1
|
Conz L, Jales RM, Dória MT, Melloni I, Cres Lyrio CA, Menossi C, Derchain S, Sarian LO. Predictive value of ultrasound doppler parameters in neoadjuvant chemotherapy response of breast cancer: Prospective comparison with magnetic resonance and mammography. PLoS One 2024; 19:e0302527. [PMID: 38833499 PMCID: PMC11149875 DOI: 10.1371/journal.pone.0302527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/07/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) is a treatment option for breast cancer patients that allows for the assessment of tumor response during treatment. This information can be used to adjust treatment and improve outcomes. However, the optimal imaging modalities and parameters for assessing tumor response to NACT are not well established. METHODS This study included 173 breast cancer patients who underwent NACT. Patients were imaged with ultrasound (US), mammography (MMG), and magnetic resonance imaging (MRI) at baseline, after two cycles of NACT, and before breast surgery. US parameters included lesion morphology, Doppler variables, and elastography measurements. MMG and MRI were evaluated for the presence of nodules and tumor dimensions. The pathological response to NACT was determined using the residual cancer burden (RCB) classification. RESULTS The US parameter with the highest power for predicting pathological complete response (pCR) was shear wave elastography (SWE) maximum speed inside the tumor at baseline. For nonluminal tumors, the end diastolic velocity measured by US after two cycles of NACT showed the highest predictive value for pCR. Similarly, SWE maximum speed after two cycles of NACT had the highest discriminating power for predicting RCB-III in luminal tumors, while the same parameter measured at baseline was most predictive for nonluminal tumors. CONCLUSIONS This study provides evidence that mid-treatment Doppler US and other imaging modalities can be used to predict the response to NACT in breast cancer patients. Functional parameters, such as blood flow velocities and SWE measurements, demonstrated superior predictive value for pCR, while morphological parameters had limited value. These findings have implications for personalized treatment strategies and may contribute to improved outcomes in the management of breast cancer.
Collapse
Affiliation(s)
- Livia Conz
- Department of Obstetrics and Gynecology, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
- Division of Gynecologic and Breast Oncology, Women’s Hospital (CAISM), Unicamp, Campinas, São Paulo, Brazil
| | | | - Maira Teixeira Dória
- Department Obstetrics and Gynecology, Federal University of Parana (UFPR), Curitiba, Parana, Brazil
| | - Isabelle Melloni
- Imaging Sector, Women’s Hospital (CAISM), Unicamp, Campinas, São Paulo, Brazil
| | | | - Carlos Menossi
- Imaging Sector, Women’s Hospital (CAISM), Unicamp, Campinas, São Paulo, Brazil
| | - Sophie Derchain
- Department of Obstetrics and Gynecology, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
- Division of Gynecologic and Breast Oncology, Women’s Hospital (CAISM), Unicamp, Campinas, São Paulo, Brazil
| | - Luís Otávio Sarian
- Department of Obstetrics and Gynecology, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
- Division of Gynecologic and Breast Oncology, Women’s Hospital (CAISM), Unicamp, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
A Glimpse into Dendrimers Integration in Cancer Imaging and Theranostics. Int J Mol Sci 2023; 24:ijms24065430. [PMID: 36982503 PMCID: PMC10049703 DOI: 10.3390/ijms24065430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer is a result of abnormal cell proliferation. This pathology is a serious health problem since it is a leading cause of death worldwide. Current anti-cancer therapies rely on surgery, radiation, and chemotherapy. However, these treatments still present major associated problems, namely the absence of specificity. Thus, it is urgent to develop novel therapeutic strategies. Nanoparticles, particularly dendrimers, have been paving their way to the front line of cancer treatment, mostly for drug and gene delivery, diagnosis, and disease monitoring. This is mainly derived from their high versatility, which results from their ability to undergo distinct surface functionalization, leading to improved performance. In recent years, the anticancer and antimetastatic capacities of dendrimers have been discovered, opening new frontiers to dendrimer-based chemotherapeutics. In the present review, we summarize the intrinsic anticancer activity of different dendrimers as well as their use as nanocarriers in cancer diagnostics and treatment.
Collapse
|
3
|
Pavlov MV, Bavrina AP, Plekhanov VI, Golubyatnikov GY, Orlova AG, Subochev PV, Davydova DA, Turchin IV, Maslennikova AV. Changes in the tumor oxygenation but not in the tumor volume and tumor vascularization reflect early response of breast cancer to neoadjuvant chemotherapy. Breast Cancer Res 2023; 25:12. [PMID: 36717842 PMCID: PMC9887770 DOI: 10.1186/s13058-023-01607-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Breast cancer neoadjuvant chemotherapy (NACT) allows for assessing tumor sensitivity to systemic treatment, planning adjuvant treatment and follow-up. However, a sufficiently large number of patients fail to achieve the desired level of pathological tumor response while optimal early response assessment methods have not been established now. In our study, we simultaneously assessed the early chemotherapy-induced changes in the tumor volume by ultrasound (US), the tumor oxygenation by diffuse optical spectroscopy imaging (DOSI), and the state of the tumor vascular bed by Doppler US to elaborate the predictive criteria of breast tumor response to treatment. METHODS A total of 133 patients with a confirmed diagnosis of invasive breast cancer stage II to III admitted to NACT following definitive breast surgery were enrolled, of those 103 were included in the final analysis. Tumor oxygenation by DOSI, tumor volume by US, and tumor vascularization by Doppler US were determined before the first and second cycle of NACT. After NACT completion, patients underwent surgery followed by pathological examination and assessment of the pathological tumor response. On the basis of these, data regression predictive models were created. RESULTS We observed changes in all three parameters 3 weeks after the start of the treatment. However, a high predictive potential for early assessment of tumor sensitivity to NACT demonstrated only the level of oxygenation, ΔStO2, (ρ = 0.802, p ≤ 0.01). The regression model predicts the tumor response with a high probability of a correct conclusion (89.3%). The "Tumor volume" model and the "Vascularization index" model did not accurately predict the absence of a pathological tumor response to treatment (60.9% and 58.7%, respectively), while predicting a positive response to treatment was relatively better (78.9% and 75.4%, respectively). CONCLUSIONS Diffuse optical spectroscopy imaging appeared to be a robust tool for early predicting breast cancer response to chemotherapy. It may help identify patients who need additional molecular genetic study of the tumor in order to find the source of resistance to treatment, as well as to correct the treatment regimen.
Collapse
Affiliation(s)
- Mikhail V. Pavlov
- Nizhny Novgorod Regional Clinical Oncology Dispensary, Delovaya St., 11/1, Nizhny Novgorod, Russia 603126
| | - Anna P. Bavrina
- grid.416347.30000 0004 0386 1631Privolzhsky Research Medical University, Minina Square, 10/1, Nizhny Novgorod, Russia 603950
| | - Vladimir I. Plekhanov
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - German Yu. Golubyatnikov
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Anna G. Orlova
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Pavel V. Subochev
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Diana A. Davydova
- Nizhny Novgorod Regional Clinical Oncology Dispensary, Delovaya St., 11/1, Nizhny Novgorod, Russia 603126
| | - Ilya V. Turchin
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Anna V. Maslennikova
- grid.416347.30000 0004 0386 1631Privolzhsky Research Medical University, Minina Square, 10/1, Nizhny Novgorod, Russia 603950 ,grid.28171.3d0000 0001 0344 908XNational Research Lobachevsky State University of Nizhny Novgorod, Gagarin Ave., 23, Nizhny Novgorod, Russia 603022
| |
Collapse
|
4
|
Vaghela R, Arkudas A, Gage D, Körner C, von Hörsten S, Salehi S, Horch RE, Hessenauer M. Microvascular development in the rat arteriovenous loop model in vivo-A step by step intravital microscopy analysis. J Biomed Mater Res A 2022; 110:1551-1563. [PMID: 35484827 DOI: 10.1002/jbm.a.37395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022]
Abstract
The arteriovenous (AV) loop model is a key technique to solve one of the major problems of tissue engineering-providing adequate vascular support for a tissue construct of significant size. However, the molecular and cellular mechanisms of vascularization and factors influencing the generation of new tissue in the AV loop are still poorly understood. We previously established a novel intravital microscopy approach to study these events. In this study, we implanted our observation chamber filled with two types of hydrogels such as fibrin and methacrylate gelatin (GelMA) and performed intravital microscopy (IVM) on days 7, 14, and 21. Initial microvessel formation was observed in GelMA on day 14, while the vessel network showed clear indicators of network rearrangement and maturation on day 21. No visible microvessels were observed in fibrin. The chambers were explanted on day 21. Histological examination revealed higher numbers of microvessels in GelMA compared to fibrin, while the AV loop was thrombosed in all fibrin constructs, possibly due to matrix degradation. GelMA proved to be an ideal matrix for IVM studies in the AV loop model due to its slow degradation and transparency. This IVM model can be employed as a novel tool for live and thus faster comprehension of crucial events in the tissue regeneration process, which can improve tissue engineering application.
Collapse
Affiliation(s)
- Ravikumar Vaghela
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniel Gage
- Department of Materials Science and Engineering for Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carolin Körner
- Department of Materials Science and Engineering for Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, Bayreuth, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Hessenauer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
5
|
Huang SQ, Chen Y, Zhu Q, Zhang YM, Lei ZY, Zhou X, Fan DL. In Vivo and In Vitro Fibroblasts' Behavior and Capsular Formation in Correlation with Smooth and Textured Silicone Surfaces. Aesthetic Plast Surg 2022; 46:1164-1177. [PMID: 35237878 DOI: 10.1007/s00266-022-02769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND As the most principal complication following breast augmentation with silicone breast implants, capsular contracture is greatly influenced by surface texture. However, there have long been widespread debates on the function of smooth or textured surface implants in reducing capsular contracture. MATERIALS AND METHODS Three commercially available silicone breast implants with smooth and textured surfaces were subjected to surface characterization, and in vitro and in vivo assessments were then implemented to investigate the effect of these different surfaces on the biological behaviors of fibroblasts and capsular formation in rat models. RESULTS Surface characterization demonstrated that all three samples were hydrophobic with distinct roughness values. Comparing the interactions of fibroblasts or tissues with different surfaces, we observed that as surface roughness increased, the adhesion and cell spreading of fibroblasts, the level of echogenicity, the density of collagen and α-SMA-positive immunoreactivity decreased, while the proliferation of fibroblasts and capsule thickness increased. CONCLUSIONS Our findings elucidated that the effect of silicone implant surface texture on fibroblasts' behaviors and capsular formation was associated with variations in surface roughness, and the number of myofibroblasts may have a more significant influence on the process of contracture than capsule thickness in the early stage of capsular formation. These results highlight that targeting myofibroblasts may be wielded in the prevention and treatment strategies of capsular contracture clinically. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Shu-Qing Huang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Yao Chen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi-Ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Ze-Yuan Lei
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Xin Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China.
| | - Dong-Li Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
6
|
Gerwing M, Krähling T, Schliemann C, Harrach S, Schwöppe C, Berdel AF, Klein S, Hartmann W, Wardelmann E, Heindel WL, Lenz G, Berdel WE, Wildgruber M. Multiparametric Magnetic Resonance Imaging for Immediate Target Hit Assessment of CD13-Targeted Tissue Factor tTF-NGR in Advanced Malignant Disease. Cancers (Basel) 2021; 13:cancers13235880. [PMID: 34884988 PMCID: PMC8657298 DOI: 10.3390/cancers13235880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Since the knowledge of tumor biology has advanced, a variety of targeted therapies has been developed. These do not immediately affect the tumor size, so optimized oncological imaging is needed. In this phase I study of patients with advanced malignant disease, a multiparametric imaging approach was used to assess changes in tumor perfusion after vessel-occluding therapy with the CD13 targeted truncated tissue factor with a C-terminal NGR-peptide. It comprises different sequences and the use of two different contrast media, ferucarbotran and gadobutrol. This multiparametric MRI protocol enables assessing the therapy effectiveness as early as five hours after therapy initiation. Abstract Early assessment of target hit in anti-cancer therapies is a major task in oncologic imaging. In this study, immediate target hit and effectiveness of CD13-targeted tissue factor tTF-NGR in patients with advanced malignant disease enrolled in a phase I trial was assessed using a multiparametric MRI protocol. Seventeen patients with advanced solid malignancies were enrolled in the trial and received tTF-NGR for at least one cycle of five daily infusions. Tumor target lesions were imaged with multiparametric MRI before therapy initiation, five hours after the first infusion and after five days. The imaging protocol comprised ADC, calculated from DWI, and DCE imaging and vascular volume fraction (VVF) assessment. DCE and VVF values decreased within 5 h after therapy initiation, indicating early target hit with a subsequent decrease in tumor perfusion due to selective tumor vessel occlusion and thrombosis induced by tTF-NGR. Simultaneously, ADC values increased at five hours after tTF-NGR administration. In four patients, treatment had to be stopped due to an increase in troponin T hs, with subsequent anticoagulation. In these patients, a reversed effect, with DCE and VVF values increasing and ADC values decreasing, was observed after anticoagulation. Changes in imaging parameters were independent of the mean vessel density determined by immunohistochemistry. By using a multiparametric imaging approach, changes in tumor perfusion after initiation of a tumor vessel occluding therapy can be evaluated as early as five hours after therapy initiation, enabling early assessment of target hit.
Collapse
Affiliation(s)
- Mirjam Gerwing
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
- Correspondence:
| | - Tobias Krähling
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Saliha Harrach
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Christian Schwöppe
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Andrew F. Berdel
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Sebastian Klein
- Gerhard-Domagk-Institute for Pathology, University of Muenster, D-48149 Muenster, Germany; (S.K.); (W.H.); (E.W.)
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute for Pathology, University of Muenster, D-48149 Muenster, Germany; (S.K.); (W.H.); (E.W.)
| | - Eva Wardelmann
- Gerhard-Domagk-Institute for Pathology, University of Muenster, D-48149 Muenster, Germany; (S.K.); (W.H.); (E.W.)
| | - Walter L. Heindel
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
| | - Georg Lenz
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pulmonology, University Hospital Muenster, D-48149 Muenster, Germany; (C.S.); (S.H.); (C.S.); (A.F.B.); (G.L.); (W.E.B.)
| | - Moritz Wildgruber
- Clinic of Radiology, University Hospital Muenster, D-48149 Muenster, Germany; (T.K.); (W.L.H.); (M.W.)
- Department of Radiology, University Hospital, LMU Munich, D-81377 Munich, Germany
| |
Collapse
|
7
|
PEG-modified gadolinium nanoparticles as contrast agents for in vivo micro-CT. Sci Rep 2021; 11:16603. [PMID: 34400681 PMCID: PMC8367985 DOI: 10.1038/s41598-021-95716-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Vascular research is largely performed in rodents with the goal of developing treatments for human disease. Micro-computed tomography (micro-CT) provides non-destructive three-dimensional imaging that can be used to study the vasculature of rodents. However, to distinguish vasculature from other soft tissues, long-circulating contrast agents are required. In this study, we demonstrated that poly(ethylene glycol) (PEG)-coated gadolinium nanoparticles can be used as a vascular contrast agent in micro-CT. The coated particles could be lyophilized and then redispersed in an aqueous solution to achieve 100 mg/mL of gadolinium. After an intravenous injection of the contrast agent into mice, micro-CT scans showed blood pool contrast enhancements of at least 200 HU for 30 min. Imaging and quantitative analysis of gadolinium in tissues showed the presence of contrast agent in clearance organs including the liver and spleen and very low amounts in other organs. In vitro cell culture experiments, subcutaneous injections, and analysis of mouse body weight suggested that the agents exhibited low toxicity. Histological analysis of tissues 5 days after injection of the contrast agent showed cytotoxicity in the spleen, but no abnormalities were observed in the liver, lungs, kidneys, and bladder.
Collapse
|
8
|
Li S, Wang F, Sun D. The renal microcirculation in chronic kidney disease: novel diagnostic methods and therapeutic perspectives. Cell Biosci 2021; 11:90. [PMID: 34001267 PMCID: PMC8130426 DOI: 10.1186/s13578-021-00606-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) affects 8–16% of the population worldwide and is characterized by fibrotic processes. Understanding the cellular and molecular mechanisms underpinning renal fibrosis is critical to the development of new therapeutics. Microvascular injury is considered an important contributor to renal progressive diseases. Vascular endothelium plays a significant role in responding to physical and chemical signals by generating factors that help maintain normal vascular tone, inhibit leukocyte adhesion and platelet aggregation, and suppress smooth muscle cell proliferation. Loss of the rich capillary network results in endothelial dysfunction, hypoxia, and inflammatory and oxidative effects and further leads to the imbalance of pro- and antiangiogenic factors, endothelial cell apoptosis and endothelial-mesenchymal transition. New techniques, including both invasive and noninvasive techniques, offer multiple methods to observe and monitor renal microcirculation and guide targeted therapeutic strategies. A better understanding of the role of endothelium in CKD will help in the development of effective interventions for renal microcirculation improvement. This review focuses on the role of microvascular injury in CKD, the methods to detect microvessels and the novel treatments to ameliorate renal fibrosis.
Collapse
Affiliation(s)
- Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Fei Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China. .,Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
9
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
10
|
Soliman MA, Guccione J, Reiter AM, Moawad AW, Etchison A, Kamel S, Khatchikian AD, Elsayes KM. Current Concepts in Multi-Modality Imaging of Solid Tumor Angiogenesis. Cancers (Basel) 2020; 12:cancers12113239. [PMID: 33153067 PMCID: PMC7692820 DOI: 10.3390/cancers12113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The recent increase in the use of targeted molecular therapy including anti-angiogenetic agents in cancer treatment necessitate the use of robust tools to assess and guide treatment. Angiogenesis, the formation of new disorganized blood vessels, is used by tumor cells to grow and spread using different mechanisms that could be targeted by anti-angiogenetic agents. In this review, we discuss the biological principles of tumor angiogenesis and the imaging modalities that could provide information beyond gross tumor size and morphology to capture the efficacy of anti-angiogenetic therapeutic response. Abstract There have been rapid advancements in cancer treatment in recent years, including targeted molecular therapy and the emergence of anti-angiogenic agents, which necessitate the need to quickly and accurately assess treatment response. The ideal tool is robust and non-invasive so that the treatment can be rapidly adjusted or discontinued based on efficacy. Since targeted therapies primarily affect tumor angiogenesis, morphological assessment based on tumor size alone may be insufficient, and other imaging modalities and features may be more helpful in assessing response. This review aims to discuss the biological principles of tumor angiogenesis and the multi-modality imaging evaluation of anti-angiogenic therapeutic responses.
Collapse
Affiliation(s)
- Moataz A. Soliman
- Department of Diagnostic Radiology, Northwestern University, Evanston, IL 60201, USA;
| | - Jeffrey Guccione
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA;
| | - Anna M. Reiter
- School of Medicine, University of Texas Southwestern, Dallas, TX 75390, USA;
| | - Ahmed W. Moawad
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ashley Etchison
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX 76798, USA;
| | - Serageldin Kamel
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Aline D. Khatchikian
- Department of Diagnostic Radiology, McGill University, Montreal, QC H3G 1A4, Canada;
| | - Khaled M. Elsayes
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence:
| |
Collapse
|
11
|
Liapis E, Klemm U, Karlas A, Reber J, Ntziachristos V. Resolution of Spatial and Temporal Heterogeneity in Bevacizumab-Treated Breast Tumors by Eigenspectra Multispectral Optoacoustic Tomography. Cancer Res 2020; 80:5291-5304. [PMID: 32994204 DOI: 10.1158/0008-5472.can-20-1011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/05/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Understanding temporal and spatial hemodynamic heterogeneity as a function of tumor growth or therapy affects the development of novel therapeutic strategies. In this study, we employed eigenspectra multispectral optoacoustic tomography (eMSOT) as a next-generation optoacoustic method to impart high accuracy in resolving tumor hemodynamics during bevacizumab therapy in two types of breast cancer xenografts (KPL-4 and MDA-MB-468). Patterns of tumor total hemoglobin concentration (THb) and oxygen saturation (sO2) were imaged in control and bevacizumab-treated tumors over the course of 58 days (KPL-4) and 16 days (MDA-MB-468), and the evolution of functional vasculature "normalization" was resolved macroscopically. An initial sharp drop in tumor sO2 and THb content shortly after the initiation of bevacizumab treatment was followed by a recovery in oxygenation levels. Rim-core subregion analysis revealed steep spatial oxygenation gradients in growing tumors that were reduced after bevacizumab treatment. Critically, eMSOT imaging findings were validated directly by histopathologic assessment of hypoxia (pimonidazole) and vascularity (CD31). These data demonstrate how eMSOT brings new abilities for accurate observation of entire tumor responses to challenges at spatial and temporal dimensions not available by other techniques today. SIGNIFICANCE: Accurate assessment of hypoxia and vascularization over space and time is critical for understanding tumor development and the role of spatial heterogeneity in tumor aggressiveness, metastasis, and response to treatment.
Collapse
Affiliation(s)
- Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany
| | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.,Chair of Biological Imaging, TranslaTUM Technical University of Munich, Munich, Germany
| | - Josefine Reber
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.,Chair of Biological Imaging, TranslaTUM Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
First-In-Class CD13-Targeted Tissue Factor tTF-NGR in Patients with Recurrent or Refractory Malignant Tumors: Results of a Phase I Dose-Escalation Study. Cancers (Basel) 2020; 12:cancers12061488. [PMID: 32517329 PMCID: PMC7352358 DOI: 10.3390/cancers12061488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Aminopeptidase N (CD13) is present on tumor vasculature cells and some tumor cells. Truncated tissue factor (tTF) with a C-terminal NGR-peptide (tTF-NGR) binds to CD13 and causes tumor vascular thrombosis with infarction. Methods: We treated 17 patients with advanced cancer beyond standard therapies in a phase I study with tTF-NGR (1-h infusion, central venous access, 5 consecutive days, and rest periods of 2 weeks). The study allowed intraindividual dose escalations between cycles and established Maximum Tolerated Dose (MTD) and Dose-Limiting Toxicity (DLT) by verification cohorts. Results: MTD was 3 mg/m2 tTF-NGR/day × 5, q day 22. DLT was an isolated and reversible elevation of high sensitivity (hs) Troponin T hs without clinical sequelae. Three thromboembolic events (grade 2), tTF-NGR-related besides other relevant risk factors, were reversible upon anticoagulation. Imaging by contrast-enhanced ultrasound (CEUS) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) showed major tumor-specific reduction of blood flow in all measurable lesions as proof of principle for the mode of action of tTF-NGR. There were no responses as defined by Response Evaluation Criteria in Solid Tumors (RECIST), although some lesions showed intratumoral hemorrhage and necrosis after tTF-NGR application. Pharmacokinetic analysis showed a t1/2(terminal) of 8 to 9 h without accumulation in daily administrations. Conclusion: tTF-NGR is safely applicable with this regimen. Imaging showed selective reduction of tumor blood flow and intratumoral hemorrhage and necrosis.
Collapse
|
13
|
Chen Q, Yu J, Rush BM, Stocker SD, Tan RJ, Kim K. Ultrasound super-resolution imaging provides a noninvasive assessment of renal microvasculature changes during mouse acute kidney injury. Kidney Int 2020; 98:355-365. [PMID: 32600826 DOI: 10.1016/j.kint.2020.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
Acute kidney injury (AKI) is a risk factor for the development of chronic kidney disease (CKD). One mechanism for this phenomenon is renal microvascular rarefaction and subsequent chronic impairment in perfusion. However, diagnostic tools to monitor the renal microvasculature in a noninvasive and quantitative manner are still lacking. Ultrasound super-resolution imaging is an emerging technology that can identify microvessels with unprecedented resolution. Here, we applied this imaging technique to identify microvessels in the unilateral ischemia-reperfusion injury mouse model of AKI-to-CKD progression in vivo. Kidneys from 21 and 42 day post- ischemia-reperfusion injury, the contralateral uninjured kidneys, and kidneys from sham-operated mice were examined by ultrasound super-resolution and histology. Renal microvessels were successfully identified by this imaging modality with a resolution down to 32 μm. Renal fibrosis was observed in all kidneys with ischemia-reperfusion injury and was associated with a significant reduction in kidney size, cortical thickness, relative blood volume, and microvascular density as assessed by this imaging. Tortuosity of the cortical microvasculature was also significantly increased at 42 days compared to sham. These vessel density measurements correlated significantly with CD31 immunohistochemistry (R2=0.77). Thus, ultrasound super-resolution imaging provides unprecedented resolution and is capable of noninvasive quantification of renal vasculature changes associated with AKI-to-CKD progression in mice. Hence, this technique could be a promising diagnostic tool for monitoring progressive kidney disease.
Collapse
Affiliation(s)
- Qiyang Chen
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, Heart and Vascular Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jaesok Yu
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, Heart and Vascular Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Brittney M Rush
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, Heart and Vascular Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Nilforoushzadeh MA, Sisakht MM, Amirkhani MA, Seifalian AM, Banafshe HR, Verdi J, Nouradini M. Engineered skin graft with stromal vascular fraction cells encapsulated in fibrin–collagen hydrogel: A clinical study for diabetic wound healing. J Tissue Eng Regen Med 2020; 14:424-440. [DOI: 10.1002/term.3003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
| | - Mahsa Mollapour Sisakht
- Skin and Stem Cell Research CenterTehran University of Medical Sciences Tehran Iran
- Applied Cell Sciences DepartmentKashan University of Medical Science Kashan Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of ExcellenceTehran University of Medical Sciences Tehran Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd)The London BioScience Innovation Centre London UK
| | - Hamid Reza Banafshe
- Applied Cell Sciences DepartmentKashan University of Medical Science Kashan Iran
- Physiology Research CenterKashan University of Medical Sciences Kashan Iran
| | - Javad Verdi
- Applied Cell Sciences DepartmentKashan University of Medical Science Kashan Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
| | - Mehdi Nouradini
- Applied Cell Sciences DepartmentKashan University of Medical Science Kashan Iran
| |
Collapse
|
15
|
Banik B, Surnar B, Askins BW, Banerjee M, Dhar S. Dual-Targeted Synthetic Nanoparticles for Cardiovascular Diseases. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6852-6862. [PMID: 31886643 DOI: 10.1021/acsami.9b19036] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is one of the world's most aggressive diseases, claiming over 17.5 million lives per year. This disease is usually caused by high amounts of lipoproteins circulating in the blood stream, which leads to plaque formation. Ultimately, these plaques can undergo thrombosis and lead to major heart damage. A major contributor to these vulnerable plaques is macrophage apoptosis. Development of nanovehicles that carry contrast and therapeutic agents to the mitochondria within these macrophages is attractive for the diagnosis and treatment of atherosclerosis. Here, we report the design and synthesis of a dual-targeted synthetic nanoparticle (NP) to perform the double duty of diagnosis and therapy in atherosclerosis treatment regime. A library of dual-targeted NPs with an encapsulated iron oxide NP, mito-magneto (MM), with a magnetic resonance imaging (MRI) contrast enhancement capability was elucidated. Relaxivity measurements revealed that there is a substantial enhancement in transverse relaxivities upon the encapsulation of MM inside the dual-targeted NPs, highlighting the MRI contrast-enhancing ability of these NPs. Successful in vivo imaging documenting the distribution of MM-encapsulated dual-targeted NPs in the heart and aorta in mice ensured the diagnostic potential. The presence of mannose receptor targeting ligands and the optimization of the NP composition facilitated its ability to perform therapeutic duty by targeting the macrophages at the plaque. These dual-targeted NPs with the encapsulated MM were able to show therapeutic potential and did not trigger any toxic immunogenic response.
Collapse
Affiliation(s)
- Bhabatosh Banik
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
| | - Bapurao Surnar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
| | - Brett W Askins
- Department of Chemistry , University of Georgia , Athens Georgia 30602 , United States
| | - Mainak Banerjee
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , Florida 33136 , United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine , University of Miami , Miami , Florida 33136 , United States
- Department of Chemistry , University of Georgia , Athens Georgia 30602 , United States
| |
Collapse
|
16
|
Novel multimodal MRI and MicroCT imaging approach to quantify angiogenesis and 3D vascular architecture of biomaterials. Sci Rep 2019; 9:19474. [PMID: 31857617 PMCID: PMC6923434 DOI: 10.1038/s41598-019-55411-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Quantitative assessment of functional perfusion capacity and vessel architecture is critical when validating biomaterials for regenerative medicine purposes and requires high-tech analytical methods. Here, combining two clinically relevant imaging techniques, (magnetic resonance imaging; MRI and microcomputed tomography; MicroCT) and using the chorioallantoic membrane (CAM) assay, we present and validate a novel functional and morphological three-dimensional (3D) analysis strategy to study neovascularization in biomaterials relevant for bone regeneration. Using our new pump-assisted approach, the two scaffolds, Optimaix (laminar structure mimicking entities of the diaphysis) and DegraPol (highly porous resembling spongy bone), were shown to directly affect the architecture of the ingrowing neovasculature. Perfusion capacity (MRI) and total vessel volume (MicroCT) strongly correlated for both biomaterials, suggesting that our approach allows for a comprehensive evaluation of the vascularization pattern and efficiency of biomaterials. Being compliant with the 3R-principles (replacement, reduction and refinement), the well-established and easy-to-handle CAM model offers many advantages such as low costs, immune-incompetence and short experimental times with high-grade read-outs when compared to conventional animal models. Therefore, combined with our imaging-guided approach it represents a powerful tool to study angiogenesis in biomaterials.
Collapse
|
17
|
Giulia M, Teresa T, Claudia C, Paolo VP, Davide C, Floriana M, Fortunato C, Erika M. Anti-angiogenic Treatment in Metastatic Colorectal Cancer: Current Issues and Future Aims. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666181119145327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Blocking angiogenesis represents a fundamental process in Colorectal Cancer (CRC)
treatment. VEGF (vascular endothelial growth factor) pathway is implicated in various processes
that regulate tumor vascularization and proliferation. In the last years, great efforts have been
made thanks to the discovery of targeted drugs that block VEGF and its receptors conferring a
benefit in a variety of tumors, including CRC. To date, four drugs have been approved for the
treatment of metastatic CRC (mCRC): bevacizumab, aflibercept, ramucirumab and regorafenib.
Unfortunately, patients relapse due to the appearance of resistance. The VEGF family, its role in
the angiogenesis and complex heterogeneity of mechanisms that escape tumor blockade are not
completely understood and there is a lack of biomarkers of response to anti-angiogenic drugs. We
describe the principal mechanisms of resistance to anti-VEGF therapy and discuss potential biomarkers
to be investigated in the near future.
Collapse
Affiliation(s)
- Martini Giulia
- Medical Oncology, Department of Clinical and Experimental Medicine F. Magrassi, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Troiani Teresa
- Medical Oncology, Department of Clinical and Experimental Medicine F. Magrassi, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Cardone Claudia
- Medical Oncology, Department of Clinical and Experimental Medicine F. Magrassi, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Vitiello Pietro Paolo
- Medical Oncology, Department of Clinical and Experimental Medicine F. Magrassi, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Ciardiello Davide
- Medical Oncology, Department of Clinical and Experimental Medicine F. Magrassi, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Morgillo Floriana
- Medical Oncology, Department of Clinical and Experimental Medicine F. Magrassi, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Ciardiello Fortunato
- Medical Oncology, Department of Clinical and Experimental Medicine F. Magrassi, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Martinelli Erika
- Medical Oncology, Department of Clinical and Experimental Medicine F. Magrassi, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
18
|
Zhu Y, Lu X, Dong X, Yuan J, Fabiilli ML, Wang X. LED-Based Photoacoustic Imaging for Monitoring Angiogenesis in Fibrin Scaffolds. Tissue Eng Part C Methods 2019; 25:523-531. [PMID: 31418322 DOI: 10.1089/ten.tec.2019.0151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
IMPACT STATEMENT Noninvasive imaging techniques provide insight into physiology that is complementary to tissue morphology obtained by invasive histology. Optical imaging techniques, such as laser speckle contrast analysis, are used in vivo to longitudinally evaluate vascularization. Despite their high spatial resolution, these techniques have a limited imaging depth. In this study, we demonstrate how a dual LED-based photoacoustic (PA) and ultrasound system can delineate changes in perfusion at depth within scaffolds containing basic fibroblast growth factor. Perfusion changes detected by PA corroborated with vessel density. PA imaging could be a noninvasive and sensitive method for evaluating vascularization at depth in larger constructs.
Collapse
Affiliation(s)
- Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Xiaofang Lu
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Xiaoxiao Dong
- Department of Radiology, University of Michigan, Ann Arbor, Michigan.,Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jie Yuan
- Department of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Mario L Fabiilli
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan.,Department of Applied Physics Program, University of Michigan, Ann Arbor, Michigan
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
19
|
The beginning of the end for conventional RECIST - novel therapies require novel imaging approaches. Nat Rev Clin Oncol 2019; 16:442-458. [PMID: 30718844 DOI: 10.1038/s41571-019-0169-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to improvements in our understanding of the biological principles of tumour initiation and progression, a wide variety of novel targeted therapies have been developed. Developments in biomedical imaging, however, have not kept pace with these improvements and are still mainly designed to determine lesion size alone, which is reflected in the Response Evaluation Criteria in Solid Tumors (RECIST). Imaging approaches currently used for the evaluation of treatment responses in patients with solid tumours, therefore, often fail to detect successful responses to novel targeted agents and might even falsely suggest disease progression, a scenario known as pseudoprogression. The ability to differentiate between responders and nonresponders early in the course of treatment is essential to allowing the early adjustment of treatment regimens. Various imaging approaches targeting a single dedicated tumour feature, as described in the hallmarks of cancer, have been successful in preclinical investigations, and some have been evaluated in pilot clinical trials. However, these approaches have largely not been implemented in clinical practice. In this Review, we describe current biomedical imaging approaches used to monitor responses to treatment in patients receiving novel targeted therapies, including a summary of the most promising future approaches and how these might improve clinical practice.
Collapse
|
20
|
Capuano A, Andreuzzi E, Pivetta E, Doliana R, Favero A, Canzonieri V, Maiero S, Fornasarig M, Magris R, Cannizzaro R, Mongiat M, Spessotto P. The Probe Based Confocal Laser Endomicroscopy (pCLE) in Locally Advanced Gastric Cancer: A Powerful Technique for Real-Time Analysis of Vasculature. Front Oncol 2019; 9:513. [PMID: 31263680 PMCID: PMC6584847 DOI: 10.3389/fonc.2019.00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
Probe based confocal laser endomicroscopy (pCLE) is an advanced technique which provides imaging of gastrointestinal mucosa at subcellular resolution and, importantly, a valid tool for the evaluation of microvasculature during endoscopic examination. In order to assess intratumoral vascularization and the efficiency of blood flow in locally advanced gastric cancer, we examined 57 patients through pCLE imaging. The vascular alterations in gastric cancer were mainly characterized by leakage and by the presence of tortuous and large size vessels. Defects in blood flow were detected very rarely. No association between the angiogenic score and the gastric tumor site or histological type was observed. Interestingly, no correlation was also found with the tumor grading indicating that the vascular angiogenic anomalies in gastric cancer represent an early pathological event to be observed and detected. The majority of patients displayed unchanged vascular alterations following neoadjuvant chemotherapy and this positively correlated with stable or progressive disease, suggesting that an unaltered angiogenic score could per se be indicative of poor therapeutic efficacy. Different vascular parameters were evaluated by immunofluorescence using bioptic samples and the vessel density did not correlate with clinical staging, site or histologic type. Interestingly, only CD105, Multimerin-2 and GLUT1 were able to discriminate normal from tumoral gastric mucosa. Taken together, these findings indicate that functional and structural angiogenic parameters characteristic of tumor blood network were fully detectable by pCLE. Moreover, the evaluation of tumor vasculature by real-time assessment may provide useful information to achieve tailored therapeutic interventions for gastric cancer patients.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Eliana Pivetta
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Roberto Doliana
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Andrea Favero
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | | | - Stefania Maiero
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Raffaella Magris
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paola Spessotto
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
21
|
Orlova A, Sirotkina M, Smolina E, Elagin V, Kovalchuk A, Turchin I, Subochev P. Raster-scan optoacoustic angiography of blood vessel development in colon cancer models. PHOTOACOUSTICS 2019; 13:25-32. [PMID: 30555784 PMCID: PMC6275215 DOI: 10.1016/j.pacs.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
Raster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization. Rapidly growing CT26 tumor demonstrated a higher rate of vessel growth from the periphery to the center. Peculiarities of the vascularity of tumor models revealed by optoacoustic imaging were confirmed by fluorescent microscopy with FITC-dextran and morphological analysis. The obtained results may be important for the investigation of tumor development and for improvement of colon cancer treatment strategies.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
- Corresponding author.
| | - Marina Sirotkina
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Ekaterina Smolina
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Vadim Elagin
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Andrey Kovalchuk
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Ilya Turchin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
22
|
Ogunlade O, Ho JO, Kalber TL, Hynds RE, Zhang E, Janes SM, Birchall MA, Butler CR, Beard P. Monitoring neovascularization and integration of decellularized human scaffolds using photoacoustic imaging. PHOTOACOUSTICS 2019; 13:76-84. [PMID: 30805295 PMCID: PMC6374504 DOI: 10.1016/j.pacs.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 05/22/2023]
Abstract
Tissue engineering is a branch of regenerative medicine that aims to manipulate cells and scaffolds to create bioartificial tissues and organs for patients. A major challenge lies in monitoring the blood supply to the new tissue following transplantation: the integration and neovascularization of scaffolds in vivo is critical to their functionality. Photoacoustic imaging (PAI) is a laser-generated ultrasound-based technique that is particularly well suited to visualising microvasculature due to the high optical absorption of haemoglobin. Here, we describe an early proof-of-concept study in which PAI in widefield tomography mode is used to image biological, decellularized human tracheal scaffolds. We found that PAI allowed the longitudinal tracking of scaffold integration into subcutaneous murine tissue with high spatial resolution at depth over an extended period of time. The results of the study were consistent with post-imaging histological analyses, demonstrating that PAI can be used to non-invasively monitor the extent of vascularization in biological tissue-engineered scaffolds. We propose that this technique may be a valuable tool for studies designed to test interventions aimed at improving the speed and extent of scaffold neovascularization in tissue engineering. With technological refinement, it could also permit in vivo monitoring of revascularization in patients, for example to determine timing of heterotopic graft transfer.
Collapse
Affiliation(s)
- Olumide Ogunlade
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | | | - Tammy L. Kalber
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK
| | - Robert E. Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Edward Zhang
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Colin R. Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Paul Beard
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| |
Collapse
|
23
|
Yang J, Zhang G, Li Q, Liao C, Huang L, Ke T, Jiang H, Han D. Photoacoustic imaging for the evaluation of early tumor response to antivascular treatment. Quant Imaging Med Surg 2019; 9:160-170. [PMID: 30976540 DOI: 10.21037/qims.2018.11.06] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Photoacoustic imaging (PAI) provides real-time noninvasive and contrast agent-free monitoring of the concentrations of some endogenous compounds related to tumor vascularization and oxygenation. In this study, we used PAI to noninvasively evaluate tumor responses to antiangiogenic therapy. Methods In vivo studies were performed with the approval of our institutional animal ethics committee. We used a xenograft mouse model of 4T1 breast cancer treated with different doses of bevacizumab or vehicle. Seven days after implantation, tumor-bearing mice (with tumors ~5-8 mm diameter) were randomly divided into low-dose (10 mg/kg), high-dose (20 mg/kg) and vehicle groups (same dose of saline). Each experimental group was administered bevacizumab intraperitoneally only once. Before and after treatment, acoustic resolution-photoacoustic microscopy (AR-PAM), a type of PAI, was conducted in vivo consecutively from day 1 to day 5. PAI-derived quantitative parameters were calculated at each time point. Additional cohorts of mice were used to quantify CD31 and hypoxia by immunohistochemical assays. Results The values of the PAI parameters were not significantly different among the experimental and control groups at the same time point before treatment (all P>0.05). The total hemoglobin (HbT) levels in the treatment group gradually decreased from day 1 to day 2 (relative to those in the control group, P>0.05) and decreased significantly relative to those in the control group from day 3 to day 5 (P<0.05). The deoxyhemoglobin (HbR) levels in the treatment group decreased from day 1 to 5 after treatment. The high-dose group had significantly decreased HbR levels relative to the control group from day 1 to 5 (P<0.05). The low-dose group also showed a gradual and significant decrease in HbR levels on day 3 (P<0.05). CD31 was decreased in the low-dose group relative to the control group on day 1 (decreased by 34.05%, P=0.067) and day 3 (decreased by 45.27%, P=0.180), and the decrease in CD31 persisted on day 5 (decreased by 71.41%, P=0.000). CD31 decreased to a greater extent in the high-dose group than in the low-dose group. Tumor hypoxia was significantly increased on day 1 from day 0 in the treatment groups (P<0.05), especially in the high-dose group. Hypoxia was decreased on days 3 and 5 in the low-dose group (10.92±0.92 and 8.17±1.9, P=0.317) but continuously increased over time in the high-dose group. Significantly greater hypoxia was observed in the high-dose group than in the low-dose group (17.60±1.20 and 20.33±0.47, P<0.05). Conclusions PAI can be used to evaluate both vessel regression and hypoxia in response to anti-vascular treatment.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, China.,Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Guang Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu 610054, China.,Center for Information in Biomedicine, University of Electronic Science and Technology, Chengdu 610054, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, China
| | - Chengde Liao
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu 610054, China.,Center for Information in Biomedicine, University of Electronic Science and Technology, Chengdu 610054, China
| | - Tengfei Ke
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, China
| | - Huabei Jiang
- School of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu 610054, China.,Center for Information in Biomedicine, University of Electronic Science and Technology, Chengdu 610054, China.,Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Dan Han
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
24
|
Magnetic Resonance Angiography Shows Increased Arterial Blood Supply Associated with Murine Mammary Cancer. Int J Biomed Imaging 2019; 2019:5987425. [PMID: 30792738 PMCID: PMC6354161 DOI: 10.1155/2019/5987425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/06/2019] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is a major cause of morbidity and mortality in Western women. Tumor neoangiogenesis, the formation of new blood vessels from pre-existing ones, may be used as a prognostic marker for cancer progression. Clinical practice uses dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) to detect cancers based on increased blood flow and capillary permeability. However, DCE-MRI requires repeated injections of contrast media. Therefore we explored the use of noninvasive time-of-flight (TOF) MR angiography for serial studies of mouse mammary glands to measure the number and size of arteries feeding mammary glands with and without cancer. Virgin female C3(1) SV40 TAg mice (n=9), aged 18-20 weeks, were imaged on a 9.4 Tesla small animal scanner. Multislice T2-weighted (T2W) images and TOF-MRI angiograms were acquired over inguinal mouse mammary glands. The data were analyzed to determine tumor burden in each mammary gland and the volume of arteries feeding each mammary gland. After in vivo MRI, inguinal mammary glands were excised and fixed in formalin for histology. TOF angiography detected arteries with a diameter as small as 0.1 mm feeding the mammary glands. A significant correlation (r=0.79; p< 0.0001) was found between tumor volume and the arterial blood volume measured in mammary glands. Mammary arterial blood volumes ranging from 0.08 mm3 to 3.81 mm3 were measured. Tumors and blood vessels found on in vivo T2W and TOF images, respectively, were confirmed with ex vivo histological images. These results demonstrate increased recruitment of arteries to mammary glands with cancer, likely associated with neoangiogenesis. Neoangiogenesis may be detected by TOF angiography without injection of contrast agents. This would be very useful in mouse models where repeat placement of I.V. lines is challenging. In addition, analogous methods could be tested in humans to evaluate the vasculature of suspicious lesions without using contrast agents.
Collapse
|
25
|
Liang X, Li H, Coussy F, Callens C, Lerebours F. An update on biomarkers of potential benefit with bevacizumab for breast cancer treatment: Do we make progress? Chin J Cancer Res 2019; 31:586-600. [PMID: 31564802 PMCID: PMC6736652 DOI: 10.21147/j.issn.1000-9604.2019.04.03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the first monoclonal antibody against vascular endothelial growth factor (VEGF), bevacizumab (BEV) is a definitely controversial antiangiogenic therapy in breast cancer. The initial excitement over improvements in progression-free survival (PFS) with BEV was tempered by an absence of overall survival (OS) benefit and serious adverse effects. Missing targeted population urged us to identify the predictive biomarkers for BEV efficacy. In this review we focus on the research in breast cancer and provide recent investigations on clinical, radiological, molecular and gene profiling markers of BEV efficacy, including the new results from randomized phase III clinical trials evaluating the efficacy of BEV in combination with comprehensive biomarker analyses. Current evidences indicate some predictive values for genetic variants, molecular imaging, VEGF pathway factors or associated factors in peripheral blood and gene profiling. The current challenge is to validate those potential biomarkers and implement them into clinical practice.
Collapse
Affiliation(s)
- Xu Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris 75005, France
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Florence Coussy
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris 75005, France
| | - Celine Callens
- Pharmacogenomic Unit, Department of Genetics, Curie Institute, PSL Research University, Paris 75005, France
| | - Florence Lerebours
- Department of Medical Oncology, Institut Curie, René Huguenin Hospital, Saint-Cloud 92210, France
| |
Collapse
|
26
|
Fibrosis imaging: Current concepts and future directions. Adv Drug Deliv Rev 2017; 121:9-26. [PMID: 29108860 DOI: 10.1016/j.addr.2017.10.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023]
Abstract
Fibrosis plays an important role in many different pathologies. It results from tissue injury, chronic inflammation, autoimmune reactions and genetic alterations, and it is characterized by the excessive deposition of extracellular matrix components. Biopsies are routinely employed for fibrosis diagnosis, but they suffer from several drawbacks, including their invasive nature, sampling variability and limited spatial information. To overcome these limitations, multiple different imaging tools and technologies have been evaluated over the years, including X-ray imaging, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET) and single-photon emission computed tomography (SPECT). These modalities can provide anatomical, functional and molecular imaging information which is useful for fibrosis diagnosis and staging, and they may also hold potential for the longitudinal assessment of therapy responses. Here, we summarize the use of non-invasive imaging techniques for monitoring fibrosis in systemic autoimmune diseases, in parenchymal organs (such as liver, kidney, lung and heart), and in desmoplastic cancers. We also discuss how imaging biomarkers can be integrated in (pre-) clinical research to individualize and improve anti-fibrotic therapies.
Collapse
|
27
|
Spessotto P, Fornasarig M, Pivetta E, Maiero S, Magris R, Mongiat M, Canzonieri V, De Paoli P, De Paoli A, Buonadonna A, Serraino D, Panato C, Belluco C, Cannizzaro R. Probe-based confocal laser endomicroscopy for in vivo evaluation of the tumor vasculature in gastric and rectal carcinomas. Sci Rep 2017; 7:9819. [PMID: 28852161 PMCID: PMC5575283 DOI: 10.1038/s41598-017-10963-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Probe-based Confocal Laser Endomicroscopy (pCLE) is a powerful imaging technique that allows to perform gastrointestinal endomicroscopy at subcellular resolution. The aim of this study was to assess the use of pCLE to evaluate tumor angiogenesis in rectal and gastric cancers. A total of 35 consecutive patients with gastric and 91 with rectal carcinomas underwent endoscopy and pCLE during the same examination. Vascular assessment was based on vessel shape and size, vessel permeability and blood flow, and allowed the creation of an angiogenic score ranging from 0, for normal vasculature, to 4, for aberrant vasculature. A significant difference for the presence of vessels with large diameter and defective blood flow was found between rectal and gastric cancers. Overall, rectal cancers displayed a higher angiogenic score compared to gastric cancers. Conventional therapy induced a striking reduction in the angiogenic score only in rectal cancer patients. Taken together, our findings suggest that the pCLE technology is suitable for the evaluation of the tumor microvasculature abnormalities. Therefore, the real-time assessment of the vasculature status may represent a promising approach to predict the efficacy of the treatments and improve the clinical management of patients with gastric or rectal carcinomas.
Collapse
Affiliation(s)
- Paola Spessotto
- Molecular Oncology, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Mara Fornasarig
- Gastroenterology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Eliana Pivetta
- Molecular Oncology, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Stefania Maiero
- Gastroenterology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Raffaella Magris
- Gastroenterology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Maurizio Mongiat
- Molecular Oncology, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | | | - Paolo De Paoli
- Scientific Directorate, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Antonino De Paoli
- Radiation Oncology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Angela Buonadonna
- Medical Oncology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Diego Serraino
- Epidemiology and Biostatistics, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Chiara Panato
- Epidemiology and Biostatistics, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Claudio Belluco
- Surgical Oncology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Renato Cannizzaro
- Gastroenterology, CRO-IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
28
|
PBCA-based polymeric microbubbles for molecular imaging and drug delivery. J Control Release 2017; 259:128-135. [PMID: 28279799 DOI: 10.1016/j.jconrel.2017.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/23/2017] [Accepted: 03/03/2017] [Indexed: 02/08/2023]
Abstract
Microbubbles (MB) are routinely used as contrast agents for ultrasound (US) imaging. We describe different types of targeted and drug-loaded poly(n-butyl cyanoacrylate) (PBCA) MB, and demonstrate their suitability for multiple biomedical applications, including molecular US imaging and US-mediated drug delivery. Molecular imaging of angiogenic tumor blood vessels and inflamed atherosclerotic endothelium is performed by modifying the surface of PBCA MB with peptides and antibodies recognizing E-selectin and VCAM-1. Stable and inertial cavitation of PBCA MB enables sonoporation and permeabilization of blood vessels in tumors and in the brain, which can be employed for direct and indirect drug delivery. Direct drug delivery is based on US-induced release of (model) drug molecules from the MB shell. Indirect drug delivery refers to US- and MB-mediated enhancement of extravasation and penetration of co-administered drugs and drug delivery systems. These findings are in line with recently reported pioneering proof-of-principle studies showing the usefulness of (phospholipid) MB for molecular US imaging and sonoporation-enhanced drug delivery in patients. They aim to exemplify the potential and the broad applicability of combining MB with US to improve disease diagnosis and therapy.
Collapse
|
29
|
Correlative Imaging of the Murine Hind Limb Vasculature and Muscle Tissue by MicroCT and Light Microscopy. Sci Rep 2017; 7:41842. [PMID: 28169309 PMCID: PMC5294414 DOI: 10.1038/srep41842] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
A detailed vascular visualization and adequate quantification is essential for the proper assessment of novel angiomodulating strategies. Here, we introduce an ex vivo micro-computed tomography (microCT)-based imaging approach for the 3D visualization of the entire vasculature down to the capillary level and rapid estimation of the vascular volume and vessel size distribution. After perfusion with μAngiofil®, a novel polymerizing contrast agent, low- and high-resolution scans (voxel side length: 2.58–0.66 μm) of the entire vasculature were acquired. Based on the microCT data, sites of interest were defined and samples further processed for correlative morphology. The solidified, autofluorescent μAngiofil® remained in the vasculature and allowed co-registering of the histological sections with the corresponding microCT-stack. The perfusion efficiency of μAngiofil® was validated based on lectin-stained histological sections: 98 ± 0.5% of the blood vessels were μAngiofil®-positive, whereas 93 ± 2.6% were lectin-positive. By applying this approach we analyzed the angiogenesis induced by the cell-based delivery of a controlled VEGF dose. Vascular density increased by 426% mainly through the augmentation of medium-sized vessels (20–40 μm). The introduced correlative and quantitative imaging approach is highly reproducible and allows a detailed 3D characterization of the vasculature and muscle tissue. Combined with histology, a broad range of complementary structural information can be obtained.
Collapse
|
30
|
Ramamonjisoa N, Ackerstaff E. Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging. Front Oncol 2017; 7:3. [PMID: 28197395 PMCID: PMC5281579 DOI: 10.3389/fonc.2017.00003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors are often characterized by hypoxia, vascular abnormalities, low extracellular pH, increased interstitial fluid pressure, altered choline-phospholipid metabolism, and aerobic glycolysis (Warburg effect). The impact of these tumor characteristics has been investigated extensively in the context of tumor development, progression, and treatment response, resulting in a number of non-invasive imaging biomarkers. More recent evidence suggests that cancer cells undergo metabolic reprograming, beyond aerobic glycolysis, in the course of tumor development and progression. The resulting altered metabolic content in tumors has the ability to affect cell signaling and block cellular differentiation. Additional emerging evidence reveals that the interaction between tumor and stroma cells can alter tumor metabolism (leading to metabolic reprograming) as well as tumor growth and vascular features. This review will summarize previous and current preclinical, non-invasive, multimodal imaging efforts to characterize the tumor microenvironment, including its stromal components and understand tumor-stroma interaction in cancer development, progression, and treatment response.
Collapse
Affiliation(s)
- Nirilanto Ramamonjisoa
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
31
|
Eschbach RS, Clevert DA, Hirner-Eppeneder H, Ingrisch M, Moser M, Schuster J, Tadros D, Schneider M, Kazmierczak PM, Reiser M, Cyran CC. Contrast-Enhanced Ultrasound with VEGFR2-Targeted Microbubbles for Monitoring Regorafenib Therapy Effects in Experimental Colorectal Adenocarcinomas in Rats with DCE-MRI and Immunohistochemical Validation. PLoS One 2017; 12:e0169323. [PMID: 28060884 PMCID: PMC5217974 DOI: 10.1371/journal.pone.0169323] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To investigate contrast-enhanced ultrasound (CEUS) with VEGFR2-targeted microbubbles for monitoring therapy effects of regorafenib on experimental colon carcinomas in rats with correlation to dynamic contrast-enhanced MRI (DCE-MRI) and immunohistochemistry. MATERIALS AND METHODS Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 21 (n = 11 therapy group; n = 10 control group) female athymic nude rats (Hsd: RH-Foxn1rnu). Animals were imaged at baseline and after a one-week daily treatment with regorafenib or a placebo (10 mg/kg bodyweight), using CEUS with VEGFR2-targeted microbubbles and DCE-MRI. In CEUS tumor perfusion was assessed during an early vascular phase (wash-in area under the curve = WiAUC) and VEGFR2-specific binding during a late molecular phase (signal intensity after 8 (SI8min) and 10 minutes (SI10min)), using a conventional 15L8 linear transducer (transmit frequency 7 MHz, dynamic range 80 dB, depth 25 mm). In DCE-MRI functional parameters plasma flow (PF) and plasma volume (PV) were quantified. For validation purposes, CEUS parameters were correlated with DCE-MRI parameters and immunohistochemical VEGFR2, CD31, Ki-67 and TUNEL stainings. RESULTS CEUS perfusion parameter WiAUC decreased significantly (116,989 ± 77,048 a.u. to 30,076 ± 27,095a.u.; p = 0.005) under therapy with no significant changes (133,932 ± 65,960 a.u. to 84,316 ± 74,144 a.u.; p = 0.093) in the control group. In the therapy group, the amount of bound microbubbles in the late phase was significantly lower in the therapy than in the control group on day 7 (SI8min: 283 ± 191 vs. 802 ± 460 a.u.; p = 0.006); SI10min: 226 ± 149 vs. 645 ± 461 a.u.; p = 0.009). PF and PV decreased significantly (PF: 147 ± 58 mL/100 mL/min to 71 ± 15 mL/100 mL/min; p = 0.003; PV: 13 ± 3% to 9 ± 4%; p = 0.040) in the therapy group. Immunohistochemistry revealed significantly fewer VEGFR2 (7.2 ± 1.8 vs. 17.8 ± 4.6; p < 0.001), CD31 (8.1 ± 3.0 vs. 20.8 ± 5.7; p < 0.001) and Ki-67 (318.7 ± 94.0 vs. 468.0 ± 133.8; p = 0.004) and significantly more TUNEL (672.7 ± 194.0 vs. 357.6 ± 192.0; p = 0.003) positive cells in the therapy group. CEUS parameters showed significant (p < 0.05) correlations to DCE-MRI parameters and immunohistochemistry. CONCLUSIONS CEUS with VEGFR2-targeted microbubbles allowed for monitoring regorafenib functional and molecular therapy effects on experimental colorectal adenocarcinomas with a significant decline of CEUS and DCE-MRI perfusion parameters as well as a significant reduction of specifically bound microbubbles under therapy, consistent with a reduced expression of VEGFR2.
Collapse
Affiliation(s)
- Ralf Stefan Eschbach
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
- * E-mail:
| | - Dirk-Andre Clevert
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Heidrun Hirner-Eppeneder
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Michael Ingrisch
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Matthias Moser
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Jessica Schuster
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Dina Tadros
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Moritz Schneider
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Philipp Maximilian Kazmierczak
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Maximilian Reiser
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Clemens C. Cyran
- Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
32
|
Quantitative imaging by pixel-based contrast-enhanced ultrasound reveals a linear relationship between synovial vascular perfusion and the recruitment of pathogenic IL-17A-F +IL-23 + CD161 + CD4 + T helper cells in psoriatic arthritis joints. Clin Rheumatol 2016; 36:391-399. [PMID: 27995384 DOI: 10.1007/s10067-016-3500-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022]
Abstract
To develop quantitative imaging biomarkers of synovial tissue perfusion by pixel-based contrast-enhanced ultrasound (CEUS), we studied the relationship between CEUS synovial vascular perfusion and the frequencies of pathogenic T helper (Th)-17 cells in psoriatic arthritis (PsA) joints. Eight consecutive patients with PsA were enrolled in this study. Gray scale CEUS evaluation was performed on the same joint immediately after joint aspiration, by automatic assessment perfusion data, using a new quantification approach of pixel-based analysis and the gamma-variate model. The set of perfusional parameters considered by the time intensity curve includes the maximum value (peak) of the signal intensity curve, the blood volume index or area under the curve, (BVI, AUC) and the contrast mean transit time (MTT). The direct ex vivo analysis of the frequencies of SF IL17A-F+CD161+IL23+ CD4+ T cells subsets were quantified by fluorescence-activated cell sorter (FACS). In cross-sectional analyses, when tested for multiple comparison setting, a false discovery rate at 10%, a common pattern of correlations between CEUS Peak, AUC (BVI) and MTT parameters with the IL17A-F+IL23+ - IL17A-F+CD161+ - and IL17A-F+CD161+IL23+ CD4+ T cells subsets, as well as lack of correlation between both peak and AUC values and both CD4+T and CD4+IL23+ T cells, was observed. The pixel-based CEUS assessment is a truly measure synovial inflammation, as a useful tool to develop quantitative imaging biomarker for monitoring target therapeutics in PsA.
Collapse
|
33
|
Rocha TGR, Lopes SCDA, Cassali GD, Ferreira Ê, Veloso ES, Leite EA, Braga FC, Ferreira LAM, Balvay D, Garofalakis A, Oliveira MC, Tavitian B. Evaluation of Antitumor Activity of Long-Circulating and pH-Sensitive Liposomes Containing Ursolic Acid in Animal Models of Breast Tumor and Gliosarcoma. Integr Cancer Ther 2016; 15:512-524. [PMID: 27130721 PMCID: PMC5739155 DOI: 10.1177/1534735416628273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023] Open
Abstract
Background Ursolic acid (UA) is a triterpene found in different plant species, possessing antitumor activity, which may be a result of its antiangiogenic effect. However, UA has low water solubility, which limits its use because the bioavailability is impaired. To overcome this inconvenience, we developed long-circulating and pH-sensitive liposomes containing ursolic acid (SpHL-UA). We investigated the antiangiogenic effect of free UA and SpHL-UA in murine brain cancer and human breast tumor models by means of determination of the relative tumor volume, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and histopathological analysis. Methods The animals were treated with dimethyl sulfoxide in 0.9% (w/v) NaCl, free UA, long-circulating and pH-sensitive liposomes without drug (SpHL), or SpHL-UA. The animals were submitted to each treatment by intraperitoneal injection for 5 days. The dose of free UA or SpHL-UA was equal to 23 mg/kg. Results Tumor growth inhibition was not observed in human breast tumor-bearing animals. For murine gliosarcoma-bearing animals, a slight tumor growth inhibition was observed in the groups treated with free UA or SpHL-UA (9% and 15%, respectively). No significant change in any of the parameters evaluated by DCE-MRI for both experimental models could be observed. Nevertheless, the evaluation of the mean values of magnetic resonance parameters of human breast tumor-bearing animals showed evidence of a possible antiangiogenic effect induced by SpHL-UA. Histopathological analysis did not present significant change for any treatment. Conclusion SpHL-UA did not show antiangiogenic activity in a gliosarcoma model and seemed to induce an antiangiogenic effect in the human breast tumor model.
Collapse
Affiliation(s)
| | | | | | - Ênio Ferreira
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bao X, Wang MW, Luo JM, Wang SY, Zhang YP, Zhang YJ. Optimization of Early Response Monitoring and Prediction of Cancer Antiangiogenesis Therapy via Noninvasive PET Molecular Imaging Strategies of Multifactorial Bioparameters. Theranostics 2016; 6:2084-2098. [PMID: 27698942 PMCID: PMC5039682 DOI: 10.7150/thno.13917] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 07/30/2016] [Indexed: 12/13/2022] Open
Abstract
Objective: Antiangiogenesis therapy (AAT) has provided substantial benefits regarding improved outcomes and survival for suitable patients in clinical settings. Therefore, the early definition of therapeutic effects is urgently needed to guide cancer AAT. We aimed to optimize the early response monitoring and prediction of AAT efficacy, as indicated by the multi-targeted anti-angiogenic drug sunitinib in U87MG tumors, using noninvasive positron emission computed tomography (PET) molecular imaging strategies of multifactorial bioparameters. Methods: U87MG tumor mice were treated via intragastric injections of sunitinib (80 mg/kg) or vehicle for 7 consecutive days. Longitudinal MicroPET/CT scans with 18F-FDG, 18F-FMISO, 18F-ML-10 and 18F-Alfatide II were acquired to quantitatively measure metabolism, hypoxia, apoptosis and angiogenesis on days 0, 1, 3, 7 and 13 following therapy initiation. Tumor tissues from a dedicated group of mice were collected for immunohistochemical (IHC) analysis of key biomarkers (Glut-1, CA-IX, TUNEL, ανβ3 and CD31) at the time points of PET imaging. The tumor sizes and mouse weights were measured throughout the study. The tumor uptake (ID%/gmax), the ratios of the tumor/muscle (T/M) for each probe, and the tumor growth ratios (TGR) were calculated and used for statistical analyses of the differences and correlations. Results: Sunitinib successfully inhibited U87MG tumor growth with significant differences in the tumor size from day 9 after sunitinib treatment compared with the control group (P < 0.01). The uptakes of 18F-FMISO (reduced hypoxia), 18F-ML-10 (increased apoptosis) and 18F-Alfatide II (decreased angiogenesis) in the tumor lesions significantly changed during the early stage (days 1 to 3) of sunitinib treatment; however, the uptake of 18F-FDG (increased glucose metabolism) was significantly different during the late stage. The PET imaging data of each probe were all confirmed via ex vivo IHC of the relevant biomarkers. Notably, the PET imaging of 18F-Alfatide II and 18F-FMISO was significantly correlated (all P < 0.05) with TGR, whereas the imaging of 18F-FDG and 18F-ML-10 was not significantly correlated with TGR. Conclusion: Based on the tumor uptake of the PET probes and their correlations with MVD and TGR, 18F-Alfatide II PET may not only monitor the early response but also precisely predict the therapeutic efficacy of the multi-targeted, anti-angiogenic drug sunitinib in U87MG tumors. In conclusion, it is feasible to optimize the early response monitoring and efficacy prediction of cancer AAT using noninvasive PET molecular imaging strategies of multifactorial bioparameters, such as angiogenesis imaging with 18F-Alfatide II, which represents an RGD-based probe.
Collapse
|
35
|
Lv P, Liu J, Yan X, Chai Y, Chen Y, Gao J, Pan Y, Li S, Guo H, Zhou Y. CT spectral imaging for monitoring the therapeutic efficacy of VEGF receptor kinase inhibitor AG-013736 in rabbit VX2 liver tumours. Eur Radiol 2016; 27:918-926. [PMID: 27287476 DOI: 10.1007/s00330-016-4458-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/21/2016] [Accepted: 05/30/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study was to evaluate the value of computed tomography (CT) spectral imaging in assessing the therapeutic efficacy of a vascular endothelial growth factor (VEGF) receptor inhibitor AG-013736 in rabbit VX2 liver tumours. METHODS Twenty-three VX2 liver tumour-bearing rabbits were scanned with CT in spectral imaging mode during the arterial phase (AP) and portal phase (PP). The iodine concentrations(ICs)of tumours normalized to aorta (nICs) at different time points (baseline, 2, 4, 7, 10, and 14 days after treatment) were compared within the treated group (n = 17) as well as between the control (n = 6) and treated groups. Correlations between the tumour size, necrotic fraction (NF), microvessel density (MVD), and nICs were analysed. RESULTS The change of nICs relative to baseline in the treated group was lower compared to the control group. A greater decrease in the nIC of a tumour at 2 days was positively correlated with a smaller increase in tumour size at 14 days (P < 0.05 for both). The tumour nIC values in AP and PP had correlations with MVD (r = 0.71 and 0.52) and NF (r = -0.54 and -0.51) (P < 0.05 for all). CONCLUSIONS CT spectral imaging allows for the evaluation and early prediction of tumour response to AG-013736. KEY POINTS • AG-013736 treatment response was evaluated by CT in a rabbit tumour model. • CT spectral imaging allows for the early treatment monitoring of targeted anti-tumour therapies. • Spectral CT findings correlated with vascular changes after anti-tumour therapies. • Spectral CT is a promising method for assessing clinical treatment response.
Collapse
Affiliation(s)
- Peijie Lv
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, Henan Province, China, 450052
| | - Jie Liu
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, Henan Province, China, 450052
| | - Xiaopeng Yan
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, Henan Province, China, 450052
| | - Yaru Chai
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, Henan Province, China, 450052
| | - Yan Chen
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, Henan Province, China, 450052
| | - Jianbo Gao
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, Henan Province, China, 450052.
| | - Yuanwei Pan
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, Henan Province, China, 450052
| | - Shuai Li
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, Henan Province, China, 450052
| | - Hua Guo
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, Henan Province, China, 450052
| | - Yue Zhou
- The Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Road, Zhengzhou, Henan Province, China, 450052
| |
Collapse
|
36
|
Cidon EU, Alonso P, Masters B. Markers of Response to Antiangiogenic Therapies in Colorectal Cancer: Where Are We Now and What Should Be Next? CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2016; 10:41-55. [PMID: 27147901 PMCID: PMC4849423 DOI: 10.4137/cmo.s34542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/15/2016] [Accepted: 03/13/2016] [Indexed: 12/17/2022]
Abstract
Despite advances in the treatment of colorectal cancer (CRC), it remains the second most common cause of cancer-related death in the Western world. Angiogenesis is a complex process that involves the formation of new blood vessels from preexisting vessels. It is essential for promoting cancer survival, growth, and dissemination. The inhibition of angiogenesis has been shown to prevent tumor progression experimentally, and several chemotherapeutic targets of tumor angiogenesis have been identified. These include anti-vascular endothelial growth factor (VEGF) treatments, such as bevacizumab (a VEGF-specific binding antibody) and anti-VEGF receptor tyrosine kinase inhibitors, although antiangiogenic therapy has been shown to be effective in the treatment of several cancers, including CRC. However, it is also associated with its own side effects and financial costs. Therefore, the identification of biomarkers that are able to identify patients who are more likely to benefit from antiangiogenic treatment is very important. This article intends to be a concise summary of the potential biomarkers that can predict or prognosticate the benefit of antiangiogenic treatments in CRC, and also what we can expect in the near future.
Collapse
Affiliation(s)
- E Una Cidon
- Department of Medical Oncology, Royal Bournemouth Hospital NHS Foundation Trust, Bournemouth, UK
| | - P Alonso
- Department of Clinical Oncology, Clinical University Hospital, Valladolid, Spain
| | - B Masters
- Department of Oncology, Nottingham City Hospital, Nottingham, UK
| |
Collapse
|
37
|
Ehling J, Misiewicz M, von Stillfried S, Möckel D, Bzyl J, Pochon S, Lederle W, Knuechel R, Lammers T, Palmowski M, Kiessling F. In situ validation of VEGFR-2 and α v ß 3 integrin as targets for breast lesion characterization. Angiogenesis 2016; 19:245-254. [PMID: 26902100 DOI: 10.1007/s10456-016-9499-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/11/2016] [Indexed: 01/09/2023]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR-2) and α v ß 3 integrin are the most frequently addressed targets in molecular imaging of tumor angiogenesis. In preclinical studies, molecular imaging of angiogenesis has shown potential to detect and differentiate benign and malignant lesions of the breast. Thus, in this retrospective clinical study employing patient tissues, the diagnostic value of VEGFR-2, α v ß 3 integrin and vascular area fraction for the diagnosis and differentiation of breast neoplasia was evaluated. To this end, tissue sections of breast cancer (n = 40), pre-invasive ductal carcinoma in situ (DCIS; n = 8), fibroadenoma (n = 40), radial scar (n = 6) and normal breast tissue (n = 40) were used to quantify (1) endothelial VEGFR-2, (2) endothelial α v ß 3 integrin and (3) total α v ß 3 integrin expression, as well as (4) the vascular area fraction. Sensitivity and specificity to differentiate benign from malignant lesions were calculated for each marker by receiver operating characteristics (ROC) analyses. Whereas vessel density, as commonly used, did not significantly differ between benign and malignant lesions (AUROC: 0.54), VEGFR-2 and α v ß 3 integrin levels were gradually up-regulated in carcinoma versus fibroadenoma versus healthy tissue. The highest diagnostic accuracy for differentiating carcinoma from fibroadenoma was found for total α v ß 3 integrin expression (AUROC: 0.76), followed by VEGFR-2 (AUROC: 0.71) and endothelial α v ß 3 integrin expression (AUROC: 0.68). In conclusion, total α v ß 3 integrin expression is the best discriminator between breast cancer, fibroadenoma and normal breast tissue. With respect to vascular targeting and molecular imaging of angiogenesis, endothelial VEGFR-2 appeared to be slightly superior to endothelial α v ß 3 for differentiating benign from cancerous lesions.
Collapse
Affiliation(s)
- Josef Ehling
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Matthias Misiewicz
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Diana Möckel
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jessica Bzyl
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Wiltrud Lederle
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ruth Knuechel
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Moritz Palmowski
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Brinkmann M, Rizzo LY, Lammers T, Gremse F, Schiwy S, Kiessling F, Hollert H. Micro-computed tomography (μCT) as a novel method in ecotoxicology--determination of morphometric and somatic data in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:135-139. [PMID: 26580735 DOI: 10.1016/j.scitotenv.2015.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Fish are important sentinel organisms for the assessment of water quality and play a central role in ecotoxicological research. Of particular importance to the assessment of health and fitness of fish stocks in response to environmental conditions or pollution are morphometric (e.g. Fulton's condition index) and somatic indices (e.g. hepatosomatic, and gonadosomatic index). Standard measurements of somatic indices are invasive and require, by definition, the sacrifice of examined animals, thus prohibiting longitudinal studies and relocation of animals captured in the field. As a potential solution, in the present study, we propose the use of micro-computed tomography (μCT) as imaging modality to non-invasively tomographically image rainbow trout (Oncorhynchus mykiss) exposed to different sediment suspensions. We here demonstrate that μCT can be used as a tool to reliably measure the volumes of different organs, which could then be applied as a substitute of their weights in calculation of somatic indices. To the best of our knowledge, this study is the first to report the results of μCT analyses in the context of ecotoxicological research in rainbow trout. It has the potential to greatly increase the information value of experiments conducted with fish and also to potentially reduce the number of animals required for studying temporal effects through facilitating longitudinal studies within the same individuals.
Collapse
Affiliation(s)
- Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Larissa Y Rizzo
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing 400715, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Throughout history, development of novel microscopy techniques has been of fundamental importance to advance the vascular biology field.This review offers a concise summary of the most recently developed imaging techniques and discusses how they can be applied to vascular biology. In addition, we reflect upon the most important fluorescent reporters for vascular research that are currently available. RECENT FINDINGS Recent advances in light sheet-based imaging techniques now offer the ability to live image the vascular system in whole organs or even in whole animals during development and in pathological conditions with a satisfactory spatial and temporal resolution. Conversely, super resolution microscopy now allows studying cellular processes at a near-molecular resolution. SUMMARY Major recent improvements in a number of imaging techniques now allow study of vascular biology in ways that could not be considered previously. Researchers now have well-developed tools to specifically examine the dynamic nature of vascular development during angiogenic sprouting, remodeling and regression as well as the vascular responses in disease situations in vivo. In addition, open questions in endothelial and lymphatic cell biology that require subcellular resolution such as actin dynamics, junctional complex formation and stability, vascular permeability and receptor trafficking can now be approached with high resolution.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
40
|
Use of VEGFR-2 targeted ultrasound contrast agent for the early evaluation of response to sorafenib in a mouse model of hepatocellular carcinoma. Mol Imaging Biol 2015; 17:29-37. [PMID: 25082536 DOI: 10.1007/s11307-014-0764-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE The aim of this study was to assess the early response to sorafenib using ultrasound molecular imaging in a murine model of hepatocellular carcinoma (HCC). PROCEDURES A xenograft model of HCC was established. Then, mice were divided in two groups and received treatment (sorafenib) or placebo for 14 days. The treatment group was further divided into non-responders and responders according to the degree of growth. Contrast enhanced ultrasound (CEUS) was performed using VEGFR-2 targeted microbubbles (BR55, Bracco Suisse SA, Geneva, Switzerland). Dedicated software was used to quantify the amount of bound microbubbles in the tumor as a numerical value (differential targeted enhancement (dTE)). Tumors were then excised and western blot analysis performed. RESULTS The dTE values decreased from day 0 to day +14 both in the treatment and control groups, but were lower in the former. The non-responder group had higher dTE levels at day 2 compared to responders (p = 0.019). CONCLUSION BR55 appears to be useful in the prediction of response to sorafenib in a xenograft model of HCC.
Collapse
|
41
|
Rao SR, Shelton SE, Dayton PA. The "Fingerprint" of Cancer Extends Beyond Solid Tumor Boundaries: Assessment With a Novel Ultrasound Imaging Approach. IEEE Trans Biomed Eng 2015; 63:1082-6. [PMID: 26394410 DOI: 10.1109/tbme.2015.2479590] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
GOAL Abnormalities of microvascular morphology have been associated with tumor angiogenesis for more than a decade, and are believed to be intimately related to both tumor malignancy and response to treatment. However, the study of these vascular changes in-vivo has been challenged due to the lack of imaging approaches which can assess the microvasculature in 3-D volumes noninvasively. Here, we use contrast-enhanced "acoustic angiography" ultrasound imaging to observe and quantify heterogeneity in vascular morphology around solid tumors. METHODS Acoustic angiography, a recent advance in contrast-enhanced ultrasound imaging, generates high-resolution microvascular images unlike anything possible with standard ultrasound imaging techniques. Acoustic angiography images of a genetically engineered mouse breast cancer model were acquired to develop an image acquisition and processing routine that isolated radially expanding regions of a 3-D image from the tumor boundary to the edge of the imaging field for assessment of vascular morphology of tumor and surrounding vessels. RESULTS Quantitative analysis of vessel tortuosity for the tissue surrounding tumors 3 to 7 mm in diameter revealed that tortuosity decreased in a region 6 to 10 mm from the tumor boundary, but was still significantly elevated when compared to control vasculature. CONCLUSION Our analysis of angiogenesis-induced changes in the vasculature outside the tumor margin reveals that the extent of abnormal tortuosity extends significantly beyond the primary tumor mass. SIGNIFICANCE Visualization of abnormal vascular tortuosity may make acoustic angiography an invaluable tool for early tumor detection based on quantifying the vascular footprint of small tumors and a sensitive method for understanding changes in the vascular microenvironment during tumor progression.
Collapse
|
42
|
Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2. Sci Rep 2015; 5:13827. [PMID: 26345385 PMCID: PMC4561885 DOI: 10.1038/srep13827] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/06/2015] [Indexed: 01/07/2023] Open
Abstract
Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497 mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.
Collapse
|
43
|
García-Figueiras R, Padhani AR, Beer AJ, Baleato-González S, Vilanova JC, Luna A, Oleaga L, Gómez-Caamaño A, Koh DM. Imaging of Tumor Angiogenesis for Radiologists—Part 1: Biological and Technical Basis. Curr Probl Diagn Radiol 2015; 44:407-24. [DOI: 10.1067/j.cpradiol.2015.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 01/09/2023]
|
44
|
Bohndiek SE, Sasportas LS, Machtaler S, Jokerst JV, Hori S, Gambhir SS. Photoacoustic Tomography Detects Early Vessel Regression and Normalization During Ovarian Tumor Response to the Antiangiogenic Therapy Trebananib. J Nucl Med 2015; 56:1942-7. [PMID: 26315834 DOI: 10.2967/jnumed.115.160002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/05/2015] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED The primary aim of this study was to assess the potential of in vivo photoacoustic tomography for direct functional measurement of ovarian tumor response to antiangiogenic therapy. METHODS In vivo studies were performed with institutional animal care and use committee approval. We used an orthotopic mouse model of ovarian cancer treated with trebananib (n = 9) or vehicle (n = 9). Tumor-bearing mice were randomized into trebananib or vehicle groups at day 10 and dosed on days 12, 15, and 18 after implantation. Photoacoustic tomography and blood draws were performed at day 10 and then 24 h after each drug dose. Tumors were excised for histopathology after the final studies on day 19. Data analysis to test for statistical significance was performed blinded. RESULTS Blockade of angiopoietin signaling using trebananib resulted in reduced total hemoglobin-weighted photoacoustic signal (n = 9, P = 0.01) and increased oxyhemoglobin-weighted photoacoustic signal (n = 9, P < 0.01). The latter observation indicated normalization of the residual tumor vessels, which was also implied by low levels of angiopoietin 1 in serum biomarker profiling (0.76 ± 0.12 ng/mL). These noninvasive measures reflected a 30% reduction in microvessel density and increased vessel maturation in ex vivo sections. CONCLUSION Photoacoustic tomography is able to evaluate both vessel regression and normalization in response to trebananib. Noninvasive imaging data were supported by modulation of serum markers in vitro and ex vivo histopathology.
Collapse
Affiliation(s)
- Sarah E Bohndiek
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Laura S Sasportas
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Steven Machtaler
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Jesse V Jokerst
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Sharon Hori
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Sanjiv S Gambhir
- Bio-X Program and Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
45
|
Boor P, Bábíčková J, Steegh F, Hautvast P, Martin IV, Djudjaj S, Nakagawa T, Ehling J, Gremse F, Bücher E, Eriksson U, van Roeyen CR, Eitner F, Lammers T, Floege J, Peutz-Kootstra CJ, Ostendorf T. Role of Platelet-Derived Growth Factor-CC in Capillary Rarefaction in Renal Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [DOI: 10.1016/j.ajpath.2015.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Ehling J, Bábíčková J, Gremse F, Klinkhammer BM, Baetke S, Knuechel R, Kiessling F, Floege J, Lammers T, Boor P. Quantitative Micro-Computed Tomography Imaging of Vascular Dysfunction in Progressive Kidney Diseases. J Am Soc Nephrol 2015. [PMID: 26195818 DOI: 10.1681/asn.2015020204] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Progressive kidney diseases and renal fibrosis are associated with endothelial injury and capillary rarefaction. However, our understanding of these processes has been hampered by the lack of tools enabling the quantitative and noninvasive monitoring of vessel functionality. Here, we used micro-computed tomography (µCT) for anatomical and functional imaging of vascular alterations in three murine models with distinct mechanisms of progressive kidney injury: ischemia-reperfusion (I/R, days 1-56), unilateral ureteral obstruction (UUO, days 1-10), and Alport mice (6-8 weeks old). Contrast-enhanced in vivo µCT enabled robust, noninvasive, and longitudinal monitoring of vessel functionality and revealed a progressive decline of the renal relative blood volume in all models. This reduction ranged from -20% in early disease stages to -61% in late disease stages and preceded fibrosis. Upon Microfil perfusion, high-resolution ex vivo µCT allowed quantitative analyses of three-dimensional vascular networks in all three models. These analyses revealed significant and previously unrecognized alterations of preglomerular arteries: a reduction in vessel diameter, a prominent reduction in vessel branching, and increased vessel tortuosity. In summary, using µCT methodology, we revealed insights into macro-to-microvascular alterations in progressive renal disease and provide a platform that may serve as the basis to evaluate vascular therapeutics in renal disease.
Collapse
Affiliation(s)
- Josef Ehling
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Janka Bábíčková
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | - Sarah Baetke
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ruth Knuechel
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; and Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter Boor
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia; Department of Nephrology, Medical Faculty, RWTH Aachen University, Aachen, Germany;
| |
Collapse
|
47
|
Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 2015; 88:20150207. [PMID: 25969868 DOI: 10.1259/bjr.20150207] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During the last decades, a plethora of nanoparticles have been developed and evaluated and a real hype has been created around their potential application as diagnostic and therapeutic agents. Despite their suggestion as potential diagnostic agents, only a single diagnostic nanoparticle formulation, namely iron oxide nanoparticles, has found its way into clinical routine so far. This fact is primarily due to difficulties in achieving appropriate pharmacokinetic properties and a reproducible synthesis of monodispersed nanoparticles. Furthermore, concerns exist about their biodegradation, elimination and toxicity. The majority of nanoparticle formulations that are currently routinely used in the clinic are used for therapeutic purposes. These therapeutic nanoparticles aim to more efficiently deliver a (chemo-) therapeutic drug to the pathological site, while avoiding its accumulation in healthy organs and tissues, and are predominantly based on the "enhanced permeability and retention" (EPR) effect. Furthermore, based on their ability to integrate diagnostic and therapeutic entities within a single nanoparticle formulation, nanoparticles hold great promise for theranostic purposes and are considered to be highly useful for personalizing nanomedicine-based treatments. In this review article, we present applications of diagnostic and therapeutic nanoparticles, summarize frequently used non-invasive imaging techniques and describe the role of EPR in the accumulation of nanotheranostic formulations. In this context, the clinical potential of nanotheranostics and image-guided drug delivery for individualized and improved (chemo-) therapeutic interventions is addressed.
Collapse
Affiliation(s)
- S C Baetke
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - T Lammers
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - F Kiessling
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
48
|
Kersemans V, Kannan P, Beech JS, Bates R, Irving B, Gilchrist S, Allen PD, Thompson J, Kinchesh P, Casteleyn C, Schnabel J, Partridge M, Muschel RJ, Smart SC. Improving In Vivo High-Resolution CT Imaging of the Tumour Vasculature in Xenograft Mouse Models through Reduction of Motion and Bone-Streak Artefacts. PLoS One 2015; 10:e0128537. [PMID: 26046526 PMCID: PMC4457787 DOI: 10.1371/journal.pone.0128537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/28/2015] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Preclinical in vivo CT is commonly used to visualise vessels at a macroscopic scale. However, it is prone to many artefacts which can degrade the quality of CT images significantly. Although some artefacts can be partially corrected for during image processing, they are best avoided during acquisition. Here, a novel imaging cradle and tumour holder was designed to maximise CT resolution. This approach was used to improve preclinical in vivo imaging of the tumour vasculature. PROCEDURES A custom built cradle containing a tumour holder was developed and fix-mounted to the CT system gantry to avoid artefacts arising from scanner vibrations and out-of-field sample positioning. The tumour holder separated the tumour from bones along the axis of rotation of the CT scanner to avoid bone-streaking. It also kept the tumour stationary and insensitive to respiratory motion. System performance was evaluated in terms of tumour immobilisation and reduction of motion and bone artefacts. Pre- and post-contrast CT followed by sequential DCE-MRI of the tumour vasculature in xenograft transplanted mice was performed to confirm vessel patency and demonstrate the multimodal capacity of the new cradle. Vessel characteristics such as diameter, and branching were quantified. RESULTS Image artefacts originating from bones and out-of-field sample positioning were avoided whilst those resulting from motions were reduced significantly, thereby maximising the resolution that can be achieved with CT imaging in vivo. Tumour vessels ≥ 77 μm could be resolved and blood flow to the tumour remained functional. The diameter of each tumour vessel was determined and plotted as histograms and vessel branching maps were created. Multimodal imaging using this cradle assembly was preserved and demonstrated. CONCLUSIONS The presented imaging workflow minimised image artefacts arising from scanner induced vibrations, respiratory motion and radiopaque structures and enabled in vivo CT imaging and quantitative analysis of the tumour vasculature at higher resolution than was possible before. Moreover, it can be applied in a multimodal setting, therefore combining anatomical and dynamic information.
Collapse
Affiliation(s)
- Veerle Kersemans
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Pavitra Kannan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - John S. Beech
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Russell Bates
- The Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Benjamin Irving
- The Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Stuart Gilchrist
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip D. Allen
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Thompson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul Kinchesh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Christophe Casteleyn
- Laboratory for Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Julia Schnabel
- The Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Mike Partridge
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ruth J. Muschel
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean C. Smart
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Correlation of perfusion MRI and 18F-FDG PET imaging biomarkers for monitoring regorafenib therapy in experimental colon carcinomas with immunohistochemical validation. PLoS One 2015; 10:e0115543. [PMID: 25668193 PMCID: PMC4323201 DOI: 10.1371/journal.pone.0115543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022] Open
Abstract
Objectives To investigate a multimodal, multiparametric perfusion MRI / 18F-fluoro-deoxyglucose-(18F-FDG)-PET imaging protocol for monitoring regorafenib therapy effects on experimental colorectal adenocarcinomas in rats with immunohistochemical validation. Materials and Methods Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 17 (n = 10 therapy group; n = 7 control group) female athymic nude rats (Hsd:RH-Foxn1rnu). Animals were imaged at baseline and after a one-week daily treatment protocol with regorafenib (10 mg/kg bodyweight) using a multimodal, multiparametric perfusion MRI/18F-FDG-PET imaging protocol. In perfusion MRI, quantitative parameters of plasma flow (PF, mL/100 mL/min), plasma volume (PV, %) and endothelial permeability-surface area product (PS, mL/100 mL/min) were calculated. In 18F-FDG-PET, tumor-to-background-ratio (TTB) was calculated. Perfusion MRI parameters were correlated with TTB and immunohistochemical assessments of tumor microvascular density (CD-31) and cell proliferation (Ki-67). Results Regorafenib significantly (p<0.01) suppressed PF (81.1±7.5 to 50.6±16.0 mL/100mL/min), PV (12.1±3.6 to 7.5±1.6%) and PS (13.6±3.2 to 7.9±2.3 mL/100mL/min) as well as TTB (3.4±0.6 to 1.9±1.1) between baseline and day 7. Immunohistochemistry revealed significantly (p<0.03) lower tumor microvascular density (CD-31, 7.0±2.4 vs. 16.1±5.9) and tumor cell proliferation (Ki-67, 434.0 ± 62.9 vs. 663.0 ± 98.3) in the therapy group. Perfusion MRI parameters ΔPF, ΔPV and ΔPS showed strong and significant (r = 0.67-0.78; p<0.01) correlations to the PET parameter ΔTTB and significant correlations (r = 0.57-0.67; p<0.03) to immunohistochemical Ki-67 as well as to CD-31-stainings (r = 0.49-0.55; p<0.05). Conclusions A multimodal, multiparametric perfusion MRI/PET imaging protocol allowed for non-invasive monitoring of regorafenib therapy effects on experimental colorectal adenocarcinomas in vivo with significant correlations between perfusion MRI parameters and 18F-FDG-PET validated by immunohistochemistry.
Collapse
|
50
|
Dynamic contrast-enhanced micro-computed tomography correlates with 3-dimensional fluorescence ultramicroscopy in antiangiogenic therapy of breast cancer xenografts. Invest Radiol 2015; 49:445-56. [PMID: 24598441 DOI: 10.1097/rli.0000000000000038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Dynamic contrast-enhanced (DCE) micro-computed tomography (micro-CT) has emerged as a valuable imaging tool to noninvasively obtain quantitative physiological biomarkers of drug effect in preclinical studies of antiangiogenic compounds. In this study, we explored the ability of DCE micro-CT to assess the antiangiogenic treatment response in breast cancer xenografts and correlated the results to the structural vessel response obtained from 3-dimensional (3D) fluorescence ultramicroscopy (UM). MATERIAL AND METHODS Two groups of tumor-bearing mice (KPL-4) underwent DCE micro-CT imaging using a fast preclinical dual-source micro-CT system (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany). Mice were treated with either a monoclonal antibody against the vascular endothelial growth factor or an unspecific control antibody. Changes in vascular physiology were assessed measuring the mean value of the relative blood volume (rBV) and the permeability-surface area product (PS) in different tumor regions of interest (tumor center, tumor periphery, and total tumor tissue). Parametric maps of rBV were calculated of the tumor volume to assess the intratumoral vascular heterogeneity. Isotropic 3D UM vessel scans were performed from excised tumor tissue, and automated 3D segmentation algorithms were used to determine the microvessel density (MVD), relative vessel volume, and vessel diameters. In addition, the accumulation of coinjected fluorescence-labeled trastuzumab was quantified in the UM tissue scans to obtain an indirect measure of vessel permeability. Results of the DCE micro-CT were compared with corresponding results obtained by ex vivo UM. For validation, DCE micro-CT and UM parameters were compared with conventional histology and tumor volume. RESULTS Examination of the parametric rBV maps revealed significantly different patterns of intratumoral blood supply between treated and control tumors. Whereas control tumors showed a characteristic vascular rim pattern with considerably elevated rBV values in the tumor periphery, treated tumors showed a widely homogeneous blood supply. Compared with UM, the physiological rBV maps showed excellent agreement with the spatial morphology of the intratumoral vascular architecture. Regional assessment of mean physiological values exhibited a significant decrease in rBV (P < 0.01) and PS (P < 0.05) in the tumor periphery after anti-vascular endothelial growth factor treatment. Structural validation with UM showed a significant reduction in reduction of relative vessel volume (rVV) (P < 0.01) and MVD (P < 0.01) in the corresponding tumor region. The reduction in rBV correlated well with the rVV (R = 0.73 for single values and R = 0.95 for mean values). Spatial maps of antibody penetration showed a significantly reduced antibody accumulation (P < 0.01) in the tumor tissue after treatment and agreed well with the physiological change of PS. Examination of vessel diameters revealed a size-dependent antiangiogenic treatment effect, which showed a significant reduction in MVD (P < 0.001) for vessels with diameters smaller than 25 μm. No treatment effect was observed by tumor volume. CONCLUSIONS Noninvasive DCE micro-CT provides valuable physiological information of antiangiogenic drug effect in the intact animal and correlates with ex vivo structural analysis of 3D UM. The combined use of DCE micro-CT with UM constitutes a complementary imaging toolset that can help to enhance our understanding of antiangiogenic drug mechanisms of action in preclinical drug research.
Collapse
|