol J 2020; 18:2931-2944. [PMID: 33101604 PMCID: PMC7575501 DOI: 10.1016/j.csbj.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
Structures of protein-drug-complexes provide an atomic level profile of drug-target interactions. In this work, the three-dimensional arrangements of amino acid side chains in known drug binding sites (substructures) were used to search for similarly arranged sites in SARS-CoV-2 protein structures in the Protein Data Bank for the potential repositioning of approved compounds. We were able to identify 22 target sites for the repositioning of 16 approved drug compounds as potential therapeutics for COVID-19. Using the same approach, we were also able to investigate the potentially promiscuous binding of the 16 compounds to off-target sites that could be implicated in toxicity and side effects that had not been provided by any previous studies. The investigations of binding properties in disease-related proteins derived from the comparison of amino acid substructure arrangements allows for effective mechanism driven decision making to rank and select only the compounds with the highest potential for success and safety to be prioritized for clinical trials or treatments. The intention of this work is not to explicitly identify candidate compounds but to present how an integrated drug repositioning and potential toxicity pipeline using side chain similarity searching algorithms are of great utility in epidemic scenarios involving novel pathogens. In the case of the COVID-19 pandemic caused by the SARS-CoV-2 virus, we demonstrate that the pipeline can identify candidate compounds quickly and sustainably in combination with associated risk factors derived from the analysis of potential off-target site binding by the compounds to be repurposed.
Collapse
Affiliation(s)
- Nur Syatila Ab Ghani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Reeki Emrizal
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Haslina Makmur
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
48
|
Cosimato C, Agoritsas T, Mavrakanas TA. Mineralocorticoid receptor antagonists in patients with chronic kidney disease. Pharmacol Ther 2020; 219:107701. [PMID: 33027644 DOI: 10.1016/j.pharmthera.2020.107701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022]
Abstract
Mineralocorticoid receptor antagonists (MRA) can reduce cardiovascular morbidity and mortality in patients with heart failure and ischemic heart disease. In addition, these agents have been used in patients with diabetic nephropathy to control proteinuria and slow down chronic kidney disease (CKD) progression. Current guidelines recommend against the use of MRAs in patients with advanced CKD. However, there is growing interest on their use in this population that has unmet needs (high cardiovascular morbidity and mortality) and unique challenges (risk of acute kidney injury or hyperkalemia). This narrative review discusses the emerging role of MRAs for the management of cardiovascular disease and/or the prevention of CKD progression, highlighting results from randomized controlled trials and presenting real-world data from available registries. Results from recent trials in patients on maintenance dialysis are also discussed.
Collapse
Affiliation(s)
- Cosimo Cosimato
- Division of General Internal Medicine, Department of Medicine, University Hospitals of Geneva & Faculty of Medicine, Geneva, Switzerland
| | - Thomas Agoritsas
- Division of General Internal Medicine, Department of Medicine, University Hospitals of Geneva & Faculty of Medicine, Geneva, Switzerland; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Thomas A Mavrakanas
- Division of General Internal Medicine, Department of Medicine, University Hospitals of Geneva & Faculty of Medicine, Geneva, Switzerland; Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
49
|
Liaudet L, Szabo C. Blocking mineralocorticoid receptor with spironolactone may have a wide range of therapeutic actions in severe COVID-19 disease. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:318. [PMID: 32513242 PMCID: PMC7278213 DOI: 10.1186/s13054-020-03055-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Lucas Liaudet
- The Service of Adult Intensive Care Medicine, University Hospital Medical Center, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| | - Csaba Szabo
- The Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
50
|
Gao X, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Nakamura Y, Satoh F, Sasano H. The Effect of Extracellular Calcium Metabolism on Aldosterone Biosynthesis in Physiological and Pathological Status. Horm Metab Res 2020; 52:448-453. [PMID: 32403152 DOI: 10.1055/a-1157-0511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Primary aldosteronism (PA) was reported to frequently harbor not only cardiovascular diseases but also some metabolic disorders including secondary calcium metabolic diseases. Recently, the potential association between aldosterone producing cells and systemic calcium metabolism has been proposed. For instance, PA is frequently associated with hypercalciuria or hypocalcemia, which subsequently stimulates parathyroid hormone (PTH) secretion. This altered calcium metabolism in PA patients could frequently result in secondary osteoporosis and fracture in some patients. On the other hand, extracellular calcium itself directly acts on adrenal cortex and has been also proposed as an independent regulator of aldosterone biosynthesis in human adrenals. However, it is also true that both PTH and vitamin D pathways stimulate endocrine functions of adrenal cortical adenomas to co-secret both aldosterone and cortisol. Therefore, it has become pivotal to explore the potential crosstalk between aldosterone and systemic calcium metabolism. We herein reviewed recent advances in these fields.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|