1
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Martin SD, Truong TTT, Liu ZSJ, Gray L, Kowalski GM, McGee SL, Kim JH, Berk M, Walder K. Effects of antipsychotic drugs on energy metabolism. Eur Arch Psychiatry Clin Neurosci 2024; 274:1125-1135. [PMID: 38072867 DOI: 10.1007/s00406-023-01727-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 07/06/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder associated with altered bioenergetic pathways and mitochondrial dysfunction. Antipsychotic medications, both first and second-generation, are commonly prescribed to manage SCZ symptoms, but their direct impact on mitochondrial function remains poorly understood. In this study, we investigated the effects of commonly prescribed antipsychotics on bioenergetic pathways in cultured neurons. We examined the impact of risperidone, aripiprazole, amisulpride, and clozapine on gene expression, mitochondrial bioenergetic profile, and targeted metabolomics after 24-h treatment, using RNA-seq, Seahorse XF24 Flux Analyser, and gas chromatography-mass spectrometry (GC-MS), respectively. Risperidone treatment reduced the expression of genes involved in oxidative phosphorylation, the tricarboxylic acid cycle, and glycolysis pathways, and it showed a tendency to decrease basal mitochondrial respiration. Aripiprazole led to dose-dependent reductions in various mitochondrial function parameters without significantly affecting gene expression. Aripiprazole, amisulpride and clozapine treatment showed an effect on the tricarboxylic acid cycle metabolism, leading to more abundant metabolite levels. Antipsychotic drug effects on mitochondrial function in SCZ are multifaceted. While some drugs have greater effects on gene expression, others appear to exert their effects through enzymatic post-translational or allosteric modification of enzymatic activity. Understanding these effects is crucial for optimising treatment strategies for SCZ. Novel therapeutic interventions targeting energy metabolism by post-transcriptional pathways might be more effective as these can more directly and efficiently regulate energy production.
Collapse
Affiliation(s)
- Bruna Panizzutti
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Briana Spolding
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Timothy Connor
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Sheree D Martin
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Trang T T Truong
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Zoe S J Liu
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Greg M Kowalski
- Metabolic Research Unit, School of Medicine, Institute for Physical Activity and Nutrition, Waurn Ponds, Geelong, VIC, Australia
| | - Sean L McGee
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ken Walder
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia.
| |
Collapse
|
2
|
Tripathi K, Ben-Shachar D. Mitochondria in the Central Nervous System in Health and Disease: The Puzzle of the Therapeutic Potential of Mitochondrial Transplantation. Cells 2024; 13:410. [PMID: 38474374 PMCID: PMC10930936 DOI: 10.3390/cells13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondria, the energy suppliers of the cells, play a central role in a variety of cellular processes essential for survival or leading to cell death. Consequently, mitochondrial dysfunction is implicated in numerous general and CNS disorders. The clinical manifestations of mitochondrial dysfunction include metabolic disorders, dysfunction of the immune system, tumorigenesis, and neuronal and behavioral abnormalities. In this review, we focus on the mitochondrial role in the CNS, which has unique characteristics and is therefore highly dependent on the mitochondria. First, we review the role of mitochondria in neuronal development, synaptogenesis, plasticity, and behavior as well as their adaptation to the intricate connections between the different cell types in the brain. Then, we review the sparse knowledge of the mechanisms of exogenous mitochondrial uptake and describe attempts to determine their half-life and transplantation long-term effects on neuronal sprouting, cellular proteome, and behavior. We further discuss the potential of mitochondrial transplantation to serve as a tool to study the causal link between mitochondria and neuronal activity and behavior. Next, we describe mitochondrial transplantation's therapeutic potential in various CNS disorders. Finally, we discuss the basic and reverse-translation challenges of this approach that currently hinder the clinical use of mitochondrial transplantation.
Collapse
Affiliation(s)
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel;
| |
Collapse
|
3
|
Omidsalar AA, McCullough CG, Xu L, Boedijono S, Gerke D, Webb MG, Manojlovic Z, Sequeira A, Lew MF, Santorelli M, Serrano GE, Beach TG, Limon A, Vawter MP, Hjelm BE. Common mitochondrial deletions in RNA-Seq: evaluation of bulk, single-cell, and spatial transcriptomic datasets. Commun Biol 2024; 7:200. [PMID: 38368460 PMCID: PMC10874445 DOI: 10.1038/s42003-024-05877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Common mitochondrial DNA (mtDNA) deletions are large structural variants in the mitochondrial genome that accumulate in metabolically active tissues with age and have been investigated in various diseases. We applied the Splice-Break2 pipeline (designed for high-throughput quantification of mtDNA deletions) to human RNA-Seq datasets and describe the methodological considerations for evaluating common deletions in bulk, single-cell, and spatial transcriptomics datasets. A robust evaluation of 1570 samples from 14 RNA-Seq studies showed: (i) the abundance of some common deletions detected in PCR-amplified mtDNA correlates with levels observed in RNA-Seq data; (ii) RNA-Seq library preparation method has a strong effect on deletion detection; (iii) deletions had a significant, positive correlation with age in brain and muscle; (iv) deletions were enriched in cortical grey matter, specifically in layers 3 and 5; and (v) brain regions with dopaminergic neurons (i.e., substantia nigra, ventral tegmental area, and caudate nucleus) had remarkable enrichment of common mtDNA deletions.
Collapse
Affiliation(s)
- Audrey A Omidsalar
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carmel G McCullough
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lili Xu
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stanley Boedijono
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Daniel Gerke
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Michelle G Webb
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Zarko Manojlovic
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California - Irvine (UCI) School of Medicine, Irvine, CA, USA
| | - Mark F Lew
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Marco Santorelli
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute (BSHRI), Sun City, AZ, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute (BSHRI), Sun City, AZ, USA
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California - Irvine (UCI) School of Medicine, Irvine, CA, USA
| | - Brooke E Hjelm
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Perrottelli A, Marzocchi FF, Caporusso E, Giordano GM, Giuliani L, Melillo A, Pezzella P, Bucci P, Mucci A, Galderisi S. Advances in the understanding of the pathophysiology of schizophrenia and bipolar disorder through induced pluripotent stem cell models. J Psychiatry Neurosci 2024; 49:E109-E125. [PMID: 38490647 PMCID: PMC10950363 DOI: 10.1503/jpn.230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024] Open
Abstract
The pathophysiology of schizophrenia and bipolar disorder involves a complex interaction between genetic and environmental factors that begins in the early stages of neurodevelopment. Recent advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising tool for understanding the neurobiological alterations involved in these disorders and, potentially, for developing new treatment options. In this review, we summarize the results of iPSC-based research on schizophrenia and bipolar disorder, showing disturbances in neurodevelopmental processes, imbalance in glutamatergic-GABAergic transmission and neuromorphological alterations. The limitations of the reviewed literature are also highlighted, particularly the methodological heterogeneity of the studies, the limited number of studies developing iPSC models of both diseases simultaneously, and the lack of in-depth clinical characterization of the included samples. Further studies are needed to advance knowledge on the common and disease-specific pathophysiological features of schizophrenia and bipolar disorder and to promote the development of new treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Giuliani
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Melillo
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Paola Bucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
5
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
6
|
Hjelm BE, Ramiro C, Rollins BL, Omidsalar AA, Gerke DS, Das SC, Sequeira A, Morgan L, Schatzberg AF, Barchas JD, Lee FS, Myers RM, Watson SJ, Akil H, Bunney WE, Vawter MP. Large Common Mitochondrial DNA Deletions Are Associated with a Mitochondrial SNP T14798C Near the 3' Breakpoints. Complex Psychiatry 2023; 8:90-98. [PMID: 36778651 PMCID: PMC9909249 DOI: 10.1159/000528051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Large somatic deletions of mitochondrial DNA (mtDNA) accumulate with aging in metabolically active tissues such as the brain. We have cataloged the breakpoints and frequencies of large mtDNA deletions in the human brain. Methods We quantified 112 high-frequency mtDNA somatic deletions across four human brain regions with the Splice-Break2 pipeline. In addition, we utilized PLINK/Seq to test the association of mitochondrial genotypes with the abundance of these high-frequency mtDNA deletions. A conservative p value threshold of 5E-08 was used to find the significant loci. Results One mtDNA SNP (T14798C) was significantly associated with mtDNA deletions in two brain regions, the dorsolateral prefrontal cortex (DLPFC) and the superior temporal gyrus. Since the DLPFC showed the most robust association between T14798C and two deletion breakpoints (7816-14807 and 5462-14807), this association was tested in the DLPFC of a replication sample and validated the first results. Incorporating the C allele at 14,798 bp increased the perfect/imperfect length of the repeat at the 3' breakpoint of the two associated deletions. Conclusion This is the first study to identify the association of mtDNA SNP with large mtDNA deletions in the human brain. The T14798C allele located in the MT-CYB gene is a common polymorphism that occurs in several mitochondrial haplogroups. We hypothesize that the T14798C association with two deletions occurs by extending the repeat length around the 3' deletion breakpoints. This simple mechanism suggests that mtDNA SNPs can affect the mitochondrial genome structure, especially in brain where high levels of reactive oxygen species lead to deletion accumulation with aging.
Collapse
Affiliation(s)
- Brooke E. Hjelm
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christian Ramiro
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Brandi L. Rollins
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Audrey A. Omidsalar
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel S. Gerke
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sujan C. Das
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Ling Morgan
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Jack D. Barchas
- Department of Psychiatry, Weill Cornell Medical College, Ithaca, New York, USA
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College, Ithaca, New York, USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Stanley J. Watson
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, Michigan, USA
| | - Huda Akil
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, Michigan, USA
| | - William E. Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA,*Marquis P. Vawter,
| |
Collapse
|
7
|
Das SC, Hjelm BE, Rollins BL, Sequeira A, Morgan L, Omidsalar AA, Schatzberg AF, Barchas JD, Lee FS, Myers RM, Watson SJ, Akil H, Bunney WE, Vawter MP. Mitochondria DNA copy number, mitochondria DNA total somatic deletions, Complex I activity, synapse number, and synaptic mitochondria number are altered in schizophrenia and bipolar disorder. Transl Psychiatry 2022; 12:353. [PMID: 36042222 PMCID: PMC9427957 DOI: 10.1038/s41398-022-02127-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial dysfunction is a neurobiological phenomenon implicated in the pathophysiology of schizophrenia and bipolar disorder that can synergistically affect synaptic neurotransmission. We hypothesized that schizophrenia and bipolar disorder share molecular alterations at the mitochondrial and synaptic levels. Mitochondria DNA (mtDNA) copy number (CN), mtDNA common deletion (CD), mtDNA total deletion, complex I activity, synapse number, and synaptic mitochondria number were studied in the postmortem human dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus (STG), primary visual cortex (V1), and nucleus accumbens (NAc) of controls (CON), and subjects with schizophrenia (SZ), and bipolar disorder (BD). The results showed (i) the mtDNA CN is significantly higher in DLPFC of both SZ and BD, decreased in the STG of BD, and unaltered in V1 and NAc of both SZ and BD; (ii) the mtDNA CD is significantly higher in DLPFC of BD while unaltered in STG, V1, and NAc of both SZ and BD; (iii) The total deletion burden is significantly higher in DLPFC in both SZ and BD while unaltered in STG, V1, and NAc of SZ and BD; (iv) Complex I activity is significantly lower in DLPFC of both SZ and BD, which is driven by the presence of medications, with no alteration in STG, V1, and NAc. In addition, complex I protein concentration, by ELISA, was decreased across three cortical regions of SZ and BD subjects; (v) The number of synapses is decreased in DLPFC of both SZ and BD, while the synaptic mitochondria number was significantly lower in female SZ and female BD compared to female controls. Overall, these findings will pave the way to understand better the pathophysiology of schizophrenia and bipolar disorder for therapeutic interventions.
Collapse
Affiliation(s)
- Sujan C. Das
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Brooke E. Hjelm
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA USA
| | - Brandi L. Rollins
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Adolfo Sequeira
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Ling Morgan
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Audrey A. Omidsalar
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA USA
| | - Alan F. Schatzberg
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA USA
| | - Jack D. Barchas
- grid.5386.8000000041936877XDepartment of Psychiatry, Weill Cornell Medical College, Ithaca, NJ USA
| | - Francis S. Lee
- grid.5386.8000000041936877XDepartment of Psychiatry, Weill Cornell Medical College, Ithaca, NJ USA
| | - Richard M. Myers
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Stanley J. Watson
- grid.214458.e0000000086837370The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Huda Akil
- grid.214458.e0000000086837370The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - William E. Bunney
- grid.266093.80000 0001 0668 7243Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Marquis P. Vawter
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| |
Collapse
|
8
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
9
|
Chang CC, Chen PS, Lin JR, Chen YA, Liu CS, Lin TT, Chang HH. Mitochondrial DNA Copy Number Is Associated With Treatment Response and Cognitive Function in Euthymic Bipolar Patients Receiving Valproate. Int J Neuropsychopharmacol 2022; 25:525-533. [PMID: 34979555 PMCID: PMC9352174 DOI: 10.1093/ijnp/pyab095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is associated with cognitive impairment and mitochondrial dysfunction. However, the associations among mitochondrial DNA copy number (MCN), treatment response, and cognitive function remain elusive in BD patients. METHODS Sixty euthymic BD patients receiving valproate (VPA) and 66 healthy controls from the community were recruited. The indices of metabolic syndrome (MetS) were measured. Quantitative polymerase chain reaction analysis of blood leukocytes was used to measure the MCN. Cognitive function was measured by calculating perseverative errors and completed categories on the Wisconsin Card Sorting Test (WCST). The VPA treatment response was measured using the Alda scale. RESULTS BD patients had significantly higher MCN, triglyceride, and C-reactive protein (CRP) levels, waist circumference, and worse performance on the WCST than the controls. Regression models showed that BD itself and the VPA concentration exerted significant effects on increased MCN levels. Moreover, the receiver operating characteristic curve analysis showed that an MCN of 2.05 distinguished VPA responders from nonresponders, with an area under the curve of 0.705 and a sensitivity and specificity of 0.529 and 0.816, respectively. An MCN level ≥2.05 was associated with 5.39 higher odds of being a VPA responder (P = .006). BD patients who were stratified into the high-MCN group had a higher VPA response rate, better WCST performance, lower CRP level, and less MetS. CONCLUSIONS The study suggests a link between the peripheral MCN and cognitive function in BD patients. As an inflammatory status, MetS might modulate this association.
Collapse
Affiliation(s)
| | | | - Jhih-Rong Lin
- Institute of Clinical Pharmacy and Pharmaceutical Sciences College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-An Chen
- Institute of Clinical Pharmacy and Pharmaceutical Sciences College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hui Hua Chang
- Correspondence: Hui Hua Chang, PhD, Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan ()
| |
Collapse
|
10
|
Chung JK, Ahn YM, Kim SA, Joo EJ. Differences in mitochondrial DNA copy number between patients with bipolar I and II disorders. J Psychiatr Res 2022; 145:325-333. [PMID: 33190840 DOI: 10.1016/j.jpsychires.2020.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/08/2020] [Accepted: 11/05/2020] [Indexed: 02/01/2023]
Abstract
Mitochondria play a critical role in energy metabolism. Genetic, postmortem brain, and brain imaging studies of bipolar disorder (BD) patients indicated that mitochondrial dysfunction might explain BD pathophysiology. Mitochondrial function can be indirectly evaluated by measuring mitochondrial DNA (mtDNA) copy numbers. We recruited 186 bipolar I disorder (BD1) and 95 bipolar II disorder (BD2) patients, and age- and sex-matched controls. MtDNA copy numbers in peripheral blood cells were measured via quantitative polymerase chain reaction. We explored parameters (including age and clinical features) that might affect mtDNA copy numbers. We found that BD1 patients had a lower mtDNA copy number than controls and that mtDNA copy number was negatively associated with the number of mood episodes. BD2 patients had a higher mtDNA copy number than controls. Thus, changes in mitochondrial function may influence BD pathophysiology. The opposite directions of the association with mtDNA copy number in BD1 and BD2 patients suggests that the difference in pathophysiology may be associated with mitochondrial function.
Collapse
Affiliation(s)
- Jae Kyung Chung
- Department of Psychiatry, Eumsung-somang Hospital, Eumsung, Republic of Korea
| | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea; Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
The role of mitochondria in the pathophysiology of schizophrenia: A critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev 2021; 132:449-464. [PMID: 34864002 DOI: 10.1016/j.neubiorev.2021.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
There has been increasing interest in the role of mitochondrial dysfunction in the pathophysiology of schizophrenia. Mitochondrial complex one (MCI) dysfunction may represent a mechanism linking bioenergetic impairment with the alterations in dopamine signalling, glutamatergic dysfunction, and oxidative stress found in the disorder. New lines of evidence from novel approaches make it timely to review evidence for mitochondrial involvement in schizophrenia, with a specific focus on MCI. The most consistent findings in schizophrenia relative to controls are reductions in expression of MCI subunits in post-mortem brain tissue (Cohen's d> 0.8); reductions in MCI function in post-mortem brains (d> 0.7); and reductions in neural glucose utilisation (d= 0.3 to 0.6). Antipsychotics may affect glucose utilisation, and, at least in vitro, affect MC1. The findings overall are consistent with MCI dysfunction in schizophrenia, but also highlight the need for in vivo studies to determine the link between MCI dysfunction and symptoms in patients. If new imaging tools confirm MCI dysfunction in the disease, this could pave the way for new treatments targeting this enzyme.
Collapse
|
12
|
Pradhan N, Singh C, Singh A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2197-2222. [PMID: 34596729 DOI: 10.1007/s00210-021-02161-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Coenzyme Q10 (ubiquinone or CoQ10) is a lipid molecule that acts as an electron mobile carrier of the electron transport chain and also contains antioxidant properties. Supplementation of CoQ10 has been very useful to treat mitochondrial diseases. CoQ10 along with its synthetic analogue, idebenone, is used largely to treat various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Friedreich's ataxia and additional brain disease condition like autism, multiple sclerosis, epilepsy, depression, and bipolar disorder, which are related to mitochondrial impairment. In this article, we have reviewed numerous physiological functions of CoQ10 and the rationale for its use in clinical practice in different brain disorders.
Collapse
Affiliation(s)
- Nilima Pradhan
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
13
|
Analysis of Molecular Networks in the Cerebellum in Chronic Schizophrenia: Modulation by Early Postnatal Life Stressors in Murine Models. Int J Mol Sci 2021; 22:ijms221810076. [PMID: 34576238 PMCID: PMC8469990 DOI: 10.3390/ijms221810076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
Despite the growing importance of the cerebellum as a region highly vulnerable to accumulating molecular errors in schizophrenia, limited information is available regarding altered molecular networks with potential therapeutic targets. To identify altered networks, we conducted one-shot liquid chromatography–tandem mass spectrometry in postmortem cerebellar cortex in schizophrenia and healthy individuals followed by bioinformatic analysis (PXD024937 identifier in ProteomeXchange repository). A total of 108 up-regulated proteins were enriched in stress-related proteins, half of which were also enriched in axonal cytoskeletal organization and vesicle-mediated transport. A total of 142 down-regulated proteins showed an enrichment in proteins involved in mitochondrial disease, most of which were also enriched in energy-related biological functions. Network analysis identified a mixed module of mainly axonal-related pathways for up-regulated proteins with a high number of interactions for stress-related proteins. Energy metabolism and neutrophil degranulation modules were found for down-regulated proteins. Further, two double-hit postnatal stress murine models based on maternal deprivation combined with social isolation or chronic restraint stress were used to investigate the most robust candidates of generated networks. CLASP1 from the axonal module in the model of maternal deprivation was combined with social isolation, while YWHAZ was not altered in either model. METTL7A from the degranulation pathway was reduced in both models and was identified as altered also in previous gene expression studies, while NDUFB9 from the energy network was reduced only in the model of maternal deprivation combined with social isolation. This work provides altered stress- and mitochondrial disease-related proteins involved in energy, immune and axonal networks in the cerebellum in schizophrenia as possible novel targets for therapeutic interventions and suggests that METTL7A is a possible relevant altered stress-related protein in this context.
Collapse
|
14
|
Effect of Novel Antipsychotics on Energy Metabolism - In Vitro Study in Pig Brain Mitochondria. Mol Neurobiol 2021; 58:5548-5563. [PMID: 34365585 DOI: 10.1007/s12035-021-02498-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
The identification and quantification of mitochondrial effects of novel antipsychotics (brexpiprazole, cariprazine, loxapine, and lurasidone) were studied in vitro in pig brain mitochondria. Selected parameters of mitochondrial metabolism, electron transport chain (ETC) complexes, citrate synthase (CS), malate dehydrogenase (MDH), monoamine oxidase (MAO), mitochondrial respiration, and total ATP and reactive oxygen species (ROS) production were evaluated and associated with possible adverse effects of drugs. All tested antipsychotics decreased the ETC activities (except for complex IV, which increased in activity after brexpiprazole and loxapine addition). Both complex I- and complex II-linked respiration were dose-dependently inhibited, and significant correlations were found between complex I-linked respiration and both complex I activity (positive correlation) and complex IV activity (negative correlation). All drugs significantly decreased mitochondrial ATP production at higher concentrations. Hydrogen peroxide production was significantly increased at 10 µM brexpiprazole and lurasidone and at 100 µM cariprazine and loxapine. All antipsychotics acted as partial inhibitors of MAO-A, brexpiprazole and loxapine partially inhibited MAO-B. Based on our results, novel antipsychotics probably lacked oxygen uncoupling properties. The mitochondrial effects of novel antipsychotics might contribute on their adverse effects, which are mostly related to decreased ATP production and increased ROS production, while MAO-A inhibition might contribute to their antidepressant effect, and brexpiprazole- and loxapine-induced MAO-B inhibition might likely promote neuroplasticity and neuroprotection. The assessment of drug-induced mitochondrial dysfunctions is important in development of new drugs as well as in the understanding of molecular mechanism of adverse or side drug effects.
Collapse
|
15
|
Emmerzaal TL, Nijkamp G, Veldic M, Rahman S, Andreazza AC, Morava E, Rodenburg RJ, Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci Biobehav Rev 2021; 127:555-571. [PMID: 34000348 DOI: 10.1016/j.neubiorev.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023]
Abstract
Individuals with mitochondrial disease often present with psychopathological comorbidity, and mitochondrial dysfunction has been proposed as the underlying pathobiology in various psychiatric disorders. Several studies have suggested that medications used to treat neuropsychiatric disorders could directly influence mitochondrial function. This review provides a comprehensive overview of the effect of these medications on mitochondrial function. We collected preclinical information on six major groups of antidepressants and other neuropsychiatric medications and found that the majority of these medications either positively influenced mitochondrial function or showed mixed effects. Only amitriptyline, escitalopram, and haloperidol were identified as having exclusively adverse effects on mitochondrial function. In the absence of formal clinical trials, and until such trials are completed, the data from preclinical studies reported and discussed here could inform medication prescribing practices for individuals with psychopathology and impaired mitochondrial function in the underlying pathology.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | - Gerben Nijkamp
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands
| | - Marin Veldic
- Mayo Clinic, Department of Psychiatry, Rochester, MN, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ana Cristina Andreazza
- University of Toronto, Temerty Faculty of Medicine, Department of Pharmacology & Toxicology and Psychiatry, Toronto, Canada
| | - Eva Morava
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Biochemistry and Molecular Biology, Rochester, MN, USA.
| |
Collapse
|
16
|
Goetzl EJ, Srihari VH, Guloksuz S, Ferrara M, Tek C, Heninger GR. Neural cell-derived plasma exosome protein abnormalities implicate mitochondrial impairment in first episodes of psychosis. FASEB J 2021; 35:e21339. [PMID: 33454965 DOI: 10.1096/fj.202002519r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Neuroprotective and other functional proteins of mitochondria were quantified in extracts of plasma neural-derived exosomes from ten first-episode psychosis (FP) patients and ten matched psychiatrically normal controls (ctls). Astrocyte-derived extracellular vesicles (ADEVs) and neuron-derived extracellular vesicles (NDEVs) were immunoabsorbed separately from physically precipitated plasma total EVs. Extracted mitochondrial ATP synthase was specifically immunofixed to plastic wells for quantification of catalytic activity based on conversion of NADH to NAD+ . Other extracted mitochondrial functional proteins were quantified by ELISAs. All protein levels were normalized with EV content of the CD81 exosome marker. FP patient ADEV level but not NDEV level of mitochondrial ATP synthase activity was significantly lower than that of ctls. FP patient ADEV and NDEV levels of the functionally critical mitochondrial proteins mitofusin 2 and cyclophilin D, but not of transcription factor A of mitochondria, and of the mitochondrial short open-reading frame neuroprotective and metabolic regulatory peptides humanin and MOTS-c were significantly lower than those of ctls. In contrast, FP patient NDEV, but not ADEV, level of the mitochondrial-tethering protein syntaphilin, but not of myosin VI, was significantly higher than that of ctls. The distinctively different neural levels of some mitochondrial proteins in FP patients than ctls now should be correlated with diverse clinical characteristics. Drugs that increase depressed levels of proteins and mimetics of deficient short open-reading frame peptides may be of therapeutic value in early phases of schizophrenia.
Collapse
Affiliation(s)
- Edward J Goetzl
- Department of Medicine, University of California Medical Center, San Francisco, CA, USA
- Campus for Jewish Living, San Francisco, CA, USA
| | - Vinod H Srihari
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sinan Guloksuz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maria Ferrara
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Cenk Tek
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - George R Heninger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
Proton Magnetic Resonance Spectroscopy of N-acetyl Aspartate in Chronic Schizophrenia, First Episode of Psychosis and High-Risk of Psychosis: A Systematic Review and Meta-Analysis. Neurosci Biobehav Rev 2020; 119:255-267. [PMID: 33068555 DOI: 10.1016/j.neubiorev.2020.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
N-acetyl-aspartate (NAA) is a readily measured marker of neuronal metabolism. Previous analyses in schizophrenia have shown NAA levels are low in frontal, temporal and thalamic regions, but may be underpowered to detect effects in other regions, in high-risk states and in first episode psychosis. We searched for magnetic resonance spectroscopy studies comparing NAA in chronic schizophrenia, first episode psychosis and high risk of psychosis to controls. 182 studies were included and meta-analysed using a random-effects model for each region and illness stage. NAA levels were significantly lower than controls in the frontal lobe [Hedge's g = -0.36, p < 0.001], hippocampus [-0.52, p < 0.001], temporal lobe [-0.35, p = 0.031], thalamus [-0.32, p = 0.012] and parietal lobe [-0.25, p = 0.028] in chronic schizophrenia, and lower than controls in the frontal lobe [-0.26, p = 0.002], anterior cingulate cortex [-0.24, p = 0.016] and thalamus [-0.28, p = 0.028] in first episode psychosis. NAA was lower in high-risk of psychosis in the hippocampus [-0.20, p = 0.049]. In schizophrenia, NAA alterations appear to begin in hippocampus, frontal cortex and thalamus, and extend later to many other regions.
Collapse
|
18
|
Goetzl EJ, Srihari VH, Guloksuz S, Ferrara M, Tek C, Heninger GR. Decreased mitochondrial electron transport proteins and increased complement mediators in plasma neural-derived exosomes of early psychosis. Transl Psychiatry 2020; 10:361. [PMID: 33106473 PMCID: PMC7588411 DOI: 10.1038/s41398-020-01046-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Potentially neurotoxic systems involved in traumatic and degenerative diseases of the brain were assessed in acute psychosis. Astrocyte-derived exosomes (ADEs) and neuron-derived exosomes (NDEs) were immunoprecipitated from plasma of ten untreated first-episode psychotics (FPs) and ten matched normal controls (Cs). Neural mitochondrial electron transport and complement proteins were extracted, quantified by ELISAs and normalized with levels of CD81 exosome marker. Levels of subunits 1 and 6 of NADH-ubiquinone oxidoreductase (complex I) and subunit 10 of cytochrome b-c1 oxidase (complex III), but not of subunit 1 of cytochrome C oxidase (complex IV) or superoxide dismutase 1 (SOD1) were significantly lower in ADEs and NDEs of FPs than Cs. This dysregulated pattern of electron transport proteins is associated with increased generation of reactive oxygen species. ADE glial fibrillary acidic protein levels were significantly higher in FPs than Cs, indicating a higher percentage of inflammatory astrocytes in FPs. ADE levels of C3b opsonin were significantly higher and those of C5b-9 attack complex was marginally higher in FPs than Cs. A significantly lower ADE level of the C3 convertase inhibitor CD55 may explain the higher levels of C3 convertase-generated C3b. ADE levels of the neuroprotective protein leukemia inhibitory factor (LIF) were significantly lower in FPs than Cs, whereas levels of IL-6 were no different. Plasma neural exosome levels of electron transport and complement proteins may be useful in predicting FP and guiding therapy. SOD mimetics, C3 convertase inhibitors and LIF receptor agonists also may have therapeutic benefits in FP.
Collapse
Affiliation(s)
- Edward J. Goetzl
- grid.413077.60000 0004 0434 9023Department of Medicine, University of California Medical Center, San Francisco, CA USA
| | - Vinod H. Srihari
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT USA
| | - Sinan Guloksuz
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT USA
| | - Maria Ferrara
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT USA
| | - Cenk Tek
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT USA
| | - George R. Heninger
- grid.47100.320000000419368710Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, CT USA
| |
Collapse
|
19
|
Hroudová J, Fišar Z, Hansíková H, Kališová L, Kitzlerová E, Zvěřová M, Lambertová A, Raboch J. Mitochondrial Dysfunction in Blood Platelets of Patients with Manic Episode of Bipolar Disorder. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:222-231. [PMID: 30582486 DOI: 10.2174/1871527318666181224130011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/30/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The bipolar affective disorder (BAD) pathophysiology is multifactorial and has not been fully clarified. METHOD We measured selected mitochondrial parameters in peripheral blood components. The analyses were performed for patients suffering from a manic episode during remission and were compared to those performed for healthy controls. BAD was clinically evaluated using well-established diagnostic scales and questionnaires. Mitochondrial respiration was examined in intact and permeabilized blood platelets using high-resolution respirometry. The citrate synthase (CS) and electron transport system (ETS) complex (complex I, II, and IV) activities were examined in platelets. RESULTS The CS, complex II and complex IV activities were decreased in the BAD patients, complex I activity was increased, and the ratio of complex I to CS was significantly increased. In the intact platelets, respiration after complex I inhibition and residual oxygen consumption were decreased in the BAD patients compared to the healthy controls. In the permeabilized platelets, a decreased ETS capacity was found in the BAD patients. No significant differences were found between BAD patients in mania and remission. CONCLUSION Increased complex I activity can be a compensatory mechanism for decreased CS and complex II and IV activities. We conclude that complex I and its abnormal activity contribute to defects in cellular energy metabolism during a manic episode and that the deficiency in the complex's functioning, but not the availability of oxidative phosphorylation substrates, seems to be responsible for the decreased ETS capacity in BAD patients. The observed parameters can be further evaluated as 'trait' markers of BAD.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.,Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Hana Hansíková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Lucie Kališová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Alena Lambertová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| |
Collapse
|
20
|
Chan ST, McCarthy MJ, Vawter MP. Psychiatric drugs impact mitochondrial function in brain and other tissues. Schizophr Res 2020; 217:136-147. [PMID: 31744750 PMCID: PMC7228833 DOI: 10.1016/j.schres.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
Mitochondria have been linked to the etiology of schizophrenia (SZ). However, studies of mitochondria in SZ might be confounded by the effects of pharmacological treatment with antipsychotic drugs (APDs) and other common medications. This review summarizes findings on relevant mitochondria mechanisms underlying SZ, and the potential impact of psychoactive drugs including primarily APDs, but also antidepressants and anxiolytics. The summarized data suggest that APDs impair mitochondria function by decreasing Complex I activity and ATP production and dissipation of the mitochondria membrane potential. At the same time, in the brains of patients with SZ, antipsychotic drug treatment normalizes gene expression modules enriched in mitochondrial genes that are decreased in SZ. This indicates that APDs may have both positive and negative effects on mitochondria. The available evidence suggests three conclusions i) alterations in mitochondria functions in SZ exist prior to APD treatment, ii) mitochondria alterations in SZ can be reversed by APD treatment, and iii) APDs directly cause impairment of mitochondria function. Overall, the mechanisms of action of psychiatric drugs on mitochondria are both direct and indirect; we conclude the effects of APDs on mitochondria may contribute to both their therapeutic and metabolic side effects. These studies support the hypothesis that neuronal mitochondria are an etiological factor in SZ. Moreover, APDs and other drugs must be considered in the evaluation of this pathophysiological role of mitochondria in SZ. Considering these effects, pharmacological actions on mitochondria may be a worthwhile target for further APD development.
Collapse
Affiliation(s)
- Shawna T Chan
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA; School of Medicine University of California, Irvine, USA
| | - Michael J McCarthy
- Psychiatry Service VA San Diego Healthcare System, Department of Psychiatry, University of California, San Diego, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA.
| |
Collapse
|
21
|
Ben-Shachar D. The bimodal mechanism of interaction between dopamine and mitochondria as reflected in Parkinson's disease and in schizophrenia. J Neural Transm (Vienna) 2019; 127:159-168. [PMID: 31848775 DOI: 10.1007/s00702-019-02120-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) and schizophrenia (SZ) are two CNS disorders in which dysfunctions in the dopaminergic system and mitochondria are major pathologies. The symptomology of both, PD a neurodegenerative disorder and SZ a neurodevelopmental disorder, is completely different. However, the pharmacological treatment of each of the diseases can cause a shift of symptoms into those characteristic of the other disease. In this review, I describe a pathological interaction between dopamine and mitochondria in both disorders, which due to differences in the extent of oxidative stress leads either to cell death and tissue degeneration as in PD substantia nigra pars compacta or to distorted neuronal activity, imbalanced neuronal circuitry and abnormal behavior and cognition in SZ. This review is in the honor of Moussa Youdim who introduced me to the secrets of research work. His enthusiasm, curiosity and novelty-seeking inspired me throughout my career. Thank you Moussa.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, and B. Rappaport Faculty of Medicine Technion-Israel Institute of Technology, POB 9649, 31096, Haifa, Israel.
| |
Collapse
|
22
|
Sun D, Wei Y, Zheng HX, Jin L, Wang J. Contribution of Mitochondrial DNA Variation to Chronic Disease in East Asian Populations. Front Mol Biosci 2019; 6:128. [PMID: 31803756 PMCID: PMC6873657 DOI: 10.3389/fmolb.2019.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main producers of energy in eukaryotic cells. Mitochondrial dysfunction is associated with specific mitochondrial DNA (mtDNA) variations (haplogroups), and these variations can contribute to human disease. East Asian populations show enrichment of many mitochondrial haplogroups, including A, B, D, G, M7, M8, M9, N9, R9, and exhibit half of the known haplogroups of worldwide. In this review, we summarize the current research in the field of mtDNA variation and associated disease in East Asian populations and discuss the physiological and pathological relevance of mitochondrial biology. mtDNA haplogroups are associated with various metabolic disorders ascribed to altered oxidative phosphorylation. The same mitochondrial haplogroup can show either a negative or positive association with different diseases. Mitochondrial dynamics, mitophagy, and mitochondrial oxidative stress, ultimately influence susceptibility to various diseases. In addition, mitochondrial retrograde signaling pathways may have profound effects on nuclear-mitochondrial interactions, affecting cellular morphology, and function. Other complex networks including proteostasis, mitochondrial unfolded protein response and reactive oxygen species signaling may also play pivotal roles in metabolic performance.
Collapse
Affiliation(s)
- Dayan Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Yang Wei
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong-Xiang Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Czarny P, Bialek K, Ziolkowska S, Strycharz J, Sliwinski T. DNA damage and repair in neuropsychiatric disorders. What do we know and what are the future perspectives? Mutagenesis 2019; 35:79-106. [DOI: 10.1093/mutage/gez035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractOver the past two decades, extensive research has been done to elucidate the molecular etiology and pathophysiology of neuropsychiatric disorders. In majority of them, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), bipolar disorder (BD), schizophrenia and major depressive disorder, increased oxidative and nitrosative stress was found. This stress is known to induce oxidative damage to biomolecules, including DNA. Accordingly, increased mitochondrial and nuclear DNA, as well as RNA damage, were observed in patients suffering from these diseases. However, recent findings indicate that the patients are characterised by impaired DNA repair pathways, which may suggest that these DNA lesions could be also a result of their insufficient repair. In the current systematic, critical review, we aim to sum up, using available literature, the knowledge about the involvement of nuclear and mitochondrial DNA damage and repair, as well as about damage to RNA in pathoetiology of neuropsychiatric disorders, i.e., AD, PD, ALS, BD, schizophrenia and major depressive disorder, as well as the usefulness of the discussed factors as being diagnostic markers and targets for new therapies. Moreover, we also underline the new directions to which future studies should head to elucidate these phenomena.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sylwia Ziolkowska
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
24
|
Velásquez E, Martins-de-Souza D, Velásquez I, Carneiro GRA, Schmitt A, Falkai P, Domont GB, Nogueira FCS. Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients. J Proteome Res 2019; 18:4240-4253. [PMID: 31581776 DOI: 10.1021/acs.jproteome.9b00398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a chronic disease characterized by the impairment of mental functions with a marked social dysfunction. A quantitative proteomic approach using iTRAQ labeling and SRM, applied to the characterization of mitochondria (MIT), crude nuclear fraction (NUC), and cytoplasm (CYT), can allow the observation of dynamic changes in cell compartments providing valuable insights concerning schizophrenia physiopathology. Mass spectrometry analyses of the orbitofrontal cortex from 12 schizophrenia patients and 8 healthy controls identified 655 protein groups in the MIT fraction, 1500 in NUC, and 1591 in CYT. We found 166 groups of proteins dysregulated among all enriched cellular fractions. Through the quantitative proteomic analysis, we detect as the main biological pathways those related to calcium and glutamate imbalance, cell signaling disruption of CREB activation, axon guidance, and proteins involved in the activation of NF-kB signaling along with the increase of complement protein C3. Based on our data analysis, we suggest the activation of NF-kB as a possible pathway that links the deregulation of glutamate, calcium, apoptosis, and the activation of the immune system in schizophrenia patients. All MS data are available in the ProteomeXchange Repository under the identifier PXD015356 and PXD014350.
Collapse
Affiliation(s)
- Erika Velásquez
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry, Institute of Biology , University of Campinas (UNICAMP) , Campinas 13083-970 , Brazil.,Experimental Medicine Research Cluster (EMRC) University of Campinas , Campinas 13083-887 , SP , Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) , Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq) , São Paulo , Brazil
| | | | - Gabriel Reis Alves Carneiro
- Laboratory of Proteomics, LADETEC, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-598 , Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy , Ludwig Maximilian University of Munich (LMU) , 80539 Munich , Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy , Ludwig Maximilian University of Munich (LMU) , 80539 Munich , Germany
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil
| | - Fabio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-909 , Brazil.,Laboratory of Proteomics, LADETEC, Institute of Chemistry , Federal University of Rio de Janeiro , Rio de Janeiro 21941-598 , Brazil
| |
Collapse
|
25
|
Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R. Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid Redox Signal 2019; 31:275-317. [PMID: 30585734 PMCID: PMC6602118 DOI: 10.1089/ars.2018.7606] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
Significance: Our current knowledge of the pathophysiology and molecular mechanisms causing psychiatric disorders is modest, but genetic susceptibility and environmental factors are central to the etiology of these conditions. Autism, schizophrenia, bipolar disorder and major depressive disorder show genetic gene risk overlap and share symptoms and metabolic comorbidities. The identification of such common features may provide insights into the development of these disorders. Recent Advances: Multiple pieces of evidence suggest that brain energy metabolism, mitochondrial functions and redox balance are impaired to various degrees in psychiatric disorders. Since mitochondrial metabolism and redox signaling can integrate genetic and environmental environmental factors affecting the brain, it is possible that they are implicated in the etiology and progression of psychiatric disorders. Critical Issue: Evidence for direct links between cellular mitochondrial dysfunction and disease features are missing. Future Directions: A better understanding of the mitochondrial biology and its intracellular connections to the nuclear genome, the endoplasmic reticulum and signaling pathways, as well as its role in intercellular communication in the organism, is still needed. This review focuses on the findings that implicate mitochondrial dysfunction, the resultant metabolic changes and oxidative stress as important etiological factors in the context of psychiatric disorders. We also propose a model where specific pathophysiologies of psychiatric disorders depend on circuit-specific impairments of mitochondrial dysfunction and redox signaling at specific developmental stages.
Collapse
Affiliation(s)
- Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, South Korea
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Krishna C. Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Zsolt Lenkei
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Maria C. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| |
Collapse
|
26
|
Ifhar LS, Ene HM, Ben-Shachar D. Impaired heme metabolism in schizophrenia-derived cell lines and in a rat model of the disorder: Possible involvement of mitochondrial complex I. Eur Neuropsychopharmacol 2019; 29:577-589. [PMID: 30948194 DOI: 10.1016/j.euroneuro.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Accumulating data point to heme involvement in neuropsychiatric disorders. Heme plays a role in major cellular processes such as signal transduction, protein complex assembly and regulation of transcription and translation. Its synthesis involves the mitochondria, which dysfunction, specifically that of the complex I (Co-I) of the electron transport chain is involved in the pathophysiology of schizophrenia (SZ). Here we aimed to demonstrate that deficits in Co-I affect heme metabolism. We show a significant decrease in heme levels in Co-I deficient SZ-derived EBV transformed lymphocytes (lymphoblastoid cell lines - LCLs) as compared to healthy subjects-derived cells (n = 9/cohort). Moreover, protein levels assessed by immunoblotting and mRNA levels assessed by qRT-PCR of heme catabolic enzyme, heme Oxygenase 1 (HO-1), and protein levels of heme downstream target phosphorylated eukaryotic initiation factor 2-alpha (Peif2a/eif2a) were significantly elevated in SZ-derived cells. In contrast, protein and mRNA levels of heme synthesis rate limiting enzyme aminolevulinic acid synthase-1 (ALAS1) were unchanged in SZ derived LCLs. In addition, inhibition of Co-I by rotenone in healthy subjects-derived LCLs (n = 4/cohort) exhibited an initial increase followed by a later decrease in heme levels. These findings were associated with opposite changes in heme's downstream target and HO-1 level, similar to our findings in SZ-derived cells. We also show a brain region specific pattern of impairment in Co-I subunits and in HO-1 and PeIF2α/eIF2α in the Poly-IC rat model of SZ (n = 6/cohort). Our results provide evidence for a link between CoI and heme metabolism both in-vitro and in-vivo suggesting its contribution to SZ pathophysiology.
Collapse
Affiliation(s)
- Lee S Ifhar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in Medical Sciences, Technion IIT, POB 9649, Haifa 31096 Israel
| | - Hila M Ene
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in Medical Sciences, Technion IIT, POB 9649, Haifa 31096 Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in Medical Sciences, Technion IIT, POB 9649, Haifa 31096 Israel.
| |
Collapse
|
27
|
Schulmann A, Ryu E, Goncalves V, Rollins B, Christiansen M, Frye MA, Biernacka J, Vawter MP. Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder. MOLECULAR NEUROPSYCHIATRY 2019; 5:13-27. [PMID: 31019915 PMCID: PMC6465701 DOI: 10.1159/000495658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction has been associated with schizophrenia (SZ) and bipolar disorder (BD). This review examines recent publications and novel associations between mitochondrial genes and SZ and BD. Associations of nuclear-encoded mitochondrial variants with SZ were found using gene- and pathway-based approaches. Two control region mitochondrial DNA (mtDNA) SNPs, T16519C and T195C, both showed an association with SZ and BD. A review of 4 studies of A15218G located in the cytochrome B oxidase gene (CYTB, SZ = 11,311, control = 35,735) shows a moderate association with SZ (p = 2.15E-03). Another mtDNA allele A12308G was nominally associated with psychosis in BD type I subjects and SZ. The first published study testing the epistatic interaction between nuclear-encoded and mitochondria-encoded genes demonstrated evidence for potential interactions between mtDNA and the nuclear genome for BD. A similar analysis for the risk of SZ revealed significant joint effects (34 nuclear-mitochondria SNP pairs with joint effect p ≤ 5E-07) and significant enrichment of projection neurons. The mitochondria-encoded gene CYTB was found in both the epistatic interactions for SZ and BD and the single SNP association of SZ. Future efforts considering population stratification and polygenic risk scores will test the role of mitochondrial variants in psychiatric disorders.
Collapse
Affiliation(s)
- Anton Schulmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Euijung Ryu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Vanessa Goncalves
- Molecular Brain Science Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Brandi Rollins
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, California, USA
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joanna Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
28
|
Zvěřová M, Hroudová J, Fišar Z, Hansíková H, Kališová L, Kitzlerová E, Lambertová A, Raboch J. Disturbances of mitochondrial parameters to distinguish patients with depressive episode of bipolar disorder and major depressive disorder. Neuropsychiatr Dis Treat 2019; 15:233-240. [PMID: 30679909 PMCID: PMC6338116 DOI: 10.2147/ndt.s188964] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunctions are implicated in the pathophysiology of mood disorders. We measured and examined the following selected mitochondrial parameters: citrate synthase (CS) activity, electron transport system (ETS) complex (complexes I, II, and IV) activities, and mitochondrial respiration in blood platelets. PATIENTS AND METHODS The analyses were performed for 24 patients suffering from a depressive episode of bipolar affective disorder (BD), compared to 68 patients with MDD and 104 healthy controls. BD and unipolar depression were clinically evaluated using well-established diagnostic scales and questionnaires. RESULTS The CS, complex II, and complex IV activities were decreased in the depressive episode of BD patients; complex I and complex I/CS ratio were significantly increased compared to healthy controls. We observed significantly decreased complex II and CS activities in patients suffering from MDD compared to controls. Decreased respiration after complex I inhibition and increased residual respiration were found in depressive BD patients compared to controls. Physiological respiration and capacity of the ETS were decreased, and respiration after complex I inhibition was increased in MDD patients, compared to controls. Increased complex I activity can be a compensatory mechanism for decreased CS and complex II and IV activities. CONCLUSION We can conclude that complex I and its abnormal activity contribute to the defects in cellular energy metabolism during a depressive episode of BD. The observed parameters could be used in a panel of biomarkers that could selectively distinguish BD depression from MDD and can be easily examined from blood elements.
Collapse
Affiliation(s)
- Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague 2, Czech Republic,
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague 2, Czech Republic, .,Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague 2, Czech Republic,
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague 2, Czech Republic,
| | - Hana Hansíková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague 2, Czech Republic
| | - Lucie Kališová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague 2, Czech Republic,
| | - Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague 2, Czech Republic,
| | - Alena Lambertová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague 2, Czech Republic,
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague 2, Czech Republic,
| |
Collapse
|
29
|
Ridout KK. Reduction in the Creatine Kinase Forward Reaction Rate as a Potential Trait Biomarker of Bipolar Disorder: Implications for Mitochondrial and Energy Metabolism Models. Biol Psychiatry 2018; 84:e77-e79. [PMID: 30409270 DOI: 10.1016/j.biopsych.2018.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Kathryn K Ridout
- Department of Psychiatry, Kaiser Permanente, San Jose, California; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island.
| |
Collapse
|