1
|
Yuxiao C, Jiachen W, Yanjie L, Shenglan L, Yuji W, Wenbin L. Therapeutic potential of arginine deprivation therapy for gliomas: a systematic review of the existing literature. Front Pharmacol 2024; 15:1446725. [PMID: 39239650 PMCID: PMC11375294 DOI: 10.3389/fphar.2024.1446725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Background Arginine deprivation therapy (ADT) hinders glioma cells' access to nutrients by reducing peripheral blood arginine, showing great efficacy in various studies, which suggests it as a potentially promising treatment for glioma. The aim of this systematic review was to explore the mechanism of ADT for gliomas, the therapeutic effect based on existing research, and possible combination therapies. Methods We performed a systematic literature review of PubMed, ScienceDirect and Web of Science databases according to PRISMA guidelines, searching for articles on the efficacy of ADT in glioma. Results We identified 17 studies among 786 search results, among which ADT therapy mainly based on Arginine free condition, Arginine Deiminase and Arginase, including three completed clinical trials. ADT therapy has shown promising results in vivo and in vitro, with its safety confirmed in clinical trials. In the early phase of treatment, glioblastoma (GBM) cells develop protective mechanisms of stress and autophagy, which eventually evolve into caspase dependent apoptosis or senescence, respectively. The immunosuppressive microenvironment is also altered by arginine depletion, such as the transformation of microglia into a pro-inflammatory phenotype and the activation of T-cells. Thus, ADT therapy demonstrates glioma-killing effect in the presence of a combination of mechanisms. In combination with various conventional therapies and investigational drugs such as radiotherapy, temozolomide (TMZ), cyclin-dependent kinase inhibitors (CDK) inhibitors and autophagy inducers, ADT therapy has been shown to be more effective. However, the phenomenon of drug resistance due to re-expression of ASS1 rather than stem cell remains to be investigated. Conclusion Despite the paucity of studies in the literature, the available data demonstrate the therapeutic potential of arginine deprivation therapy for glioma and encourage further research, especially the exploration of its combination therapies and the extrapolation of what we know about the effects and mechanisms of ADT from other tumors to glioma.
Collapse
Affiliation(s)
- Chen Yuxiao
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Xuanwu Hospital (The First Clinical College of Capital Medical University), Beijing, China
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wang Jiachen
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lan Yanjie
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Shenglan
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Yuji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Li Wenbin
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wolkersdorfer A, Bergmann B, Adelmann J, Ebbinghaus M, Günther E, Gutmann M, Hahn L, Hurwitz R, Krähmer R, Leenders F, Lühmann T, Schueler J, Schmidt L, Teifel M, Meinel L, Rudel T. PEGylated Recombinant Aplysia punctata Ink Toxin Depletes Arginine and Lysine and Inhibits the Growth of Tumor Xenografts. ACS Biomater Sci Eng 2024; 10:3825-3832. [PMID: 38722049 PMCID: PMC11168412 DOI: 10.1021/acsbiomaterials.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
In recent years, a novel treatment method for cancer has emerged, which is based on the starvation of tumors of amino acids like arginine. The deprivation of arginine in serum is based on enzymatic degradation and can be realized by arginine deaminases like the l-amino acid oxidase found in the ink toxin of the sea hare Aplysia punctata. Previously isolated from the ink, the l-amino acid oxidase was described to oxidate the essential amino acids l-lysine and l-arginine to their corresponding deaminated alpha-keto acids. Here, we present the recombinant production and functionalization of the amino acid oxidase Aplysia punctata ink toxin (APIT). PEGylated APIT (APIT-PEG) increased the blood circulation time. APIT-PEG treatment of patient-derived xenografted mice shows a significant dose-dependent reduction of tumor growth over time mediated by amino acid starvation of the tumor. Treatment of mice with APIT-PEG, which led to deprivation of arginine, was well tolerated.
Collapse
Affiliation(s)
- Alena
M. Wolkersdorfer
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Birgit Bergmann
- Chair
of Microbiology, Biocentre, University of
Würzburg, 97074 Würzburg, Germany
| | - Juliane Adelmann
- Institute
of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Matthias Ebbinghaus
- Charles
River Laboratories Germany GmbH, Am Flughafen 12−14, 79108 Freiburg, Germany
| | - Eckhard Günther
- Aeterna
Zentaris GmbH, Weismuellerstr. 50, 60314 Frankfurt am Main, Germany
| | - Marcus Gutmann
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Lukas Hahn
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Robert Hurwitz
- Max-Planck-Institute
for Infection Biology, Virchowweg 12, 10117 Berlin, Germany
| | - Ralf Krähmer
- Celares
GmbH, Otto-Warburg-Haus, 13125 Berlin, Germany
| | | | - Tessa Lühmann
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Julia Schueler
- Charles
River Laboratories Germany GmbH, Am Flughafen 12−14, 79108 Freiburg, Germany
| | - Luisa Schmidt
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Michael Teifel
- Aeterna
Zentaris GmbH, Weismuellerstr. 50, 60314 Frankfurt am Main, Germany
| | - Lorenz Meinel
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
- Helmholtz-Institute
for RNA-based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Thomas Rudel
- Chair
of Microbiology, Biocentre, University of
Würzburg, 97074 Würzburg, Germany
- Helmholtz-Institute
for RNA-based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
3
|
Tseng YH, Lin HP, Lin SY, Chen BM, Vo TNN, Yang SH, Lin YC, Prijovic Z, Czosseck A, Leu YL, Roffler SR. Engineering stable and non-immunogenic immunoenzymes for cancer therapy via in situ generated prodrugs. J Control Release 2024; 369:179-198. [PMID: 38368947 DOI: 10.1016/j.jconrel.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Engineering human enzymes for therapeutic applications is attractive but introducing new amino acids may adversely affect enzyme stability and immunogenicity. Here we used a mammalian membrane-tethered screening system (ECSTASY) to evolve human lysosomal beta-glucuronidase (hBG) to hydrolyze a glucuronide metabolite (SN-38G) of the anticancer drug irinotecan (CPT-11). Three human beta-glucuronidase variants (hBG3, hBG10 and hBG19) with 3, 10 and 19 amino acid substitutions were identified that display up to 40-fold enhanced enzymatic activity, higher stability than E. coli beta-glucuronidase in human serum, and similar pharmacokinetics in mice as wild-type hBG. The hBG variants were two to three orders of magnitude less immunogenic than E. coli beta-glucuronidase in hBG transgenic mice. Intravenous administration of an immunoenzyme (hcc49-hBG10) targeting a sialyl-Tn tumor-associated antigen to mice bearing human colon xenografts significantly enhanced the anticancer activity of CPT-11 as measured by tumor suppression and mouse survival. Our results suggest that genetically-modified human enzymes represent a good alternative to microbially-derived enzymes for therapeutic applications.
Collapse
Affiliation(s)
- Yi-Han Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Pei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Sung-Yao Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | - Shih-Hung Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Zeljko Prijovic
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11001, Serbia
| | - Andreas Czosseck
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Lin Leu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
4
|
Yusof NY, Quay DHX, Kamaruddin S, Jonet MA, Md Illias R, Mahadi NM, Firdaus-Raih M, Abu Bakar FD, Abdul Murad AM. Biochemical and in silico structural characterization of a cold-active arginase from the psychrophilic yeast, Glaciozyma antarctica PI12. Extremophiles 2024; 28:15. [PMID: 38300354 DOI: 10.1007/s00792-024-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Doris Huai Xia Quay
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Shazilah Kamaruddin
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome and Vaccine Institute, Jalan Bangi Lama, 43000, Kajang, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Nor Muhammad Mahadi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
5
|
Zuo Z, Zhou Z, Chang Y, Liu Y, Shen Y, Li Q, Zhang L. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer. Genes Dis 2024; 11:218-233. [PMID: 37588202 PMCID: PMC10425756 DOI: 10.1016/j.gendis.2022.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is a small subunit in ribonucleotide reductases, which participate in nucleotide metabolism and catalyze the conversion of nucleotides to deoxynucleotides, maintaining the dNTP pools for DNA biosynthesis, repair, and replication. RRM2 performs a critical role in the malignant biological behaviors of cancers. The structure, regulation, and function of RRM2 and its inhibitors were discussed. RRM2 gene can produce two transcripts encoding the same ORF. RRM2 expression is regulated at multiple levels during the processes from transcription to translation. Moreover, this gene is associated with resistance, regulated cell death, and tumor immunity. In order to develop and design inhibitors of RRM2, appropriate strategies can be adopted based on different mechanisms. Thus, a greater appreciation of the characteristics of RRM2 is a benefit for understanding tumorigenesis, resistance in cancer, and tumor microenvironment. Moreover, RRM2-targeted therapy will be more attention in future therapeutic approaches for enhancement of treatment effects and amelioration of the dismal prognosis.
Collapse
Affiliation(s)
- Zanwen Zuo
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zerong Zhou
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuzhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Shen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Gulati K, Manukonda R, Kairamkonda M, Kaliki S, Poluri KM. Serum Metabolomics of Retinoblastoma: Assessing the Differential Serum Metabolic Signatures of Unilateral and Bilateral Patients. ACS OMEGA 2023; 8:48233-48250. [PMID: 38144138 PMCID: PMC10733957 DOI: 10.1021/acsomega.3c07424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
Retinoblastoma (Rb) is the most common pediatric eye cancer. To identify the biomarkers for early diagnosis and monitoring the progression of Rb in patients, mapping of the alterations in their metabolic profiles is essential. The present study aims at exploring the metabolic disparity in serum from Rb patients and controls using NMR-based metabolomics. A total of 72 metabolites, including carbohydrates, amino acids, and organic acids, were quantified in serum samples from 24 Rb patients and 26 controls. Distinct clusters of Rb patients and controls were obtained using the partial least-squares discriminant analysis (PLS-DA) model. Further, univariate and multivariate analyses of unilateral and bilateral Rb patients with respect to their age-matched controls depicted their distinct metabolic fingerprints. Metabolites including 2-phosphoglycerate, 4-aminobutyrate, proline, O-phosphocholine, O-phosphoethanolamine, and Sn-glycero-3-phosphocholine (Sn-GPC) showed significant perturbation in both unilateral and bilateral Rb patients. However, metabolic differences among the bilateral Rb cases were more pronounced than those in unilateral Rb cases with respect to controls. In addition to major discriminatory metabolites for Rb, unilateral and bilateral Rb cases showed specific metabolic changes, which might be the result of their differential genetic/somatic mutational backgrounds. This further suggests that the aberrant metabolic perturbation in bilateral patients signifies the severity of the disease in Rb patients. The present study demonstrated that identified serum metabolites have potential to serve as a noninvasive method for detection of Rb, discriminate bilateral from unilateral Rb patients, and aid in better understanding of the RB tumor biology.
Collapse
Affiliation(s)
- Khushboo Gulati
- The
Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad-500034, Telangana, India
- Brien
Holden Eye Research Center, L. V. Prasad
Eye Institute, Hyderabad-500034, Telangana, India
| | - Radhika Manukonda
- The
Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad-500034, Telangana, India
- Brien
Holden Eye Research Center, L. V. Prasad
Eye Institute, Hyderabad-500034, Telangana, India
| | - Manikyaprabhu Kairamkonda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Swathi Kaliki
- The
Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad-500034, Telangana, India
| | - Krishna Mohan Poluri
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
- Centre
for Nanotechnology, Indian Institute of
Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
7
|
Mossmann D, Müller C, Park S, Ryback B, Colombi M, Ritter N, Weißenberger D, Dazert E, Coto-Llerena M, Nuciforo S, Blukacz L, Ercan C, Jimenez V, Piscuoglio S, Bosch F, Terracciano LM, Sauer U, Heim MH, Hall MN. Arginine reprograms metabolism in liver cancer via RBM39. Cell 2023; 186:5068-5083.e23. [PMID: 37804830 PMCID: PMC10642370 DOI: 10.1016/j.cell.2023.09.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.
Collapse
Affiliation(s)
- Dirk Mossmann
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Sujin Park
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Brendan Ryback
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Marco Colombi
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Eva Dazert
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Mairene Coto-Llerena
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Lauriane Blukacz
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Veronica Jimenez
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Fatima Bosch
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Luigi M Terracciano
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, 4031 Basel, Switzerland; Clarunis University Center for Gastrointestinal and Liver Diseases, 4031 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
8
|
Afshinpour M, Mahdiuni H. Arginine transportation mechanism through cationic amino acid transporter 1: insights from molecular dynamics studies. J Biomol Struct Dyn 2023; 41:13580-13594. [PMID: 36762692 DOI: 10.1080/07391102.2023.2175374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Metabolic and signaling mechanisms in mammalian cells are facilitated by the transportation of L-arginine (Arg) across the plasma membrane through cationic amino acid transporter (CAT) proteins. Due to a lack of argininosuccinate synthase (ASS) activity in various tumor cells such as acute myeloid leukemia, acute lymphocytic leukemia, and chronic lymphocytic leukemia, these tumor entities are arginine-auxotrophic and therefore depend on the uptake of the amino acid arginine. Cationic amino acid transporter-1 (CAT-1) is the leading arginine importer expressed in the aforementioned tumor entities. Hence, in the present study, to investigate the transportation mechanism of arginine in CAT-1, we performed molecular dynamics (MD) simulation methods on the modeled human CAT-1. The MM-PBSA approach was conducted to determine the critical residues interacting with arginine within the corresponding binding site of CAT-1. In addition, we found out that the water molecules have the leading role in forming the transportation channel within CAT-1. The conductive structure of CAT-1 was formed only when the water molecules were continuously distributed across the channel. Steered molecular dynamics (SMD) simulation approach showed various energy barriers against arginine transportation through CAT-1, especially while crossing the bottlenecks of the related channel. These findings at the molecular level might shed light on identifying the crucial amino acids in the binding of arginine to eukaryotic CATs and also provide fundamental insights into the arginine transportation mechanisms through CAT-1. Understanding the transportation mechanism of arginine is essential to developing CAT-1 blockers, which can be potential medications for some types of cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maral Afshinpour
- Bioinformatics Lab., Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Hamid Mahdiuni
- Bioinformatics Lab., Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
9
|
The exploitation of enzyme-based cancer immunotherapy. Hum Cell 2023; 36:98-120. [PMID: 36334180 DOI: 10.1007/s13577-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Cancer immunotherapy utilizes the immune system and its wide-ranging components to deliver anti-tumor responses. In immune escape mechanisms, tumor microenvironment-associated soluble factors and cell surface-bound molecules are mainly accountable for the dysfunctional activity of tumor-specific CD8+ T cells, natural killer (NK) cells, tumor associated macrophages (TAMs) and stromal cells. The myeloid-derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs), are also key tumor-promoting immune cells. These potent immunosuppressive networks avert tumor rejection at various stages, affecting immunotherapies' outcomes. Numerous clinical trials have elucidated that disruption of immunosuppression could be achieved via checkpoint inhibitors. Another approach utilizes enzymes that can restore the body's potential to counter cancer by triggering the immune system inhibited by the tumor microenvironment. These immunotherapeutic enzymes can catalyze an immunostimulatory signal and modulate the tumor microenvironment via effector molecules. Herein, we have discussed the immuno-metabolic roles of various enzymes like ATP-dephosphorylating ectoenzymes, inducible Nitric Oxide Synthase, phenylamine, tryptophan, and arginine catabolizing enzymes in cancer immunotherapy. Understanding the detailed molecular mechanisms of the enzymes involved in modulating the tumor microenvironment may help find new opportunities for cancer therapeutics.
Collapse
|
10
|
Yan Y, Chen C, Li Z, Zhang J, Park N, Qu CK. Extracellular arginine is required but the arginine transporter CAT3 (Slc7a3) is dispensable for mouse normal and malignant hematopoiesis. Sci Rep 2022; 12:21832. [PMID: 36528691 PMCID: PMC9759514 DOI: 10.1038/s41598-022-24554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Amino acid-mediated metabolism is one of the key catabolic and anabolic processes involved in diverse cellular functions. However, the role of the semi-essential amino acid arginine in normal and malignant hematopoietic cell development is poorly understood. Here we report that a continuous supply of exogenous arginine is required for the maintenance/function of normal hematopoietic stem cells (HSCs). Surprisingly, knockout of Slc7a3 (CAT3), a major L-arginine transporter, does not affect HSCs in steady-state or under stress. Although Slc7a3 is highly expressed in naïve and activated CD8 T cells, neither T cell development nor activation/proliferation is impacted by Slc7a3 depletion. Furthermore, the Slc7a3 deletion does not attenuate leukemia development driven by Pten loss or the oncogenic Ptpn11E76K mutation. Arginine uptake assays reveal that L-arginine uptake is not disrupted in Slc7a3 knockout cells. These data suggest that extracellular arginine is critically important for HSCs, but CAT3 is dispensable for normal hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Yuhan Yan
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Chao Chen
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Zhiguo Li
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Jing Zhang
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Narin Park
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Cheng-Kui Qu
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| |
Collapse
|
11
|
Lee H, Park G, Kim S, Son B, Joo J, Park HH, Park TH. Enhancement of anti-tumor activity in melanoma using arginine deiminase fused with 30Kc19α protein. Appl Microbiol Biotechnol 2022; 106:7531-7545. [PMID: 36227339 DOI: 10.1007/s00253-022-12218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
Arginine deiminase (ADI) is a microbial-derived enzyme which catalyzes the conversion of L-arginine into L-citrulline. ADI originating from Mycoplasma has been reported to present anti-tumor activity against arginine-auxotrophic tumors, including melanoma. Melanoma cells are sensitive to arginine depletion due to reduced expression of argininosuccinate synthase 1 (ASS1), a key enzyme for arginine biosynthesis. However, clinical applications of recombinant ADI for melanoma treatment present some limitations. Since recombinant ADI is not human-derived, it shows instability, proteolytic degradation, and antigenicity in human serum. In addition, there is a problem of drug resistance issue due to the intracellular expression of once-silenced ASS1. Moreover, recombinant ADI proteins are mainly expressed as inclusion body forms in Escherichia coli and require a time-consuming refolding process to turn them back into active form. Herein, we propose fusion of recombinant ADI from Mycoplasma hominis and 30Kc19α, a cell-penetrating protein which also increases stability and soluble expression of cargo proteins, to overcome these problems. We inserted matrix metalloproteinase-2 cleavable linker between ADI and 30Kc19α to increase enzyme activity in melanoma cells. Compared to ADI, ADI-LK-30Kc19α showed enhanced solubility, stability, and cell penetration. The fusion protein demonstrated selective cytotoxicity and reduced drug resistance in melanoma cells, thus would be a promising strategy for the improved efficacy in melanoma treatment. KEY POINTS: • Fusion of ADI with 30Kc19α enhances soluble expression and productivity of recombinant ADI in E. coli • 30Kc19α protects ADI from the proteolytic degradation by shielding effect, helping ADI to remain active • Intracellular delivery of ADI by 30Kc19α overcomes ADI resistance in melanoma cells by degrading intracellularly expressed arginine.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Geunhwa Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Seulha Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Boram Son
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea. .,Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea.
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea. .,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Angka L, Tanese de Souza C, Baxter KE, Khan ST, Market M, Martel AB, Tai LH, Kennedy MA, Bell JC, Auer RC. Perioperative arginine prevents metastases by accelerating natural killer cell recovery after surgery. Mol Ther 2022; 30:3270-3283. [PMID: 35619558 PMCID: PMC9552810 DOI: 10.1016/j.ymthe.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Profound natural killer (NK) cell suppression after cancer surgery is a main driver of metastases and recurrence, for which there is no clinically approved intervention available. Surgical stress is known to cause systemic postoperative changes that negatively modulate NK cell function including the expansion of surgery-induced myeloid-derived suppressor cells (Sx-MDSCs) and a marked reduction in arginine bioavailability. In this study, we determine that Sx-MDSCs regulate systemic arginine levels in the postoperative period and that restoring arginine imbalance after surgery by dietary intake alone was sufficient to significantly reduce surgery-induced metastases in our preclinical murine models. Importantly, the effects of perioperative arginine were dependent upon NK cells. Although perioperative arginine did not prevent immediate NK cell immunoparalysis after surgery, it did accelerate their return to preoperative cytotoxicity, interferon gamma secretion, and activating receptor expression. Finally, in a cohort of patients with colorectal cancer, postoperative arginine levels were shown to correlate with their Sx-MDSC levels. Therefore, this study lends further support for the use of perioperative arginine supplementation by improving NK cell recovery after surgery.
Collapse
Affiliation(s)
- Leonard Angka
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | | | - Katherine E Baxter
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Sarwat T Khan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marisa Market
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Andre B Martel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Lee-Hwa Tai
- Department of Immunology & Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Michael A Kennedy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - John C Bell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
13
|
Hassabo AA, Abdelraof M, Allam RM. L-arginase from Streptomyces diastaticus MAM5 as a potential therapeutic agent in breast cancer: Purification, characterization, G1 phase arrest and autophagy induction. Int J Biol Macromol 2022; 224:634-645. [DOI: 10.1016/j.ijbiomac.2022.10.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
14
|
Carpentier J, Pavlyk I, Mukherjee U, Hall PE, Szlosarek PW. Arginine Deprivation in SCLC: Mechanisms and Perspectives for Therapy. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:53-66. [PMID: 36091646 PMCID: PMC9462517 DOI: 10.2147/lctt.s335117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Arginine deprivation has gained increasing traction as a novel and safe antimetabolite strategy for the treatment of several hard-to-treat cancers characterised by a critical dependency on arginine. Small cell lung cancer (SCLC) displays marked arginine auxotrophy due to inactivation of the rate-limiting enzyme argininosuccinate synthetase 1 (ASS1), and as a consequence may be targeted with pegylated arginine deiminase or ADI-PEG20 (pegargiminase) and human recombinant pegylated arginases (rhArgPEG, BCT-100 and pegzilarginase). Although preclinical studies reveal that ASS1-deficient SCLC cell lines are highly sensitive to arginine-degrading enzymes, there is a clear disconnect with the clinic with minimal activity seen to date that may be due in part to patient selection. Recent studies have explored resistance mechanisms to arginine depletion focusing on tumor adaptation, such as ASS1 re-expression and autophagy, stromal cell inputs including macrophage infiltration, and tumor heterogeneity. Here, we explore how arginine deprivation may be combined strategically with novel agents to improve SCLC management by modulating resistance and increasing the efficacy of existing agents. Moreover, recent work has identified an intriguing role for targeting arginine in combination with PD-1/PD-L1 immune checkpoint inhibitors and clinical trials are in progress. Thus, future studies of arginine-depleting agents with chemoimmunotherapy, the current standard of care for SCLC, may lead to enhanced disease control and much needed improvements in long-term survival for patients.
Collapse
Affiliation(s)
- Joséphine Carpentier
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Iuliia Pavlyk
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Uma Mukherjee
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter E Hall
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter W Szlosarek
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| |
Collapse
|
15
|
Dhankhar R, Kawatra A, Gupta V, Mohanty A, Gulati P. In silico and in vitro analysis of arginine deiminase from Pseudomonas furukawaii as a potential anticancer enzyme. 3 Biotech 2022; 12:220. [PMID: 35971334 PMCID: PMC9374873 DOI: 10.1007/s13205-022-03292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Arginine deiminase (ADI), a promising anticancer enzyme from Mycoplasma hominis, is currently in phase III of clinical trials for the treatment of arginine auxotrophic tumors. However, it has been associated with several drawbacks in terms of low stability at human physiological conditions, high immunogenicity, hypersensitivity and systemic toxicity. In our previous work, Pseudomonas furukawaii 24 was identified as a potent producer of ADI with optimum activity under physiological conditions. In the present study, phylogenetic analysis of microbial ADIs indicated P. furukawaii ADI (PfADI) to be closely related to experimentally characterized ADIs of Pseudomonas sp. with proven anticancer activity. Immunoinformatics analysis was performed indicating lower immunogenicity of PfADI than MhADI (M. hominis ADI) both in terms of number of linear and conformational B-cell epitopes and T-cell epitope density. Overall antigenicity and allergenicity of PfADI was also lower as compared to MhADI, suggesting the applicability of PfADI as an alternative anticancer biotherapeutic. Hence, in vitro experiments were performed in which the ADI coding arcA gene of P. furukawaii was cloned and expressed in E. coli BL21. Recombinant ADI of P. furukawaii was purified, characterized and its anticancer activity was assessed. The enzyme was stable at human physiological conditions (pH 7 and 37 °C) with Km of 1.90 mM. PfADI was found to effectively inhibit the HepG2 cells with an IC50 value of 0.1950 IU/ml. Therefore, the current in silico and in vitro studies establish PfADI as a potential anticancer drug candidate with improved efficacy and low immunogenicity. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03292-2.
Collapse
Affiliation(s)
- Rakhi Dhankhar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Vatika Gupta
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, New Delhi, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
16
|
Hypoxia-driven metabolic heterogeneity and immune evasive behaviour of gastrointestinal cancers: Elements of a recipe for disaster. Cytokine 2022; 156:155917. [PMID: 35660715 DOI: 10.1016/j.cyto.2022.155917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal (GI) cancers refer to a group of malignancies associated with the GI tract (GIT). Like other solid tumors, hypoxic regions consistently feature inside the GI tumor microenvironment (TME) and contribute towards metabolic reprogramming of tumor-resident cells by modulating hypoxia-induced factors. We highlight here how the metabolic crosstalk between cancer cells and immune cells generate immunosuppressive environment inside hypoxic tumors. Given the fluctuating nature of tumor hypoxia, the metabolic fluxes between immune cells and cancer cells change dynamically. These changes alter cellular phenotypes and functions, resulting in the acceleration of cancer progression. These evolved properties of hypoxic tumors make metabolism-targeting monotherapy approaches or immunotherapy-measures unsuccessful. The current review highlights the advantages of combined immunometabolic treatment strategies to target hypoxic GI cancers and also identifies research areas to develop better combinational therapeutics for future.
Collapse
|
17
|
Bacteria and tumor: Understanding the roles of bacteria in tumor genesis and immunology. Microbiol Res 2022; 261:127082. [PMID: 35660471 DOI: 10.1016/j.micres.2022.127082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/08/2021] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
In the past, tumor and microbial infection were commonly regarded as independent diseases with few interrelations. The discovery of bacteria in tumor tissue changed the knowledge of bacteria-tumor relationship. Recently, more and more findings have demonstrated the significant effects of bacteria on the genesis, development and metastasis of tumor. Particularly, the influence of bacteria on tumor immunity is of great interest. Bacteria can inhibit the function of immune system through multiple mechanisms. On the other hand, some bacteria can also enhance the immune response and inhibit tumor progression. Understanding the bacteria-tumor interactions is of great importance for developing novel anticancer approaches. Herein, we aim to provide a comprehensive understanding of the tumor/tumor immunology, the biogenesis of bacteria in tumor and the relation of tumorigenesis with bacteria. In addition, the roles of bacteria in tumor immunology and the potential approaches to use bacteria for cancer therapy are discussed.
Collapse
|
18
|
A. Hassabo A, H.Selim M, M.Saad M, Abdelraof M. Optimization of l-methioninase and l-arginase production by newly isolated marine yeast using response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Schwarz R, Zitzow E, Fiebig A, Hering S, Humboldt Y, Schoenwaelder N, Kämpfer N, Volkmar K, Hinz B, Kreikemeyer B, Maletzki C, Fiedler T. PEGylation increases antitumoral activity of arginine deiminase of Streptococcus pyogenes. Appl Microbiol Biotechnol 2021; 106:261-271. [PMID: 34910240 PMCID: PMC8720082 DOI: 10.1007/s00253-021-11728-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022]
Abstract
Abstract Arginine auxotrophy is a metabolic defect that renders tumor cells vulnerable towards arginine-depleting substances, such as arginine deiminase (ADI) from Streptococcus pyogenes (SpyADI). Previously, we confirmed SpyADI susceptibility on patient-derived glioblastoma multiforme (GBM) models in vitro and in vivo. For application in patients, serum half-life of the enzyme has to be increased and immunogenicity needs to be reduced. For this purpose, we conjugated the S. pyogenes-derived SpyADI with 20 kDa polyethylene glycol (PEG20) moieties, achieving a PEGylation of seven to eight of the 26 accessible primary amines of the SpyADI. The PEGylation reduced the overall activity of the enzyme by about 50% without affecting the Michaelis constant for arginine. PEGylation did not increase serum stability of SpyADI in vitro, but led to a longer-lasting reduction of plasma arginine levels in mice. Furthermore, SpyADI-PEG20 showed a higher antitumoral capacity towards GBM cells in vitro than the native enzyme. Key points • PEGylation has no effect on the affinity of SpyADI for arginine • PEGylation increases the antitumoral effects of SpyADI on GBM in vitro • PEGylation prolongs plasma arginine depletion by SpyADI in mice
Collapse
Affiliation(s)
- Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Eric Zitzow
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Adina Fiebig
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Silvio Hering
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Yvonne Humboldt
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Nina Schoenwaelder
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.,Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Neele Kämpfer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.,Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Kerren Volkmar
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.,Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.,Division of Immunology, Paul-Ehrlich-Institute, Langen, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Tomas Fiedler
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.
| |
Collapse
|
20
|
Yao S, Janku F, Koenig K, Tsimberidou AM, Piha-Paul SA, Shi N, Stewart J, Johnston A, Bomalaski J, Meric-Bernstam F, Fu S. Phase 1 trial of ADI-PEG 20 and liposomal doxorubicin in patients with metastatic solid tumors. Cancer Med 2021; 11:340-347. [PMID: 34841717 PMCID: PMC8729058 DOI: 10.1002/cam4.4446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/30/2023] Open
Abstract
Background Arginine depletion interferes with pyrimidine metabolism and DNA damage repair pathways. Preclinical data demonstrated that depletion of arginine by PEGylated arginine deiminase (ADI‐PEG 20) enhanced liposomal doxorubicin (PLD) cytotoxicity in cancer cells with argininosuccinate synthase 1 (ASS1) deficiency. The objective of this study was to assess safety and tolerability of ADI‐PEG 20 and PLD in patients with metastatic solid tumors. Methods Patients with advanced ASS1‐deficient solid tumors were enrolled in this phase 1 trial of ADI‐PEG 20 and PLD following a 3 + 3 design. Eligible patients were given intravenous PLD biweekly and intramuscular (IM) ADI‐PEG 20 weekly. Toxicity and efficacy were evaluated according to the Common Terminology Criteria for Adverse Events (version 4.0) and Response Evaluation Criteria in Solid Tumors (version 1.1), respectively. Results Of 15 enrolled patients, 9 had metastatic HER2‐negative breast carcinoma. We observed no dose‐limiting toxicities or treatment‐related deaths. One patient safely received 880 mg/m2 PLD in this study and 240 mg/m2 doxorubicin previously. Treatment led to stable disease in 9 patients and was associated with a median progression‐free survival time of 3.95 months in 15 patients. Throughout the duration of treatment, decreased arginine and increased citrulline levels in peripheral blood remained significant in a majority of patients. We detected no induction of anti‐ADI‐PEG 20 antibodies by week 8 in one third of patients. Conclusion Concurrent IM injection of ADI‐PEG 20 at 36 mg/m2 weekly and intravenous infusion of PLD at 20 mg/m2 biweekly had an acceptable safety profile in patients with advanced ASS1‐deficient solid tumors. Further evaluation of this combination is under discussion.
Collapse
Affiliation(s)
- Shuyang Yao
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA.,Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| | | | | | | | - Nai Shi
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| | - John Stewart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - John Bomalaski
- Polaris Pharmaceuticals, Inc., San Diego, California, USA
| | | | - Siqing Fu
- Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| |
Collapse
|
21
|
Iorio M, Umesh Ganesh N, De Luise M, Porcelli AM, Gasparre G, Kurelac I. The Neglected Liaison: Targeting Cancer Cell Metabolic Reprogramming Modifies the Composition of Non-Malignant Populations of the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215447. [PMID: 34771610 PMCID: PMC8582418 DOI: 10.3390/cancers13215447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming is a well-known hallmark of cancer, whereby the development of drugs that target cancer cell metabolism is gaining momentum. However, when establishing preclinical studies and clinical trials, it is often neglected that a tumor mass is a complex system in which cancer cells coexist and interact with several types of microenvironment populations, including endothelial cells, fibroblasts and immune cells. We are just starting to understand how such populations are affected by the metabolic changes occurring in a transformed cell and little is known about the impact of metabolism-targeting drugs on the non-malignant tumor components. Here we provide a general overview of the links between cancer cell metabolism and tumor microenvironment (TME), particularly focusing on the emerging literature reporting TME-specific effects of metabolic therapies.
Collapse
Affiliation(s)
- Maria Iorio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Nikkitha Umesh Ganesh
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-2088-418
| |
Collapse
|
22
|
Glenny EM, Coleman MF, Giles ED, Wellberg EA, Hursting SD. Designing Relevant Preclinical Rodent Models for Studying Links Between Nutrition, Obesity, Metabolism, and Cancer. Annu Rev Nutr 2021; 41:253-282. [PMID: 34357792 PMCID: PMC8900211 DOI: 10.1146/annurev-nutr-120420-032437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diet and nutrition are intricately related to cancer prevention, growth, and treatment response. Preclinical rodent models are a cornerstone to biomedical research and remain instrumental in our understanding of the relationship between cancer and diet and in the development of effective therapeutics. However, the success rate of translating promising findings from the bench to the bedside is suboptimal. Well-designed rodent models will be crucial to improving the impact basic science has on clinical treatment options. This review discusses essential experimental factors to consider when designing a preclinical cancer model with an emphasis on incorporatingthese models into studies interrogating diet, nutrition, and metabolism. The aims of this review are to (a) provide insight into relevant considerations when designing cancer models for obesity, nutrition, and metabolism research; (b) identify common pitfalls when selecting a rodent model; and (c) discuss strengths and limitations of available preclinical models.
Collapse
Affiliation(s)
- Elaine M Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Erin D Giles
- Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
23
|
Cai Y, Chow JPH, Leung YO, Lu X, Yuen CH, Lee WL, Chau KC, Yang LL, Wong RMH, Lam JYT, Chow DTL, Chung SHK, Kwok SY, Leung YC. NEI-01-Induced Arginine Deprivation Has Potent Activity Against Acute Myeloid Leukemia Cells Both In Vitro and In Vivo. Mol Cancer Ther 2021; 20:2218-2227. [PMID: 34433661 DOI: 10.1158/1535-7163.mct-21-0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Recent studies have revealed that targeting amino acid metabolic enzymes is a promising strategy in cancer therapy. Acute myeloid leukemia (AML) downregulates the expression of argininosuccinate synthase (ASS1), a recognized rate-limiting enzyme for arginine synthesis, and yet displays a critical dependence on extracellular arginine for survival and proliferation. This dependence on extracellular arginine, also known as arginine auxotrophy, suggests that arginine deprivation would be a treatment strategy for AML. NEI-01, a novel arginine-depleting enzyme, is capable of binding to serum albumin to extend its circulating half-life, leading to a potent anticancer activity. Here we reported the preclinical activity of NEI-01 in arginine auxotrophic AMLs. NEI-01 efficiently depleted arginine both in vitro and in vivo NEI-01-induced arginine deprivation was cytotoxic to arginine auxotrophic AML cells through induction of cell-cycle arrest and apoptosis. Furthermore, the potent anti-leukemia activities of NEI-01 were observed in three different types of mouse models including human cell line-derived xenograft, mouse cell line-derived homografts in syngeneic mice and patient-derived xenograft. This preclinical data provide strong evidence to support the potential use of NEI-01 as a therapeutic approach in AML treatment.
Collapse
Affiliation(s)
- Yijun Cai
- New Epsilon Innovation Limited, Hong Kong, China.
| | | | - Yu-On Leung
- New Epsilon Innovation Limited, Hong Kong, China
| | - Xiaoxu Lu
- New Epsilon Innovation Limited, Hong Kong, China
| | - Chak-Ho Yuen
- New Epsilon Innovation Limited, Hong Kong, China
| | - Wing Lun Lee
- New Epsilon Innovation Limited, Hong Kong, China
| | - Ka-Chun Chau
- New Epsilon Innovation Limited, Hong Kong, China
| | - Liz L Yang
- New Epsilon Innovation Limited, Hong Kong, China
| | | | | | | | | | - Sui-Yi Kwok
- New Epsilon Innovation Limited, Hong Kong, China.
| | - Yun-Chung Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology and Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
24
|
Giatromanolaki A, Harris AL, Koukourakis MI. The prognostic and therapeutic implications of distinct patterns of argininosuccinate synthase 1 (ASS1) and arginase-2 (ARG2) expression by cancer cells and tumor stroma in non-small-cell lung cancer. Cancer Metab 2021; 9:28. [PMID: 34344457 PMCID: PMC8336070 DOI: 10.1186/s40170-021-00264-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background Arginine (Arg) is essential for cancer cell growth and also for the activation of T cells. Thus, therapies aiming to reduce Arg utilization by cancer may prove detrimental for the immune response. Methods We examined the expression of two major enzymes involved in arginine depletion and replenishment, namely arginase ARG2 and argininosuccinate synthase ASS1, respectively, in a series of 98 NSCLCs. Their association with immune infiltrates and the postoperative outcome were also studied. Results ARG2 was expressed mainly by cancer-associated fibroblasts (CAFs) (58/98 cases; 59.2%), while ASS1 by cancer cells (75/98 cases; 76.5%). ASS1 and ARG2 expression patterns were not related to hypoxia markers. Auxotrophy, implied by the lack of expression of ASS1 in cancer cells, was associated with high angiogenesis (p < 0.02). ASS1 expression by cancer cells was associated with a high density of iNOS-expressing tumor-infiltrating lymphocytes (iNOS+TILs). ARG2 expression by CAFs was inversely related to the TIL-density and linked with poorer prognosis (p = 0.02). Patients with ASS1 expression by cancer cells had a better prognosis especially when CAFs did not express ARG2 (p = 0.004). Conclusions ARG2 and ASS1 enzymes are extensively expressed in NSCLC stroma and cancer cells, respectively. Auxotrophic tumors have a poor prognosis, potentially by utilizing Arg, thus reducing Arg-dependent TIL anti-tumor activity. ASS1 expression in cancer cells would allow Arg fueling of iNOS+TILs and enhance anti-tumor immunity. However, upregulation of ARG2 in CAFs may divert Arg from TILs, allowing immune escape. Identification of these three distinct phenotypes may be useful in the individualization of Arg-targeting therapies and immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00264-7.
Collapse
Affiliation(s)
- Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, PO BOX 12, 68100, Alexandroupolis, Greece.,Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, PO BOX 12, 68100, Alexandroupolis, Greece
| | - Adrian L Harris
- Cancer Research UK, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Michael I Koukourakis
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, PO BOX 12, 68100, Alexandroupolis, Greece. .,Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, PO BOX 12, 68100, Alexandroupolis, Greece.
| |
Collapse
|
25
|
Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol 2021; 88:565-594. [PMID: 34309734 DOI: 10.1007/s00280-021-04335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death globally. Chemotherapy and radiation therapy and other medications are employed to treat various types of cancer. However, each treatment has its own set of side effects, owing to its low specificity. As a result, there is an urgent need for newer therapeutics that do not disrupt healthy cells' normal functioning. Depriving nutrient or non/semi-essential amino acids to which cancerous cells are auxotrophic remains one such promising anticancer strategy. L-Arginine (Arg) is a semi-essential vital amino acid involved in versatile metabolic processes, signaling pathways, and cancer cell proliferation. Hence, the administration of Arg depriving enzymes (ADE) such as arginase, arginine decarboxylase (ADC), and arginine deiminase (ADI) could be effective in cancer therapy. The Arg auxotrophic cancerous cells like hepatocellular carcinoma, human colon cancer, leukemia, and breast cancer cells are sensitive to ADE treatment due to low expression of crucial enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), and ornithine transcarbamylase (OCT). These therapeutic enzyme treatments induce cell death through inducing autophagy, apoptosis, generation of oxidative species, i.e., oxidative stress, and arresting the progression and expansion of cancerous cells at certain cell cycle checkpoints. The enzymes are undergoing clinical trials and could be successfully exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India.
| |
Collapse
|
26
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
27
|
Wu C, You M, Nguyen D, Wangpaichitr M, Li YY, Feun LG, Kuo MT, Savaraj N. Enhancing the Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Signaling and Arginine Deprivation in Melanoma. Int J Mol Sci 2021; 22:ijms22147628. [PMID: 34299249 PMCID: PMC8306073 DOI: 10.3390/ijms22147628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Melanoma as a very aggressive type of cancer is still in urgent need of improved treatment. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and arginine deiminase (ADI-PEG20) are two of many suggested drugs for treating melanoma. Both have shown anti-tumor activities without harming normal cells. However, resistance to both drugs has also been noted. Studies on the mechanism of action of and resistance to these drugs provide multiple targets that can be utilized to increase the efficacy and overcome the resistance. As a result, combination strategies have been proposed for these drug candidates with various other agents, and achieved enhanced or synergistic anti-tumor effect. The combination of TRAIL and ADI-PEG20 as one example can greatly enhance the cytotoxicity to melanoma cells including those resistant to the single component of this combination. It is found that combination treatment generally can alter the expression of the components of cell signaling in melanoma cells to favor cell death. In this paper, the signaling of TRAIL and ADI-PEG20-induced arginine deprivation including the main mechanism of resistance to these drugs and exemplary combination strategies is discussed. Finally, factors hampering the clinical application of both drugs, current and future development to overcome these hurdles are briefly discussed.
Collapse
Affiliation(s)
- Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
| | - Min You
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
| | - Dao Nguyen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ying-Ying Li
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
| | - Lynn G. Feun
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Macus T. Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Niramol Savaraj
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-575-3143; Fax: +1-305-575-3375
| |
Collapse
|
28
|
Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine Signaling and Cancer Metabolism. Cancers (Basel) 2021; 13:3541. [PMID: 34298755 PMCID: PMC8306961 DOI: 10.3390/cancers13143541] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino acid, due to normal cells' intrinsic ability to synthesize arginine from citrulline and aspartate via ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase). As such, arginine can be used as a dietary supplement and its depletion as a therapeutic strategy. Strikingly, in over 70% of tumors, ASS1 transcription is suppressed, rendering the cells addicted to external arginine, forming the basis of arginine-deprivation therapy. In this review, we will discuss arginine as a signaling metabolite, arginine's role in cancer metabolism, arginine as an epigenetic regulator, arginine as an immunomodulator, and arginine as a therapeutic target. We will also provide a comprehensive summary of ADI (arginine deiminase)-based arginine-deprivation preclinical studies and an update of clinical trials for ADI and arginase. The different cell killing mechanisms associated with various cancer types will also be described.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
| | - Sheng-Chieh Hsu
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30035, Taiwan;
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan
| | - David K. Ann
- Department of Diabetes and Metabolic Diseases Research, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
29
|
García-Navas R, Gajate C, Mollinedo F. Neutrophils drive endoplasmic reticulum stress-mediated apoptosis in cancer cells through arginase-1 release. Sci Rep 2021; 11:12574. [PMID: 34131176 PMCID: PMC8206108 DOI: 10.1038/s41598-021-91947-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Human neutrophils constitutively express high amounts of arginase-1, which depletes arginine from the surrounding medium and downregulates T-cell activation. Here, we have found that neutrophil arginase-1, released from activated human neutrophils or dead cells, induced apoptosis in cancer cells through an endoplasmic reticulum (ER) stress pathway. Silencing of PERK in cancer cells prevented the induction of ER stress and apoptosis. Arginase inhibitor Nω-hydroxy-nor-arginine inhibited apoptosis and ER stress response induced by conditioned medium from activated neutrophils. A number of tumor cell lines, derived from different tissues, were sensitive to neutrophil arginase-1, with pancreatic, breast, ovarian and lung cancer cells showing the highest sensitivity. Neutrophil-released arginase-1 and arginine deprivation potentiated the antitumor action against pancreatic cancer cells of the ER-targeted antitumor alkylphospholipid analog edelfosine. Our study demonstrates the involvement of neutrophil arginase-1 in cancer cell killing and highlights the importance and complex role of neutrophils in tumor surveillance and biology.
Collapse
Affiliation(s)
- Rósula García-Navas
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Salamanca, Spain
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain. .,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), C/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
30
|
Hsu SC, Chen CL, Cheng ML, Chu CY, Changou CA, Yu YL, Yeh SD, Kuo TC, Kuo CC, Chuu CP, Li CF, Wang LH, Chen HW, Yen Y, Ann DK, Wang HJ, Kung HJ. Arginine starvation elicits chromatin leakage and cGAS-STING activation via epigenetic silencing of metabolic and DNA-repair genes. Am J Cancer Res 2021; 11:7527-7545. [PMID: 34158865 PMCID: PMC8210599 DOI: 10.7150/thno.54695] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: One of the most common metabolic defects in cancers is the deficiency in arginine synthesis, which has been exploited therapeutically. Yet, challenges remain, and the mechanisms of arginine-starvation induced killing are largely unclear. Here, we sought to demonstrate the underlying mechanisms by which arginine starvation-induced cell death and to develop a dietary arginine-restriction xenograft model to study the in vivo effects. Methods: Multiple castration-resistant prostate cancer cell lines were treated with arginine starvation followed by comprehensive analysis of microarray, RNA-seq and ChIP-seq were to identify the molecular and epigenetic pathways affected by arginine starvation. Metabolomics and Seahorse Flux analyses were used to determine the metabolic profiles. A dietary arginine-restriction xenograft mouse model was developed to assess the effects of arginine starvation on tumor growth and inflammatory responses. Results: We showed that arginine starvation coordinately and epigenetically suppressed gene expressions, including those involved in oxidative phosphorylation and DNA repair, resulting in DNA damage, chromatin-leakage and cGAS-STING activation, accompanied by the upregulation of type I interferon response. We further demonstrated that arginine starvation-caused depletion of α-ketoglutarate and inactivation of histone demethylases are the underlying causes of epigenetic silencing. Significantly, our dietary arginine-restriction model showed that arginine starvation suppressed prostate cancer growth in vivo, with evidence of enhanced interferon responses and recruitment of immune cells. Conclusions: Arginine-starvation induces tumor cell killing by metabolite depletion and epigenetic silencing of metabolic genes, leading to DNA damage and chromatin leakage. The resulting cGAS-STING activation may further enhance these killing effects.
Collapse
|
31
|
Butler M, van der Meer LT, van Leeuwen FN. Amino Acid Depletion Therapies: Starving Cancer Cells to Death. Trends Endocrinol Metab 2021; 32:367-381. [PMID: 33795176 DOI: 10.1016/j.tem.2021.03.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 01/01/2023]
Abstract
Targeting tumor cell metabolism is an attractive form of therapy, as it may enhance treatment response in therapy resistant cancers as well as mitigate treatment-related toxicities by reducing the need for genotoxic agents. To meet their increased demand for biomass accumulation and energy production and to maintain redox homeostasis, tumor cells undergo profound changes in their metabolism. In addition to the diversion of glucose metabolism, this is achieved by upregulation of amino acid metabolism. Interfering with amino acid availability can be selectively lethal to tumor cells and has proven to be a cancer specific Achilles' heel. Here we review the biology behind such cancer specific amino acid dependencies and discuss how these vulnerabilities can be exploited to improve cancer therapies.
Collapse
Affiliation(s)
- Miriam Butler
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
32
|
Li JM, Yang DC, Oldham J, Linderholm A, Zhang J, Liu J, Kenyon NJ, Chen CH. Therapeutic targeting of argininosuccinate synthase 1 (ASS1)-deficient pulmonary fibrosis. Mol Ther 2021; 29:1487-1500. [PMID: 33508432 DOI: 10.1016/j.ymthe.2021.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
Argininosuccinate synthase 1 (ASS1) serves as a critical enzyme in arginine biosynthesis; however, its role in interstitial lung diseases, particularly idiopathic pulmonary fibrosis (IPF), remains largely unknown. This study aims at characterization and targeting of ASS1 deficiency in pulmonary fibrosis. We find that ASS1 was significantly decreased and inversely correlated with fibrotic status. Transcriptional downregulation of ASS1 was noted in fibroblastic foci of primary lung fibroblasts isolated from IPF patients. Genetic manipulations of ASS1 studies confirm that ASS1 expression inhibited fibroblast cell proliferation, migration, and invasion. We further show that the hepatocyte growth factor receptor (Met) receptor was activated and acted upstream of the Src-STAT3 axis signaling in ASS1-knockdown fibroblasts. Interestingly, both arginine-free conditions and arginine deiminase treatment were demonstrated to kill fibrotic fibroblasts, attenuated bleomycin-induced pulmonary fibrosis in mice, as well as synergistically increased nintedanib efficacy. Our data suggest ASS1 deficiency as a druggable target and also provide a unique therapeutic strategy against pulmonary fibrosis.
Collapse
Affiliation(s)
- Ji-Min Li
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - David C Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Justin Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Angela Linderholm
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Jun Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jun Liu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Nicholas J Kenyon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Ching-Hsien Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
33
|
Chu CY, Lee YC, Hsieh CH, Yeh CT, Chao TY, Chen PH, Lin IH, Hsieh TH, Shih JW, Cheng CH, Chang CC, Lin PS, Huang YL, Chen TM, Yen Y, Ann DK, Kung HJ. Genome-wide CRISPR/Cas9 knockout screening uncovers a novel inflammatory pathway critical for resistance to arginine-deprivation therapy. Theranostics 2021; 11:3624-3641. [PMID: 33664852 PMCID: PMC7914361 DOI: 10.7150/thno.51795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/01/2021] [Indexed: 12/24/2022] Open
Abstract
Arginine synthesis deficiency due to the suppressed expression of ASS1 (argininosuccinate synthetase 1) represents one of the most frequently occurring metabolic defects of tumor cells. Arginine-deprivation therapy has gained increasing attention in recent years. One challenge of ADI-PEG20 (pegylated ADI) therapy is the development of drug resistance caused by restoration of ASS1 expression and other factors. The goal of this work is to identify novel factors conferring therapy resistance. Methods: Multiple, independently derived ADI-resistant clones including derivatives of breast (MDA-MB-231 and BT-549) and prostate (PC3, CWR22Rv1, and DU145) cancer cells were developed. RNA-seq and RT-PCR were used to identify genes upregulated in the resistant clones. Unbiased genome-wide CRISPR/Cas9 knockout screening was used to identify genes whose absence confers sensitivity to these cells. shRNA and CRISPR/Cas9 knockout as well as overexpression approaches were used to validate the functions of the resistant genes both in vitro and in xenograft models. The signal pathways were verified by western blotting and cytokine release. Results: Based on unbiased CRISPR/Cas9 knockout screening and RNA-seq analyses of independently derived ADI-resistant (ADIR) clones, aberrant activation of the TREM1/CCL2 axis in addition to ASS1 expression was consistently identified as the resistant factors. Unlike ADIR, MDA-MB-231 overexpressing ASS1 cells achieved only moderate ADI resistance both in vitro and in vivo, and overexpression of ASS1 alone does not activate the TREM1/CCL2 axis. These data suggested that upregulation of TREM1 is an independent factor in the development of strong resistance, which is accompanied by activation of the AKT/mTOR/STAT3/CCL2 pathway and contributes to cell survival and overcoming the tumor suppressive effects of ASS1 overexpression. Importantly, knockdown of TREM1 or CCL2 significantly sensitized ADIR toward ADI. Similar results were obtained in BT-549 breast cancer cell line as well as castration-resistant prostate cancer cells. The present study sheds light on the detailed mechanisms of resistance to arginine-deprivation therapy and uncovers novel targets to overcome resistance. Conclusion: We uncovered TREM1/CCL2 activation, in addition to restored ASS1 expression, as a key pathway involved in full ADI-resistance in breast and prostate cancer models.
Collapse
|
34
|
Huang Z, Hu H. Arginine Deiminase Induces Immunogenic Cell Death and Is Enhanced by N-acetylcysteine in Murine MC38 Colorectal Cancer Cells and MDA-MB-231 Human Breast Cancer Cells In Vitro. Molecules 2021; 26:511. [PMID: 33478072 PMCID: PMC7835909 DOI: 10.3390/molecules26020511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
The use of arginine deiminase (ADI) for arginine depletion therapy is an attractive anticancer approach. Combination strategies are needed to overcome the resistance of severe types of cancer cells to this monotherapy. In the current study, we report, for the first time, that the antioxidant N-acetylcysteine (NAC), which has been used in therapeutic practices for several decades, is a potent enhancer for targeted therapy that utilizes arginine deiminase. We demonstrated that pegylated arginine deiminase (ADI-PEG 20) induces apoptosis and G0/G1 phase arrest in murine MC38 colorectal cancer cells; ADI-PEG 20 induces Ca2+ overload and decreases the mitochondrial membrane potential in MC38 cells. ADI-PEG 20 induced the most important immunogenic cell death (ICD)-associated feature: cell surface exposure of calreticulin (CRT). The antioxidant NAC enhanced the antitumor activity of ADI-PEG 20 and strengthened its ICD-associated features including the secretion of high mobility group box 1 (HMGB1) and adenosine triphosphate (ATP). In addition, these regimens resulted in phagocytosis of treated MC38 cancer cells by bone marrow-derived dendritic cells (BMDCs). In conclusion, we describe, for the first time, that NAC in combination with ADI-PEG 20 not only possesses unique cytotoxic anticancer properties but also triggers the hallmarks of immunogenic cell death. Hence, ADI-PEG 20 in combination with NAC may represent a promising approach to treat ADI-sensitive tumors while preventing relapse and metastasis.
Collapse
Affiliation(s)
- Zhiying Huang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Haifeng Hu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
35
|
Harnessing the Co-vulnerabilities of Amino Acid-Restricted Cancers. Cell Metab 2021; 33:9-20. [PMID: 33406406 PMCID: PMC7837405 DOI: 10.1016/j.cmet.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
Abstract
Sustained proliferative potential of cancer cells creates heightened energetic and biosynthetic demands. The resulting overt dependence of cancer cells on unperturbed nutrient supply has prompted a widespread interest in amino acid restriction strategies as potential cancer therapeutics. However, owing to rapid signaling and metabolic reprogramming in cancer cells, the prospects for success of amino acid restriction approaches remain unclear. We thus recognize that the identification of co-vulnerabilities of amino acid-restricted cancers may inform actionable targets for effective combined interventions. In this perspective, we outline the current state of key cellular mechanisms underlying adaptation to amino acid restriction and discuss the role of signal transduction pathways governing cancer cell resistance to amino acid restriction, with potential ramifications for the design of future therapeutic efforts.
Collapse
|
36
|
Setoyama D, Matsushima T, Hayakawa K, Nakao T, Kanba S, Kang D, Kato TA. Blood metabolic signatures of hikikomori, pathological social withdrawal. DIALOGUES IN CLINICAL NEUROSCIENCE 2021; 23:14-28. [PMID: 35860171 PMCID: PMC9286746 DOI: 10.1080/19585969.2022.2046978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background A severe form of pathological social withdrawal, ‘hikikomori,’ has been acknowledged in Japan, spreading worldwide, and becoming a global health issue. The pathophysiology of hikikomori has not been clarified, and its biological traits remain unexplored. Methods Drug-free patients with hikikomori (n = 42) and healthy controls (n = 41) were recruited. Psychological assessments for the severity of hikikomori and depression were conducted. Blood biochemical tests and plasma metabolome analysis were performed. Based on the integrated information, machine-learning models were created to discriminate cases of hikikomori from healthy controls, predict hikikomori severity, stratify the cases, and identify metabolic signatures that contribute to each model. Results Long-chain acylcarnitine levels were remarkably higher in patients with hikikomori; bilirubin, arginine, ornithine, and serum arginase were significantly different in male patients with hikikomori. The discriminative random forest model was highly performant, exhibiting an area under the ROC curve of 0.854 (confidential interval = 0.648–1.000). To predict hikikomori severity, a partial least squares PLS-regression model was successfully created with high linearity and practical accuracy. In addition, blood serum uric acid and plasma cholesterol esters contributed to the stratification of cases. Conclusions These findings reveal the blood metabolic signatures of hikikomori, which are key to elucidating the pathophysiology of hikikomori and also useful as an index for monitoring the treatment course for rehabilitation.
Collapse
Affiliation(s)
- Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Matsushima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Hayakawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Cormerais Y, Vučetić M, Parks SK, Pouyssegur J. Amino Acid Transporters Are a Vital Focal Point in the Control of mTORC1 Signaling and Cancer. Int J Mol Sci 2020; 22:E23. [PMID: 33375025 PMCID: PMC7792758 DOI: 10.3390/ijms22010023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates signals from growth factors and nutrients to control biosynthetic processes, including protein, lipid, and nucleic acid synthesis. Dysregulation in the mTORC1 network underlies a wide array of pathological states, including metabolic diseases, neurological disorders, and cancer. Tumor cells are characterized by uncontrolled growth and proliferation due to a reduced dependency on exogenous growth factors. The genetic events underlying this property, such as mutations in the PI3K-Akt and Ras-Erk signaling networks, lead to constitutive activation of mTORC1 in nearly all human cancer lineages. Aberrant activation of mTORC1 has been shown to play a key role for both anabolic tumor growth and resistance to targeted therapeutics. While displaying a growth factor-independent mTORC1 activity and proliferation, tumors cells remain dependent on exogenous nutrients such as amino acids (AAs). AAs are an essential class of nutrients that are obligatory for the survival of any cell. Known as the building blocks of proteins, AAs also act as essential metabolites for numerous biosynthetic processes such as fatty acids, membrane lipids and nucleotides synthesis, as well as for maintaining redox homeostasis. In most tumor types, mTORC1 activity is particularly sensitive to intracellular AA levels. This dependency, therefore, creates a targetable vulnerability point as cancer cells become dependent on AA transporters to sustain their homeostasis. The following review will discuss the role of AA transporters for mTORC1 signaling in cancer cells and their potential as therapeutic drug targets.
Collapse
Affiliation(s)
- Yann Cormerais
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Milica Vučetić
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco; (M.V.); (S.K.P.)
| | - Scott K. Parks
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco; (M.V.); (S.K.P.)
| | - Jacques Pouyssegur
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco; (M.V.); (S.K.P.)
- CNRS, INSERM, Centre A. Lacassagne, Faculté de Médecine (IRCAN), Université Côte d’Azur, 06107 Nice, France
| |
Collapse
|
38
|
Yu KM, Pang TPS, Cutler M, Tian M, Huang L, Lau JYN, Chung SF, Lo TWH, Leung TYC. Rational design, engineer, and characterization of a novel pegylated single isomer human arginase for arginine depriving anti-cancer treatment. Life Sci 2020; 264:118674. [PMID: 33129876 DOI: 10.1016/j.lfs.2020.118674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022]
Abstract
AIMS Arginine depleting enzymes are found effective to treat arginine-auxotrophic cancers and therapy-resistant malignancies, alone or in combination with cytotoxic agents or immune checkpoint inhibitors. We aim to select and validate a long-lasting, safe and effective PEGylated and cobalt-chelated arginase conjugated at the selective cysteine residue as a therapeutic agent against cancers. MAIN METHODS Exploring pharmacokinetic and pharmacodynamic properties of the three arginase conjugates with different PEG modality (20 kDa linear as A20L, 20 kDa branched as A20Y, and 40 kDa branched as A40Y) by cell-based and animal studies. KEY FINDINGS Arginase conjugates showed comparable systemic half-lives, about 20 h in rats and mice. The extended half-life of PEGylated arginase was concurrent with the integrity of conjugates of which PEG and protein moieties remain attached in bloodstream for 72 h after drug administration. Arginase modified with a linear 20 kDa PEG (A20L) was chosen as the lead candidate (PT01). In vitro assays confirmed the very potent cytotoxicity of PT01 against cancer cell lines of breast, prostate, and pancreas origin. In MIA PaCa-2 pancreatic and PC-3 prostate tumor xenograft models, weekly infusion of the PT01 at 5 and 10 mg/kg induced significant tumor growth inhibition of 44-67%. All mice experienced dose-dependent but rapidly reversible weight loss following each weekly dose, suggesting tolerable toxicity. SIGNIFICANCE These non-clinical data support PT01 as the lead candidate for clinical development that may benefit cancer patients by providing an alternative cytotoxic mechanism.
Collapse
Affiliation(s)
- Kuo-Ming Yu
- Athenex, Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, NY, USA.
| | - Tammy Pui-Shi Pang
- Avalon Polytom (HK) Ltd., Unit 1511-13 & 15, Level 15, Tower II, Grand Central Plaza, 138 Shatin Rural Committee Road, Shatin, Hong Kong
| | - Murray Cutler
- Athenex, Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, NY, USA
| | - Min Tian
- Athenex, Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, NY, USA
| | - Lynn Huang
- Athenex, Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, NY, USA
| | - Johnson Yiu-Nam Lau
- Athenex, Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, NY, USA; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology and Lo Ka Chung Research Centre for Natural Anti-Cancer Drug, The Hong Kong Polytechnic University, Hong Kong
| | - Sai-Fung Chung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology and Lo Ka Chung Research Centre for Natural Anti-Cancer Drug, The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Wai-Hung Lo
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology and Lo Ka Chung Research Centre for Natural Anti-Cancer Drug, The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Yun-Chung Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology and Lo Ka Chung Research Centre for Natural Anti-Cancer Drug, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
39
|
Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J Mol Med (Berl) 2020; 99:1-20. [PMID: 33025106 PMCID: PMC7782450 DOI: 10.1007/s00109-020-01988-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Abstract Chronic low-grade inflammation is a common hallmark of the aging process and many age-related diseases. There is substantial evidence that persistent inflammation is associated with a compensatory anti-inflammatory response which prevents excessive tissue damage. Interestingly, the inflammatory state encountered with aging, called inflammaging, is associated with the anti-inflammaging process. The age-related activation of immunosuppressive network includes an increase in the numbers of myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and macrophages (Mreg/M2c). Immunosuppressive cells secrete several anti-inflammatory cytokines, e.g., TGF-β and IL-10, as well as reactive oxygen and nitrogen species (ROS/RNS). Moreover, immunosuppressive cells suppress the function of effector immune cells by catabolizing l-arginine and tryptophan through the activation of arginase 1 (ARG1) and indoleamine 2,3-dioxygenase (IDO), respectively. Unfortunately, the immunosuppressive armament also induces harmful bystander effects in neighboring cells by impairing host tissue homeostasis. For instance, TGF-β signaling can trigger many age-related degenerative changes, e.g., cellular senescence, fibrosis, osteoporosis, muscle atrophy, and the degeneration of the extracellular matrix. In addition, changes in the levels of ROS, RNS, and the metabolites of the kynurenine pathway can impair tissue homeostasis. This review will examine in detail the harmful effects of the immunosuppressive cells on host tissues. It seems that this age-related immunosuppression prevents inflammatory damage but promotes the tissue degeneration associated with aging and age-related diseases. Key messages • Low-grade inflammation is associated with the aging process and age-related diseases. • Persistent inflammation activates compensatory immunosuppression with aging. • The numbers of immunosuppressive cells increase with aging and age-related diseases. • Immunosuppressive mechanisms evoke harmful bystander effects in host tissues. • Immunosuppression promotes tissue degeneration with aging and age-related diseases.
Collapse
|
40
|
Combinatory Treatment of Canavanine and Arginine Deprivation Efficiently Targets Human Glioblastoma Cells via Pleiotropic Mechanisms. Cells 2020; 9:cells9102217. [PMID: 33008000 PMCID: PMC7600648 DOI: 10.3390/cells9102217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas are the most frequent and aggressive form of primary brain tumors with no efficient cure. However, they often exhibit specific metabolic shifts that include deficiency in the biosynthesis of and dependence on certain exogenous amino acids. Here, we evaluated, in vitro, a novel combinatory antiglioblastoma approach based on arginine deprivation and canavanine, an arginine analogue of plant origin, using two human glioblastoma cell models, U251MG and U87MG. The combinatory treatment profoundly affected cell viability, morphology, motility and adhesion, destabilizing the cytoskeleton and mitochondrial network, and induced apoptotic cell death. Importantly, the effects were selective toward glioblastoma cells, as they were not pronounced for primary rat glial cells. At the molecular level, canavanine inhibited prosurvival kinases such as FAK, Akt and AMPK. Its effects on protein synthesis and stress response pathways were more complex and dependent on exposure time. We directly observed canavanine incorporation into nascent proteins by using quantitative proteomics. Although canavanine in the absence of arginine readily incorporated into polypeptides, no motif preference for such incorporation was observed. Our findings provide a strong rationale for further developing the proposed modality based on canavanine and arginine deprivation as a potential antiglioblastoma metabolic therapy independent of the blood-brain barrier.
Collapse
|
41
|
Chan TC, Wu WJ, Li WM, Shiao MS, Shiue YL, Li CF. SLC14A1 prevents oncometabolite accumulation and recruits HDAC1 to transrepress oncometabolite genes in urothelial carcinoma. Theranostics 2020; 10:11775-11793. [PMID: 33052246 PMCID: PMC7546005 DOI: 10.7150/thno.51655] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/13/2020] [Indexed: 01/21/2023] Open
Abstract
Urothelial carcinoma (UC), including upper tract urothelial carcinoma (UTUC) and urinary bladder urothelial carcinoma (UBUC), is a common malignant disease in developed countries. Oncogenic metabolic lesions have been associated with UC development. Methods: Using data mining, a series of studies were performed to study the involvement of SLC14A1 in UC specimens, animal models and UC-derived cell lines. Results: In two cohorts of UTUC (n = 340) and UBUC (n = 295), the SLC14A1 protein level was an independent prognostic factor. Epigenetic silencing contributed to SLC14A1 downregulation in UCs. Total and membranous SLC14A1 played tumor suppressive roles through the inhibition of cell proliferation and metastasis in distinct UC-derived cells and animal models. Functional SLC14A1 prevented the accumulation of arginine and urea, enhanced mitochondrial fusion and aerobic respiration, inhibited glycolysis by altering the expression levels of several related proteins and sensitized arginine-deprivation treatment in ASS1-deficient UC-derived cells. In vitro and in vivo, SLC14A1 inhibited the mTOR signaling pathway and subsequently tumorigenesis, supported by reduced arginine concentrations in vitro. Nuclear SLC14A1 transrepressed HK2 and DEGS1 genes via recruitment of HDAC1 and/or SIN3A to maintain metabolic homeostasis and thereafter impeded tumorigenesis. Conclusion: Clinical associations, animal models and in vitro indications provide solid evidence that the SLC14A1 gene is a novel tumor suppressor in UCs. Total and membranous SLC14A1 prevents urea and arginine accumulation via the mTOR signaling pathway. Nuclear SLC14A1 recruits HDAC1 to transrepress oncometabolite genes.
Collapse
Affiliation(s)
- Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
42
|
Bröer S. Amino Acid Transporters as Targets for Cancer Therapy: Why, Where, When, and How. Int J Mol Sci 2020; 21:ijms21176156. [PMID: 32859034 PMCID: PMC7503255 DOI: 10.3390/ijms21176156] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Amino acids are indispensable for the growth of cancer cells. This includes essential amino acids, the carbon skeleton of which cannot be synthesized, and conditionally essential amino acids, for which the metabolic demands exceed the capacity to synthesize them. Moreover, amino acids are important signaling molecules regulating metabolic pathways, protein translation, autophagy, defense against reactive oxygen species, and many other functions. Blocking uptake of amino acids into cancer cells is therefore a viable strategy to reduce growth. A number of studies have used genome-wide silencing or knock-out approaches, which cover all known amino acid transporters in a large variety of cancer cell lines. In this review, these studies are interrogated together with other databases to identify vulnerabilities with regard to amino acid transport. Several themes emerge, such as synthetic lethality, reduced redundancy, and selective vulnerability, which can be exploited to stop cancer cell growth.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra ACT 2600, Australia
| |
Collapse
|
43
|
Systems level profiling of arginine starvation reveals MYC and ERK adaptive metabolic reprogramming. Cell Death Dis 2020; 11:662. [PMID: 32814773 PMCID: PMC7438517 DOI: 10.1038/s41419-020-02899-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Arginine auxotrophy due to the silencing of argininosuccinate synthetase 1 (ASS1) occurs in many carcinomas and in the majority of sarcomas. Arginine deiminase (ADI-PEG20) therapy exploits this metabolic vulnerability by depleting extracellular arginine, causing arginine starvation. ASS1-negative cells develop resistance to ADI-PEG20 through a metabolic adaptation that includes re-expressing ASS1. As arginine-based multiagent therapies are being developed, further characterization of the changes induced by arginine starvation is needed. In order to develop a systems-level understanding of these changes, activity-based proteomic profiling (ABPP) and phosphoproteomic profiling were performed before and after ADI-PEG20 treatment in ADI-PEG20-sensitive and resistant sarcoma cells. When integrated with metabolomic profiling, this multi-omic analysis reveals that cellular response to arginine starvation is mediated by adaptive ERK signaling and activation of the Myc–Max transcriptional network. Concomitantly, these data elucidate proteomic changes that facilitate oxaloacetate production by enhancing glutamine and pyruvate anaplerosis and altering lipid metabolism to recycle citrate for oxidative glutaminolysis. Based on the complexity of metabolic and cellular signaling interactions, these multi-omic approaches could provide valuable tools for evaluating response to metabolically targeted therapies.
Collapse
|
44
|
He Y, Zhou L, Deng L, Feng Z, Cao Z, Yin Y. An electrochemical impedimetric sensing platform based on a peptide aptamer identified by high-throughput molecular docking for sensitive l-arginine detection. Bioelectrochemistry 2020; 137:107634. [PMID: 32882443 DOI: 10.1016/j.bioelechem.2020.107634] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
As a primary building block for protein synthesis, l-arginine (l-Arg) is also a precursor for the synthesis of important metabolites, and is involved in various physiological and pathophysiological processes. l-Arg is a potential biomarker in clinical diagnosis and nutritional status assessment, making it valuable to quantify and monitor this biomolecule. In this study, peptide aptamers that specifically interact with l-Arg were identified by high-throughput molecular docking, and the binding capacities between the synthesized peptide aptamers and l-Arg were then measured by isothermal titration calorimetry. We hypothesized that the peptide aptamer with the greatest binding capacity could be used as the recognition element in a biosensor. A chemosynthetic peptide aptamer modified with mercaptan and spacer units (thioctic acid-GGGG-FGHIHEGY) was thus used to construct label-free electrochemical impedimetric biosensors for l-Arg based on gold electrodes. The optimum biosensor showed good sensitivity to l-Arg with a linear range of 0.1 pM-0.1 mM, and the calculated limit of detection (three times the signal-to-noise ratio) was 0.01 pM. Interference studies and assays of diluted serum samples were also carried out, and satisfactory results obtained. In conclusion, a potential method of peptide aptamer screening and biosensor fabrication for detecting small biological molecules was demonstrated.
Collapse
Affiliation(s)
- Yumin He
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, PR China; Animal Nutrition and Human Health Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Li Zhou
- Collaborative Innovation Center of Micro/Nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, Hunan 410004, PR China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410075, PR China
| | - Zemeng Feng
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, PR China.
| | - Zhong Cao
- Collaborative Innovation Center of Micro/Nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, Hunan 410004, PR China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, PR China; Animal Nutrition and Human Health Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| |
Collapse
|
45
|
Yin ZF, Zhang YN, Liang SF, Zhao SS, Du J, Cheng BB. Mycoplasma contamination-mediated attenuation of plasmid DNA transfection efficiency is augmented via L-arginine deprivation in HEK-293 cells. J Zhejiang Univ Sci B 2020; 20:1021-1026. [PMID: 31749349 DOI: 10.1631/jzus.b1900380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mycoplasma infection is the most prevalent contamination in cell culture. Analysis of cell culture in laboratories from different countries shows that mycoplasma contamination ranges from 15% to 80% and, in some cases, even reaches 100% (Chernov et al., 2014). Whilst mycoplasma infection is not visible to the naked eye in cell culture, the consequences of mycoplasma contamination have been shown to induce a number of cellular changes, for example, increased resistance to chemotherapeutic drugs. Therefore, any results obtained from tissue culture studies, in the presence of mycoplasma contamination, potentially render the data invalid (Kim et al., 2015; Gedye et al., 2016). As such, mycoplasmas are not harmless bystanders and cannot be ignored in in vitro studies.
Collapse
Affiliation(s)
- Zi-Fei Yin
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Ya-Ni Zhang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shu-Fang Liang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Sha-Sha Zhao
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Juan Du
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Bin-Bin Cheng
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
46
|
Nitrogen Metabolism in Cancer and Immunity. Trends Cell Biol 2020; 30:408-424. [PMID: 32302552 DOI: 10.1016/j.tcb.2020.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
As one of the fundamental requirements for cell growth and proliferation, nitrogen acquisition and utilization must be tightly regulated. Nitrogen can be generated from amino acids (AAs) and utilized for biosynthetic processes through transamination and deamination reactions. Importantly, limitations of nitrogen availability in cells can disrupt the synthesis of proteins, nucleic acids, and other important nitrogen-containing compounds. Rewiring cellular metabolism to support anabolic processes is a feature common to both cancer and proliferating immune cells. In this review, we discuss how nitrogen is utilized in biosynthetic pathways and highlight different metabolic and oncogenic programs that alter the flow of nitrogen to sustain biomass production and growth, an important emerging feature of cancer and immune cell proliferation.
Collapse
|
47
|
Zarei M, Rahbar MR, Negahdaripour M, Morowvat MH, Nezafat N, Ghasemi Y. Cell Penetrating Peptide: Sequence-Based Computational Prediction for Intercellular Delivery of Arginine Deiminase. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164616666190701120351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Cell-Penetrating Peptides (CPPs), a family of short peptides, are broadly used as the carrier in the delivery of drugs and different therapeutic agents. Thanks to the existence of valuable databases, computational screening of the experimentally validated CPPs can help the researchers to select more effective CPPs for the intercellular delivery of therapeutic proteins. Arginine deiminase of Mycoplasma hominis, an arginine-degrading enzyme, is currently in the clinical trial for treating several arginine auxotrophic cancers. However, some tumor cells have developed resistance to ADI treatment. The ADI resistance arises from the over-expression of argininosuccinate synthetase 1 enzyme, which is involved in arginine synthesis. Intracellular delivery of ADI into tumor cells is suggested as an efficient approach to overcome the aforesaid drawback.Objective:In this study, in-silico tools were used for evaluating the experimentally validated CPPs to select the best CPP candidates for the intracellular delivery of ADI.Results:In this regard, 150 CPPs of protein cargo available at CPPsite were retrieved and evaluated by the CellPPD server. The best CPP candidates for the intracellular delivery of ADI were selected based on stability and antigenicity of the ADI-CPP fusion form. The conjugated forms of ADI with each of the three CPPs including EGFP-hcT (9-32), EGFP-ppTG20, and F(SG)4TP10 were stable and nonantigenic; thus, these sequences were introduced as the best CPP candidates for the intracellular delivery of ADI. In addition, the proposed CPPs had appropriate positive charge and lengths for an efficient cellular uptake.Conclusion:These three introduced CPPs not only are appropriate for the intracellular delivery of ADI, but also can overcome the limitation of its therapeutic application, including short half-life and antigenicity.
Collapse
Affiliation(s)
- Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
48
|
Kim SS, Xu S, Cui J, Poddar S, Le TM, Hayrapetyan H, Li L, Wu N, Moore AM, Zhou L, Yu AC, Dann AM, Elliott IA, Abt ER, Kim W, Dawson DW, Radu CG, Donahue TR. Histone deacetylase inhibition is synthetically lethal with arginine deprivation in pancreatic cancers with low argininosuccinate synthetase 1 expression. Theranostics 2020; 10:829-840. [PMID: 31903153 PMCID: PMC6929997 DOI: 10.7150/thno.40195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/05/2019] [Indexed: 01/10/2023] Open
Abstract
Arginine (Arg) deprivation is a promising therapeutic approach for tumors with low argininosuccinate synthetase 1 (ASS1) expression. However, its efficacy as a single agent therapy needs to be improved as resistance is frequently observed. Methods: A tissue microarray was performed to assess ASS1 expression in surgical specimens of pancreatic ductal adenocarcinoma (PDAC) and its correlation with disease prognosis. An RNA-Seq analysis examined the role of ASS1 in regulating the global gene transcriptome. A high throughput screen of FDA-approved oncology drugs identified synthetic lethality between histone deacetylase (HDAC) inhibitors and Arg deprivation in PDAC cells with low ASS1 expression. We examined HDAC inhibitor panobinostat (PAN) and Arg deprivation in a panel of human PDAC cell lines, in ASS1-high and -knockdown/knockout isogenic models, in both anchorage-dependent and -independent cultures, and in multicellular complex cultures that model the PDAC tumor microenvironment. We examined the effects of combined Arg deprivation and PAN on DNA damage and the protein levels of key DNA repair enzymes. We also evaluated the efficacy of PAN and ADI-PEG20 (an Arg-degrading agent currently in Phase 2 clinical trials) in xenograft models with ASS1-low and -high PDAC tumors. Results: Low ASS1 protein level is a negative prognostic indicator in PDAC. Arg deprivation in ASS1-deficient PDAC cells upregulated asparagine synthetase (ASNS) which redirected aspartate (Asp) from being used for de novo nucleotide biosynthesis, thus causing nucleotide insufficiency and impairing cell cycle S-phase progression. Comprehensively validated, HDAC inhibitors and Arg deprivation showed synthetic lethality in ASS1-low PDAC cells. Mechanistically, combined Arg deprivation and HDAC inhibition triggered degradation of a key DNA repair enzyme C-terminal-binding protein interacting protein (CtIP), resulting in DNA damage and apoptosis. In addition, S-phase-retained ASS1-low PDAC cells (due to Arg deprivation) were also sensitized to DNA damage, thus yielding effective cell death. Compared to single agents, the combination of PAN and ADI-PEG20 showed better efficacy in suppressing ASS1-low PDAC tumor growth in mouse xenograft models. Conclusion: The combination of PAN and ADI-PEG20 is a rational translational therapeutic strategy for treating ASS1-low PDAC tumors through synergistic induction of DNA damage.
Collapse
|
49
|
Karatsai O, Stasyk O, Redowicz MJ. Effects of Arginine and Its Deprivation on Human Glioblastoma Physiology and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:243-258. [PMID: 32034717 DOI: 10.1007/978-3-030-30651-9_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The observations that numerous cancers are characterized by impairment in arginine synthesis and that deficit of exogenous arginine specifically affects their growth and viability are the ground for arginine deprivation-based anticancer treatment strategy. This review addresses molecular mechanisms of the human glioblastoma cell response to arginine deprivation. Our earlier studies have shown that arginine deprivation specifically impairs glioblastoma cell motility, adhesion and invasiveness. These changes were evoked by alterations in the actin cytoskeleton organization resulting from a decreased arginylation of β-actin isoform. Moreover, deficit of arginine induces prolonged endoplasmic reticulum (ER) stress and activation of the unfolded protein response, not leading, however, to a massive apoptosis in glioblastoma cells. Our current research indicates that cell death could be augmented by other compounds such as modulators of ER stress, for example arginine analogue of plant origin, canavanine. Implication of these studies on the development of new anti-glioma metabolic therapeutic modalities are discussed.
Collapse
Affiliation(s)
- Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oleh Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Maria Jolanta Redowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
50
|
Bala A, Panditharadyula SS. Role of Nuclear Factor Erythroid 2-Related Factor 2 (NRF-2) Mediated Antioxidant Response on the Synergistic Antitumor Effect of L-Arginine and 5-Fluro Uracil (5FU) in Breast Adenocarcinoma. Curr Pharm Des 2019; 25:1643-1652. [DOI: 10.2174/1381612825666190705205155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023]
Abstract
Breast adenocarcinoma (BAC) in glandular tissue cells have excessive metastasis and invasion capability.
The major challenges for the chemotherapy used for the management of BAC include chemoresistance and
auto-immunosuppression in BAC. The 5-fluro uracil (5-FU) based therapy promotes the immune activation in
BAC by targeting the regulatory T cells and myeloid-derived suppressor cells (MDSC). The beneficial effect of
the combination of L-Arginine with 5-FU strives to be established in different pre-clinical and clinical conditions
and explored in the scientific literature. L-Arginine induces NO production and potentiates the anticancer effect
of 5-FU. NO-mediated signaling is regulated by nuclear factor erythroid 2-related factor 2 (NRF-2) mediated
antioxidant response. NRF-2 mediated antioxidant mechanism always suppresses the formation of superoxide
(O2
-) as well as other reactive oxygen species (ROS). Thus the utilization of NO by O2
- will be minimum in this
combination therapy. The regulatory role of NRF-2 in regulation to Antioxidant Response Element (ARE) mediated
cytoprotective gene expression in BAC remains unexplored. The present review summarizes the role of
NRF-2 mediated antioxidant response on the synergistic antitumor effect of L-Arginine and 5-FU in BAC. This
review brought new insight into the management of BAC and in the same context, a hypothesis is raised on the
use of reduced glutathione (GSH) or N-Acetyl Cysteine as it may be an added adjuvant in the combination of 5-
FU and L-Arginine for management of BAC.
Collapse
Affiliation(s)
- Asis Bala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, EPIP, Industrial Area, Vaishali 844102, Bihar, India
| | - Shravani Sripathi Panditharadyula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, EPIP, Industrial Area, Vaishali 844102, Bihar, India
| |
Collapse
|