1
|
Najem MY, Rys RN, Laurance S, Bertin FR, Gourdou-Latyszenok V, Gourhant L, Le Gall L, Le Corre R, Couturaud F, Blostein MD, Lemarié CA. Extracellular RNA Induces Neutrophil Recruitment Via Toll-Like Receptor 3 During Venous Thrombosis After Vascular Injury. J Am Heart Assoc 2024; 13:e034492. [PMID: 39028040 DOI: 10.1161/jaha.124.034492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Venous thromboembolism is associated with endothelial cell activation that contributes to the inflammation-dependent activation of the coagulation system. Cellular damage is associated with the release of different species of extracellular RNA (eRNA) involved in inflammation and coagulation. TLR3 (toll-like receptor 3), which recognizes (viral) single-stranded or double-stranded RNAs and self-RNA fragments, might be the receptor of these species of eRNA during venous thromboembolism. Here, we investigate how the TLR3/eRNA axis contributes to venous thromboembolism. METHODS AND RESULTS Thrombus formation and size in wild-type and TLR3 deficient (-/-) mice were monitored by ultrasonography after venous thrombosis induction using the ferric chloride and stasis models. Mice were treated with RNase I, with polyinosinic-polycytidylic acid, a TLR3 agonist, or with RNA extracted from murine endothelial cells. Gene expression and signaling pathway activation were analyzed in HEK293T cells overexpressing TLR3 in response to eRNA or in human umbilical vein endothelial cells transfected with a small interference RNA against TLR3. Plasma clot formation on treated human umbilical vein endothelial cells was analyzed. Thrombosis exacerbated eRNA release in vivo and increased eRNA content within the thrombus. RNase I treatment reduced thrombus size compared with vehicle-treated mice (P<0.05). Polyinosinic-polycytidylic acid and eRNA treatments increased thrombus size in wild-type mice (P<0.01 and P<0.05), but not in TLR3-/- mice, by reinforcing neutrophil recruitment (P<0.05). Mechanistically, TLR3 activation in endothelial cells promotes CXCL5 (C-X-C motif chemokine 5) secretion (P<0.001) and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation (P<0.05). Finally, eRNA triggered plasma clot formation in vitro (P<0.01). CONCLUSIONS We show that eRNA and TLR3 activation enhance venous thromboembolism through neutrophil recruitment possibly through secretion of CXCL5, a potent neutrophil chemoattractant.
Collapse
Affiliation(s)
| | - Ryan N Rys
- Lady Davis Institute for Medical Research Montréal Québec Canada
| | - Sandrine Laurance
- Lady Davis Institute for Medical Research Montréal Québec Canada
- INSERM, BIGR, Université de Paris and Université des Antilles Paris France
| | - François-René Bertin
- Lady Davis Institute for Medical Research Montréal Québec Canada
- School of Veterinary Science The University of Queensland Gatton Queensland Australia
| | | | | | | | | | - Francis Couturaud
- Univ Brest, Inserm, UMR 1304, GETBO Brest France
- Département de Pneumologie et de Médecine Interne CHU Brest Brest France
| | - Mark D Blostein
- Lady Davis Institute for Medical Research Montréal Québec Canada
- Department of Medicine Sir Mortimer B. Davis-Jewish General Hospital, McGill University Montréal Québec Canada
| | - Catherine A Lemarié
- Univ Brest, Inserm, UMR 1304, GETBO Brest France
- Département de Pneumologie et de Médecine Interne CHU Brest Brest France
- Lady Davis Institute for Medical Research Montréal Québec Canada
| |
Collapse
|
2
|
Functions and cellular signaling by ribosomal extracellular RNA (rexRNA): Facts and hypotheses on a non-typical DAMP. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119408. [PMID: 36503009 DOI: 10.1016/j.bbamcr.2022.119408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Upon microbial infections with the subsequent host response of innate immunity, a variety of fragmented RNA- and DNA-based "Pathogen-associated molecular patterns" (PAMPs) are recognized mainly by endosomal or cytoplasmic host cell "Pattern recognition receptors" (PRRs), particularly "Toll-like receptors" (TLRs). Concomitantly, various self-extracellular RNA species (exRNAs) are present in extracellular body fluids where they contribute to diverse physiological and homeostatic processes. In principle, such exRNAs, including the most abundant one, ribosomal exRNA (rexRNA), are designated as "Danger-associated molecular patterns" (DAMPs) and are prevented by e.g. natural modifications from uncontrolled signaling via TLRs to avoid hyper-inflammatory responses or autoimmunity. Upon cellular stress or tissue damage/necrosis, the levels and composition of released self-exRNA species, either in free form, in complex with proteins or in association with extracellular vesicles (EVs), can change considerably. Among the self-exRNAs, rexRNA is considered as a non-typical DAMP, since it may induce inflammatory responses by cell membrane receptors, both in the absence or presence of PAMPs. Yet, its mode of receptor activation to mount inflammatory responses remains obscure. RexRNA also serves as a universal damaging factor in cardiovascular and other diseases independent of PRRs. In general, RNase1 provides a profound antagonist in these pathologies and in rexRNA-mediated inflammatory cell responses. Based on the extrapolation of the here described aspects of rexRNA-biology, further activities of this molecular entity are hypothesized that may stimulate additional research in this area.
Collapse
|
3
|
Grote K, Nicolai M, Schubert U, Schieffer B, Troidl C, Preissner KT, Bauer S, Fischer S. Extracellular Ribosomal RNA Acts Synergistically with Toll-like Receptor 2 Agonists to Promote Inflammation. Cells 2022; 11:cells11091440. [PMID: 35563745 PMCID: PMC9103112 DOI: 10.3390/cells11091440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Self-extracellular RNA (eRNA), which is released under pathological conditions from damaged tissue, has recently been identified as a new alarmin and synergistic agent together with toll-like receptor (TLR)2 ligands to induce proinflammatory activities of immune cells. In this study, a detailed investigation of these interactions is reported. The macrophage cell line J774 A.1 or C57 BL/6 J wild-type mice were treated with 18S rRNA and different TLR2 agonists. Gene and protein expression of tumor necrosis factor (Tnf)-α; interleukin (Il)-1β, Il-6; or monocyte chemoattractant protein (Mcp)-1 were analyzed and furthermore in vitro binding studies to TLR2 were performed. The TLR2/TLR6-agonist Pam2 CSK4 (Pam2) together with 18S rRNA significantly increased the mRNA expression of inflammatory genes and the release of TNF-α from macrophages in a TLR2- and nuclear factor kappa B (NF-κB)-dependent manner. The injection of 18S rRNA/Pam2 into mice increased the cytokine levels of TNF-α, IL-6, and MCP-1 in the peritoneal lavage. Mechanistically, 18S rRNA built complexes with Pam2 and thus enhanced the affinity of Pam2 to TLR2. These results indicate that the alarmin eRNA, mainly consisting of rRNA, sensitizes TLR2 to enhance the innate immune response under pathological conditions. Thus, rRNA might serve as a new target for the treatments of bacterial and viral infections.
Collapse
Affiliation(s)
- Karsten Grote
- Cardiology & Angiology, Medical School, Philipps-University, 35043 Marburg, Germany; (K.G.); (B.S.)
| | - Marina Nicolai
- Institute of Immunology, Medical School, Philipps-University, 35043 Marburg, Germany; (M.N.); (S.B.)
| | - Uwe Schubert
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Bernhard Schieffer
- Cardiology & Angiology, Medical School, Philipps-University, 35043 Marburg, Germany; (K.G.); (B.S.)
| | - Christian Troidl
- Medical Clinic I, Cardiology/Angiology, Campus Kerckhoff, Justus-Liebig-University, 61231 Bad Nauheim, Germany;
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Klaus T. Preissner
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Stefan Bauer
- Institute of Immunology, Medical School, Philipps-University, 35043 Marburg, Germany; (M.N.); (S.B.)
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
- Department Cardiology, Kerckhoff-Heart Research Institute, Medical School, Justus-Liebig-University, 35392 Giessen, Germany;
- Correspondence:
| |
Collapse
|
4
|
Ribonuclease-1 treatment after traumatic brain injury preserves blood-brain barrier integrity and delays secondary brain damage in mice. Sci Rep 2022; 12:5731. [PMID: 35388024 PMCID: PMC8986812 DOI: 10.1038/s41598-022-09326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/22/2022] [Indexed: 11/08/2022] Open
Abstract
Traumatic brain injury (TBI) involves primary mechanical damage and delayed secondary damage caused by vascular dysfunction and neuroinflammation. Intracellular components released into the parenchyma and systemic circulation, termed danger-associated molecular patterns (DAMPs), are major drivers of vascular dysfunction and neuroinflammation. These DAMPs include cell-free RNAs (cfRNAs), which damage the blood-brain barrier (BBB), thereby promoting edema, procoagulatory processes, and infiltration of inflammatory cells. We tested the hypothesis that intraperitoneal injection of Ribonuclease-1 (RNase1, two doses of 20, 60, or 180 µg/kg) at 30 min and 12 h after controlled-cortical-impact (CCI) can reduce secondary lesion expansion compared to vehicle treatment 24 h and 120 h post-CCI. The lowest total dose (40 µg/kg) was most effective at reducing lesion volume (- 31% RNase 40 µg/kg vs. vehicle), brain water accumulation (- 5.5%), and loss of BBB integrity (- 21.6%) at 24 h post-CCI. RNase1 also reduced perilesional leukocyte recruitment (- 53.3%) and microglial activation (- 18.3%) at 120 h post-CCI, but there was no difference in lesion volume at this time and no functional benefit. Treatment with RNase1 in the early phase following TBI stabilizes the BBB and impedes leukocyte immigration, thereby suppressing neuroinflammation. RNase1-treatment may be a novel approach to delay brain injury to extend the window for treatment opportunities after TBI.
Collapse
|
5
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Lasch M, Kumaraswami K, Nasiscionyte S, Kircher S, van den Heuvel D, Meister S, Ishikawa-Ankerhold H, Deindl E. RNase A Treatment Interferes With Leukocyte Recruitment, Neutrophil Extracellular Trap Formation, and Angiogenesis in Ischemic Muscle Tissue. Front Physiol 2020; 11:576736. [PMID: 33240100 PMCID: PMC7677187 DOI: 10.3389/fphys.2020.576736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/16/2020] [Indexed: 01/13/2023] Open
Abstract
Background: RNase A (the bovine equivalent to human RNase 1) and RNase 5 (angiogenin) are two closely related ribonucleases. RNase 5 is described as a powerful angiogenic factor. Whether RNase A shares the same angiogenic characteristic, or interferes with vessel growth as demonstrated for arteriogenesis, has never been investigated and is the topic of this present study. Methods and Results: To investigate whether RNase A shows a pro‐ or anti-angiogenic effect, we employed a murine hindlimb model, in which femoral artery ligation (FAL) results in arteriogenesis in the upper leg, and, due to provoked ischemia, in angiogenesis in the lower leg. C57BL/6J male mice underwent unilateral FAL, whereas the contralateral leg was sham operated. Two and seven days after the surgery and intravenous injection of RNase A (50 μg/kg dissolved in saline) or saline (control), the gastrocnemius muscles of mice were isolated from the lower legs for (immuno-) histological analyses. Hematoxylin and Eosin staining evidenced that RNase A treatment resulted in a higher degree of ischemic tissue damage. This was, however, associated with reduced angiogenesis, as evidenced by a reduced capillary/muscle fiber ratio. Moreover, RNase A treatment was associated with a significant reduction in leukocyte infiltration as shown by CD45+ (pan-leukocyte marker), Ly6G+ or MPO+ (neutrophils), MPO+/CitH3+ [neutrophil extracellular traps (NETs)], and CD68+ (macrophages) staining. CD68/MRC1 double staining revealed that RNase A treated mice showed a reduced percentage of M1-like polarized (CD68+/MRC1−) macrophages whereas the percentage of M2-like polarized (CD68+/MRC1+) macrophages was increased. Conclusion: In contrast to RNase 5, RNase A interferes with angiogenesis, which is linked to reduced leukocyte infiltration and NET formation.
Collapse
Affiliation(s)
- Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Konda Kumaraswami
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simona Nasiscionyte
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanna Kircher
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dominic van den Heuvel
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hellen Ishikawa-Ankerhold
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Internal Medicine I, Faculty of Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
7
|
Bhagat S, Biswas I, Ahmed R, Khan GA. Hypoxia induced up-regulation of tissue factor is mediated through extracellular RNA activated Toll-like receptor 3-activated protein 1 signalling. Blood Cells Mol Dis 2020; 84:102459. [PMID: 32559654 PMCID: PMC7287429 DOI: 10.1016/j.bcmd.2020.102459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022]
Abstract
Sterile Inflammation (SI), a condition where damage associated molecular patterns (DAMPs) released from dying cells, leads to TLR (Toll-like receptor) activation and triggers hypoxemia in circulation leading to venous thrombosis (VT) through tissue factor (TF) activation, but its importance under acute hypoxia (AH) remains unexplored. Thus, we hypothesized that eRNA released from dying cells under AH activates TF via the TLR3-ERK1/2-AP1 pathway, leading to VT. Animals were exposed to stimulate hypoxia for 0–24 h at standard temperature and humidity. RNaseA and DNase1 were injected immediately before exposure. TLR3 gene silencing was performed through in vivo injection of TLR3 siRNA. 80 μg/kg BW of isolated eRNA and eDNA were injected 6 h prior to sacrifice. Antigens of TF pathway were determined by ELISA and TF activity by a chromogenic assay. AH exposure significantly induced release of SI markers i.e. eRNA, eDNA, HMGB1 and upregulated TLR3, ERK1/2 (Extracellular signal-regulated kinases), AP1 (Activator Protein-1) and TF, whereas RNaseA pre-treatment diminished the effect of AH, thus inhibiting TF expression as well as activity during AH. Hence, we propose a possible mechanism of AH-induced TF activation and thrombosis where RNaseA can become the novel focal point in ameliorating therapy for AH induced thrombosis. Acute hypoxia exposure leads to systemic Sterile Inflammation. eRNA regulates upregulation of TF by activation of TLR3 pathway. RNase A pre-treatment ameliorates effect of acute hypoxia on coagulation.
Collapse
Affiliation(s)
- Saumya Bhagat
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Indranil Biswas
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Rehan Ahmed
- Army Hospital Research and Referral, Delhi, India
| | - Gausal A Khan
- Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India; Department of Physiology and Physiotherapy, CMNHS, Fiji National University, Suva, Fiji Islands.
| |
Collapse
|
8
|
Han Y, Bing Zhu X, Ye Y, Yu Deng K, Yang Zhang X, Ping Song Y. Ribonuclease attenuates retinal ischemia reperfusion injury through inhibition of inflammatory response and apoptosis in mice. Int Immunopharmacol 2020; 85:106608. [PMID: 32447222 DOI: 10.1016/j.intimp.2020.106608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
The present study was aimed to reveal the function of extracellular RNAs (exRNAs) in retinal ischemia reperfusion (I/R) injury, and evaluate whether RNase administration can effectivelyreduce I/Rinjury. A retinal I/R injury C57BL/6J wild-type mice model was established by elevating intraocular pressure for 1 h. All mice received 3 doses of RNase or the same dose of normal saline at different time points. After 7 days of reperfusion, retinal damage was quantified by counting retinal ganglion cells and measuring retinal layer thickness. The apoptotic retinal cells were detected by the TUNEL experiment, and the expressions of caspase-3, proinflammatory cytokines in retinal tissues, and glial fibrillary acidic protein (GFAP) protein and mRNA were detected to determine the underlying mechanism. It was found that RNase administration (1) reduced the significant loss of retinal morphology caused by I/R injury; (2) down-regulated the expression of NF-κBp65, IL-6 and GFAP relative to the I/R mice; (3) decreased the apoptosis of retinal cells and the levels of caspase-3; (4) attenuated exRNAs levels in retinal tissues on day 7 after retinal I/R. In short, increased exRNAs may contribute to retinal I/R damages in mice, and RNase therapy can effectively attenuate retinal damage by reducing inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Yun Han
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xiao Bing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhong Shan, Zhong Shan 528400, Guangdong, PR China
| | - Ya Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Kai Yu Deng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xi Yang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| | - Yan Ping Song
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
9
|
Zhang XY, Liang HS, Hu JJ, Wan YT, Zhao J, Liang GT, Luo YH, Liang HX, Guo XQ, Li C, Liu WF, Liu KX. Ribonuclease attenuates acute intestinal injury induced by intestinal ischemia reperfusion in mice. Int Immunopharmacol 2020; 83:106430. [PMID: 32279043 DOI: 10.1016/j.intimp.2020.106430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
Ribonuclease (RNase) reportedly exerts organ-protective effects in several pathological conditions, including ischemia reperfusion (I/R), but whether it can exhibit protective effect on intestinal I/R injury and potential mechanisms remain unknown. The present study was aimed to evaluate the effects of RNase on intestinal I/R injury and explore the underlying mechanisms. Thirty-two wild-type C57BL/6J adult male mice were evenly divided into a sham group, a sham + RNase group, an I/R group and an I/R + RNase group. Intestinal I/R was produced by clamping the superior mesenteric artery for 1 h followed by reperfusion for 2 h. All mice were treated with 3 doses of RNase or the same dosage of normal saline at different points. It was found that intestinal I/R caused significant intestinal injury and an increase in levels of extracellular RNAs (exRNAs). Treatment with RNase significantly reduced the inflammatory cytokine production, inhibited intestinal apoptosis and down-regulated the expression of toll like receptor 3 in intestinal tissues. In conclusion, increased exRNAs may contribute to intestinal I/R injury in adult mice, and RNase treatment during perioperative window is effective for attenuating intestinal I/R injury.
Collapse
Affiliation(s)
- Xi-Yang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hai-Su Liang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Tong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin Zhao
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guang-Tao Liang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Han Luo
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Xuan Liang
- College of Anesthesiology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Qing Guo
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Cai Li
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Kluever AK, Braumandl A, Fischer S, Preissner KT, Deindl E. The Extraordinary Role of Extracellular RNA in Arteriogenesis, the Growth of Collateral Arteries. Int J Mol Sci 2019; 20:ijms20246177. [PMID: 31817879 PMCID: PMC6940760 DOI: 10.3390/ijms20246177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
Arteriogenesis is an intricate process in which increased shear stress in pre-existing arteriolar collaterals induces blood vessel expansion, mediated via endothelial cell activation, leukocyte recruitment and subsequent endothelial and smooth muscle cell proliferation. Extracellular RNA (eRNA), released from stressed cells or damaged tissue under pathological conditions, has recently been discovered to be liberated from endothelial cells in response to increased shear stress and to promote collateral growth. Until now, eRNA has been shown to enhance coagulation and inflammation by inducing cytokine release, leukocyte recruitment, and endothelial permeability, the latter being mediated by vascular endothelial growth factor (VEGF) signaling. In the context of arteriogenesis, however, eRNA has emerged as a transmitter of shear stress into endothelial activation, mediating the sterile inflammatory process essential for collateral remodeling, whereby the stimulatory effects of eRNA on the VEGF signaling axis seem to be pivotal. In addition, eRNA might influence subsequent steps of the arteriogenesis cascade as well. This article provides a comprehensive overview of the beneficial effects of eRNA during arteriogenesis, laying the foundation for further exploration of the connection between the damaging and non-damaging effects of eRNA in the context of cardiovascular occlusive diseases and of sterile inflammation.
Collapse
Affiliation(s)
- Anna-Kristina Kluever
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
| | - Anna Braumandl
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany; (S.F.); (K.T.P.)
| | - Klaus T. Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany; (S.F.); (K.T.P.)
| | - Elisabeth Deindl
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-76504
| |
Collapse
|
11
|
Tielking K, Fischer S, Preissner KT, Vajkoczy P, Xu R. Extracellular RNA in Central Nervous System Pathologies. Front Mol Neurosci 2019; 12:254. [PMID: 31680858 PMCID: PMC6811659 DOI: 10.3389/fnmol.2019.00254] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
The discovery of extracellular RNA (exRNA) has shifted our understanding of the role of RNA in complex cellular functions such as cell-to-cell communication and a variety of pathologies. ExRNAs constitute a heterogenous group of RNAs ranging from small (such as microRNAs) and long non-coding to coding RNAs or ribosomal RNAs. ExRNAs can be liberated from cells in a free form or bound to proteins as well as in association with microvesicles (MVs), exosomes, or apoptotic bodies. Their composition and quantity depend heavily on the cellular or non-cellular component, the origin, and the RNA species being investigated; ribosomal RNA provides the majority of exRNA and miRNAs are predominantly associated with exosomes or MVs. Several studies showed that ribosomal exRNA (rexRNA) constitutes a proinflammatory and prothrombotic alarmin. It is released by various cell types upon inflammatory stimulation and by damaged cells undergoing necrosis or apoptosis and contributes to innate immunity responses. This exRNA has the potential to directly promote the release of cytokines such as tumor necrosis factor factor-α (TNF-α) or interleukin-6 from immune cells, thereby leading to a proinflammatory environment and promoting cardiovascular pathologies. The potential role of exRNA in different pathologies of the central nervous system (CNS) has become of increasing interest in recent years. Although various exRNA species including both ribosomal exRNA as well as miRNAs have been associated with CNS pathologies, their precise roles remain to be further elucidated. In this review, the different entities of exRNA and their postulated roles in CNS pathologies including tumors, vascular pathologies and neuroinflammatory diseases will be discussed. Furthermore, the potential role of exRNAs as diagnostic markers for specific CNS diseases will be outlined, as well as possible treatment strategies addressing exRNA inhibition or interference.
Collapse
Affiliation(s)
- Katharina Tielking
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Garnett ER, Lomax JE, Mohammed BM, Gailani D, Sheehan JP, Raines RT. Phenotype of ribonuclease 1 deficiency in mice. RNA (NEW YORK, N.Y.) 2019; 25:921-934. [PMID: 31053653 PMCID: PMC6633200 DOI: 10.1261/rna.070433.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/27/2019] [Indexed: 05/06/2023]
Abstract
Biological roles for extracellular RNA (eRNA) have become apparent. For example, eRNA can induce contact activation in blood via activation of the plasma proteases factor XII (FXII) and factor XI (FXI). We sought to reveal the biological role of the secretory enzyme ribonuclease 1 (RNase 1) in an organismal context by generating and analyzing RNase 1 knockout (Rnase1-/-) mice. We found that these mice are viable, healthy, and fertile, though larger than Rnase1+/+ mice. Rnase1-/- plasma contains more RNA than does the plasma of Rnase1+/+ mice. Moreover, the plasma of Rnase1-/- mice clots more rapidly than does wild-type plasma. This phenotype appeared to be due to increased levels of the active form of FXII (FXIIa) in the plasma of Rnase1-/- mice compared to Rnase1+/+ mice, and is consistent with the known effects of eRNA on FXII activation. The apparent activity of FXI in the plasma of Rnase1-/- mice was 1000-fold higher when measured in an assay triggered by a low concentration of tissue factor than in assays based on recalcification, consistent with eRNA enhancing FXI activation by thrombin. These findings suggest that one of the physiological functions of RNase 1 is to degrade eRNA in blood plasma. Loss of this function facilitates FXII and FXI activation, which could have effects on inflammation and blood coagulation. We anticipate that Rnase1-/- mice will be a useful tool for evaluating other hypotheses about the functions of RNase 1 and of eRNA in vivo.
Collapse
Affiliation(s)
- Emily R Garnett
- Graduate Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jo E Lomax
- Graduate Program Molecular and Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Bassem M Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - John P Sheehan
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
13
|
Bedenbender K, Scheller N, Fischer S, Leiting S, Preissner KT, Schmeck BT, Vollmeister E. Inflammation-mediated deacetylation of the ribonuclease 1 promoter via histone deacetylase 2 in endothelial cells. FASEB J 2019; 33:9017-9029. [PMID: 31039328 DOI: 10.1096/fj.201900451r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ribonuclease 1 (RNase1) is a circulating extracellular endonuclease that regulates the vascular homeostasis of extracellular RNA and acts as a vessel- and tissue-protective enzyme. Upon long-term inflammation, high amounts of proinflammatory cytokines affect endothelial cell (EC) function by down-regulation of RNase1. Here, we investigated the transcriptional regulation of RNase1 upon inflammation in HUVECs. TNF-α or IL-1β stimulation reduced the expression of RNase1 relative to the acetylation state of histone 3 at lysine 27 and histone 4 of the RNASE1 promoter. Inhibition of histone deacetylase (HDAC) 1, 2, and 3 by the specific class I HDAC inhibitor MS275 abolished the TNF-α- or IL-1β-mediated effect on the mRNA and chromatin levels of RNase1. Moreover, chromatin immunoprecipitation kinetics revealed that HDAC2 accumulates at the RNASE1 promoter upon TNF-α stimulation, indicating an essential role for HDAC2 in regulating RNase1 expression. Thus, proinflammatory stimulation induced recruitment of HDAC2 to attenuate histone acetylation at the RNASE1 promoter site. Consequently, treatment with HDAC inhibitors may provide a new therapeutic strategy to stabilize vascular homeostasis in the context of inflammation by preventing RNase1 down-regulation in ECs.-Bedenbender, K., Scheller, N., Fischer, S., Leiting, S., Preissner, K. T., Schmeck, B. T., Vollmeister, E. Inflammation-mediated deacetylation of the ribonuclease 1 promoter via histone deacetylase 2 in endothelial cells.
Collapse
Affiliation(s)
- Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Nicoletta Scheller
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Silke Leiting
- Department of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Bernd T Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.,Department of Pulmonary and Critical Care Medicine, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
14
|
Lee HH, Wang YN, Hung MC. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol Aspects Med 2019; 70:106-116. [PMID: 30902663 DOI: 10.1016/j.mam.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 02/08/2023]
Abstract
The human ribonuclease A (hRNase A) superfamily is comprised of 13 members of secretory RNases, most of which are recognized as catabolic enzymes for their ribonucleolytic activity to degrade ribonucleic acids (RNAs) in the extracellular space, where they play a role in innate host defense and physiological homeostasis. Interestingly, human RNases 9-13, which belong to a non-canonical subgroup of the hRNase A superfamily, are ribonucleolytic activity-deficient proteins with unclear biological functions. Moreover, accumulating evidence indicates that secretory RNases, such as human RNase 5, can be internalized into cells facilitated by membrane receptors like the epidermal growth factor receptor to regulate intracellular RNA species, in particular non-coding RNAs, and signaling pathways by either a ribonucleolytic activity-dependent or -independent manner. In this review, we summarize the classical role of hRNase A superfamily in the metabolism of extracellular and intracellular RNAs and update its non-classical function as a cognate ligand of membrane receptors. We further discuss the biological significance and translational potential of using secretory RNases as predictive biomarkers or therapeutic agents in certain human diseases and the pathological settings for future investigations.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
15
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Elsemüller AK, Tomalla V, Gärtner U, Troidl K, Jeratsch S, Graumann J, Baal N, Hackstein H, Lasch M, Deindl E, Preissner KT, Fischer S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells. FASEB J 2019; 33:5457-5467. [PMID: 30702929 DOI: 10.1096/fj.201801853rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue-resident mast cells (MCs) are well known for their role in inflammatory responses and allergic and anaphylactic reactions, but they also contribute to processes of arterial remodeling. Although ribosomes and cytosolic RNAs are located around secretory granules in mature MCs, their functional role in MC responses remains unexplored. Previous studies by our group characterized extracellular RNA (eRNA) as an inflammatory and pathogenetic factor in vitro and in vivo. In the present study, RNA-containing MCs and eRNA were located in close proximity to growing collateral arteries in vivo. In vitro, various agonists were found to induce the degranulation of MCs and the concomitant release of eRNA in association with microvesicles (MVs). The liberation of eRNA from MCs was abolished by MC stabilizers or by preventing the increase of intracellular Ca2+ in MCs. eRNA was found to be mainly contained inside MVs, as demonstrated by electron microscopy and immunocytochemistry. The exposure to and the uptake of MC-released MVs by cultured endothelial cells increased their expression of cytokines, such as monocyte chemoattractant protein or IL-6, in a dose- and time-dependent manner. These results indicate that RNA-containing MC-derived MVs are likely to be involved in inflammatory responses, relevant, for example, to processes of vascular remodeling.-Elsemüller, A.-K., Tomalla, V., Gärtner, U., Troidl, K., Jeratsch, S., Graumann, J., Baal, N., Hackstein, H., Lasch, M., Deindl, E., Preissner, K. T., Fischer, S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells.
Collapse
Affiliation(s)
| | - Vanessa Tomalla
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Ulrich Gärtner
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Kerstin Troidl
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Sylvia Jeratsch
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nelli Baal
- Department of Clinical Immunology and Transfusion Medicine, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, University Hospital Erlangen-Friedrich Alexander University, Erlangen, Germany
| | - Manuel Lasch
- Walter Brendel Centre of Experimental Medicine, Medical Center of the University of Munich-Ludwig Maximilian University, Munich, Germany; and.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Elisabeth Deindl
- Walter Brendel Centre of Experimental Medicine, Medical Center of the University of Munich-Ludwig Maximilian University, Munich, Germany; and
| | - Klaus T Preissner
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| |
Collapse
|
17
|
Griswold AJ, Perez J, Nuytemans K, Strong TA, Wang L, Vance DD, Ennis H, Smith MK, Best TM, Vance JM, Pericak-Vance MA, Kaplan LD. Transcriptomic analysis of synovial extracellular RNA following knee trauma: A pilot study. J Orthop Res 2018; 36:1659-1665. [PMID: 29106758 DOI: 10.1002/jor.23802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/13/2017] [Indexed: 02/04/2023]
Abstract
Traumatic knee injuries often result in damage to articular cartilage and other joint structures. Such trauma is a strong risk factor for the future development and progression of osteoarthritis (OA). The molecular mechanisms and signaling pathways modulating response to knee joint trauma remain unclear. Moreover, investigations of biomarkers influencing responses have been targeted rather than broad, unbiased discovery studies. Herein, we characterize the complete complement of extracellular RNA (exRNA) in the synovial fluid of 14 subjects following knee injury. Fluid was collected during surgery from the injured knees, and from the contralateral knee in a subset, undergoing surgical repair of the ACL and/or meniscal repair/debridement. Arthroscopic grading of chondral damage in four knee compartments was performed using the Outerbridge classification. exRNA was extracted and subjected to massively parallel total RNA sequencing. Differential abundance of RNA was calculated between the subject cohorts of injured and non-injured knee, average Outerbridge score ≥0.5 and less, and chronic and acute injury duration defined as ≤4 months till surgery or longer. Overall, expression of several thousand genes was identified in the synovial fluid. Furthermore, differential expression analysis suggests a role of exRNA fragments of matrix metalloproteinases and skeletal muscle fiber genes in the response to traumatic injury. Together, these data suggest that high-throughput approaches can indicate exRNA molecular signatures following knee trauma. Future studies are required to more fully characterize the biological roles of these exRNA and the cadence of their respective release that may lead to translational treatment options for post-traumatic OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1659-1665, 2018.
Collapse
Affiliation(s)
- Anthony J Griswold
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida.,John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Jose Perez
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Karen Nuytemans
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida.,John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Thomas A Strong
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida.,John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Liyong Wang
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida.,John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School Medicine, University of Miami, Miami, Florida
| | - Danica D Vance
- Department of Orthopaedic Surgery, Columbia University Medical Center, New York, New York
| | - Hayley Ennis
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Marvin K Smith
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Thomas M Best
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida.,Departments of Orthopedics, Biomedical Engineering, Kinesiology, Miller School Medicine, University of Miami, Miami, Florida
| | - Jeffery M Vance
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida.,John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School Medicine, University of Miami, Miami, Florida
| | - Margaret A Pericak-Vance
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida.,John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School Medicine, University of Miami, Miami, Florida
| | - Lee D Kaplan
- UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, Florida.,Departments of Orthopedics, Biomedical Engineering, Kinesiology, Miller School Medicine, University of Miami, Miami, Florida
| |
Collapse
|
18
|
Noll F, Behnke J, Leiting S, Troidl K, Alves GT, Müller-Redetzky H, Preissner KT, Fischer S. Self-extracellular RNA acts in synergy with exogenous danger signals to promote inflammation. PLoS One 2017; 12:e0190002. [PMID: 29261777 PMCID: PMC5738100 DOI: 10.1371/journal.pone.0190002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023] Open
Abstract
Self-extracellular RNA (eRNA), released from stressed or injured cells upon various pathological situations such as ischemia-reperfusion-injury, has been shown to act as an alarmin by inducing procoagulatory and proinflammatory responses. In particular, M1-polarization of macrophages by eRNA resulted in the expression and release of a variety of cytokines, including tumor necrosis factor (TNF)-α or interleukin-6 (IL-6). The present study now investigates in which way self-eRNA may influence the response of macrophages towards various Toll-like receptor (TLR)-agonists. Isolated agonists of TLR2 (Pam2CSK4), TLR3 (PolyIC), TLR4 (LPS), or TLR7 (R848) induced the release of TNF-α in a concentration-dependent manner in murine macrophages, differentiated from bone marrow-derived stem cells by mouse colony stimulating factor. Here, the presence of eRNA shifted the dose-response curve for Pam2CSK4 (Pam) considerably to the left, indicating that eRNA synergistically enhanced the cytokine liberation from macrophages even at very low Pam-levels. The synergistic activation of TLR2 by eRNA/Pam was duplicated by other TLR2-agonists such as FSL-1 or Pam3CSK4. In contrast, for TLR4-agonists such as LPS a synergistic effect of eRNA was much weaker, and was not existent for TLR3-, or TLR7-agonists. The synergistic eRNA/Pam action was dependent on the NFκB-signaling pathway as well as on p38MAP- and MEK1/ERK-kinases and was prevented by predigestion of eRNA with RNase1 or by antibodies against TLR2. Thus, the presence of self-eRNA as alarming molecule sensitizes innate immune responses towards pathogen-associated molecular patterns (PAMPs) in a synergistic way and may thereby contribute to the differentiated outcome of inflammatory responses.
Collapse
Affiliation(s)
- Frederik Noll
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Jonas Behnke
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Silke Leiting
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Kerstin Troidl
- Max-Planck-Instiute for Heart and Lung research, Bad Nauheim, Germany
- Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Gustavo Teixeira Alves
- Department of Infectious Diseases and Pulmonary Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Müller-Redetzky
- Department of Infectious Diseases and Pulmonary Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus T. Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
19
|
Cabrera-Fuentes H, Steinert I, Preissner K, Bencsik P, Sárközy M, Csonka C, Ferdinandy P, Schulz R, Schlüter KD, Schreckenberg R, Weber P. Mechanism and consequences of the shift in cardiac arginine metabolism following ischaemia and reperfusion in rats. Thromb Haemost 2017; 113:482-93. [DOI: 10.1160/th14-05-0477] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/28/2014] [Indexed: 11/05/2022]
Abstract
SummaryCardiac ischaemia and reperfusion leads to irreversible injury and subsequent tissue remodelling. Initial reperfusion seems to shift arginine metabolism from nitric oxide (NO) to polyamine formation. This may limit functional recovery at reperfusion. The hypothesis was tested whether ischaemia/reperfusion translates such a shift in arginine metabolism in a tumour necrosis factor (TNF)-α-dependent way and renin-angiotensin system (RAS)-dependent way into a sustained effect. Both, the early post-ischaemic recovery and molecular adaptation to ischaemia/reperfusion were analysed in saline perfused rat hearts undergoing global no-flow ischaemia and reperfusion. Local TNF-α activation was blocked by inhibition of TNF-α sheddase ADAM17. To interfere with RAS captopril was administered. Arginase was inhibited by administration of Nor-NOHA. Long-term effects of ischemia/reperfusion on arginine metabolism were analysed in vivo in rats receiving an established ischaemia/reperfusion protocol in the closed chest mode. mRNA expression analysis indicated a shift in the arginine metabolism from NO formation to polyamine metabolism starting within 2 hours (h) of reperfusion and translated into protein expression within 24 h. Inhibition of the TNF-α pathway and captopril attenuated these delayed effects on post-ischaemic recovery. This shift in arginine metabolism was associated with functional impairment of hearts within 24 h. Inhibition of arginase but not that of TNF-α and RAS pathways improved functional recovery immediately. However, no benefit was observed after four months. In conclusion, this study identified TNF-α and RAS to be responsible for depressed cardiac function that occurred a few hours after reperfusion.
Collapse
|
20
|
Naso F, Gandaglia A. Different approaches to heart valve decellularization: A comprehensive overview of the past 30 years. Xenotransplantation 2017; 25. [PMID: 29057501 DOI: 10.1111/xen.12354] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Xenogeneic decellularized heart valve scaffolds have the potential to overcome the limitations of existing bioprosthetic heart valves that have limited duration due to calcification and tissue degeneration phenomena. This article presents a review of 30 years of decellularization approaches adopted in cardiovascular tissue engineering, with a focus on the use, either individually or in combination, of different detergents. The safety and efficacy of cell-removal procedures are specifically reported and discussed, as well as the structure and biomechanics of the treated extracellular matrix (ECM). Detergent residues within the ECM, production of hyaluronan fragments, safe removal of cellular debris, and the persistence of the alpha-Gal epitope after the decellularization treatments are of particular interest as parameters for the identification of the best tissue for the manufacture of bioprostheses. Special attention has also been given to key factors that should be considered in the manufacture of the next generation of xenogeneic bioprostheses, where tissues must retain the ability to be remodeled and to grow in weight along with body reshaping.
Collapse
Affiliation(s)
- Filippo Naso
- Biocompatibility Innovation Company, Este, Padova, Italy
| | | |
Collapse
|
21
|
Preissner KT, Herwald H. Extracellular nucleic acids in immunity and cardiovascular responses: between alert and disease. Thromb Haemost 2017; 117:1272-1282. [PMID: 28594050 DOI: 10.1160/th-16-11-0858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022]
Abstract
Severe inflammatory complications are a potential consequence in patients with predetermined conditions of infections, pulmonary diseases, or cardiovascular disorders. Notably, the amplitude of the inflammatory response towards these complications can dictate the disease progression and outcome. During the recent years, evidence from basic research as well as from clinical studies has identified self-extracellular nucleic acids as important players in the crosstalk between immunity and cardiovascular diseases. These stress- or injury-induced endogenous polymeric macromolecules not only serve as "alarmins" or "Danger-associated molecular patterns" (DAMPs), but their functional repertoire goes far beyond such activities in innate immunity. In fact, (patho-) physiological functions of self-extracellular DNA and RNA are associated and in many cases causally related to arterial and venous thrombosis, atherosclerosis, ischemia-reperfusion injury or tumour progression. Yet, the underlying molecular mechanisms are far from being completely understood. Interestingly enough, however, novel antagonistic approaches in vitro and in vivo, particularly using natural endonucleases or synthetic nucleic acid binding polymers, appear to be promising and safe therapeutic options for future studies. The aim of this review article is to provide an overview of the current state of (patho-) physiological functions of self-extracellular nucleic acids with special emphasis on their role as beneficial / alerting or adverse / damaging factors in connection with immune responses, inflammation, thrombosis, and cardiovascular diseases.
Collapse
Affiliation(s)
- Klaus T Preissner
- Klaus T. Preissner, PhD, Department of Biochemistry, Medical School, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany, Tel.: +49 641 994 7500, E-mail:
| | | |
Collapse
|
22
|
Ma G, Chen C, Jiang H, Qiu Y, Li Y, Li X, Zhang X, Liu J, Zhu T. Ribonuclease attenuates hepatic ischemia reperfusion induced cognitive impairment through the inhibition of inflammatory cytokines in aged mice. Biomed Pharmacother 2017; 90:62-68. [PMID: 28343072 DOI: 10.1016/j.biopha.2017.02.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Elderly patients undergoing major surgery often develop cognitive dysfunction, and no optimum treatment exists for this postoperative complication. Ribonuclease, the counterpart of ribonucleic acid, has mostly been reported in terms of its use as a potential modality in anticancer therapy, and recent studies have demonstrated that ribonuclease can exert organ-protective effects in several pathological conditions. Our study also demonstrated that ribonuclease protects the liver against ischemia reperfusion injury. Nevertheless, it is unknown whether ribonuclease can attenuate the cognitive dysfunction that is induced by liver ischemia reperfusion. In this study, we aimed to evaluate the effect of ribonuclease on cognitive function after liver ischemia reperfusion. METHODS Aged mice underwent sham surgery or 60min of hepatic ischemia reperfusion, vehicle or ribonuclease, which were administered subcutaneously. The primary observation endpoint was the Morris water maze; following 24h, 3days, and 7days of reperfusion, the levels of serum and hippocampus proinflammatory cytokines were measured to reveal the underlying mechanism. RESULTS A probe test was conducted on day 3 and a reversal probe test was conducted on day 7 after surgery; the results demonstrated a reduction in cognitive function after liver ischemia reperfusion and that ribonuclease treatment attenuated cognitive impairment. The levels of serum and hippocampus proinflammatory cytokines (interleukin-6 and interleukin-1β) and extracellular ribonucleic acid were significantly increased at 24h after reperfusion, but ribonuclease treatment markedly reduced the proinflammatory cytokine increase. CONCLUSION The results of the study suggested that hepatic ischemia reperfusion leads to cognitive impairment in aged mice and an increase in inflammatory cytokine expression in both serum and the hippocampus; more importantly, ribonuclease showed protective effects against cognitive impairment through inhibiting the release of inflammatory cytokines.
Collapse
Affiliation(s)
- Gang Ma
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China; Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Haixia Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanhua Qiu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Yansong Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Xiaoqiang Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Xiyang Zhang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Tao Zhu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China.
| |
Collapse
|
23
|
Iop L, Paolin A, Aguiari P, Trojan D, Cogliati E, Gerosa G. Decellularized Cryopreserved Allografts as Off-the-Shelf Allogeneic Alternative for Heart Valve Replacement: In Vitro Assessment Before Clinical Translation. J Cardiovasc Transl Res 2017; 10:93-103. [PMID: 28281241 DOI: 10.1007/s12265-017-9738-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/02/2017] [Indexed: 01/20/2023]
Abstract
Cryopreserved allogeneic conduits are the elective biocompatible choice among currently available substitutes for surgical replacement in end-stage valvulopathy. However, degeneration occurs in 15 years in adults or faster in children, due to recipient's immunological reactions to donor's antigens. Here, human aortic valves were decellularized by TRICOL, based on Triton X-100 and sodium cholate, and submitted to standard cryopreservation (TRICOL-human aortic valves (hAVs)). Tissue samples were analyzed to study the effects of the combined procedure on original valve architecture and donor's cell removal. Residual amounts of nucleic acids, pathological microorganisms, and detergents were also investigated. TRICOL-hAVs proved to be efficaciously decellularized with removal of donor's cell components and preservation of valve scaffolding. Trivial traces of detergents, no cytotoxicity, and abrogated bioburden were documented. TRICOL-hAVs may represent off-the-shelf alternatives for both aortic and pulmonary valve replacements in pediatric and grown-up with congenital heart disease patients.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy. .,Cardiovascular Regenerative Medicine Group, Venetian Institute of Molecular Medicine, Via G. Orus 2, Padua, 35129, Italy.
| | - Adolfo Paolin
- Treviso Tissue Bank Foundation, Ca' Foncello Hospital, Piazzale Ospedale, 31100, Treviso, Italy.
| | - Paola Aguiari
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.,Cardiovascular Regenerative Medicine Group, Venetian Institute of Molecular Medicine, Via G. Orus 2, Padua, 35129, Italy
| | - Diletta Trojan
- Treviso Tissue Bank Foundation, Ca' Foncello Hospital, Piazzale Ospedale, 31100, Treviso, Italy
| | - Elisa Cogliati
- Treviso Tissue Bank Foundation, Ca' Foncello Hospital, Piazzale Ospedale, 31100, Treviso, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.,Cardiovascular Regenerative Medicine Group, Venetian Institute of Molecular Medicine, Via G. Orus 2, Padua, 35129, Italy
| |
Collapse
|
24
|
Host-derived extracellular RNA promotes adhesion of Streptococcus pneumoniae to endothelial and epithelial cells. Sci Rep 2016; 6:37758. [PMID: 27892961 PMCID: PMC5125276 DOI: 10.1038/srep37758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/31/2016] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae is the most frequent cause of community-acquired pneumonia. The infection process involves bacterial cell surface receptors, which interact with host extracellular matrix components to facilitate colonization and dissemination of bacteria. Here, we investigated the role of host-derived extracellular RNA (eRNA) in the process of pneumococcal alveolar epithelial cell infection. Our study demonstrates that eRNA dose-dependently increased S. pneumoniae invasion of alveolar epithelial cells. Extracellular enolase (Eno), a plasminogen (Plg) receptor, was identified as a novel eRNA-binding protein on S. pneumoniae surface, and six Eno eRNA-binding sites including a C-terminal 15 amino acid motif containing lysine residue 434 were characterized. Although the substitution of lysine 434 for glycine (K434G) markedly diminished the binding of eRNA to Eno, the adherence to and internalization into alveolar epithelial cells of S. pneumoniae strain carrying the C-terminal lysine deletion and the mutation of internal Plg-binding motif were only marginally impaired. Accordingly, using a mass spectrometric approach, we identified seven novel eRNA-binding proteins in pneumococcal cell wall. Given the high number of eRNA-interacting proteins on pneumococci, treatment with RNase1 completely inhibited eRNA-mediated pneumococcal alveolar epithelial cell infection. Our data support further efforts to employ RNAse1 as an antimicrobial agent to combat pneumococcal infectious diseases.
Collapse
|
25
|
Vidaña B, Martínez J, Martorell J, Montoya M, Córdoba L, Pérez M, Majó N. Involvement of the different lung compartments in the pathogenesis of pH1N1 influenza virus infection in ferrets. Vet Res 2016; 47:113. [PMID: 27825367 PMCID: PMC5101722 DOI: 10.1186/s13567-016-0395-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/10/2016] [Indexed: 12/29/2022] Open
Abstract
Severe cases after pH1N1 infection are consequence of interstitial pneumonia triggered by alveolar viral replication and an exacerbated host immune response, characterized by the up-regulation of pro-inflammatory cytokines and the influx of inflammatory leukocytes to the lungs. Different lung cell populations have been suggested as culprits in the unregulated innate immune responses observed in these cases. This study aims to clarify this question by studying the different induction of innate immune molecules by the distinct lung anatomic compartments (vascular, alveolar and bronchiolar) of ferrets intratracheally infected with a human pH1N1 viral isolate, by means of laser microdissection techniques. The obtained results were then analysed in relation to viral quantification in the different anatomic areas and the histopathological lesions observed. More severe lung lesions were observed at 24 h post infection (hpi) correlating with viral antigen detection in bronchiolar and alveolar epithelial cells. However, high levels of viral RNA were detected in all anatomic compartments throughout infection. Bronchiolar areas were the first source of IFN-α and most pro-inflammatory cytokines, through the activation of RIG-I. In contrast, vascular areas contributed with the highest induction of CCL2 and other pro-inflammatory cytokines, through the activation of TLR3.
Collapse
Affiliation(s)
- Beatriz Vidaña
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jorge Martínez
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain. .,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Jaime Martorell
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - María Montoya
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Lorena Córdoba
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Natàlia Majó
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
26
|
Bertheloot D, Naumovski AL, Langhoff P, Horvath GL, Jin T, Xiao TS, Garbi N, Agrawal S, Kolbeck R, Latz E. RAGE Enhances TLR Responses through Binding and Internalization of RNA. THE JOURNAL OF IMMUNOLOGY 2016; 197:4118-4126. [PMID: 27798148 DOI: 10.4049/jimmunol.1502169] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
Nucleic acid recognition is an important mechanism that enables the innate immune system to detect microbial infection and tissue damage. To minimize the recognition of self-derived nucleic acids, all nucleic acid-sensing signaling receptors are sequestered away from the cell surface and are activated in the cytoplasm or in endosomes. Nucleic acid sensing in endosomes relies on members of the TLR family. The receptor for advanced glycation end-products (RAGE) was recently shown to bind DNA at the cell surface, facilitating DNA internalization and subsequent recognition by TLR9. In this article, we show that RAGE binds RNA molecules in a sequence-independent manner and enhances cellular RNA uptake into endosomes. Gain- and loss-of-function studies demonstrate that RAGE increases the sensitivity of all ssRNA-sensing TLRs (TLR7, TLR8, TLR13), suggesting that RAGE is an integral part of the endosomal nucleic acid-sensing system.
Collapse
Affiliation(s)
- Damien Bertheloot
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany
| | | | - Pia Langhoff
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany.,German Center for Neurodegenerative Diseases, 53117 Bonn, Germany
| | - Gabor L Horvath
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Tengchuan Jin
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, 53127 Bonn, Germany
| | | | | | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany; .,German Center for Neurodegenerative Diseases, 53117 Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
27
|
Koczera P, Martin L, Marx G, Schuerholz T. The Ribonuclease A Superfamily in Humans: Canonical RNases as the Buttress of Innate Immunity. Int J Mol Sci 2016; 17:ijms17081278. [PMID: 27527162 PMCID: PMC5000675 DOI: 10.3390/ijms17081278] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022] Open
Abstract
In humans, the ribonuclease A (RNase A) superfamily contains eight different members that have RNase activities, and all of these members are encoded on chromosome 14. The proteins are secreted by a large variety of different tissues and cells; however, a comprehensive understanding of these proteins’ physiological roles is lacking. Different biological effects can be attributed to each protein, including antiviral, antibacterial and antifungal activities as well as cytotoxic effects against host cells and parasites. Different immunomodulatory effects have also been demonstrated. This review summarizes the available data on the human RNase A superfamily and illustrates the significant role of the eight canonical RNases in inflammation and the host defence system against infections.
Collapse
Affiliation(s)
- Patrick Koczera
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
- Department for Experimental Molecular Imaging, University Hospital RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen 52074, Germany.
| | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
| |
Collapse
|
28
|
Abstract
Inflammatory and ischemic cardiovascular diseases, especially atherosclerosis and myocardial infarction, remain the number one cause of death in the Western world, whereas the therapeutic options currently available are still limited. Several recent findings have indicated that nucleic acids, particularly extracellular ribosomal RNA and micro-RNAs, significantly contribute to the adverse outcome of atherosclerosis, myocardial infarction, and other cardiovascular diseases. Extracellular RNAs act as novel danger-associated molecular pattern signals and potent cofactors in cardiovascular inflammation and thrombosis, particularly when accumulating in the extracellular space under tissue-damaging or pathological conditions. In this concise review article, the different entities of extracellular RNAs, their cellular sources, and their putative functional contribution to the pathogenesis of cardiovascular diseases will be discussed. In fact, it remains a tightrope walk for these polyanionic molecules outside cells to promote defense reactions on the one side but to provoke cardiovascular disease development on the other side, dependent on their concentration, the environmental conditions, and the cellular stimuli engaged. Thus, we will discuss the mechanisms and cellular responses by which extracellular RNAs operate between defense and disease. Finally, natural counteracting molecules, such as RNase1, will be focused on to elaborate their protective functions in the context of inflammatory and ischemic cardiovascular diseases with the possibility to apply them as novel interventional strategies.
Collapse
Affiliation(s)
- Alma Zernecke
- From the Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany (A.Z.); and Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany (K.T.P.).
| | - Klaus T Preissner
- From the Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany (A.Z.); and Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany (K.T.P.).
| |
Collapse
|
29
|
Kleinert E, Langenmayer MC, Reichart B, Kindermann J, Griemert B, Blutke A, Troidl K, Mayr T, Grantzow T, Noyan F, Abicht JM, Fischer S, Preissner KT, Wanke R, Deindl E, Guethoff S. Ribonuclease (RNase) Prolongs Survival of Grafts in Experimental Heart Transplantation. J Am Heart Assoc 2016; 5:e003429. [PMID: 27121849 PMCID: PMC4889206 DOI: 10.1161/jaha.116.003429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/03/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell damage, tissue and vascular injury are associated with the exposure and release of intracellular components such as RNA, which promote inflammatory reactions and thrombosis. Based on the counteracting anti-inflammatory and cardioprotective functions of ribonuclease A (RNase A) in this context, its role in an experimental model of heart transplantation in rats was studied. METHODS AND RESULTS Inbred BN/OrlRj rat cardiac allografts were heterotopically transplanted into inbred LEW/OrlRj rats. Recipients were intravenously treated every other day with saline or bovine pancreatic RNase A (50 μg/kg). Toxic side effects were not found (macroscopically and histologically). Heart tissue flow cytometry and quantitative morphological analyses of explanted hearts at postoperative day 1 or postoperative day 4 showed reduced leukocyte infiltration, edema, and thrombus formation in RNase A-treated rats. In allogeneic mixed lymphocyte reactions, RNase A decreased the proliferation of effector T cells. RNase A treatment of rats resulted in prolonged median graft survival up to 10.5 days (interquartile range 1.8) compared to 6.5 days (interquartile range 1.0) in saline treatment (P=0.001). Treatment of rats with a new generated (recombinant) human pancreatic RNase 1 prolonged median graft survival similarly, unlike treatment with (recombinant) inactive human RNase 1 (each 50 μg/kg IV every other day, 11.0 days, interquartile range 0.3, versus 8.0 days, interquartile range 0.5, P=0.007). CONCLUSIONS Upon heart transplantation, RNase administration appears to present a promising and safe drug to counteract ischemia/reperfusion injury and graft rejection. Furthermore, RNase treatment may be considered in situations of critical reperfusion after percutaneous coronary interventions or in cardiac surgery using the heart-lung machine.
Collapse
Affiliation(s)
- Eike Kleinert
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Martin C Langenmayer
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Germany Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Germany
| | - Bruno Reichart
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Jana Kindermann
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany Department of Cardiac Surgery, Ludwig-Maximilians-Universität München, Germany
| | - Barbara Griemert
- Institute of Biochemistry, Medical School, Justus-Liebig-Universität, Giessen, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Kerstin Troidl
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tanja Mayr
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany Department of Anaesthesiology, Ludwig-Maximilians-Universität München, Germany
| | - Tobias Grantzow
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jan-Michael Abicht
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany Department of Anaesthesiology, Ludwig-Maximilians-Universität München, Germany
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-Universität, Giessen, Germany
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-Universität, Giessen, Germany
| | - Ruediger Wanke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Elisabeth Deindl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Sonja Guethoff
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany Department of Cardiac Surgery, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
30
|
Martin L, Koczera P, Simons N, Zechendorf E, Hoeger J, Marx G, Schuerholz T. The Human Host Defense Ribonucleases 1, 3 and 7 Are Elevated in Patients with Sepsis after Major Surgery--A Pilot Study. Int J Mol Sci 2016; 17:294. [PMID: 26927088 PMCID: PMC4813158 DOI: 10.3390/ijms17030294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/04/2016] [Accepted: 02/16/2016] [Indexed: 01/21/2023] Open
Abstract
Sepsis is the most common cause of death in intensive care units and associated with widespread activation of host innate immunity responses. Ribonucleases (RNases) are important components of the innate immune system, however the role of RNases in sepsis has not been investigated. We evaluated serum levels of RNase 1, 3 and 7 in 20 surgical sepsis patients (Sepsis), nine surgical patients (Surgery) and 10 healthy controls (Healthy). RNase 1 and 3 were elevated in Sepsis compared to Surgery (2.2- and 3.1-fold, respectively; both p < 0.0001) or compared to Healthy (3.0- and 15.5-fold, respectively; both p < 0.0001). RNase 1 showed a high predictive value for the development of more than two organ failures (AUC 0.82, p = 0.01). Patients with renal dysfunction revealed higher RNase 1 levels than without renal dysfunction (p = 0.03). RNase 1 and 3 were higher in respiratory failure than without respiratory failure (p < 0.0001 and p = 0.02, respectively). RNase 7 was not detected in Healthy patients and only in two patients of Surgery, however RNase 7 was detected in 10 of 20 Sepsis patients. RNase 7 was higher in renal or metabolic failure than without failure (p = 0.04 and p = 0.02, respectively). In conclusion, RNase 1, 3 and 7 are secreted into serum under conditions with tissue injury, such as major surgery or sepsis. Thus, RNases might serve as laboratory parameters to diagnose and monitor organ failure in sepsis.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Patrick Koczera
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Nadine Simons
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Janine Hoeger
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.
| |
Collapse
|
31
|
Zou L, Feng Y, Xu G, Jian W, Chao W. Splenic RNA and MicroRNA Mimics Promote Complement Factor B Production and Alternative Pathway Activation via Innate Immune Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 196:2788-98. [PMID: 26889043 DOI: 10.4049/jimmunol.1502106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022]
Abstract
Complement factor B (cfB) is an essential component of the alternative pathway (AP) and plays an important role in the pathogenesis of polymicrobial sepsis. However, the mechanism leading to cfB production and AP activation during sepsis remains poorly understood. In this study, we found that plasma cell-free RNA was significantly increased following cecal ligation and puncture (CLP), an animal model of polymicrobial sepsis, and was closely associated with sepsis severity. Quantitative RT-PCR and microRNA (miRNA) array analysis revealed an increase in bacterial RNA and multiple host miRNAs (miR-145, miR-146a, miR-122, miR-210) in the blood following CLP. Treatment with tissue RNA or synthetic miRNA mimics (miR-145, miR-146a, miR-122, miR-34a) induced a marked increase in cfB production in cardiomyocytes or macrophages. The newly synthesized cfB released into medium was biologically active because it participated in AP activation initiated by cobra venom factor. Genetic deletion of TLR7 or MyD88, but not TLR3, and inhibition of the MAPKs (JNK and p38) or NF-κB abolished miR-146a-induced cfB production. In vivo, CLP led to a significant increase in splenic cfB expression that correlated with the plasma RNA or miRNA levels. Peritoneal injection of RNA or miR-146a led to an increase in cfB expression in the peritoneal space that was attenuated in MyD88-knockout or TLR7-knockout mice, respectively. These findings demonstrate that host cellular RNA and specific miRNAs are released into the circulation during polymicrobial sepsis and may function as extracellular mediators capable of promoting cfB production and AP activation through specific TLR7 and MyD88 signaling.
Collapse
Affiliation(s)
- Lin Zou
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yan Feng
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ganqiong Xu
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; and
| | - Wenling Jian
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; and
| | - Wei Chao
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
32
|
Sharifpanah F, De Silva S, Bekhite MM, Hurtado-Oliveros J, Preissner KT, Wartenberg M, Sauer H. Stimulation of vasculogenesis and leukopoiesis of embryonic stem cells by extracellular transfer RNA and ribosomal RNA. Free Radic Biol Med 2015; 89:1203-17. [PMID: 26524400 DOI: 10.1016/j.freeradbiomed.2015.10.423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Cell injury releases nucleic acids supporting inflammation and stem cell activation. Here, the impact of extracellular ribonucleic acid, especially transfer RNA (ex-tRNA), on vasculogenesis and leukopoiesis of mouse embryonic stem (ES) cells was investigated. APPROACH AND RESULTS ex-tRNA, whole cell RNA and ribosomal RNA (ex-rRNA) but not DNA increased CD31-positive vascular structures in embryoid bodies. Ex-tRNA and ex-rRNA increased numbers of VEGFR2(+), CD31(+) and VE-cadherin(+) vascular cells as well as CD18(+), CD45(+) and CD68(+) cells, indicating leukocyte/macrophage differentiation. This was paralleled by mRNA and protein expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor-165 (VEGF165) and neuropilin 1 (NRP1), phosphorylation of phosphatidyl inositol 3-kinase (PI3K) and VEGF receptor 2 (VEGFR2) as well as mRNA expression of α-smooth muscle actin (α-SMA). ex-tRNA was taken up by endosomes, increased expression of the pro-angiogenic semaphorin B4 receptor plexin B1 as well as the ephrin-type B receptor 4 (EphB4) and ephrinB2 ligand and enhanced cell migration, which was inhibited by the VEGFR2 antagonist SU5614 and the PI3K inhibitor LY294002. This likewise abolished the effects of ex-tRNA on vasculogenesis and leukopoiesis of ES cells. Ex-tRNA increased NOX1, NOX2, NOX4 and DUOX2 mRNA and boosted the generation of superoxide and hydrogen peroxide which was inhibited by radical scavengers, the NADPH oxidase inhibitors apocynin, VAS2870, ML171, and plumbagin as well as shRNA silencing of NOX1 and NOX4. CONCLUSIONS Our findings indicate that ex-tRNA treatment induces vasculogenesis and leukopoiesis of ES cells via superoxide/hydrogen peroxide generated by NADPH oxidase and activation of VEGFR2 and PI3K.
Collapse
Affiliation(s)
- Fatemeh Sharifpanah
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany
| | - Sepali De Silva
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany
| | - Mohamed M Bekhite
- Clinic of Internal Medicine I, Cardiology Division, Friedrich Schiller University, Jena, Germany; Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Klaus T Preissner
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Maria Wartenberg
- Clinic of Internal Medicine I, Cardiology Division, Friedrich Schiller University, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Medical School, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
33
|
Zuo L, Lucas K, Fortuna CA, Chuang CC, Best TM. Molecular Regulation of Toll-like Receptors in Asthma and COPD. Front Physiol 2015; 6:312. [PMID: 26617525 PMCID: PMC4637409 DOI: 10.3389/fphys.2015.00312] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) have both been historically associated with significant morbidity and financial burden. These diseases can be induced by several exogenous factors, such as pathogen-associated molecular patterns (PAMPs) (e.g., allergens and microbes). Endogenous factors, including reactive oxygen species, and damage-associated molecular patterns (DAMPs) recognized by toll-like receptors (TLRs), can also result in airway inflammation. Asthma is characterized by the dominant presence of eosinophils, mast cells, and clusters of differentiation (CD)4+ T cells in the airways, while COPD typically results in the excessive formation of neutrophils, macrophages, and CD8+ T cells in the airways. In both asthma and COPD, in the respiratory tract, TLRs are the primary proteins of interest associated with the innate and adaptive immune responses; hence, multiple treatment options targeting TLRs are being explored in an effort to reduce the severity of the symptoms of these disorders. TLR-mediated pathways for both COPD and asthma have their similarities and differences with regards to cell types and the pro-inflammatory cytotoxins present in the airway. Because of the complex TLR cascade, a variety of treatments have been used to minimize airway hypersensitivity and promote bronchodilation. Although unsuccessful at completely alleviating COPD and severe asthmatic symptoms, new studies are focused on possible targets within the TLR cascade to ameliorate airway inflammation.
Collapse
Affiliation(s)
- Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, The Ohio State University Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio State University Columbus, OH, USA ; Interdisciplinary Biophysics Graduate Program, The Ohio State University Columbus, OH, USA
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry Mainz, Germany
| | - Christopher A Fortuna
- Radiologic Sciences and Respiratory Therapy Division, The Ohio State University Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio State University Columbus, OH, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, The Ohio State University Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, Ohio State University Columbus, OH, USA ; Interdisciplinary Biophysics Graduate Program, The Ohio State University Columbus, OH, USA
| | - Thomas M Best
- Division of Sports Medicine, Department of Family Medicine, Sports Health and Performance Institute, The Ohio State University Wexner Medical Center Columbus, OH, USA
| |
Collapse
|
34
|
Cabrera-Fuentes HA, Lopez ML, McCurdy S, Fischer S, Meiler S, Baumer Y, Galuska SP, Preissner KT, Boisvert WA. Regulation of monocyte/macrophage polarisation by extracellular RNA. Thromb Haemost 2015; 113:473-81. [PMID: 25589344 DOI: 10.1160/th14-06-0507] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/28/2014] [Indexed: 12/18/2022]
Abstract
Monocytes/macrophages respond to external stimuli with rapid changes in the expression of numerous inflammation-related genes to undergo polarisation towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. We have previously shown that, independently of Toll-like receptor activation, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system to provoke cytokine mobilisation. Here, mouse bone marrow-derived-macrophages (BMDM) differentiated with mouse macrophage-colony-stimulating factor (M-CSF) were found to be skewed towards the M1 phenotype when exposed to eRNA. This resulted in up-regulated expression of inflammatory markers such as Tnf-α and Il-6, together with Il-12 and iNOS, whereas anti-inflammatory genes such as chitinase-like proteins (Ym1/2) and macrophage mannose receptor-2 (Cd206) were significantly down-regulated. Human peripheral blood monocytes were treated with eRNA and analysed by micro-array analysis of the whole human genome, revealing an up-regulation of 79 genes by at least four-fold; 27 of which are related to signal transduction and 15 genes associated with inflammatory response. In accordance with the proposed actions of eRNA as a pro-inflammatory "alarm signal", these data shed light on the role of eRNA in the context of chronic inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Klaus T Preissner
- Klaus T. Preissner, PhD, Depart. Biochemistry, Medical School, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany, Tel.: +49 641 994 7500, e-mail:
| | - William A Boisvert
- William A. Boisvert, PhD, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB 311C, Honolulu, HI 96813, USA, Tel.: + 1 808 692 1567, E-mail:
| |
Collapse
|
35
|
Haxaire C, Blobel CP. With blood in the joint - what happens next? Could activation of a pro-inflammatory signalling axis leading to iRhom2/TNFα-convertase-dependent release of TNFα contribute to haemophilic arthropathy? Haemophilia 2014; 20 Suppl 4:11-4. [PMID: 24762269 DOI: 10.1111/hae.12416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 12/27/2022]
Abstract
One of the main complications of haemophilia A is haemophilic arthropathy (HA), a debilitating disease with a significant negative impact on motility and quality of life. Despite major advances in the treatment of haemophilia A, many patients still suffer from HA. We wish to develop new treatments for HA, but must first better understand its causes. Our laboratory studies molecular scissors that release the pro-inflammatory cytokine tumour necrosis factor alpha (TNFα) from cells. TNFα is considered the 'fire alarm' of the body - it helps to fight infections, but can also cause diseases such as inflammatory arthritis. We know that the molecular scissors, called TNFα convertase (TACE), and its newly discovered regulator termed iRhom2 can be rapidly activated by small amounts of cytokines, growth factors, and pro-inflammatory mediators present in the blood. We hypothesize that the rapid activation of TACE could help explain one of the unsolved mysteries regarding the development of HA, which is how even small amounts of blood can provoke a persistent inflammatory response. We propose that once blood enters the joint, iRhom2 and TACE are activated to release TNFα and that this could promote the development of HA in a similar manner to that in which it promotes rheumatoid arthritis (RA). We are currently using immune cells stimulated with blood degradation products, and mouse models of HA, to test this hypothesis. If successful, our study could provide the rationale for testing anti-TNF antibodies, which are already used to treat RA, for the treatment of HA. In addition, they might uncover iRhom2 and TACE as attractive new candidate targets for the treatment of HA.
Collapse
Affiliation(s)
- C Haxaire
- Arthritis & Tissue Degeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
36
|
Cabrera-Fuentes HA, Ruiz-Meana M, Simsekyilmaz S, Kostin S, Inserte J, Saffarzadeh M, Galuska SP, Vijayan V, Barba I, Barreto G, Fischer S, Lochnit G, Ilinskaya ON, Baumgart-Vogt E, Böning A, Lecour S, Hausenloy DJ, Liehn EA, Garcia-Dorado D, Schlüter KD, Preissner KT. RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-α in cardiac ischaemia/reperfusion injury. Thromb Haemost 2014; 112:1110-9. [PMID: 25354936 DOI: 10.1160/th14-08-0703] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/20/2014] [Indexed: 12/15/2022]
Abstract
Despite optimal therapy, the morbidity and mortality of patients presenting with an acute myocardial infarction (MI) remain significant, and the initial mechanistic trigger of myocardial "ischaemia/reperfusion (I/R) injury" remains greatly unexplained. Here we show that factors released from the damaged cardiac tissue itself, in particular extracellular RNA (eRNA) and tumour-necrosis-factor α (TNF-α), may dictate I/R injury. In an experimental in vivo mouse model of myocardial I/R as well as in the isolated I/R Langendorff-perfused rat heart, cardiomyocyte death was induced by eRNA and TNF-α. Moreover, TNF-α promoted further eRNA release especially under hypoxia, feeding a vicious cell damaging cycle during I/R with the massive production of oxygen radicals, mitochondrial obstruction, decrease in antioxidant enzymes and decline of cardiomyocyte functions. The administration of RNase1 significantly decreased myocardial infarction in both experimental models. This regimen allowed the reduction in cytokine release, normalisation of antioxidant enzymes as well as preservation of cardiac tissue. Thus, RNase1 administration provides a novel therapeutic regimen to interfere with the adverse eRNA-TNF-α interplay and significantly reduces or prevents the pathological outcome of ischaemic heart disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - K T Preissner
- Klaus T. Preissner, PhD, Depart. Biochemistry, Medical School, Justus-Liebig-Universität, Friedrichstrasse 24, 35392 Giessen, Germany, Tel.: +49 641 994 7500; Fax: +49 641 994 7509, E-mail:
| |
Collapse
|
37
|
Impact of extracellular RNA on endothelial barrier function. Cell Tissue Res 2014; 355:635-45. [DOI: 10.1007/s00441-014-1850-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
38
|
Simsekyilmaz S, Cabrera-Fuentes HA, Meiler S, Kostin S, Baumer Y, Liehn EA, Weber C, Boisvert WA, Preissner KT, Zernecke A. Role of extracellular RNA in atherosclerotic plaque formation in mice. Circulation 2013; 129:598-606. [PMID: 24201302 DOI: 10.1161/circulationaha.113.002562] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerosis and vascular remodeling after injury are driven by inflammation and mononuclear cell infiltration. Extracellular RNA (eRNA) has recently been implicated to become enriched at sites of tissue damage and to act as a proinflammatory mediator. Here, we addressed the role of eRNA in high-fat diet-induced atherosclerosis and neointima formation after injury in atherosclerosis-prone mice. METHODS AND RESULTS The presence of eRNA was revealed in atherosclerotic lesions from high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice in a time-progressive fashion. RNase activity in plasma increased within the first 2 weeks (44±9 versus 70±7 mU/mg protein; P=0.0012), followed by a decrease to levels below baseline after 4 weeks of high-fat diet (44±9 versus 12±2 mU/mg protein; P<0.0001). Exposure of bone marrow-derived macrophages to eRNA resulted in a concentration-dependent upregulation of the proinflammatory mediators tumor necrosis factor-α, arginase-2, interleukin-1β, interleukin-6, and interferon-γ. In a model of accelerated atherosclerosis after arterial injury in apolipoprotein E-deficient (ApoE(-/-)) mice, treatment with RNase1 diminished the increased plasma level of eRNA evidenced after injury. Likewise, RNase1 administration reduced neointima formation in comparison with vehicle-treated ApoE(-/-) controls (25.0±6.2 versus 46.9±6.9×10(3) μm(2), P=0.0339) and was associated with a significant decrease in plaque macrophage content. Functionally, RNase1 treatment impaired monocyte arrest on activated smooth muscle cells under flow conditions in vitro and inhibited leukocyte recruitment to injured carotid arteries in vivo. CONCLUSIONS Because eRNA is associated with atherosclerotic lesions and contributes to inflammation-dependent plaque progression in atherosclerosis-prone mice, its targeting with RNase1 may serve as a new treatment option against atherosclerosis.
Collapse
Affiliation(s)
- Sakine Simsekyilmaz
- Institute for Molecular Cardiovascular Research, RWTH University Hospital Aachen, Aachen, Germany (S.S., E.A.L.); Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany (H.A.C.-F., K.T.P.); Department of Microbiology, Kazan Federal University, Kazan, Russian Federation (H.A.C.-F.); Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI (S.M., Y.B., W.A.B.); Core Lab for Molecular and Structural Biology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (S.K.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (C.W., A.Z.); Rudolf Virchow Center and Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, University of Würzburg, Würzburg, Germany (A.Z.); and Department of Vascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany (A.Z.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gansler J, Preissner KT, Fischer S. Influence of proinflammatory stimuli on the expression of vascular ribonuclease 1 in endothelial cells. FASEB J 2013; 28:752-60. [PMID: 24174426 DOI: 10.1096/fj.13-238600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Extracellular RNA (eRNA) released under injury or pathological conditions has been identified as a yet unrecognized vascular alarm signal to induce procoagulant, permeability-promoting, and proinflammatory activities. eRNA-induced functions were largely prevented by administration of RNase1 as a natural blood vessel-protective antagonist of eRNA. The aim of this study was to investigate the inflammatory regulation of endothelial cell RNase1, which is partly stored in Weibel-Palade bodies of these cells. Long-term treatment of human umbilical vein endothelial cells (HUVECs) with inflammatory agents like tumor necrosis factor α (TNF-α) or interleukin 1β (IL-1β), but not with eRNA, significantly decreased the release (34 ± 5%; 34 ± 7% of control) as well as the cellular expression (19.5 ± 5%; 33 ± 8% of control) of RNase1. Down-regulation of RNase1 by TNF-α stimulation or RNase1 siRNA knockdown increased the permeability of HUVEC monolayers, demonstrated by dearrangement of VE-cadherins at cell-cell borders. Mechanistically, cytokine-induced decrease of RNase1 expression did not involve the nuclear factor κ B (NFκB) signaling pathway but epigenic modifications. Since inhibition of histone deacetylases resulted in recovery of RNase1 expression and secretion after cytokine treatment, an acetylation-dependent process of RNase1 regulation is proposed. These results indicate that cytokine-mediated down-regulation of RNase1 in endothelial cells may aggravate eRNA-induced inflammatory activities and thereby disturbs the vascular homeostasis of the extracellular RNA/RNase system.
Collapse
Affiliation(s)
- Julia Gansler
- 1Institute for Biochemistry, Medical School, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.
| | | | | |
Collapse
|
40
|
Fischer S, Gesierich S, Griemert B, Schänzer A, Acker T, Augustin HG, Olsson AK, Preissner KT. Extracellular RNA liberates tumor necrosis factor-α to promote tumor cell trafficking and progression. Cancer Res 2013; 73:5080-9. [PMID: 23774209 DOI: 10.1158/0008-5472.can-12-4657] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular RNA (eRNA) released from injured cells promotes tissue permeability, thrombosis, and inflammation in vitro and in vivo, and RNase1 pretreatment can reduce all these effects. In this study, we investigated the role of the eRNA/RNase1 system in tumor progression and metastasis. Under quiescent and stimulatory conditions, tumor cells released much higher levels of endogenous extracellular RNA (eRNA) than nontumor cells. In glioblastomas, eRNA was detected at higher levels in tumors than nontumor tissue. eRNA induced tumor cells to adhere to and migrate through human cerebral microvascular endothelial cells (HCMEC/D3), in a manner requiring activation of VEGF signaling. In addition, eRNA liberated TNF-α from macrophages in a manner requiring activation of the TNF-α-converting enzyme TACE. Accordingly, supernatants derived from eRNA-treated macrophages enhanced tumor cell adhesion to HCMEC/D3. TNF-α release evoked by eRNA relied upon signaling activation of mitogen-activated protein kinases and the NF-κB pathway. In subcutaneous xenograft models of human cancer, administration of RNase1 but not DNase decreased tumor volume and weight. Taken together, these results suggest that eRNA released from tumor cells has the capacity to promote tumor cell invasion through endothelial barriers by both direct and indirect mechanisms, including through a mechanism involving TNF-α release from tumor-infiltrating monocytes/macrophages. Our findings establish a crucial role for eRNA in driving tumor progression, and they suggest applications for extracellular RNase1 as an antiinvasive regimen for cancer treatment.
Collapse
Affiliation(s)
- Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fischer S, Preissner KT. Extracellular nucleic acids as novel alarm signals in the vascular system. Mediators of defence and disease. Hamostaseologie 2013; 33:37-42. [PMID: 23328880 DOI: 10.5482/hamo-13-01-0001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/08/2013] [Indexed: 01/13/2023] Open
Abstract
Upon vascular injury or tissue damage, the exposed intracellular material such as nucleic acids, histones and other macromolecules may come into contact with vessel wall cells and circulating blood cells and may thus, have an enduring influence on wound healing and body defence processes. This short review summarizes recent work related to extracellular DNA and RNA and their role as prominent alarm signals and inducers of different defence reactions related to innate immunity and thrombus formation. Of particular importance are DNA-histone complexes (nucleosome material) that, having been expelled during stimulation of the neutrophils, not only trap and eliminate bacteria but also promote thrombus formation in the arterial and venous system. Consequently therefore, the administration of DNase exhibits strong antithrombotic functions. Similarly, extracellular RNA provokes activation of the contact phase system of blood coagulation and, by interacting with specific proteins and cytokines, it promotes vascular permeability and oedema formation. The development of RNA-mediated thrombosis, vasogenic oedema or proinflammatory responses are counteracted by the administration of RNase1 in several pathogenetic animal models. Thus, extracellular nucleic acids appear not only to function as host alarm signals that serve to amplify the defence response, but they also provide important links to thrombus formation as part of the innate immune system.
Collapse
Affiliation(s)
- S Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-Universität, Friedrichstr. 24, 35392 Giessen, Germany
| | | |
Collapse
|
42
|
Hirsch E. Inflaming attraction by RNA. Thromb Haemost 2012; 108:589. [PMID: 22955201 DOI: 10.1160/th12-08-0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Emilio Hirsch
- Department of Genetics, School of Medicine, University of Torino, Torino, Italy.
| |
Collapse
|