1
|
Marlar R, Abbas F, Obeid R, Frisbie S, Ghazoul A, Rezaee A, Sims J, Rampazzo A, Bassiri Gharb B. A meta-analysis of perfusion parameters affecting weight gain in ex vivo perfusion. Artif Organs 2025; 49:7-20. [PMID: 39157933 PMCID: PMC11687208 DOI: 10.1111/aor.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes. METHODS A meta-analysis of literature was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement. The search encompassed articles published before July 25, 2023. PubMed, Embase, and CENTRAL databases were screened using search terms "ex-vivo," "ex-situ," "machine," and "perfusion." Weight gain, an indicator of organ viability, was chosen to compare outcomes. Extracted variables included perfused organ, warm and cold ischemia time before perfusion, perfusion duration, perfusate flow, pressure, temperature, perfusate composition (presence of cellular or acellular oxygen carrier, colloids, and other supplements) and percent weight change. Data were analyzed using SPSS statistical software. RESULTS Overall, 44 articles were included. Red blood cell-based perfusates resulted in significantly lower weight gain compared to acellular perfusates without oxygen carriers (11.3% vs. 27.0%, p < 0.001). Hemoglobin-based oxygen carriers resulted in significantly lower weight gain compared to acellular perfusates (16.5% vs. 27%, p = 0.006). Normothermic perfusion led to the least weight gain (14.6%), significantly different from hypothermic (24.3%) and subnormothermic (25.0%) conditions (p < 0.001), with no significant difference between hypothermic and subnormothermic groups (24.3% vs. 25.0%, p = 0.952). There was a positive correlation between flow rate and weight gain (ß = 13.1, R = 0.390, p < 0.001). CONCLUSIONS Oxygen carriers, low flow rates, and normothermic perfusate temperature appear to improve outcomes in EVMP. These findings offer opportunities for improving organ transplantation outcomes.
Collapse
Affiliation(s)
- Riley Marlar
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Fuad Abbas
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Rommy Obeid
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Sean Frisbie
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Adam Ghazoul
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Ava Rezaee
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | - Jack Sims
- Department of Plastic SurgeryCleveland ClinicClevelandOhioUSA
| | | | | |
Collapse
|
2
|
O'Brien Laramy M, Robinson J, Venkatramani CJ, Horn S, Steiner C, Son YJ. Drug Development Considerations for Additives to Organ Preservation Solutions. Transplantation 2024:00007890-990000000-00888. [PMID: 39375888 DOI: 10.1097/tp.0000000000005221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The addition of a novel therapeutic agent to an organ preservation solution has the potential to address unmet needs in organ transplantation and enhance outcomes for transplant recipients. However, the development expectations for novel therapeutic agents in this context are unclear because of limited precedence and published regulatory guidance documents. To address these gaps, we have articulated a drug development strategy that leverages expectations for parenteral drug products administered via more conventional routes (eg, intravenous) and provided considerations for when deviations may be justified. We have supplemented this strategy with a comparison to available regulatory guidance from the US Food and Drug Administration to highlight potential areas for further clarification. The strategy articulated here is based on Genentech's internal experience for a program intended for use in kidney transplantation.
Collapse
Affiliation(s)
| | - Jamie Robinson
- Pharma Technical Regulatory, Genentech, Inc., South San Francisco, CA
| | - C J Venkatramani
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA
| | - Stephanie Horn
- Pharma Technical Regulatory-Device and Combination Products, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Carine Steiner
- Analytical Research & Development, Pharma Technical Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Yoen-Ju Son
- Pharma Technical Development Project and Portfolio Development, South San Francisco, CA
| |
Collapse
|
3
|
Sperry MM, Charrez B, Fotowat H, Gardner E, Pilobello K, Izadifar Z, Lin T, Kuelker A, Kaki S, Lewandowski M, Lightbown S, Martinez R, Marquez S, Moore J, Plaza-Oliver M, Sesay AM, Shcherbina K, Sheehan K, Takeda T, Del Campo D, Andrijauskaite K, Cisneros E, Lopez R, Cano I, Maxwell Z, Jessop I, Veraza R, Bunegin L, Percival TJ, Yracheta J, Pena JJ, Wood DM, Homas ZT, Hinshaw CJ, Cox-Hinshaw J, Parry OG, Sleeter JJ, Weitzel EK, Levin M, Super M, Novak R, Ingber DE. Identification of pharmacological inducers of a reversible hypometabolic state for whole organ preservation. eLife 2024; 13:RP93796. [PMID: 39316042 PMCID: PMC11421850 DOI: 10.7554/elife.93796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Drugs that induce reversible slowing of metabolic and physiological processes would have great value for organ preservation, especially for organs with high susceptibility to hypoxia-reperfusion injury, such as the heart. Using whole-organism screening of metabolism, mobility, and development in Xenopus, we identified an existing drug, SNC80, that rapidly and reversibly slows biochemical and metabolic activities while preserving cell and tissue viability. Although SNC80 was developed as a delta opioid receptor activator, we discovered that its ability to slow metabolism is independent of its opioid modulating activity as a novel SNC80 analog (WB3) with almost 1000 times less delta opioid receptor binding activity is equally active. Metabolic suppression was also achieved using SNC80 in microfluidic human organs-on-chips, as well as in explanted whole porcine hearts and limbs, demonstrating the cross-species relevance of this approach and potential clinical relevance for surgical transplantation. Pharmacological induction of physiological slowing in combination with organ perfusion transport systems may offer a new therapeutic approach for tissue and organ preservation for transplantation, trauma management, and enhancing patient survival in remote and low-resource locations.
Collapse
Affiliation(s)
- Megan M Sperry
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
- Department of Biology, Tufts UniversityMedfordUnited States
| | - Berenice Charrez
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Haleh Fotowat
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Erica Gardner
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Kanoelani Pilobello
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Tiffany Lin
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Abigail Kuelker
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Sahith Kaki
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Michael Lewandowski
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Shanda Lightbown
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Ramses Martinez
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Susan Marquez
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Joel Moore
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Maria Plaza-Oliver
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
- DEVANA group, Faculty of Pharmacy, University of Castilla-La ManchaCiudad RealSpain
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Kostyantyn Shcherbina
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Katherine Sheehan
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Takako Takeda
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Daniela Del Campo
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | | | - Exal Cisneros
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | - Riley Lopez
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | - Isabella Cano
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | | | - Israel Jessop
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | - Rafa Veraza
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | - Leon Bunegin
- Vascular Perfusion Solutions IncSan AntonioUnited States
| | - Thomas J Percival
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Jaclyn Yracheta
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Jorge J Pena
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Diandra M Wood
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Zachary T Homas
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Cody J Hinshaw
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | | | - Olivia G Parry
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Justin J Sleeter
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Erik K Weitzel
- RESTOR, 59th Medical Wing, JBSA, Lackland AFBSan AntonioUnited States
| | - Michael Levin
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
- Department of Biology, Tufts UniversityMedfordUnited States
- Allen Center, Tufts UniversityMedfordUnited States
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUnited States
| | - Donald E Ingber
- Vascular Biology Program & Department of Surgery, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
- Harvard John A. Paulson School of Engineering and Applied SciencesBostonUnited States
| |
Collapse
|
4
|
Chen H, Ellis BW, Dinicu AT, Mojoudi M, Wilks BT, Tessier SN, Toner M, Uygun K, Uygun BE. Polyethylene glycol and caspase inhibitor emricasan alleviate cold injury in primary rat hepatocytes. Cryobiology 2024; 116:104926. [PMID: 38880369 PMCID: PMC11374468 DOI: 10.1016/j.cryobiol.2024.104926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Current methods of storing explanted donor livers at 4 °C in University of Wisconsin (UW) solution result in loss of graft function and ultimately lead to less-than-ideal outcomes post transplantation. Our lab has previously shown that supplementing UW solution with 35-kilodalton polyethylene glycol (PEG) has membrane stabilizing effects for cold stored primary rat hepatocytes in suspension. Expanding on past studies, we here investigate if PEG has the same beneficial effects in an adherent primary rat hepatocyte cold storage model. In addition, we investigated the extent of cold-induced apoptosis through treating cold-stored hepatocytes with pan caspase inhibitor emricasan. In parallel to storage at the current cold storage standard of 4 °C, we investigated the effects of lowering the storage temperature to -4 °C, at which the storage solution remains ice-free due to the supercooling phenomenon. We show the addition of 5 % PEG to the storage medium significantly reduced the release of lactate dehydrogenase (LDH) in plated rat hepatocytes and a combinatorial treatment with emricasan maintains hepatocyte viability and morphology following recovery from cold storage. These results show that cold-stored hepatocytes undergo multiple mechanisms of cold-induced injury and that PEG and emricasan treatment in combination with supercooling may improve cell and organ preservation.
Collapse
Affiliation(s)
- Huyun Chen
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Bradley W Ellis
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Antonia T Dinicu
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Benjamin T Wilks
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA.
| |
Collapse
|
5
|
Arsyad A, Lembang GKR, Linda SL, Djabir YY, Dobson GP. Low Calcium-High Magnesium Krebs-Henseleit Solution Combined with Adenosine and Lidocaine Improved Rat Aortic Function and Structure Following Cold Preservation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1284. [PMID: 39202566 PMCID: PMC11356418 DOI: 10.3390/medicina60081284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
Background and objectives: The main problem of vascular preservation is the maintenance of vessel graft quality and function following extended storage. Conventional preservation solutions such as histidine-tryptophan-ketoglutarate (HTK) solution, Phosphate-Buffer Solution (PBS), or sodium chloride 0.9% has been shown to be inadequate in preserving vascular physiological function after 3 days of cold storage. This study aimed to evaluate whether adenosine and lidocaine (AL) in a modified Krebs-Henseleit (KH) solution can preserve the function and histological structure of rat aortic rings after 6 days. Materials and Methods: Thirty-five aortic rings from male Wistar rats (200-300 g) were harvested and immediately immersed in one of the assigned cold preservation solutions: standard KH, modified KH (mod KH) with lower calcium (Ca2+) and higher magnesium content (Mg2+) with or without adenosine and lidocaine (mod KH-AL), and modified KH with AL, insulin, and melatonin (Mod KH-ALMI). The contraction and relaxation function of the aortic rings were examined using an isometric force transducer after 6 days of cold preservation. Hematoxylin and eosin staining were used to analyze the rings' histological structure. Results: Vascular contraction and relaxation functions were severely affected after a 6-day cold storage period in standard KH. Modifying the KH solution by reducing the Ca2+ and increasing the Mg2+ levels greatly recovered the vessel functions. The addition of AL or ALMI to the modified KH did not further recover vascular contractility. However, only the addition of AL to the modified KH increased the ACh-induced relaxation at 6 days when compared to the conventional KH, suggesting that endothelium preservation is improved. From histological analysis, it was found that the addition of AL but not ALMI further improved the endothelial lining and the structure of the elastic membrane layers of the preserved vessels after 6 days of cold preservation. Conclusions: The addition of AL to low calcium-high magnesium KH solution significantly enhanced endothelial preservation and improved endothelial-induced relaxation of preserved vessels after 6 days of cold storage.
Collapse
Affiliation(s)
- Aryadi Arsyad
- Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Geni K. R. Lembang
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (G.K.R.L.); (S.L.L.); (Y.Y.D.)
| | - Sesilia L. Linda
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (G.K.R.L.); (S.L.L.); (Y.Y.D.)
| | - Yulia Y. Djabir
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (G.K.R.L.); (S.L.L.); (Y.Y.D.)
| | - Geoffrey P. Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
6
|
Ogurlu B, Hamelink TL, Van Tricht IM, Leuvenink HGD, De Borst MH, Moers C, Pool MBF. Utilizing pathophysiological concepts of ischemia-reperfusion injury to design renoprotective strategies and therapeutic interventions for normothermic ex vivo kidney perfusion. Am J Transplant 2024; 24:1110-1126. [PMID: 38184242 DOI: 10.1016/j.ajt.2024.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Normothermic machine perfusion (NMP) has emerged as a promising tool for the preservation, viability assessment, and repair of deceased-donor kidneys prior to transplantation. These kidneys inevitably experience a period of ischemia during donation, which leads to ischemia-reperfusion injury when NMP is subsequently commenced. Ischemia-reperfusion injury has a major impact on the renal vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis. With an increased understanding of the underlying pathophysiological mechanisms, renoprotective strategies and therapeutic interventions can be devised to minimize additional injury during normothermic reperfusion, ensure the safe implementation of NMP, and improve kidney quality. This review discusses the pathophysiological alterations in the vasculature, metabolism, oxygenation, electrolyte balance, and acid-base homeostasis of deceased-donor kidneys and delineates renoprotective strategies and therapeutic interventions to mitigate renal injury and improve kidney quality during NMP.
Collapse
Affiliation(s)
- Baran Ogurlu
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Isa M Van Tricht
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin H De Borst
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Yang SN, Shi Y, Berggren PO. The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. Physiol Rev 2024; 104:881-929. [PMID: 38206586 PMCID: PMC11381035 DOI: 10.1152/physrev.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Abbas SH, Ceresa CDL, Pollok JM. Steatotic Donor Transplant Livers: Preservation Strategies to Mitigate against Ischaemia-Reperfusion Injury. Int J Mol Sci 2024; 25:4648. [PMID: 38731866 PMCID: PMC11083584 DOI: 10.3390/ijms25094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK;
| | - Carlo Domenico Lorenzo Ceresa
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
| | - Joerg-Matthias Pollok
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
- Division of Surgery & Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
9
|
Rodak O, Peris-Diaz MD, Dzięgiel P, Piotrowska A, Partyka A, Niżański W. Prolonged cold-preservation of domestic cat ovarian tissue is improved by extracellular solution but impaired by the fragmentation of ovary. Anim Reprod Sci 2024; 263:107431. [PMID: 38412765 DOI: 10.1016/j.anireprosci.2024.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
For domestic cats ovaries, recommended cold-storage limit is 24 h in Phosphate Buffered Saline (PBS) or Dulbecco`s PBS (DPBS). Here, we attempted to verify wheatear cat ovaries may benefit from more complex solutions during prolonged cold-storage (>24 h). First, the preservation capabilities of extracellular (SP+), intracellular (UW) solutions and DPBS supplemented with glutathione (DPBS+GSH) were compared using ovary fragments from the same ovary (n=10). Intact ovary stored in DPBS served as a control. Ovaries were kept at 4 °C for 48 h, and 72 h. In the second experiment, first ovary was stored in DPBS, second in SP+ or UW solution for 48 h (n = 12). Ovaries pairs stored in DPBS for 24 h served as a control (n=8). Tissue samples were evaluated directly after cold-storage and after following 24 h in vitro culture. Ovarian follicle morphology, apoptosis rates (cleaved caspase-3, TUNEL), and follicular growth activation (Ki-67) were assessed. Ovary fragmentation impaired follicular morphology preservation upon cold-storage comparing to intact ovary. However, ovarian fragments stored in UW for 48 h and in SP+ for 72 h presented better morphology than DPBS+GSH group. Comparison of intact ovaries cold-storage for 48 h showed that SP+ provided superior follicular morphology over DPBS, and it was comparable to the outcome of 24-hour storage. No follicular activation after in vitro culture was observed. Nevertheless, tissue culture increased considerably caspase-3 cleavage and TUNEL detection. The ovary fragmentation prior to cold-storage is not recommended in domestic cats. Replacement of DPBS with SP+ solution for whole ovary and UW solution for ovarian tissue fragments improves follicular structure preservation during 48-hour cold-storage.
Collapse
Affiliation(s)
- Olga Rodak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland; Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 49, Wroclaw 50-366, Poland.
| | - Manuel David Peris-Diaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland; Department of Physiotherapy, University School of Physical Education, Wroclaw 51-612, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Agnieszka Partyka
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 49, Wroclaw 50-366, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 49, Wroclaw 50-366, Poland.
| |
Collapse
|
10
|
Duru Ç, Biniazan F, Hadzimustafic N, D'Elia A, Shamoun V, Haykal S. Review of machine perfusion studies in vascularized composite allotransplant preservation. FRONTIERS IN TRANSPLANTATION 2023; 2:1323387. [PMID: 38993931 PMCID: PMC11235328 DOI: 10.3389/frtra.2023.1323387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 07/13/2024]
Abstract
The applications of Vascularized composite allotransplantation (VCA) are increasing since the first successful hand transplantation in 1998. However, the abundance of muscle tissue makes VCA's vulnerable to ischemia-reperfusion injury (IRI), which has detrimental effects on the outcome of the procedure, restricting allowable donor-to-recipient time and limiting its widespread use. The current clinical method is Static cold storage (SCS) and this allows only 6 h before irreversible damage occurs upon reperfusion. In order to overcome this obstacle, the focus of research has been shifted towards the prospect of ex-vivo perfusion preservation which already has an established clinical role in solid organ transplants especially in the last decade. In this comprehensive qualitative review, we compile the literature on all VCA machine perfusion models and we aim to highlight the essentials of an ex vivo perfusion set-up, the different strategies, and their associated outcomes.
Collapse
Affiliation(s)
- Çağdaş Duru
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
| | - Felor Biniazan
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
| | - Nina Hadzimustafic
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrew D'Elia
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Valentina Shamoun
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network (UHN), Toronto, ON, Canada
- Plastic and Reconstructive Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Chen H, Ellis BW, Dinicu AT, Mojoudi M, Wilks BT, Tessier SN, Toner M, Uygun K, Uygun BE. Polyethylene Glycol and Caspase Inhibitor Emricasan Alleviates Cold Injury in Primary Rat Hepatocytes. RESEARCH SQUARE 2023:rs.3.rs-3669876. [PMID: 38076969 PMCID: PMC10705698 DOI: 10.21203/rs.3.rs-3669876/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Current methods of storing explanted donor livers at 4°C in University of Wisconsin (UW) solution result in loss of graft function and ultimately leads to less-than-ideal outcomes post transplantation. Our lab has previously shown that supplementing UW solution with 35-kilodalton polyethylene glycol (PEG) has membrane stabilizing effects for cold stored primary rat hepatocytes in suspension. Expanding on past studies, we here investigate if PEG has the same beneficial effects in an adherent primary rat hepatocyte cold storage model. In addition, we investigated the extent of cold-induced apoptosis through treating cold-stored hepatocytes with pan caspase inhibitor emricasan. In parallel to storage at the current cold storage standard of 4°C, we investigated the effects of lowering the storage temperature to -4°C, at which the storage solution remains ice-free due to the supercooling phenomenon. We show the addition of 5% PEG to the storage medium significantly reduced the release of lactate dehydrogenase (LDH) in plated rat hepatocytes and a combinatorial treatment with emricasan maintains hepatocyte viability and morphology following recovery from cold storage. These results show that cold-stored hepatocytes undergo multiple mechanisms of cold-induced injury and that PEG and emricasan treatment in combination with supercooling may improve cell and organ preservation.
Collapse
Affiliation(s)
- Huyun Chen
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Bradley W Ellis
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Antonia T Dinicu
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Mohammadreza Mojoudi
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Benjamin T Wilks
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital
| |
Collapse
|
12
|
Iske J, Schroeter A, Knoedler S, Nazari-Shafti TZ, Wert L, Roesel MJ, Hennig F, Niehaus A, Kuehn C, Ius F, Falk V, Schmelzle M, Ruhparwar A, Haverich A, Knosalla C, Tullius SG, Vondran FWR, Wiegmann B. Pushing the boundaries of innovation: the potential of ex vivo organ perfusion from an interdisciplinary point of view. Front Cardiovasc Med 2023; 10:1272945. [PMID: 37900569 PMCID: PMC10602690 DOI: 10.3389/fcvm.2023.1272945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Ex vivo machine perfusion (EVMP) is an emerging technique for preserving explanted solid organs with primary application in allogeneic organ transplantation. EVMP has been established as an alternative to the standard of care static-cold preservation, allowing for prolonged preservation and real-time monitoring of organ quality while reducing/preventing ischemia-reperfusion injury. Moreover, it has paved the way to involve expanded criteria donors, e.g., after circulatory death, thus expanding the donor organ pool. Ongoing improvements in EVMP protocols, especially expanding the duration of preservation, paved the way for its broader application, in particular for reconditioning and modification of diseased organs and tumor and infection therapies and regenerative approaches. Moreover, implementing EVMP for in vivo-like preclinical studies improving disease modeling raises significant interest, while providing an ideal interface for bioengineering and genetic manipulation. These approaches can be applied not only in an allogeneic and xenogeneic transplant setting but also in an autologous setting, where patients can be on temporary organ support while the diseased organs are treated ex vivo, followed by reimplantation of the cured organ. This review provides a comprehensive overview of the differences and similarities in abdominal (kidney and liver) and thoracic (lung and heart) EVMP, focusing on the organ-specific components and preservation techniques, specifically on the composition of perfusion solutions and their supplements and perfusion temperatures and flow conditions. Novel treatment opportunities beyond organ transplantation and limitations of abdominal and thoracic EVMP are delineated to identify complementary interdisciplinary approaches for the application and development of this technique.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Schroeter
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonard Wert
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian J. Roesel
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Felix Hennig
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adelheid Niehaus
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Kuehn
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Volkmar Falk
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
- Department of Health Science and Technology, Translational Cardiovascular Technology, ETH Zurich, Zürich, Switzerland
| | - Moritz Schmelzle
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
13
|
Chaabani R, Bejaoui M, Zaouali MA, Ben Abdennebi H. Protective effects of diclofenac on liver graft preservation. Can J Physiol Pharmacol 2023; 101:382-392. [PMID: 37224567 DOI: 10.1139/cjpp-2022-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study aims to evaluate the effect of diclofenac addition to the preservation solution Celsior on liver graft preservation. Liver from Wistar rats were cold flushed in situ, harvested, and then stored in Celsior solution (24 h, 4 °C) supplemented or not with 50 mg/L of diclofenac sodium salt. Reperfusion was performed (120 min, 37 °C) using the isolated perfusion rat liver model. Perfusate samples were collected to evaluate transaminases' activities after cold storage and by the end of reperfusion. To evaluate liver function, bile flow, hepatic clearance of bromosulfophthalein, and vascular resistance were assessed. Diclofenac scavenging property (DPPH assay) as well as oxidative stress parameters (SOD and MPO activities and the concentration of glutathione, conjugated dienes, MDA, and carbonylated proteins) were measured. Transcription factors (PPAR-γ and NF-κB), inflammation (COX-2, IL-6, HMGB-1, and TLR-4), as well as apoptosis markers (Bcl-2 and Bax) were determined by quantitative RT-PCR. Enriching the preservation solution Celsior with diclofenac sodium salt attenuated liver injuries and improved graft function. Oxidative stress, inflammation, and apoptosis were significantly reduced in Celsior + Diclo solution. Also, diclofenac activated PPAR-γ and inhibited NF-κB transcription factors. To decrease graft damage and improve transplant recovery, diclofenac sodium salt may be a promising additive to preservation solution.
Collapse
Affiliation(s)
- Roua Chaabani
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, Rue Avicenne 5019, University of Monastir, Monastir, Tunisia
| | - Mohamed Bejaoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, Rue Avicenne 5019, University of Monastir, Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, Rue Avicenne 5019, University of Monastir, Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, Rue Avicenne 5019, University of Monastir, Monastir, Tunisia
| |
Collapse
|
14
|
Gartzke LP, Hendriks KDW, Hoogstra-Berends F, Joschko CP, Strandmoe AL, Vogelaar PC, Krenning G, Henning RH. Inhibition of Ferroptosis Enables Safe Rewarming of HEK293 Cells following Cooling in University of Wisconsin Cold Storage Solution. Int J Mol Sci 2023; 24:10939. [PMID: 37446116 DOI: 10.3390/ijms241310939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The prolonged cooling of cells results in cell death, in which both apoptosis and ferroptosis have been implicated. Preservation solutions such as the University of Wisconsin Cold Storage Solution (UW) encompass approaches addressing both. The use of UW improves survival and thus extends preservation limits, yet it remains unclear how exactly organ preservation solutions exert their cold protection. Thus, we explored cooling effects on lipid peroxidation and adenosine triphosphate (ATP) levels and the actions of blockers of apoptosis and ferroptosis, and of compounds enhancing mitochondrial function. Cooling and rewarming experiments were performed in a cellular transplantation model using Human Embryonic Kidney (HEK) 293 cells. Cell viability was assessed by neutral red assay. Lipid peroxidation levels were measured by Western blot against 4-Hydroxy-Nonenal (4HNE) and the determination of Malondialdehyde (MDA). ATP was measured by luciferase assay. Cooling beyond 5 h in Dulbecco's Modified Eagle Medium (DMEM) induced complete cell death in HEK293, whereas cooling in UW preserved ~60% of the cells, with a gradual decline afterwards. Cooling-induced cell death was not precluded by inhibiting apoptosis. In contrast, the blocking of ferroptosis by Ferrostatin-1 or maintaining of mitochondrial function by the 6-chromanol SUL150 completely inhibited cell death both in DMEM- and UW-cooled cells. Cooling for 24 h in UW followed by rewarming for 15 min induced a ~50% increase in MDA, while concomitantly lowering ATP by >90%. Treatment with SUL150 of cooled and rewarmed HEK293 effectively precluded the increase in MDA and preserved normal ATP in both DMEM- and UW-cooled cells. Likewise, treatment with Ferrostatin-1 blocked the MDA increase and preserved the ATP of rewarmed UW HEK293 cells. Cooling-induced HEK293 cell death from hypothermia and/or rewarming was caused by ferroptosis rather than apoptosis. UW slowed down ferroptosis during hypothermia, but lipid peroxidation and ATP depletion rapidly ensued upon rewarming, ultimately resulting in complete cell death. Treatment throughout UW cooling with small-molecule Ferrostatin-1 or the 6-chromanol SUL150 effectively prevented ferroptosis, maintained ATP, and limited lipid peroxidation in UW-cooled cells. Counteracting ferroptosis during cooling in UW-based preservation solutions may provide a simple method to improve graft survival following cold static cooling.
Collapse
Affiliation(s)
- Lucas P Gartzke
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Koen D W Hendriks
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Femke Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Christian P Joschko
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne-Lise Strandmoe
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Pieter C Vogelaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Sulfateq B.V. Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands
| | - Guido Krenning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Sulfateq B.V. Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
15
|
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, Chiusa L, Romagnoli R. How to Preserve Steatotic Liver Grafts for Transplantation. J Clin Med 2023; 12:3982. [PMID: 37373676 DOI: 10.3390/jcm12123982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and has been associated with inferior patient and graft survival, particularly in the case of moderate or severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver disease in the population has led to a higher proportion of steatotic liver grafts being used for transplantation, making the optimization of their preservation an urgent necessity. This review discusses the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury and provides an overview of the available strategies to improve their utilization for transplantation, with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation solutions, and machine perfusion techniques.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Elena Vissio
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Ana Lavinia Apostu
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicoletta Petronio
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giovanni Vitelli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Silvia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Fabio Colli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Luigi Chiusa
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| |
Collapse
|
16
|
Layton GR, Ladak SS, Abbasciano R, McQueen LW, George SJ, Murphy GJ, Zakkar M. The Role of Preservation Solutions upon Saphenous Vein Endothelial Integrity and Function: Systematic Review and UK Practice Survey. Cells 2023; 12:815. [PMID: 36899951 PMCID: PMC10001248 DOI: 10.3390/cells12050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The long saphenous vein is the most used conduit in cardiac surgery, but its long-term patency is limited by vein graft disease (VGD). Endothelial dysfunction is a key driver of VGD; its aetiology is multi-factorial. However emerging evidence identifies vein conduit harvest technique and preservation fluids as causal in their onset and propagation. This study aims to comprehensively review published data on the relationship between preservation solutions, endothelial cell integrity and function, and VGD in human saphenous veins harvested for CABG. The review was registered with PROSPERO (CRD42022358828). Electronic searches of Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE databases were undertaken from inception until August 2022. Papers were evaluated in line with registered inclusion and exclusion criteria. Searches identified 13 prospective, controlled studies for inclusion in the analysis. All studies used saline as a control solution. Intervention solutions included heparinised whole blood and saline, DuraGraft, TiProtec, EuroCollins, University of Wisconsin (UoW), buffered, cardioplegic and Pyruvate solutions. Most studies demonstrated that normal saline appears to have negative effects on venous endothelium and the most effective preservation solutions identified in this review were TiProtec and DuraGraft. The most used preservation solutions in the UK are heparinised saline or autologous whole blood. There is substantial heterogeneity both in practice and reporting of trials evaluating vein graft preservation solutions, and the quality of existing evidence is low. There is an unmet need for high quality trials evaluating the potential for these interventions to improve long-term patency in venous bypass grafts.
Collapse
Affiliation(s)
- Georgia R. Layton
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Shameem S. Ladak
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
| | | | - Liam W. McQueen
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Sarah J. George
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS2 1UDD, UK
| | - Gavin J. Murphy
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
17
|
Douglas SJ, Remily EA, Sax OC, Pervaiz SS, Mohamed NS, Kelemen MN, Delanois RE, Johnson AJ. Primary total hip arthroplasty complications and costs in liver transplant recipients: a matched analysis using a national database. Hip Int 2023; 33:178-183. [PMID: 34748455 DOI: 10.1177/11207000211037225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The number of liver transplant recipients (LTR) is worldwide increasing and, as the survival is improving as well, there is an increasing number of patients needing total hip arthroplasty (THA). There might be increased risks for this specific group of patients and due to their comorbidities costs might be higher too. Using a big national database outcome and cost of THA should be compared between liver transplant recipients and the general population. METHODS The study was performed using a collection of Medicare, Medicaid, and private insurance claims. Length of stay (LOS), 30-day readmissions, complications rates up to 5 years, and 90-day total cost of care between liver transplant recipients and matched non-transplant patients should be compared. All primary THAs from 2010 to 2019 were identified. 513 patients with a liver transplant before their THA were matched to 10,759 patients without a history of solid organ transplant at a 1:20 ratio based on age, sex, Charlson Comorbidity Index, obesity, and diabetes status. RESULTS LTR had a longer average LOS (4.2 vs. 3.4 days, p < 0.001). There was no difference in the thirty-day readmissions (5.7% vs. 4.1%, p = 0.117) and 90-day dislocation rates (2.9% vs. 2.4%, p = 0.600). Total costs in the first ninety days after THA were not different between the LTR and controls (p = 0.756). CONCLUSIONS These findings suggest that complications and costs are no major point of concern in patients with liver transplant that are operated with THA.
Collapse
Affiliation(s)
- Scott J Douglas
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Ethan A Remily
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Oliver C Sax
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Sahir S Pervaiz
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Nequesha S Mohamed
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Margaret N Kelemen
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Ronald E Delanois
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Aaron J Johnson
- Department of Orthopaedics, University of Maryland Administrative Offices, Baltimore, MD, USA
| |
Collapse
|
18
|
Abdominal Organ Preservation Solutions in the Age of Machine Perfusion. Transplantation 2023; 107:326-340. [PMID: 35939388 DOI: 10.1097/tp.0000000000004269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The past decade has been the foreground for a radical revolution in the field of preservation in abdominal organ transplantation. Perfusion has increasingly replaced static cold storage as the preferred and even gold standard preservation method for marginal-quality organs. Perfusion is dynamic and offers several advantages in comparison with static cold storage. These include the ability to provide a continuous supply of new metabolic substrates, clear metabolic waste products, and perform some degree of organ viability assessment before actual transplantation in the recipient. At the same time, the ongoing importance of static cold storage cannot be overlooked, in particular when it comes to logistical and technical convenience and cost, not to mention the fact that it continues to work well for the majority of transplant allografts. The present review article provides an overview of the fundamental concepts of organ preservation, providing a brief history of static cold preservation and description of the principles behind and basic components of cold preservation solutions. An evaluation of current evidence supporting the use of different preservation solutions in abdominal organ transplantation is provided. As well, the range of solutions used for machine perfusion of abdominal organs is described, as are variations in their compositions related to changing metabolic needs paralleling the raising of the temperature of the perfusate from hypothermic to normothermic range. Finally, appraisal of new preservation solutions that are on the horizon is provided.
Collapse
|
19
|
Hofmann J, Pühringer M, Steinkellner S, Holl AS, Meszaros AT, Schneeberger S, Troppmair J, Hautz T. Novel, Innovative Models to Study Ischemia/Reperfusion-Related Redox Damage in Organ Transplantation. Antioxidants (Basel) 2022; 12:antiox12010031. [PMID: 36670893 PMCID: PMC9855021 DOI: 10.3390/antiox12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The implementation of ex vivo organ machine perfusion (MP) into clinical routine undoubtedly helped to increase the donor pool. It enables not just organ assessment, but potentially regeneration and treatment of marginal organs in the future. During organ procurement, redox-stress triggered ischemia-reperfusion injury (IRI) is inevitable, which in addition to pre-existing damage negatively affects such organs. Ex vivo MP enables to study IRI-associated tissue damage and its underlying mechanisms in a near to physiological setting. However, research using whole organs is limited and associated with high costs. Here, in vitro models well suited for early stage research or for studying particular disease mechanisms come into play. While cell lines convince with simplicity, they do not exert all organ-specific functions. Tissue slice cultures retain the three-dimensional anatomical architecture and cells remain within their naïve tissue-matrix configuration. Organoids may provide an even closer modelling of physiologic organ function and spatial orientation. In this review, we discuss the role of oxidative stress during ex vivo MP and the suitability of currently available in vitro models to further study the underlying mechanisms and to pretest potential treatment strategies.
Collapse
|
20
|
Quiring L, Caponi L, Schwan D, Rech A, Rauen U. Recovery from cold-induced mitochondrial fission in endothelial cells requires reconditioning temperatures of ≥ 25◦C. FRONTIERS IN TRANSPLANTATION 2022; 1:1044551. [PMID: 38994396 PMCID: PMC11235264 DOI: 10.3389/frtra.2022.1044551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 07/13/2024]
Abstract
Mitochondrial integrity and function constitute a prerequisite for cellular function and repair processes. We have previously shown that mitochondria of different cell types exhibit pronounced fragmentation under hypothermic conditions. This fission, accompanied by a decline of cellular ATP content, showed reversibility at 37◦C. However, it is unclear whether other temperatures as currently discussed for reconditioning of organs allow this reconstitution of mitochondria. Therefore, we here study in a model of cultured porcine aortic endothelial cells how different rewarming temperatures affect mitochondrial re-fusion and function. After 48 h cold incubation of endothelial cells in Krebs-Henseleit buffer with glucose (5 mM) and deferoxamine (1 mM) at 4◦C pronounced mitochondrial fission was observed. Following 2 h rewarming in cell culture medium, marked fission was still present after rewarming at 10◦ or 15◦C. At 21◦C some re-fusion was visible, which became more marked at 25◦C. Networks of tubular mitochondria similar to control cells only re-appeared at 37◦C. ATP content decreased at 4◦C from 3.6 ± 0.4 to 1.6 ± 0.4 nmol/106 cells and decreased even further when rewarming cells to 10◦ and 15◦C. Values after rewarming at 21◦C were similar to the values before rewarming while ATP gradually increased at higher rewarming temperatures. Metabolic activity dropped to 5 ± 11% of control values during 4◦C incubation and recovered with increasing temperatures to 36 ± 10% at 25◦C and 78 ± 17% at 37◦C. Integrity of monolayers, largely disturbed at 4◦C (large gaps between endothelial cells; cell injury ≤ 1%), showed partial recovery from 15◦C upwards, complete recovery at 37◦C. Endothelial repair processes (scratch assay) at 25◦C were clearly inferior to those at 37◦C. These data suggest that reconditioning temperatures below 21◦C are not optimal with regard to reconstitution of mitochondrial integrity and function. For this goal, temperatures of at least 25◦C appear required, with 30◦C being superior and 37◦C yielding the best results.
Collapse
Affiliation(s)
- Leonard Quiring
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
| | - Luisa Caponi
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Dhanusha Schwan
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
| | - Anja Rech
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
| | - Ursula Rauen
- Klinische Forschergruppe 117, Universitätsklinikum Essen, Essen, Germany
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
21
|
Ferrer-Fàbrega J, Folch-Puy E, Llaves-López A, García-Pérez R, Fuster J. Breaking the limits of experimental pancreas transplantation: Working toward the clinical ideal graft. FRONTIERS IN TRANSPLANTATION 2022; 1:1035480. [PMID: 38994386 PMCID: PMC11235275 DOI: 10.3389/frtra.2022.1035480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 07/13/2024]
Abstract
Pancreas transplantation is, at present, the only curative treatment for type-1 diabetes that maintains normoglycemia thus avoiding complications arising from poor glycemic control. Despite its great benefits, the number of pancreas transplants has decreased significantly since its inception in the late 1960s, largely due to demographic changes and the consequent suboptimal quality of donors. The selection criteria for pancreas donors mainly depend on morphological variables such as fatty infiltration, fibrosis, or edema, as well as both functional (amylase and lipase) and clinical variables of the donor. However, the final criterion in the decision-making process is the somewhat subjective assessment of a trained surgeon. That being said, the recent incorporation of graft perfusion machines into clinical practice seems to be changing the work dynamics of the donor organ retrieval team, facilitating decision-making based on objective morphological and functional criteria. Normothermic perfusion using perfusate with supplemental oxygen replicates near physiological parameters thus being a promising strategy for organ preservation. Nevertheless, optimum perfusion parameters are difficult to establish in pancreas transplantation given its complex vascular anatomy combined with an intrinsically low blood flow. The objective of this work is to analyze the results published in the recent literature relating to the considerations of ex-vivo normothermic graft perfusion machines and their usefulness in the field of pancreas transplantation.
Collapse
Affiliation(s)
- Joana Ferrer-Fàbrega
- Hepatobiliopancreatic Surgery and Liver and Pancreatic Transplantation Unit, Clinic Institute of Digestive and Metabolic Diseases (ICMDiM), Hospital Clínic, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Network for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Emma Folch-Puy
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain
| | - Andrea Llaves-López
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain
| | - Rocío García-Pérez
- Hepatobiliopancreatic Surgery and Liver and Pancreatic Transplantation Unit, Clinic Institute of Digestive and Metabolic Diseases (ICMDiM), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Josep Fuster
- Hepatobiliopancreatic Surgery and Liver and Pancreatic Transplantation Unit, Clinic Institute of Digestive and Metabolic Diseases (ICMDiM), Hospital Clínic, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Network for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| |
Collapse
|
22
|
Nemeth DV, Baldini E, Sorrenti S, D’Andrea V, Bellini MI. Cancer Metabolism and Ischemia-Reperfusion Injury: Two Sides of the Same Coin. J Clin Med 2022; 11:jcm11175096. [PMID: 36079025 PMCID: PMC9457267 DOI: 10.3390/jcm11175096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells are characterized by the reprogramming of certain cell metabolisms via activation of definite pathways and regulation of gene signaling. Ischemia-reperfusion injury (IRI) is characterized by tissue damage and death following a lack of perfusion and oxygenation. It is most commonly seen in the setting of organ transplantation. Interestingly, the microenvironments seen in cancer and ischemic tissues are quite similar, especially due to the hypoxic state that occurs in both. As a consequence, there is genetic signaling involved in response to IRI that has common pathways with cancer. Some of these changes are seen across the board with many cancer cells and are known as Hallmarks of Cancer, among which are aerobic glycolysis and the induction of angiogenesis. This literature review aims to compare the metabolic pathways that are altered in cancer tissues and in normal tissues subjected to IRI in order to find common adaptive processes and to identify key pathways that could represent a therapeutic target in both pathologies. By increasing our understanding of this relationship, clinical correlations can be made and applied practically to improve outcomes of transplanted organs, given the known association with acute rejection, delayed graft function, and poor graft survival. The following metabolic pathways are discussed in our review, both in the setting of cancer and IRI: apoptosis, glycolysis, and angiogenesis. The role of the immune system in both pathologies as well as mitochondrial function and the production of reactive oxygen species (ROS) are reviewed.
Collapse
Affiliation(s)
- Denise V. Nemeth
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78235, USA
| | - Enke Baldini
- Department of Surgical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Salvatore Sorrenti
- Department of Surgical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Vito D’Andrea
- Department of Surgical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (V.D.); (M.I.B.)
| | - Maria Irene Bellini
- Department of Surgical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (V.D.); (M.I.B.)
| |
Collapse
|
23
|
Sánchez-Ajofrín I, Martín-Maestro A, Medina-Chávez DA, Laborda-Gomariz JÁ, Peris-Frau P, Garde JJ, Soler AJ. Melatonin rescues the development and quality of oocytes and cumulus cells after prolonged ovary preservation: An ovine in vitro model. Theriogenology 2022; 186:1-11. [DOI: 10.1016/j.theriogenology.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
|
24
|
Development and Characterization of a Nonelectronic Versatile Oxygenating Perfusion System for Tissue Preservation. Ann Biomed Eng 2022; 50:978-990. [PMID: 35648279 DOI: 10.1007/s10439-022-02977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022]
Abstract
Oxygenated machine perfusion of human organs has been shown to improve both preservation quality and time duration when compared to the current gold standard: static cold storage. However, existing machine perfusion devices designed for preservation and transportation of transplantable organs are too complicated and organ-specific to merit use as a solution for all organs. This work presents a novel, portable, and nonelectronic device potentially capable of delivering oxygenated machine perfusion to a variety of organs. An innovative pneumatic circuit system regulates a compressed oxygen source that cyclically inflates and deflates silicone tubes, which function as both the oxygenator and perfusion pump. Different combinations of silicone tubes in single or parallel configurations, with lengths ranging from 1.5 to 15.2 m, were evaluated at varying oxygen pressures from 27.6 to 110.3 kPa. The silicone tubes in parallel configurations produced higher peak perfusion pressures (70% increase), mean flow rates (102% increase), and oxygenation rates (268% increase) than the single silicone tubes that had equivalent total lengths. While pumping against a vascular resistance element that mimicked a kidney, the device achieved perfusion pressures (8.4-131.6 mmHg), flow rates (2.0-40.2 mL min-1), and oxygenation rates (up to 388 μmol min-1) that are consistent with values used in previous kidney preservation studies. The nonelectronic device achieved those perfusion parameters using 4.4 L min-1 of oxygen to operate. These results demonstrate that oxygenated machine perfusion can be successfully achieved without any electronic components.
Collapse
|
25
|
Lepoittevin M, Giraud S, Kerforne T, Barrou B, Badet L, Bucur P, Salamé E, Goumard C, Savier E, Branchereau J, Battistella P, Mercier O, Mussot S, Hauet T, Thuillier R. Preservation of Organs to Be Transplanted: An Essential Step in the Transplant Process. Int J Mol Sci 2022; 23:ijms23094989. [PMID: 35563381 PMCID: PMC9104613 DOI: 10.3390/ijms23094989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Organ transplantation remains the treatment of last resort in case of failure of a vital organ (lung, liver, heart, intestine) or non-vital organ (essentially the kidney and pancreas) for which supplementary treatments exist. It remains the best alternative both in terms of quality-of-life and life expectancy for patients and of public health expenditure. Unfortunately, organ shortage remains a widespread issue, as on average only about 25% of patients waiting for an organ are transplanted each year. This situation has led to the consideration of recent donor populations (deceased by brain death with extended criteria or deceased after circulatory arrest). These organs are sensitive to the conditions of conservation during the ischemia phase, which have an impact on the graft’s short- and long-term fate. This evolution necessitates a more adapted management of organ donation and the optimization of preservation conditions. In this general review, the different aspects of preservation will be considered. Initially done by hypothermia with the help of specific solutions, preservation is evolving with oxygenated perfusion, in hypothermia or normothermia, aiming at maintaining tissue metabolism. Preservation time is also becoming a unique evaluation window to predict organ quality, allowing repair and/or optimization of recipient choice.
Collapse
Affiliation(s)
- Maryne Lepoittevin
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
| | - Sébastien Giraud
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
| | - Thomas Kerforne
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Cardio-Thoracic and Vascular Surgery Intensive Care Unit, Coordination of P.M.O., CHU Poitiers, 86021 Poitiers, France
| | - Benoit Barrou
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Sorbonne Université Campus Pierre et Marie Curie, Faculté de Médecine, 75005 Paris, France
- Service Médico-Chirurgical de Transplantation Rénale, APHP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
| | - Lionel Badet
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Faculté de Médecine, Campus Lyon Santé Est, Université Claude Bernard, 69622 Lyon, France
- Service d’Urologie et Transplantation, Hospices Civils de Lyon, Hôpital Edouard-Herriot, 69003 Lyon, France
| | - Petru Bucur
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive et Endocrinienne, Transplantation Hépatique, CHU de Tours, 37170 Chambray les Tours, France
- Groupement d’Imagerie Médicale, CHU de Tours, 37000 Tours, France
- University Hospital Federation SUPORT Tours Poitiers Limoges, 86021 Poitiers, France
| | - Ephrem Salamé
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive et Endocrinienne, Transplantation Hépatique, CHU de Tours, 37170 Chambray les Tours, France
- Groupement d’Imagerie Médicale, CHU de Tours, 37000 Tours, France
- University Hospital Federation SUPORT Tours Poitiers Limoges, 86021 Poitiers, France
| | - Claire Goumard
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, APHP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Eric Savier
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, APHP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Julien Branchereau
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service d’Urologie et de Transplantation, CHU de Nantes, 44000 Nantes, France
| | - Pascal Battistella
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Cardiologie et Maladies Vasculaires, CHU de Montpellier, CEDEX 5, 34295 Montpellier, France
| | - Olaf Mercier
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Thoracique et Cardio-Vasculaire, Centre Chirurgical Marie LANNELONGUE, 92350 Le Plessis Robinson, France
| | - Sacha Mussot
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Thoracique et Cardio-Vasculaire, Centre Chirurgical Marie LANNELONGUE, 92350 Le Plessis Robinson, France
| | - Thierry Hauet
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- University Hospital Federation SUPORT Tours Poitiers Limoges, 86021 Poitiers, France
- Correspondence:
| | - Raphael Thuillier
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
| |
Collapse
|
26
|
Recent Methods of Kidney Storage and Therapeutic Possibilities of Transplant Kidney. Biomedicines 2022; 10:biomedicines10051013. [PMID: 35625750 PMCID: PMC9139114 DOI: 10.3390/biomedicines10051013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Kidney transplantation is the standard procedure for the treatment of end-stage renal disease (ESRD). During kidney storage and before implantation, the organ is exposed to damaging factors which affect the decline in condition. The arrest of blood circulation results in oxygen and nutrient deficiency that lead to changes in the cell metabolism from aerobic to anaerobic, damaging organelles and cell structures. Currently, most kidney grafts are kept in a cold preservation solution to preserve low metabolism. However, there are numerous reports that machine perfusion is a better solution for organ preservation before surgery. The superiority of machine perfusion was proved in the case of marginal donor grafts, such as extended criteria donors (ECD) and donation after circulatory death (DCD). Different variant of kidney machine perfusions are evaluated. Investigators look for optimal conditions to protect kidneys from ischemia-reperfusion damage consequences by examining the best temperature conditions and comparing systems with constant or pulsatile flow. Moreover, machine perfusion brings additional advantages in clinical practice. Unlike cold static storage, machine perfusion allows the monitoring of the parameters of organ function, which gives a real possibility to make a decision prior to transplantation concerning whether the kidney is suitable for implantation. Moreover, new pharmacological therapies are sought to minimize organ damage. New components or cellular therapies can be applied, since perfusion solution flows through the organ. This review outlines the pros and cons of each machine perfusion technique and summarizes the latest achievements in the context of kidney transplantation using machine perfusion systems.
Collapse
|
27
|
Leber B, Schlechter S, Weber J, Rohrhofer L, Niedrist T, Aigelsreiter A, Stiegler P, Schemmer P. Experimental long-term sub-normothermic machine perfusion for non-allocable human liver grafts: first data towards feasibility. Eur Surg 2022. [DOI: 10.1007/s10353-022-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Summary
Background
Patients with end-stage liver disease can only be cured by liver transplantation. Due to the gap between demand and supply, surgeons are forced to use expanded criteria donor (ECD) organs, which are more susceptible to ischemia–reperfusion injury (IRI). Therefore, enhanced storing techniques are required. Machine perfusion (MP) has moved into the spotlight of research because of its feasibility for investigating liver function prior to implantation. However, as the perfect MP protocol has not yet been found, we aimed to investigate the potential of sub-normothermic (SN)MP in this field.
Methods
Non-allocable human livers were subjected to 24 h of SNMP at 21 °C after delivery to the study team. Perfusion was performed with Custodiol® (Dr. Franz Köhler Chemie, Bensheim, Germany) or Belzer MPS® (Bridge to Life Europe, London, UK) and perfusate liver parameters were determined. For determination of biliary conditions, pH, glucose, and HCO3- levels were measured.
Results
Liver parameters were slightly increased irrespective of perfusate or reason for liver rejection during 24 h of perfusion. Six livers failed to produce bile completely, whereas the remaining 10 livers produced between 2.4 ml and 179 ml of bile. Biliary carbonate was increased in all but one liver. The bile-glucose-to-perfusate-glucose ratio was near 1 for most of the organs and bile pH was above 7 in all but one case.
Conclusion
This study provides promising data on the feasibility of long-term SNMP as a tool to gain time during MP to optimize ECD organs to decrease the gap between organ demand and supply.
Long-term (24 h) sub-normothermic liver machine perfusion seems to be possible, although some adjustments to the protocol might be necessary to improve the general outcome. This has so far been shown for normothermic machine perfusion, bearing some drawbacks compared to the sub-normothermic variant.
Collapse
|
28
|
Moein M, Capelin J, Toth JF, Tylor D, Weiss ZM, Murugesan BG, Saidi RF. Role of Normothermic Machine Perfusion in Liver Transplantation: Current Trends and Outcomes. SURGERY IN PRACTICE AND SCIENCE 2022. [DOI: 10.1016/j.sipas.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
Katoh S, Yoshioka H, Suzuki S, Nakajima H, Iwasaki M, Senthilkumar R, Preethy S, Abraham SJK. An efficient polymer cocktail-based transportation method for cartilage tissue, yielding chondrocytes with enhanced hyaline cartilage expression during in vitro culturing. J Orthop 2022; 29:60-64. [PMID: 35145328 PMCID: PMC8814592 DOI: 10.1016/j.jor.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Chondrocytes are used in cell-based therapies such as autologous chondrocyte implantation (ACI) and matrix-associated cartilage implantation (MACI). To transport the cartilage tissue to the laboratory for in vitro culturing, phosphate-buffered saline (PBS), Euro-Collins solution (ECS) and Dulbecco's Modified Eagle's Medium (DMEM) are commonly employed at 4-8 °C. METHODS In this study, eight samples of human cartilage biopsy tissues from elderly patients with severe osteoarthritis undergoing arthroscopy, which would otherwise have been discarded, were used. The cartilage tissue samples were compared to assess the cell yield between two transportation groups: i) a thermo-reversible gelation polymer (TGP) based method without cool preservation (∼25 °C) and ii) ECS transport at 4 °C. These samples were subjected to in vitro culture in a two-dimensional (2D) monolayer for two weeks and subsequently in a three-dimensional (3D) TGP scaffold for six weeks. RESULTS The cell count obtained from the tissues transported in TGP was higher (0.2 million cells) than those transported in ECS (0.08 million cells) both after initial processing and after in vitro culturing for 2 weeks in 2D (18 million cells compared with 10 million cells). In addition, mRNA quantification demonstrated significantly higher expression of Col2a1 and SOX-9 in 3D-TGP cultured cells and lower expression of COL1a1 in RT-PCR, characteristic of the hyaline cartilage phenotype, than in 2D culture. CONCLUSION This study confirms that the TGP cocktail is suitable for both the transport of human cartilage tissue and for in vitro culturing to yield better-quality cells for use in regenerative therapies.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan,Department of Orthopaedic Surgery, Edogawa Hospital, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan
| | - Hiroshi Yoshioka
- Mebiol Inc., 1-25-8, Nakahara, Hiratsuka, 254-0075, Kanagawa, Japan
| | - Shoji Suzuki
- Department of Clinical Education, University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hiroyuki Nakajima
- II Department of Surgery, University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Samuel JK. Abraham
- Centre for Advancing Clinical Research (CACR), University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan,The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India,The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India,JBM Inc., 3-1-14, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan,Antony- Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., 3-8, Wakamatsu, Kofu, Yamanashi, 400-0866, Japan,Corresponding author. Centre for Advancing Clinical Research (CACR), University of Yamanashi, Faculty of Medicine, 3-8, Wakamatsu, Kofu, 400-0866, Yamanashi, Japan.
| |
Collapse
|
30
|
Ghosh S, Saurabh A, Prabhu NP. Spectroscopic studies on the stability and nucleation-independent fibrillation of partially-unfolded proteins in crowded environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120307. [PMID: 34461523 DOI: 10.1016/j.saa.2021.120307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Fibril formation of globular proteins is driven by attaining an appropriate partially-unfolded conformation. Excluded volume effect exerted by the presence of other macromolecules in the solution, as found in the cellular interior, might affect the conformational state of proteins and alter their fibril formation process. The change in structure, stability and rate of fibril formation of aggregation-prone partially-unfolded states of lysozyme (Lyz) and α-lactalbumin (ALA) in the presence of different sizes of polyethylene glycol (PEG) is examined using spectroscopic methods. Thermal denaturation and far-UV CD studies suggest that Lyz is stabilized by PEGs and the stability increases with increasing concentration of PEGs. However, the stability of ALA depends on the size and concentration of PEG. The change in enthalpy of unfolding indicates the existence of soft-interactions between the proteins and PEG along with excluded volume effect. Fibrillation rate of Lyz is not significantly altered in the presence of lower concentrations of PEGs suggesting that the crowding effect dominates the viscosity-induced retardation of protein association whereas at higher concentrations the rates are reduced. In case of ALA, the rate of fibrillation is drastically reduced; however, there is a marginal increase with the increasing concentration of PEG. The results suggest that the fibril formation is influenced by change in initial conformation of the partially-unfolded states of the proteins and their stability in the presence of the crowding agent. Further, the size and concentration of the crowding agent, and the soft-interaction between the proteins and PEG also affects the fibrillation.
Collapse
Affiliation(s)
- Subhasree Ghosh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Archi Saurabh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
31
|
Leeder JS, Dinh JC, Gaedigk A, Staggs VS, Prasad B, Pearce RE. Ontogeny of Scaling Factors for Pediatric Physiology-Based Pharmacokinetic Modeling and Simulation: Microsomal Protein Per Gram of Liver. Drug Metab Dispos 2022; 50:24-32. [PMID: 34686522 PMCID: PMC8969199 DOI: 10.1124/dmd.121.000623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Microsomal protein per gram of liver (MPPGL) is an important scaling factor for bottom-up physiology-based pharmacokinetic modeling and simulation, but data in pediatrics are limited. Therefore, MPPGL was determined in 160 liver samples from pediatric (n = 129) and adult (n = 31) donors obtained from four sources: the University of Maryland Brain and Tissue Bank (UMBTB), tissue retrieval services at the University of Minnesota and University of Pittsburgh, and Sekisui-Xenotech. Tissues were homogenized and subjected to differential centrifugation to prepare microsomes, and cytochrome c reductase activities in tissue homogenates and microsomes were used to estimate cytochrome P450 reductase (POR) activity as a marker of microsomal recovery; microsomal POR content was also assessed by quantitative proteomics. MPPGL values varied 5- to 10-fold within various age groups/developmental stages, and tissue source was identified as a contributing factor. Using a "trimmed" dataset comprised of samples ranging from 3 to 18 years of age common to the four sources, POR protein abundance and activity in microsomes and POR activity in homogenates was lower in UMBTB samples (autopsy) compared with other sources (perfused/flash-frozen). Regression analyses revealed that the UMBTB samples were driving an apparent age effect as no effect of age on log-transformed MPPGL values was observed when the UMBTB samples were excluded. We conclude that a mean±SD MPPGL value of 30.4±1.7 mg/g is representative between one month postnatal age and early adulthood. Potential source effects should be considered for studies involving tissue samples from multiple sources with different procurement and processing procedures. SIGNIFICANCE STATEMENT: Microsomal protein per gram of liver (MPPGL) is an important scaling factor for bottom up PBPK modeling and simulation, but data in pediatrics are limited. Although MPPGL varies 5- to 10-fold at a given developmental stage, a value of 30.4 ± 1.7 mg/g (mean ± SD) is representative between one month postnatal age and early adulthood. However, when tissue samples are obtained from multiple sources, different procurement and processing procedures may influence the results and should be taken into consideration.
Collapse
Affiliation(s)
- J Steven Leeder
- Certara, Princeton, NJ (J.C.D.); Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri (J.S.L., J.C.D., A.G., V.S.S., R.E.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| | - Jean C Dinh
- Certara, Princeton, NJ (J.C.D.); Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri (J.S.L., J.C.D., A.G., V.S.S., R.E.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| | - Andrea Gaedigk
- Certara, Princeton, NJ (J.C.D.); Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri (J.S.L., J.C.D., A.G., V.S.S., R.E.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| | - Vincent S Staggs
- Certara, Princeton, NJ (J.C.D.); Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri (J.S.L., J.C.D., A.G., V.S.S., R.E.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| | - Bhagwat Prasad
- Certara, Princeton, NJ (J.C.D.); Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri (J.S.L., J.C.D., A.G., V.S.S., R.E.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| | - Robin E Pearce
- Certara, Princeton, NJ (J.C.D.); Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics and Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri (J.S.L., J.C.D., A.G., V.S.S., R.E.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.)
| |
Collapse
|
32
|
Evaluation of Early Markers of Ischemia-reperfusion Injury and Preservation Solutions in a Modified Hindlimb Model of Vascularized Composite Allotransplantation. Transplant Direct 2021; 8:e1251. [PMID: 34912943 PMCID: PMC8670593 DOI: 10.1097/txd.0000000000001251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Background. Ischemia-reperfusion injury plays an important role in vascularized composite allotransplantation (VCA). Currently, there is no ideal preservation solution for VCA. In this study, we investigated the effects of 4 different preservation solutions on different tissues within an allogeneic hindlimb rat model. Methods. Sprague Dawley rat hindlimbs were flushed and placed at 4°C for 6 h in heparinized saline, histidine-tryptophan-ketoglutarate, University of Wisconsin (UW), and Perfadex and heterotopically transplanted for ease of ambulation. Apoptosis, necrosis, and the extracellular matrix of the tissues within the allograft were analyzed 2 h posttransplantation using immunohistochemistry, terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick-end labeling (TUNEL) assay, and enzyme-linked immunoassay. Results. Higher expression of cleaved caspase 3, a significant increase of high-mobility group box 1 and TUNEL-positive apoptotic cells were observed in the muscle and vessels preserved with heparinized saline compared with UW and Perfadex following reperfusion. Higher expression of TUNEL-positive apoptotic cells was observed in the skin at 12 h of ischemia and in the nerve following reperfusion with histidine-tryptophan-ketoglutarate as a preservation solution. Conclusions. Our data suggest that UW and Perfadex are preferred solutions in VCA. The vessels within the allografts appear to be very susceptible, with laminins and CD31 playing a role in ischemia-reperfusion injury.
Collapse
|
33
|
McQuiston A, Emtiazjoo A, Angel P, Machuca T, Christie J, Atkinson C. Set Up for Failure: Pre-Existing Autoantibodies in Lung Transplant. Front Immunol 2021; 12:711102. [PMID: 34456920 PMCID: PMC8385565 DOI: 10.3389/fimmu.2021.711102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Lung transplant patients have the lowest long-term survival rates compared to other solid organ transplants. The complications after lung transplantation such as primary graft dysfunction (PGD) and ultimately chronic lung allograft dysfunction (CLAD) are the main reasons for this limited survival. In recent years, lung-specific autoantibodies that recognize non-HLA antigens have been hypothesized to contribute to graft injury and have been correlated with PGD, CLAD, and survival. Mounting evidence suggests that autoantibodies can develop during pulmonary disease progression before lung transplant, termed pre-existing autoantibodies, and may participate in allograft injury after transplantation. In this review, we summarize what is known about pulmonary disease autoantibodies, the relationship between pre-existing autoantibodies and lung transplantation, and potential mechanisms through which pre-existing autoantibodies contribute to graft injury and rejection.
Collapse
Affiliation(s)
- Alexander McQuiston
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Amir Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Tiago Machuca
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Jason Christie
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carl Atkinson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
34
|
Shasha L, Zhongjie L, Lingling F, Ustichenko VD, Pakhomov OV, Deng B. Comparison between slow and rapid freezing for adrenal gland cryopreservation and xenotransplantation. Cryobiology 2021; 102:68-75. [PMID: 34324838 DOI: 10.1016/j.cryobiol.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
The aim of our study was to examine whether slow or rapid cryopreservation of adrenal xenografts affected xenotransplant outcome. Adrenal xenografts were got from newborn piglets (<24 h after birth). Receptor rats were randomly divided into four groups: a bilateral adrenalectomy group, fresh xenotransplantation group, rapid cryopreservation xenotransplantation group, and a slow cryopreservation xenotransplantation group. 30 days after xenotransplantation, the survival rates of rats in the fresh xenotransplantation group, rapid cryopreservation xenotransplantation group and slow cryopreservation xenotransplantation group were 80 %, 60 % and 60 %, respectively, which were significantly higher than 40 % of the bilateral adrenalectomy group. In addition, the survival rate of rats in the slow cryopreservation group was consistently significantly higher than that in the rapid cryopreservation group at 29 days after xenotransplantation. Morphological observation showed that there were a few medulla cells existed in the adrenal glands in the slow cryopreservation group after 30 days of xenotransplantation, but no medulla cells were found in the rapid cryopreservation group. The plasma cortisol level of rats in the fresh xenotransplantation group and the slow xenotransplantation group 30 days after xenotransplantation was significantly higher than that of the rapid cryopreservation group and bilateral adrenalectomy group (P < 0.05). The levels of liver glycogen and cholesterol in the xenotransplantation rats were increased relative to those of the bilateral adrenalectomy rats, and close to normal level. In conclusion, compared with rapidly frozen preserved grafts, slowly frozen preserved grafts not only ensure the structural integrity of adrenal tissues, but also have corresponding physiological functions, which provid a basic research opportunities for the preservation of xenografts and the treatment of adrenal corticosteroid deficiency. Moreover, these findings can provide evidence for xenotransplantation in the treatment of Addison's disease (adrenal cortex hormone deficiency).
Collapse
Affiliation(s)
- Li Shasha
- Basic Medical College of Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China
| | - Li Zhongjie
- Basic Medical College of Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China
| | - Fan Lingling
- Basic Medical College of Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China
| | - V D Ustichenko
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - O V Pakhomov
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Bo Deng
- Basic Medical College of Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| |
Collapse
|
35
|
Datta S, Fitzpatrick AM, Haykal S. Preservation solutions for attenuation of ischemia-reperfusion injury in vascularized composite allotransplantation. SAGE Open Med 2021; 9:20503121211034924. [PMID: 34367640 PMCID: PMC8312154 DOI: 10.1177/20503121211034924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Vascularized composite allotransplantation represents the final level of the reconstructive ladder, offering treatment options for severe tissue loss and functional deficiencies. Vascularized composite allotransplantation is particularly susceptible to ischemia–reperfusion injury and requires preservation techniques when subjected to extended storage times prior to transplantation. While static cold storage functions to reduce ischemic damage and is widely employed in clinical settings, there exists no consensus on the ideal preservation solution for vascularized composite allotransplantation. This review aims to highlight current clinical and experimental advances in preservation solution development and their critical role in attenuating ischemia–reperfusion injury in the context of vascularized composite allotransplantation.
Collapse
Affiliation(s)
- Shaishav Datta
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Aisling M Fitzpatrick
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Arya AK, Hu K, Subedi L, Li T, Hu B. Focal intra-colon cooling reduces organ injury and systemic inflammation after REBOA management of lethal hemorrhage in rats. Sci Rep 2021; 11:13696. [PMID: 34211011 PMCID: PMC8249469 DOI: 10.1038/s41598-021-93064-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a lifesaving maneuver for the management of lethal torso hemorrhage. However, its prolonged use leads to distal organ ischemia-reperfusion injury (IRI) and systemic inflammatory response syndrome (SIRS). The objective of this study is to investigate the blood-based biomarkers of IRI and SIRS and the efficacy of direct intestinal cooling in the prevention of IRI and SIRS. A rat lethal hemorrhage model was produced by bleeding 50% of the total blood volume. A balloon catheter was inserted into the aorta for the implementation of REBOA. A novel TransRectal Intra-Colon (TRIC) device was placed in the descending colon and activated from 10 min after the bleeding to maintain the intra-colon temperature at 37 °C (TRIC37°C group) or 12 °C (TRIC12°C group) for 270 min. The upper body temperature was maintained at as close to 37 °C as possible in both groups. Blood samples were collected before hemorrhage and after REBOA. The organ injury biomarkers and inflammatory cytokines were evaluated by ELISA method. Blood based organ injury biomarkers (endotoxin, creatinine, AST, FABP1/L-FABP, cardiac troponin I, and FABP2/I-FABP) were all drastically increased in TRIC37°C group after REBOA. TRIC12°C significantly downregulated these increased organ injury biomarkers. Plasma levels of pro-inflammatory cytokines TNF-α, IL-1b, and IL-17F were also drastically increased in TRIC37°C group after REBOA. TRIC12°C significantly downregulated the pro-inflammatory cytokines. In contrast, TRIC12°C significantly upregulated the levels of anti-inflammatory cytokines IL-4 and IL-10 after REBOA. Amazingly, the mortality rate was 100% in TRIC37°C group whereas 0% in TRIC12°C group after REBOA. Directly cooling the intestine offered exceptional protection of the abdominal organs from IRI and SIRS, switched from a harmful pro-inflammatory to a reparative anti-inflammatory response, and mitigated mortality in the rat model of REBOA management of lethal hemorrhage.
Collapse
Affiliation(s)
- Awadhesh K Arya
- Departments of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kurt Hu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lalita Subedi
- Departments of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tieluo Li
- Departments of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bingren Hu
- Departments of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD, USA.
| |
Collapse
|
37
|
Lung Transplantation, Pulmonary Endothelial Inflammation, and Ex-Situ Lung Perfusion: A Review. Cells 2021; 10:cells10061417. [PMID: 34200413 PMCID: PMC8229792 DOI: 10.3390/cells10061417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Lung transplantation (LTx) is the gold standard treatment for end-stage lung disease; however, waitlist mortality remains high due to a shortage of suitable donor lungs. Organ quality can be compromised by lung ischemic reperfusion injury (LIRI). LIRI causes pulmonary endothelial inflammation and may lead to primary graft dysfunction (PGD). PGD is a significant cause of morbidity and mortality post-LTx. Research into preservation strategies that decrease the risk of LIRI and PGD is needed, and ex-situ lung perfusion (ESLP) is the foremost technological advancement in this field. This review addresses three major topics in the field of LTx: first, we review the clinical manifestation of LIRI post-LTx; second, we discuss the pathophysiology of LIRI that leads to pulmonary endothelial inflammation and PGD; and third, we present the role of ESLP as a therapeutic vehicle to mitigate this physiologic insult, increase the rates of donor organ utilization, and improve patient outcomes.
Collapse
|
38
|
Bardallo RG, da Silva RT, Carbonell T, Folch-Puy E, Palmeira C, Roselló-Catafau J, Pirenne J, Adam R, Panisello-Roselló A. Role of PEG35, Mitochondrial ALDH2, and Glutathione in Cold Fatty Liver Graft Preservation: An IGL-2 Approach. Int J Mol Sci 2021; 22:ijms22105332. [PMID: 34069402 PMCID: PMC8158782 DOI: 10.3390/ijms22105332] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 01/26/2023] Open
Abstract
The total damage inflicted on the liver before transplantation is associated with several surgical manipulations, such as organ recovery, washout of the graft, cold conservation in organ preservation solutions (UW, Celsior, HTK, IGL-1), and rinsing of the organ before implantation. Polyethylene glycol 35 (PEG35) is the oncotic agent present in the IGL-1 solution, which is an alternative to UW and Celsior solutions in liver clinical transplantation. In a model of cold preservation in rats (4 °C; 24 h), we evaluated the effects induced by PEG35 on detoxifying enzymes and nitric oxide, comparing IGL-1 to IGL-0 (which is the same as IGL-1 without PEG). The benefits were also assessed in a new IGL-2 solution characterized by increased concentrations of PEG35 (from 1 g/L to 5 g/L) and glutathione (from 3 mmol/L to 9 mmol/L) compared to IGL-1. We demonstrated that PEG35 promoted the mitochondrial enzyme ALDH2, and in combination with glutathione, prevented the formation of toxic aldehyde adducts (measured as 4-hydroxynonenal) and oxidized proteins (AOPP). In addition, PEG35 promoted the vasodilator factor nitric oxide, which may improve the microcirculatory disturbances in steatotic grafts during preservation and revascularization. All of these results lead to a reduction in damage inflicted on the fatty liver graft during the cold storage preservation. In this communication, we report on the benefits of IGL-2 in hypothermic static preservation, which has already been proved to confer benefits in hypothermic oxygenated dynamic preservation. Hence, the data reported here reinforce the fact that IGL-2 is a suitable alternative to be used as a unique solution/perfusate when hypothermic static and preservation strategies are used, either separately or combined, easing the logistics and avoiding the mixture of different solutions/perfusates, especially when fatty liver grafts are used. Further research regarding new therapeutic and pharmacological insights is needed to explore the underlying mitochondrial mechanisms exerted by PEG35 in static and dynamic graft preservation strategies for clinical liver transplantation purposes.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (R.G.B.); (R.T.d.S.); (E.F.-P.); (A.P.-R.)
- Department of Physiology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Rui Teixeira da Silva
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (R.G.B.); (R.T.d.S.); (E.F.-P.); (A.P.-R.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
| | - Teresa Carbonell
- Department of Physiology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Emma Folch-Puy
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (R.G.B.); (R.T.d.S.); (E.F.-P.); (A.P.-R.)
| | - Carlos Palmeira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
- Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (R.G.B.); (R.T.d.S.); (E.F.-P.); (A.P.-R.)
- Correspondence:
| | - Jacques Pirenne
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - René Adam
- AP-HP Hôpital Paul Brousse, UR, Chronothérapie, Cancers et Transplantation, Université Paris-Saclay, Villejuif, 91190 Paris, France;
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (R.G.B.); (R.T.d.S.); (E.F.-P.); (A.P.-R.)
| |
Collapse
|
39
|
He B, Su S, Yuan G, Duan J, Zhu Z, Wang Z. Clinical guideline for vascularized composite tissue cryopreservation. J Tissue Eng Regen Med 2021; 15:527-533. [PMID: 33830654 DOI: 10.1002/term.3190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
At the Summit on Organ Banking through Converging Technologies held recently in Boston, tissue and organ cryopreservation technology was a topic of considerable interest. Although cryopreservation has been widely used in clinical practice, it currently remains limited to bloodless tissues with simple structures and functions that are small or thin, for example, ultra-thin skin, ovarian tissue slices, and other similar tissues. For whole organs, except for successful cryopreservation of rat ovaries (2002) and hind limbs (August 2002), successful cryopreservation of vascularized animal tissues or organs and their replantation have not yet been reported. We conducted histological and electron microscopic examinations on muscle after blood supply restoration to explain this problem and describe our experience with the goal of informing our colleagues to further develop the technology. To achieve broad application of vascularized tissue and organ cryopreservation, we have summarized our experience and established a clinical application scope for vascularized composite tissue cryopreservation.
Collapse
Affiliation(s)
- Bo He
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shouwen Su
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guohui Yuan
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiekui Duan
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zengtao Wang
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
40
|
de Sousa SG, Nascimento da Silva GV, Costa Rodrigues AM, Meireles Fernandes da Silva TM, Costa FC, Freitas Teixeira da Silva A, Santana de Macedo BF, Brito MVH. Organ Preservation Solutions in Transplantation: A Literature Review. EXP CLIN TRANSPLANT 2021; 19:511-521. [PMID: 33797354 DOI: 10.6002/ect.2020.0506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Renal transplant with ABO-incompatible donors expands the donor pool. Earlier studies have focused the use of protocol biopsies in ABOincompatible transplant patients. Our study described outcomes of indication (for cause) renal biopsies and clinical outcomes in patients with ABO-incompatible renal transplant. MATERIALS AND METHODS This retrospective study included 164 patients from January 2012 to June 2019. Biochemical parameters, serial immunoglobulin G anti-ABO titers, and class I and II donor-specific antibody findings were obtained from hospital records, and renal graft biopsies were reviewed according to the Banff 2017 update. RESULTS We analyzed the results of 65 biopsies from 54 patients. Biopsy-proven acute antibody-mediated rejection (12.8%) was found to be more prevalent than acute cellular rejection (1.8%). Patients with antibodymediated rejection all had microvascular inflammation (g+ptc score of 2 or more, where g+ptc is the sum of the glomerulitis and peritubular capillaritis scores) and were positive for C4d. Acute tubular injury per se was seen in 10.3% of patients; 65% of these patients had C4d positivity in peritubular capillaries, and only 1 patient developed chronic active antibody-mediated rejection on follow-up. Patient and death-censored graft survival rates were 92% and 98% at 1 year after transplant and 88% and 91% at 3 years, respectively. Patients with an episode of antibody-mediated rejection had lower rates of patient (76.5%) and deathcensored graft survival (84.6%) at 1 year. CONCLUSIONS The microvascular inflammation score (g+ptc score of 2 or higher) is more reliable than diffuse C4d positivity to determine antibody-mediated rejection in ABO-incompatible transplants because diffuse C4d positivity may also be seen in etiologies unrelated to antibody-mediated rejection. Acute tubular injury with C4d positivity without microvascular injury does not confirm antibody-mediated rejection. We suggest that Banff classification be updated in ABOincompatible transplants to include diagnostic criteria for the diagnosis of antibody-mediated rejection.
Collapse
|
41
|
Ischemia-reperfusion Injury in the Transplanted Lung: A Literature Review. Transplant Direct 2021; 7:e652. [PMID: 33437867 PMCID: PMC7793349 DOI: 10.1097/txd.0000000000001104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) and primary graft dysfunction are leading causes of morbidity and mortality among lung transplant recipients. Although extensive research endeavors have been undertaken, few preventative and therapeutic treatments have emerged for clinical use. Novel strategies are still needed to improve outcomes after lung transplantation. In this review, we discuss the underlying mechanisms of transplanted LIRI, potential modifiable targets, current practices, and areas of ongoing investigation to reduce LIRI and primary graft dysfunction in lung transplant recipients.
Collapse
|
42
|
Abbas SH, Friend PJ. Principles and current status of abdominal organ preservation for transplantation. SURGERY IN PRACTICE AND SCIENCE 2020. [DOI: 10.1016/j.sipas.2020.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
43
|
Vilela JDMV, Dolmans MM, Amorim CA. Ovarian tissue transportation: a systematic review. Reprod Biomed Online 2020; 42:351-365. [PMID: 33288476 DOI: 10.1016/j.rbmo.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022]
Abstract
In recent years, some countries and fertility preservation networks have started adopting 24 h transportation for ovarian tissue, a practice that has the potential to spread very quickly due to the high costs and bureaucracy involved in the establishment of ovarian tissue cryobanks. While pregnancies and live births have been reported after such long periods of transportation, this, however, remains an empirical procedure. This review aims to prompt reflection on ovarian tissue transport, highlighting the lack of knowledge in humans by providing a counterpoint looking into more than 40 studies published in different animal models. By discussing these studies in animals, the findings of various models can be deciphered, and light shed on the patterns identified. Like the development of different assisted reproductive technology procedures, this is an important step in creating guidelines for future studies on human ovarian tissue transportation.
Collapse
Affiliation(s)
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani Andrade Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
44
|
Souza SS, Alves BG, Alves KA, Brandão FAS, Brito DCC, Gastal MO, Rodrigues APR, Figueireod JR, Teixeira DIA, Gastal EL. Heterotopic autotransplantation of ovarian tissue in a large animal model: Effects of cooling and VEGF. PLoS One 2020; 15:e0241442. [PMID: 33147235 PMCID: PMC7641372 DOI: 10.1371/journal.pone.0241442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Heterotopic and orthotopic ovarian tissue autotransplantation techniques, currently used in humans, will become promising alternative methods for fertility preservation in domestic and wild animals. Thus, this study describes for the first time the efficiency of a heterotopic ovarian tissue autotransplantation technique in a large livestock species (i.e., horses) after ovarian fragments were exposed or not to a cooling process (4°C/24 h) and/or VEGF before grafting. Ovarian fragments were collected in vivo via an ultrasound-guided biopsy pick-up method and surgically autografted in a subcutaneous site in both sides of the neck in each mare. The blood flow perfusion at the transplantation site was monitored at days 2, 4, 6, and 7 post-grafting using color-Doppler ultrasonography. Ovarian grafts were recovered 7 days post-transplantation and subjected to histological analyses. The exposure of the ovarian fragments to VEGF before grafting was not beneficial to the quality of the tissue; however, the cooling process of the fragments reduced the acute hyperemia post-grafting. Cooled grafts compared with non-cooled grafts contained similar values for normal and developing preantral follicles, vessel density, and stromal cell apoptosis; lower collagen type III fibers and follicular density; and higher stromal cell density, AgNOR, and collagen type I fibers. In conclusion, VEGF exposure before autotransplantation did not improve the quality of grafted tissues. However, cooling ovarian tissue for at least 24 h before grafting can be beneficial because satisfactory rates of follicle survival and development, stromal cell survival and proliferation, as well as vessel density, were obtained.
Collapse
Affiliation(s)
- Samara S. Souza
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Benner G. Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Kele A. Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Fabiana A. S. Brandão
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Danielle C. C. Brito
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Melba O. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Ana P. R. Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - José R. Figueireod
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Dárcio I. A. Teixeira
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Eduardo L. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| |
Collapse
|
45
|
Panisello-Rosello A, Roselló-Catafau J. HOPE (hypothermic oxygenated perfusion) strategies in the era of dynamic liver graft preservation. EBioMedicine 2020; 61:103071. [PMID: 33096482 PMCID: PMC7581874 DOI: 10.1016/j.ebiom.2020.103071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Arnau Panisello-Rosello
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC - IDIBAPS. Experimental Pathology Department, Rosselló 161, 08036-Barcelona, Catalonia, Spain
| | - Joan Roselló-Catafau
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC - IDIBAPS. Experimental Pathology Department, Rosselló 161, 08036-Barcelona, Catalonia, Spain.
| |
Collapse
|
46
|
Li S, Huang Z, Li X, Zhao Y, Jiang X, Wen Y, Luo H, Wang L, Guan Q, Cafeeva I, Brooks DE, Nguan CYC, Kizhakkedathu JN, Du C. Evaluation of hyperbranched polyglycerol for cold perfusion and storage of donor kidneys in a pig model of kidney autotransplantation. J Biomed Mater Res B Appl Biomater 2020; 109:853-863. [PMID: 33098184 PMCID: PMC8246781 DOI: 10.1002/jbm.b.34750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
Hyperbranched polyglycerol (HPG) is a biocompatible polyether polymer that is a potential colloid component in a preservation solution for suppressing interstitial edema during cold storage of a donor organ. This study evaluated the outcomes of kidney transplants after cold perfusion and storage with a HPG‐based preservation solution (HPGS) in a pig model of kidney autotransplantation. The left kidneys of farm pigs (weighing 35–45 kg) were perfused with and stored in either cold HPGS or standard UW solution (UWS), followed by transplantation to the right side after right nephrectomy. The survival and function of transplants were determined by the urine output, and serum creatinine (SCr) and blood urea nitrogen (BUN) of recipients. Transplant injury was examined by histological analysis. Here, we showed that there was no significant difference between HPGS and UWS in the prevention of tissue edema, but HPGS was more effective than UWS for initial blood washout of kidney perfusion and for the prevention of cold ischemia injury during cold storage. After autotransplantation, the kidneys preserved with HPGS (HPG group) had better functional recovery than those with UWS (UW group), indicated by significantly more urine output and lower levels of SCr and BUN. The survived grafts in HPG group had less tissue damage than those in UW group. In conclusion, as compared to the UWS the HPGS has less negative impact on kidney cold ischemia during cold storage, resulting in improving immediate functional recovery after transplantation, suggesting that HPG is a promising colloid for donor kidney preservation.
Collapse
Affiliation(s)
- Shadan Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China.,Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhongli Huang
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaowei Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Youguang Zhao
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xin Jiang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Yang Wen
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Hao Luo
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, China
| | - Liang Wang
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Irina Cafeeva
- Centre for Blood Research, and the Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald E Brooks
- Centre for Blood Research, and the Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Y C Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, and the Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Abstract
Because of the high demand of organs, the usage of marginal grafts has increased. These marginal organs have a higher risk of developing ischemia-reperfusion injury, which can lead to posttransplant complications. Ex situ machine perfusion (MP), compared with the traditional static cold storage, may better protect these organs from ischemia-reperfusion injury. In addition, MP can also act as a platform for dynamic administration of pharmacological agents or gene therapy to further improve transplant outcomes. Numerous therapeutic agents have been studied under both hypothermic (1-8°C) and normothermic settings. Here, we review all the therapeutics used during MP in different organ systems (lung, liver, kidney, heart). The major categories of therapeutic agents include vasodilators, mesenchymal stem cells, antiinflammatory agents, antiinfection agents, siRNA, and defatting agents. Numerous animal and clinical studies have examined MP therapeutic agents, some of which have even led to the successful reconditioning of discarded grafts. More clinical studies, especially randomized controlled trials, will need to be conducted in the future to solidify these promising results and to define the role of MP therapeutic agents in solid organ transplantation.
Collapse
|
48
|
Argalious MY. Organ preservation for donation after circulatory death: combining in-situ and ex-situ strategies. Minerva Anestesiol 2020; 86:910-912. [DOI: 10.23736/s0375-9393.20.14735-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Ostróżka-Cieślik A, Dolińska B. The Role of Hormones and Trophic Factors as Components of Preservation Solutions in Protection of Renal Function before Transplantation: A Review of the Literature. Molecules 2020; 25:E2185. [PMID: 32392782 PMCID: PMC7248710 DOI: 10.3390/molecules25092185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Transplantation is currently a routine method for treating end-stage organ failure. In recent years, there has been some progress in the development of an optimal composition of organ preservation solutions, improving the vital functions of the organ and allowing to extend its storage period until implantation into the recipient. Optimizations are mostly based on commercial solutions, routinely used to store grafts intended for transplantation. The paper reviews hormones with a potential nephroprotective effect, which were used to modify the composition of renal perfusion and preservation solutions. Their effectiveness as ingredients of preservation solutions was analysed based on a literature review. Hormones and trophic factors are innovative preservation solution supplements. They have a pleiotropic effect and affect normal renal function. The expression of receptors for melatonin, prolactin, thyrotropin, corticotropin, prostaglandin E1 and trophic factors was confirmed in the kidneys, which suggests that they are a promising therapeutic target for renal IR (ischemia-reperfusion) injury. They can have anti-inflammatory, antioxidant and anti-apoptotic effects, limiting IR injury.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- “Biochefa” Pharmaceutical Research and Production Plant, Kasztanowa 3, 41-200 Sosnowiec, Poland
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The availability of organs for transplant fails to meet the demand and this shortage is growing worse every year. As the cost of not getting a suitable donor organ can mean death for patients, new tools and approaches that allows us to make advances in transplantation faster and provide a different vantage point are required. To address this need, we introduce the concept of using the zebrafish (Danio rerio) as a new model system in organ transplantation. The zebrafish community offers decades of research experience in disease modeling and a rich toolbox of approaches for interrogating complex pathological states. We provide examples of how already existing zebrafish assays/tools from cancer, regenerative medicine, immunology, and others, could be leveraged to fuel new discoveries in pursuit of solving the organ shortage. RECENT FINDINGS Important innovations have enabled several types of transplants to be successfully performed in zebrafish, including stem cells, tumors, parenchymal cells, and even a partial heart transplant. These innovations have been performed against a backdrop of an expansive and impressive list of tools designed to uncover the biology of complex systems that include a wide array of fluorescent transgenic fish that label specific cell types and mutant lines that are transparent, immune-deficient. Allogeneic transplants can also be accomplished using immune suppressed and syngeneic fish. Each of these innovations within the zebrafish community would provide several helpful tools that could be applied to transplant research. SUMMARY We highlight some examples of existing tools and assays developed in the zebrafish community that could be leveraged to overcome barriers in organ transplantation, including ischemia-reperfusion, short preservation durations, regeneration of marginal grafts, and acute and chronic rejection.
Collapse
|