1
|
Hmiel L, Zhang S, Obare LM, Santana MADO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int J Mol Sci 2024; 25:7266. [PMID: 39000373 PMCID: PMC11242562 DOI: 10.3390/ijms25137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.
Collapse
Affiliation(s)
- Laura Hmiel
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Suyu Zhang
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boghuma K. Titanji
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Shashwatee Bagchi
- Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Bai Z, Hu H, Hu F, Ji J, Ji Z. Bone marrow mesenchymal stem cellsderived exosomes stabilize atherosclerosis through inhibiting pyroptosis. BMC Cardiovasc Disord 2023; 23:441. [PMID: 37679676 PMCID: PMC10486039 DOI: 10.1186/s12872-023-03453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVES This study aimed to determine the effects of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (BMSC-EXO) on atherosclerosis (AS), and its related underlying mechanisms. METHODS Exosomes were isolated from mouse BMSCs, and identified by transmission electron microscopy (TEM), Nanosight (NTA), and western blot. A mouse AS model was established, and exosomes were injected into the tail vein. Total cholesterol (TC) and triglycerides (TG) were detected using their corresponding assay kits. The contents of IL-1β and IL-18 in serum were detected by ELISA. The mRNA and protein expression levels of GSDMD, Caspase1, and NLRP3 were detected by qRT-PCR and Western blot. Finally, aortic tissues in the Model and BMSC-EXO groups were sent for sequencing. RESULTS TEM, NTA, and western blot indicated successful isolation of exosomes. Compared with the control group, the TC, TG contents, IL-1β and IL-18 concentrations of the mice in the Model group were significantly increased; nonetheless, were significantly lower after injected with BMSC-EXO than those in the Model group (p < 0.05). Compared with the control group, the expressions of NLRP3, caspase-1 and GSDMD were significantly up-regulated in the Model group (p < 0.05), while the expressions of NLRP3, caspase-1, and GSDMD were significantly down-regulated by BMSC-EXO. By sequencing, a total of 3852 DEGs were identified between the Model and BMSC-EXO group and were significantly enriched in various biological processes and pathways related to mitochondrial function, metabolism, inflammation, and immune response. CONCLUSION AS can induce pyroptosis, and BMSC-EXO can reduce inflammation and alleviate the progression of AS by inhibiting NLRP3/Caspase-1/GSDMD in the pyroptosis pathway.
Collapse
Affiliation(s)
- Zhibin Bai
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Haolin Hu
- Department of General Surgery, Institute for Minimally Invasive Surgery, Medical School, ZhongDa Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Fangfang Hu
- Department of General Surgery, Institute for Minimally Invasive Surgery, Medical School, ZhongDa Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Jiajie Ji
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Zhenling Ji
- Department of General Surgery, Institute for Minimally Invasive Surgery, Medical School, ZhongDa Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
3
|
Liu S, Bi H, Jiang M, Chen Y, Jiang M. An update on the role of TRIM/NLRP3 signaling pathway in atherosclerosis. Biomed Pharmacother 2023; 160:114321. [PMID: 36736278 DOI: 10.1016/j.biopha.2023.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium arteries that includes lipid metabolism disorder and recruitment of immune cells to the artery wall. An increasing number of studies have confirmed that inflammasome over-activation is associated with the onset and progression of atherosclerosis. The NLRP3 inflammasome, in particular, has been proven to increase the incidence rate of cardiovascular diseases (CVD) by promoting pro-inflammatory cytokine release and reducing plaque stability. The strict control of inflammasome and prevention of excessive inflammatory reactions have been the research focus of inflammatory diseases. Tripartite motif (TRIM) is a protein family with a conservative structure and rapid evolution. Several studies have demonstrated the TRIM family's regulatory role in mediating inflammation. This review aims to clarify the relationship between TRIMs and NLRP3 inflammasome and provide insights for future research and treatment discovery.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY school, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Hongfeng Bi
- Medical Equipment Department, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Meiling Jiang
- Department of obstetrics, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
4
|
Miyazaki T, Taketomi Y, Higashi T, Ohtaki H, Takaki T, Ohnishi K, Hosonuma M, Kono N, Akasu R, Haraguchi S, Kim-Kaneyama JR, Otsu K, Arai H, Murakami M, Miyazaki A. Hypercholesterolemic Dysregulation of Calpain in Lymphatic Endothelial Cells Interferes With Regulatory T-Cell Stability and Trafficking. Arterioscler Thromb Vasc Biol 2023; 43:e66-e82. [PMID: 36519468 DOI: 10.1161/atvbaha.122.317781] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although hypercholesterolemia reportedly counteracts lymphocyte trafficking across lymphatic vessels, the roles of lymphatic endothelial cells (LECs) in the lymphocyte regulations remain unclear. Previous studies showed that calpain-an intracellular modulatory protease-interferes with leukocyte dynamics in the blood microcirculation and is associated with hypercholesterolemic dysfunction in vascular endothelial cells. METHODS This study investigated whether the calpain systems in LECs associate with the LEC-lymphocyte interaction under hypercholesterolemia using gene-targeted mice. RESULTS Lipidomic analysis in hypercholesterolemic mice showed that several lysophospholipids, including lysophosphatidic acid, accumulated in the lymphatic environment. Lysophosphatidic acid enables the potentiation of calpain systems in cultured LECs, which limits their ability to stabilize regulatory T cells (Treg) without altering Th1/Th2 (T helper type1/2) subsets. This occurs via the proteolytic degradation of MEKK1 (mitogen-activated protein kinase kinase kinase 1) and the subsequent inhibition of TGF (transforming growth factor)-β1 production in LECs. Targeting calpain systems in LECs expanded Tregs in the blood circulation and reduced aortic atherosclerosis in hypercholesterolemic mice, concomitant with the reduction of proinflammatory macrophages in the lesions. Treg expansion in the blood circulation and atheroprotection in calpain-targeted mice was prevented by the administration of TGF-β type-I receptor inhibitor. Moreover, lysophosphatidic acid-induced calpain overactivation potentiated the IL (interleukin)-18/NF-κB (nuclear factor κB)/VCAM1 (vascular cell adhesion molecule 1) axis in LECs, thereby inhibiting lymphocyte mobility on the cells. Indeed, VCAM1 in LECs was upregulated in hypercholesterolemic mice and human cases of coronary artery disease. Neutralization of VCAM1 or targeting LEC calpain systems recovered afferent Treg transportation via lymphatic vessels in mice. CONCLUSIONS Calpain systems in LECs have a key role in controlling Treg stability and trafficking under hypercholesterolemia.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine (Y.T., T.H., M.M.), the University of Tokyo, Japan
| | - Takayoshi Higashi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine (Y.T., T.H., M.M.), the University of Tokyo, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy (H.O.), Showa University School of Medicine, Tokyo, Japan
| | - Takashi Takaki
- Division of Electron Microscopy (T.T.), Showa University School of Medicine, Tokyo, Japan
| | - Koji Ohnishi
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan (K. Ohnishi)
| | - Masahiro Hosonuma
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan (M.H.)
| | - Nozomu Kono
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Medicine (N.K., H.A.), the University of Tokyo, Japan
| | - Risako Akasu
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Shogo Haraguchi
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom (K. Otsu)
| | - Hiroyuki Arai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Medicine (N.K., H.A.), the University of Tokyo, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine (Y.T., T.H., M.M.), the University of Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
González L, Rivera K, Andia ME, Martínez Rodriguez G. The IL-1 Family and Its Role in Atherosclerosis. Int J Mol Sci 2022; 24:17. [PMID: 36613465 PMCID: PMC9820551 DOI: 10.3390/ijms24010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The IL-1 superfamily of cytokines is a central regulator of immunity and inflammation. The family is composed of 11 cytokines (with agonist, antagonist, and anti-inflammatory properties) and 10 receptors, all tightly regulated through decoy receptor, receptor antagonists, and signaling inhibitors. Inflammation not only is an important physiological response against infection and injury but also plays a central role in atherosclerosis development. Several clinical association studies along with experimental studies have implicated the IL-1 superfamily of cytokines and its receptors in the pathogenesis of cardiovascular disease. Here, we summarize the key features of the IL-1 family, its role in immunity and disease, and how it helps shape the development of atherosclerosis.
Collapse
Affiliation(s)
- Leticia González
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Katherine Rivera
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| | - Marcelo E. Andia
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Gonzalo Martínez Rodriguez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| |
Collapse
|
6
|
Liu X, Wu J, Nie H, Zhu X, Song G, Han L, Qin W. Comprehensive Analysis of circRNAs, miRNAs, and mRNAs Expression Profiles and ceRNA Networks in Decidua of Unexplained Recurrent Spontaneous Abortion. Front Genet 2022; 13:858641. [PMID: 35711933 PMCID: PMC9194479 DOI: 10.3389/fgene.2022.858641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
The diagnosis and treatment of unexplained recurrent spontaneous abortion (URSA) are subject to debate, because the exact underlying mechanisms remain unclear. To address this issue, we elucidated the expression profiles of dysregulated circRNAs, miRNAs, and mRNAs and constructed circRNA-associated competitive endogenous RNA (ceRNA) networks by comparing the decidua of URSA with that of normal early pregnancy (NEP) using RNA-sequencing. In total, 550 mRNAs, 88 miRNAs, and 139 circRNAs were differentially expressed (DE) in decidua of URSA. Functional annotation revealed that DE mRNAs as well as potential target genes of DE miRNAs and DE circRNAs are mainly involved in immunologic function, such as antigen processing and presentation, allograft rejection, and T cell receptor signaling pathway. In addition, the top hub genes, including CCL4, DDX58, CXCL10, CXCL9, MX1, CD44, RPS2, SOCS3, RPS3A, and CXCL11, were identified. The mRNAs involved in ceRNA network were enriched in complement and coagulation cascades and protein processing in the endoplasmic reticulum. We found that circRNAs in the ceRNA network, which acted as decoys for hsa-miR-204-5p, were positively correlated with MFGE8 expression. Collectively, the results demonstrated that circRNAs, miRNAs, and mRNAs were aberrantly expressed in the decidua of patients with URSA and played a potential role in the development of URSA. Thus, the establishment of the ceRNA network may profoundly affect the diagnosis and therapy of URSA in the future.
Collapse
Affiliation(s)
- Xiaohua Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Center Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Center Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Center Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Xiaoli Zhu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Reproductive Medicine Center, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Ge Song
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Reproductive Medicine Center, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Lu Han
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Center Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Center Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| |
Collapse
|
7
|
Liu L, Shi Z, Ji X, Zhang W, Luan J, Zahr T, Qiang L. Adipokines, adiposity, and atherosclerosis. Cell Mol Life Sci 2022; 79:272. [PMID: 35503385 PMCID: PMC11073100 DOI: 10.1007/s00018-022-04286-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022]
Abstract
Characterized by a surplus of whole-body adiposity, obesity is strongly associated with the prognosis of atherosclerosis, a hallmark of coronary artery disease (CAD) and the major contributor to cardiovascular disease (CVD) mortality. Adipose tissue serves a primary role as a lipid-storage organ, secreting cytokines known as adipokines that affect whole-body metabolism, inflammation, and endocrine functions. Emerging evidence suggests that adipokines can play important roles in atherosclerosis development, progression, as well as regression. Here, we review the versatile functions of various adipokines in atherosclerosis and divide these respective functions into three major groups: protective, deteriorative, and undefined. The protective adipokines represented here are adiponectin, fibroblast growth factor 21 (FGF-21), C1q tumor necrosis factor-related protein 9 (CTRP9), and progranulin, while the deteriorative adipokines listed include leptin, chemerin, resistin, Interleukin- 6 (IL-6), and more, with additional adipokines that have unclear roles denoted as undefined adipokines. Comprehensively categorizing adipokines in the context of atherosclerosis can help elucidate the various pathways involved and potentially pave novel therapeutic approaches to treat CVDs.
Collapse
Affiliation(s)
- Longhua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China.
| | - Zunhan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Xiaohui Ji
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Wenqian Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Jinwen Luan
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Tarik Zahr
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Li Qiang
- Department of Pathology and Cellular Biology and Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Farahi L, Sinha SK, Lusis AJ. Roles of Macrophages in Atherogenesis. Front Pharmacol 2021; 12:785220. [PMID: 34899348 PMCID: PMC8660976 DOI: 10.3389/fphar.2021.785220] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that may ultimately lead to local proteolysis, plaque rupture, and thrombotic vascular disease, resulting in myocardial infarction, stroke, and sudden cardiac death. Circulating monocytes are recruited to the arterial wall in response to inflammatory insults and differentiate into macrophages which make a critical contribution to tissue damage, wound healing, and also regression of atherosclerotic lesions. Within plaques, macrophages take up aggregated lipoproteins which have entered the vessel wall to give rise to cholesterol-engorged foam cells. Also, the macrophage phenotype is influenced by various stimuli which affect their polarization, efferocytosis, proliferation, and apoptosis. The heterogeneity of macrophages in lesions has recently been addressed by single-cell sequencing techniques. This article reviews recent advances regarding the roles of macrophages in different stages of disease pathogenesis from initiation to advanced atherosclerosis. Macrophage-based therapies for atherosclerosis management are also described.
Collapse
Affiliation(s)
- Lia Farahi
- Monoclonal Antibody Research Center, Avicenna Research Institute, Tehran, Iran
| | - Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aldons J. Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Zhao G, Zhang H, Zhu S, Wang S, Zhu K, Zhao Y, Xu L, Zhang P, Xie J, Sun A, Zou Y, Ge J. Interleukin-18 accelerates cardiac inflammation and dysfunction during ischemia/reperfusion injury by transcriptional activation of CXCL16. Cell Signal 2021; 87:110141. [PMID: 34487815 DOI: 10.1016/j.cellsig.2021.110141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023]
Abstract
Myocardial ischemia/reperfusion(I/R) injury elicits an inflammatory response that drives tissue damage and cardiac remodeling. The trafficking and recruitment of inflammatory cells are controlled by C-X-C motif chemokine ligands and their receptors. CXCL16, a hallmark of acute coronary syndromes, is responsible for the recruitment of macrophages, monocytes and T lymphocytes. However, its role in cardiac I/R injury remains poorly characterized. Here we reported that CXCL16-mediated cardiac infiltration of CD11b+Ly6C+ cells played a crucial role in IL-18-induced myocardial inflammation, apoptosis and left ventricular(LV) dysfunction during I/R. Treatment with CXCL16 shRNA attenuated I/R-induced cardiac injury, LV remodeling and cardiac inflammation by reducing the recruitment of inflammatory cells and the release of TNFα, IL-17 and IFN-γ in the heart. We found that I/R-mediated NLRP3/IL-18 signaling pathway triggered CXCL16 transcription in cardiac vascular endothelial cells(VECs). Two binding sites of FOXO3 were found at the promoter region of CXCL16. By luciferase report assay and ChIP analysis, we confirmed that FOXO3 was responsible for endothelial CXCL16 transcription. A pronounced reduction of CXCL16 was observed in FOXO3 siRNA pretreated-VECs. Further experiments revealed that IL-18 activated FOXO3 by promoting the phosphorylation of STAT3 but not STAT4. An interaction between FOXO3 and STAT3 enhanced the transcription of CXCL16 induced by FOXO3. Treatment with Anakinra or Stattic either effectively inhibited IL-18-mediated nuclear import of FOXO3 and CXCL16 transcription. Our findings suggested that IL-18 accelerated I/R-induced cardiac damage and dysfunction through activating CXCL-16 and CXCL16-mediated cardiac infiltration of the CD11b+Ly6C+ cells. CXCL16 might be a novel therapeutic target for the treatment of I/R-related ischemic heart diseases.
Collapse
Affiliation(s)
- Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Department of Cardiology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Hongqiang Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijie Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kai Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ping Zhang
- Department of Cardiology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Jing Xie
- Department of Cardiology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Viral Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
10
|
Brusatol-Enriched Brucea javanica Oil Ameliorated Dextran Sulfate Sodium-Induced Colitis in Mice: Involvement of NF- κB and RhoA/ROCK Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5561221. [PMID: 34414236 PMCID: PMC8370821 DOI: 10.1155/2021/5561221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 01/24/2023]
Abstract
Brucea javanica oil (BJO) is beneficial for the treatment of ulcerative colitis (UC), and that quassinoids in particular brusatol are bioactive components. However, it is still uncertain whether or not other components in BJO, such as oleic acid and fatty acids, have an anti-UC effect. The present study is aimed at comparing the anti-UC effects between brusatol-enriched BJO (BE-BJO) and brusatol-free BJO (BF-BJO) and at exploring the effects and mechanisms of BE-BJO on colon inflammation and intestinal epithelial barrier function. Balb/C mice received 3% (wt/vol) DSS for one week to establish the UC model. Different doses of BE-BJO, BF-BJO, or BJO were treated. The result illustrated that BE-BJO alleviated DSS-induced loss of body weight, an increase of disease activity index (DAI), and a shortening of colon, whereas BF-BJO did not have these protective effects. BE-BJO treatment improved the morphology of colon tissue, inhibited the production and release of TNF-α, IFN-γ, IL-6, and IL-1β in the colon tissue, and reversed the decreased expressions of ZO-1, occludin, claudin-1, and E-cadherin induced by DSS but augmented claudin-2 expression. Mechanistically, BE-BJO repressed phosphorylation of NF-κB subunit p65, suppressed RhoA activation, downregulated ROCK, and prevented phosphorylation of myosin light chain (MLC) in DSS-treated mice, indicating that the protective effect of BE-BJO is attributed to suppression of NF-κB and RhoA/ROCK signaling pathways. These findings confirm that brusatol is an active component from BJO in the treatment of UC.
Collapse
|
11
|
Zhang M, Liu J, Gao R, Hu Y, Lu L, Liu C, Ai L, Pan J, Tian L, Fan J. Interleukin-36γ aggravates macrophage foam cell formation and atherosclerosis progression in ApoE knockout mice. Cytokine 2021; 146:155630. [PMID: 34246054 DOI: 10.1016/j.cyto.2021.155630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerosis-related cardiovascular diseases are the leading cause of mortality worldwide. Macrophage-derived foam cell formation is a critical early event in atherogenesis. However, the molecular pathways involved in this disease have not been fully elucidated. Interleukin (IL)-36 plays a crucial role in inflammation, and this study was conducted to investigate the possible role of IL-36γ in the pathogenesis and regulation of atherosclerosis. In this study, we show that IL-36γ regulates inflammatory responses and lipoprotein metabolic processes in macrophages and exerts its atherosclerosis-promoting effects by increasing macrophage foam cell formation and uptake of oxidized low-density lipoproteins. Mechanistically, IL-36γ specifically upregulates expression of the scavenger receptor CD36 through the phosphoinositide 3-kinase pathway in macrophages. These results contribute to our understanding of IL-36γ as a novel regulator of foam cell formation and atherogenesis progression.
Collapse
Affiliation(s)
- Minghua Zhang
- Clinical Pharmacy Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Rong Gao
- Air Force Medical Center, PLA, Beijing 100142, China
| | - Yazhuo Hu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Li Lu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200040, China
| | - Chuanbin Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lunna Ai
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jingkun Pan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Tian
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
12
|
Bahrami A, Sathyapalan T, Sahebkar A. The Role of Interleukin-18 in the Development and Progression of Atherosclerosis. Curr Med Chem 2021; 28:1757-1774. [PMID: 32338205 DOI: 10.2174/0929867327666200427095830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/14/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis (AS), as a chronic inflammatory disorder of the cardiovascular system, is one of the leading causes of ischemic heart disease, stroke and peripheral vascular disease. There is growing evidence on the role of innate and adaptive immunity in the pathogenesis of atherosclerosis. Interleukin-18 is one of the novel proinflammatory cytokines involved in atherogenesis, atherosclerotic plaque instability and plaque rupture. In this review, we overview the findings of preclinical and clinical studies about the role and mechanism of action of IL-18 in the pathogenesis of AS, which could offer novel prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | |
Collapse
|
13
|
Fu YY, Ren CE, Qiao PY, Meng YH. Uterine natural killer cells and recurrent spontaneous abortion. Am J Reprod Immunol 2021; 86:e13433. [PMID: 33896061 DOI: 10.1111/aji.13433] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Recurrent spontaneous abortion (RSA), termed as two or more consecutive pregnancy loss is a great problem for some women of childbearing age. A large number of evidence confirm that there may be an immune background of RSA. As a member of the innate immune system, uterine natural killer (uNK) cells account for about 70% of total lymphocytes during pregnancy and play a critical role in the establishment and maintenance of pregnancy. This review mainly introduces the phenotype, origin, receptor, and function of uNK cells to illuminate its relationship with RSA.
Collapse
Affiliation(s)
- Yao-Yao Fu
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Chun-E Ren
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Peng-Yun Qiao
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yu-Han Meng
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
14
|
Zhang S, Li Z, Zhang Y, Chen J, Li Y, Wu F, Wang W, Cui ZJ, Chen G. Ketone Body 3-Hydroxybutyrate Ameliorates Atherosclerosis via Receptor Gpr109a-Mediated Calcium Influx. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003410. [PMID: 33977048 PMCID: PMC8097358 DOI: 10.1002/advs.202003410] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that can cause acute cardiovascular events. Activation of the NOD-like receptor family, pyrin domain containing protein 3 (NLRP3) inflammasome enhances atherogenesis, which links lipid metabolism to sterile inflammation. This study examines the impact of an endogenous metabolite, namely ketone body 3-hydroxybutyrate (3-HB), on a mouse model of atherosclerosis. It is found that daily oral administration of 3-HB can significantly ameliorate atherosclerosis. Mechanistically, 3-HB is found to reduce the M1 macrophage proportion and promote cholesterol efflux by acting on macrophages through its receptor G-protein-coupled receptor 109a (Gpr109a). 3-HB-Gpr109a signaling promotes extracellular calcium (Ca2+) influx. The elevation of intracellular Ca2+ level reduces the release of Ca2+ from the endothelium reticulum (ER) to mitochondria, thus inhibits ER stress triggered by ER Ca2+ store depletion. As NLRP3 inflammasome can be activated by ER stress, 3-HB can inhibit the activation of NLRP3 inflammasome, which triggers the increase of M1 macrophage proportion and the inhibition of cholesterol efflux. It is concluded that daily nutritional supplementation of 3-HB attenuates atherosclerosis in mice.
Collapse
Affiliation(s)
- Shu‐jie Zhang
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Zi‐hua Li
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Yu‐dian Zhang
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Jin Chen
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Yuan Li
- Institute of Cell BiologyBeijing Normal UniversityBeijing100875P. R. China
| | - Fu‐qing Wu
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Wei Wang
- Innovative Institute of Animal Healthy BreedingCollege of Animal Sciences and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510025P. R. China
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062P. R. China
| | - Zong Jie Cui
- Institute of Cell BiologyBeijing Normal UniversityBeijing100875P. R. China
| | - Guo‐Qiang Chen
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084P. R. China
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijing100084P. R. China
- MOE Key Laboratory for Industrial BiocatalysisDept Chemical EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
15
|
Kurilenko N, Fatkhullina AR, Mazitova A, Koltsova EK. Act Locally, Act Globally-Microbiota, Barriers, and Cytokines in Atherosclerosis. Cells 2021; 10:cells10020348. [PMID: 33562334 PMCID: PMC7915371 DOI: 10.3390/cells10020348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is characterized by the formation and progressive growth of atherosclerotic plaques in the wall of arteries. Atherosclerosis is a major predisposing factor for stroke and heart attack. Various immune-mediated mechanisms are implicated in the disease initiation and progression. Cytokines are key mediators of the crosstalk between innate and adaptive immune cells as well as non-hematopoietic cells in the aortic wall and are emerging players in the regulation of atherosclerosis. Progression of atherosclerosis is always associated with increased local and systemic levels of pro-inflammatory cytokines. The role of cytokines within atherosclerotic plaque has been extensively investigated; however, the cell-specific role of cytokine signaling, particularly the role of cytokines in the regulation of barrier tissues tightly associated with microbiota in the context of cardiovascular diseases has only recently come to light. Here, we summarize the knowledge about the function of cytokines at mucosal barriers and the interplay between cytokines, barriers, and microbiota and discuss their known and potential implications for atherosclerosis development.
Collapse
Affiliation(s)
- Natalia Kurilenko
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
| | | | - Aleksandra Mazitova
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
| | - Ekaterina K. Koltsova
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
- Correspondence:
| |
Collapse
|
16
|
Valproic acid inhibits interferon-γ production by NK cells and increases susceptibility to Listeria monocytogenes infection. Sci Rep 2020; 10:17802. [PMID: 33082490 PMCID: PMC7576816 DOI: 10.1038/s41598-020-74836-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Valproic acid (VPA) is a drug commonly used for epileptic seizure control. Recently, it has been shown that VPA alters the activation of several immune cells, including Natural Killer (NK) cells, which play an important role in the containment of viruses and intracellular bacteria. Although VPA can increase susceptibility to extracellular pathogens, it is unknown whether the suppressor effect of VPA could affect the course of intracellular bacterial infection. This study aimed to evaluate the role of VPA during Listeria monocytogenes (L.m) infection, and whether NK cell activation was affected. We found that VPA significantly augmented mortality in L.m infected mice. This effect was associated with increased bacterial load in the spleen, liver, and blood. Concurrently, decreased levels of IFN-γ in serum and lower splenic indexes were observed. Moreover, in vitro analysis showed that VPA treatment decreased the frequency of IFN-γ-producing NK cells within L.m infected splenocytes. Similarly, VPA inhibited the production of IFN-γ by NK cells stimulated with IL-12 and IL-18, which is a crucial system for early IFN-γ production in listeriosis. Finally, VPA decreased the phosphorylation of STAT4, p65, and p38, without affecting the expression of IL-12 and IL-18 receptors. Altogether, our results indicate that VPA increases the susceptibility to Listeria monocytogenes infection and suggest that NK cell is one of the main targets of VPA, but further work is needed to ascertain this effect.
Collapse
|
17
|
Rapp N, Evenepoel P, Stenvinkel P, Schurgers L. Uremic Toxins and Vascular Calcification-Missing the Forest for All the Trees. Toxins (Basel) 2020; 12:E624. [PMID: 33003628 PMCID: PMC7599869 DOI: 10.3390/toxins12100624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
The cardiorenal syndrome relates to the detrimental interplay between the vascular system and the kidney. The uremic milieu induced by reduced kidney function alters the phenotype of vascular smooth muscle cells (VSMC) and promotes vascular calcification, a condition which is strongly linked to cardiovascular morbidity and mortality. Biological mechanisms involved include generation of reactive oxygen species, inflammation and accelerated senescence. A better understanding of the vasotoxic effects of uremic retention molecules may reveal novel avenues to reduce vascular calcification in CKD. The present review aims to present a state of the art on the role of uremic toxins in pathogenesis of vascular calcification. Evidence, so far, is fragmentary and limited with only a few uremic toxins being investigated, often by a single group of investigators. Experimental heterogeneity furthermore hampers comparison. There is a clear need for a concerted action harmonizing and standardizing experimental protocols and combining efforts of basic and clinical researchers to solve the complex puzzle of uremic vascular calcification.
Collapse
MESH Headings
- Animals
- Cardio-Renal Syndrome/metabolism
- Cardio-Renal Syndrome/pathology
- Cardio-Renal Syndrome/physiopathology
- Cardio-Renal Syndrome/therapy
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Prognosis
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/therapy
- Toxins, Biological/metabolism
- Uremia/metabolism
- Uremia/pathology
- Uremia/physiopathology
- Uremia/therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
- Vascular Calcification/therapy
Collapse
Affiliation(s)
- Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, 141 86 Stockholm, Sweden;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
18
|
Abstract
Atherosclerosis, a chronic inflammatory disorder of the vasculature that results in cardiovascular disease, continues to pose a significant health and economic burden on modern society. Whilst inflammation has generally been accepted as the key driver of all stages of the disease, it was not until recently that inhibition of a specific proinflammatory cytokine (IL-1β) yielded successful results in the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study trial. This article offers a perspective on targeting inflammation for atherosclerosis, focusing on results of recent Phase III clinical trials, and discusses other potential candidates together with future challenges and prospects.
Collapse
|
19
|
Satish M, Agrawal DK. Atherothrombosis and the NLRP3 inflammasome - endogenous mechanisms of inhibition. Transl Res 2020; 215:75-85. [PMID: 31469975 PMCID: PMC6889001 DOI: 10.1016/j.trsl.2019.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
Recently, the CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study) showed the successful anti-inflammatory benefit of canakinumab, a monoclonal antibody targeting interleukin-1ß (IL-1ß) toward major cardiovascular events (MACE) in patients with a previous myocardial infarction (MI). The magnitude of reduction in MACE was directly attributed to a reduction witnessed in IL-6 and C-reactive protein (CRP) and highlighted the therapeutic potential of selectively targeting IL-1ß for atherosclerotic disease, a notion previously introduced in animal models. IL-1ß is involved in the downstream activation of the IL-6 receptor, which itself has been previously implicated as a target for atherothrombosis from Mendelian randomization studies. Further support has been garnered with the results of CIRT (Cardiovascular Inflammation Reduction Trial), which showed the inability of low-dose methotrexate to reduce IL-1ß, IL-6, or high-sensitivity CRP (hsCRP) in addition to MACE among patients with prior MI or multivessel coronary artery disease (CAD) but with normal hsCRP levels. Therefore, elucidation of therapeutic targets against the IL-1ß pathway is of immense interest currently in treating atherothrombosis. Upstream and serving as an activator of IL-1ß lies the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome that has been well described in animal models to be activated by cholesterol crystals or hypoxia to promote cleavage and secretion of IL-1ß and IL-18 that lead to atherosclerotic deposition in arteries. Given the direct implication of an atherogenic role to the NLRP3 inflammasome in generating these cytokines, NLRP3 inhibitors are of interest with the consideration to move upstream from the initial success of anti-IL-1ß therapy. With further discussion of the existing knowledge on the proinflammatory relationship of the NLRP3 inflammasome with atherosclerosis, this review summarizes and critically evaluates the preclinical and interventional findings of endogenous NLRP3 inflammasome inhibition in attempts to elucidate anti-inflammatory mechanisms, and therapeutic targets against atherothrombosis. Further investigation focusing on the endogenous mechanisms of inhibition of the NLRP3 inflammasome would uncover diagnostic routes from defective means in inflammatory resolution. Specifically, pro-resolving lipid mediators, autophagy, and phosphorylation/dephosphorylation mechanisms are 3 points of worthy investigation from existing evidence.
Collapse
Affiliation(s)
- Mohan Satish
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska; Department of Translational Research, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
20
|
Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 120:85-122. [PMID: 32085889 DOI: 10.1016/bs.apcsb.2019.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The term atherosclerosis refers to the condition of deposition of lipids and other substances in and on the artery walls, called as plaque that restricts the normal blood flow. The plaque may be stable or unstable in nature. Unstable plaque can burst and trigger clot formation adding further adversities. The process of plaque formation involves various stages including fatty streak, intermediate or fibro-fatty lesion and advanced lesion. The cells participating in the formation of atherosclerotic plaque include endothelial cells, vascular smooth muscle cells (VSMC), monocytes, monocytes derived macrophages, macrophages and dendritic cells and regulatory T cells (TREG). The role of a variety of cytokines and chemokines have been studied which either help in progression of atherosclerotic plaque or vice versa. The cytokines involved in atherosclerotic plaque formation include IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IL-18, IL-20, IL-25, IL-27, IL-33, IL-37, TNF-α, TGF-β and IFN-γ; whereas amongst the chemokines (family of small cytokines) are CCL2, CCL3, CXCL4, CCL5, CXCL1, CX3CL1, CCL17, CXCL8, CXCL10, CCL20, CCL19 and CCL21 and macrophage migration-inhibitory factor. These are involved in the atherosclerosis advancements, whereas the chemokine CXCL12 is play atheroprotective roles. Apart this, contradictory functions have been documented for few other chemokines such as CXCL16. Since the cytokines and chemokines are amongst the key molecules involved in orchestrating the atherosclerosis advancements, targeting them might be an effective strategy to encumber the atherosclerotic progression. Blockage of cytokines and chemokines via the means of broad-spectrum inhibitors, neutralizing antibodies, usage of decoy receptors or RNA interference have been proved to be useful intervention against atherosclerosis.
Collapse
Affiliation(s)
- Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, MP, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, MP, India
| |
Collapse
|
21
|
Pfeiler S, Winkels H, Kelm M, Gerdes N. IL-1 family cytokines in cardiovascular disease. Cytokine 2019; 122:154215. [DOI: 10.1016/j.cyto.2017.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
|
22
|
Analysis of interleukin-17 and interleukin-18 levels in animal models of atherosclerosis. Exp Ther Med 2019; 18:517-522. [PMID: 31281442 PMCID: PMC6580100 DOI: 10.3892/etm.2019.7634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
This study investigated the correlation between the levels of interleukin (IL)-17 and IL-18 and atherosclerotic plaques. A total of 60 Apo E gene (Apo E-/-) mice were fed with high-fat diet in the model group and 20 wild male C57BL/6 mice were fed with the basic diet in the control group. The serum levels of IL-17 and IL-18 were determined by enzyme-linked immunosorbent assay. Carotid artery ultrasonography was performed and divided into stable plaque, unstable plaque and non-plaque groups. The severity of plaque was estimated by semi-quantitative method and divided into grades I, II and III. The expression levels of low-density lipoprotein cholesterol, plasma total cholesterol and blood glucose level in the model group induced by high-fat diet were significantly higher than those in the control group (P<0.05). The level in the model group was significantly higher than in the control group at the 16th week (P<0.05). The expression of IL-17 and IL-18 in the model group was significantly higher than that in the control group (t=6.903, 11.02, P<0.05). The concentration of IL-17 and IL-18 in the non-plaque group was significantly lower than that in the stable plaque and unstable plaque groups (P<0.05). The concentration of IL-17 and IL-18 in the stable plaque group was significantly lower than that in the unstable plaque group (P<0.05). Based on the correlation of IL-17 and IL-18 expressions in the model group, the expression of IL-18 increased with the expression of IL-17, indicating that the expression of IL-17 was positively correlated with that of IL-18 (r=0.7195, P<0.001). In conclusion, serum IL-17 and IL-18 played an important role in the formation and development of atherosclerotic plaque, and were related to the stability and severity of plaque. The expression of IL-17 and IL-18 was positively correlated.
Collapse
|
23
|
van Keulen D, Pouwer MG, Pasterkamp G, van Gool AJ, Sollewijn Gelpke MD, Princen HMG, Tempel D. Inflammatory cytokine oncostatin M induces endothelial activation in macro- and microvascular endothelial cells and in APOE*3Leiden.CETP mice. PLoS One 2018; 13:e0204911. [PMID: 30273401 PMCID: PMC6166945 DOI: 10.1371/journal.pone.0204911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
AIMS Endothelial activation is involved in many chronic inflammatory diseases, such as atherosclerosis, and is often initiated by cytokines. Oncostatin M (OSM) is a relatively unknown cytokine that has been suggested to play a role in both endothelial activation and atherosclerosis. We comprehensively investigated the effect of OSM on endothelial cell activation from different vascular beds and in APOE*3Leiden.CETP mice. METHODS AND RESULTS Human umbilical vein endothelial cells, human aortic endothelial cells and human microvascular endothelial cells cultured in the presence of OSM express elevated MCP-1, IL-6 and ICAM-1 mRNA levels. Human umbilical vein endothelial cells and human aortic endothelial cells additionally expressed increased VCAM-1 and E-selectin mRNA levels. Moreover, ICAM-1 membrane expression is increased as well as MCP-1, IL-6 and E-selectin protein release. A marked increase was observed in STAT1 and STAT3 phosphorylation indicating that the JAK/STAT pathway is involved in OSM signaling. OSM signals through the LIF receptor alfa (LIFR) and the OSM receptor (OSMR). siRNA knockdown of the LIFR and the OSMR revealed that simultaneous knockdown is necessary to significantly reduce MCP-1 and IL-6 secretion, VCAM-1 and E-selectin shedding and STAT1 and STAT3 phosphorylation after OSM stimulation. Moreover, OSM administration to APOE*3Leiden.CETP mice enhances plasma E-selectin levels and increases ICAM-1 expression and monocyte adhesion in the aortic root area. Furthermore, Il-6 mRNA expression was elevated in the aorta of OSM treated mice. CONCLUSION OSM induces endothelial activation in vitro in endothelial cells from different vascular beds through activation of the JAK/STAT cascade and in vivo in APOE*3Leiden.CETP mice. Since endothelial activation is an initial step in atherosclerosis development, OSM may play a role in the initiation of atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Danielle van Keulen
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Quorics B.V, Rotterdam, The Netherlands
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Marianne G. Pouwer
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alain J. van Gool
- TNO- Microbiology & Systems Biology, Zeist, The Netherlands
- Radboudumc, Nijmegen, The Netherlands
| | | | - Hans M. G. Princen
- TNO-Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Dennie Tempel
- Laboratory of Experimental Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Quorics B.V, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
24
|
Jin DY, Liu CL, Tang JN, Zhu ZZ, Xuan XX, Zhu XD, Wang YZ, Zhang TX, Shen DL, Wang XF, Shi GP, Zhang JY. Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease. J Zhejiang Univ Sci B 2017; 18:685-695. [PMID: 28786243 DOI: 10.1631/jzus.b1700073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Coronary heart disease (CHD) is characterized by arterial wall inflammation and matrix degradation. Matrix metalloproteinase (MMP)-22 and -29 and pro-inflammatory cytokine interleukin-18 (IL18) are present in human hearts. IL18 may regulate MMP-22 and -29 expression, which may correlate with CHD progression. METHODS AND RESULTS Immunoblot analysis showed that IL18 induced MMP-22 expression in human aortic smooth muscle cells. The Mann Whitney test from a prospective study of 194 CHD patients and 68 non-CHD controls demonstrated higher plasma levels of IL18, MMP-22 and -29 in CHD patients than in the controls. A logistic regression test suggested that plasma IL18 (odds ratio (OR)=1.131, P=0.007), MMP-22 (OR=1.213, P=0.040), and MMP-29 (OR=1.198, P=0.033) were independent risk factors of CHD. Pearson's correlation test showed that IL18 (coefficient (r)=0.214, P=0.045; r=0.246, P=0.031) and MMP-22 (r=0.273, P=0.006; r=0.286, P=0.012) were associated with the Gensini score before and after adjusting for potential confounding factors. The multivariate Pearson's correlation test showed that plasma MMP-22 levels correlated positively with high-sensitive-C-reactive protein (hs-CRP) (r=0.167, P=0.023), and MMP-29 levels correlated negatively with triglyceride (r=-0.169, P=0.018). Spearman's correlation test indicated that plasma IL18 levels associated positively with plasma MMP-22 (r=0.845, P<0.001) and MMP-29 (r=0.548, P<0.001). CONCLUSIONS Our observations suggest that IL18, MMP-22 and -29 serve as biomarkers and independent risk factors of CHD. Increased systemic IL18 in CHD patients may contribute to elevated plasma MMP-22 and -29 levels in these patients.
Collapse
Affiliation(s)
- Dong-Yi Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cong-Lin Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jun-Nan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Zhao-Zhong Zhu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xue-Xi Xuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiao-Dan Zhu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yun-Zhe Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tian-Xia Zhang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - De-Liang Shen
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiao-Fang Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guo-Ping Shi
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jin-Ying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
25
|
Stachon P, Heidenreich A, Merz J, Hilgendorf I, Wolf D, Willecke F, von Garlen S, Albrecht P, Härdtner C, Ehrat N, Hoppe N, Reinöhl J, von Zur Mühlen C, Bode C, Idzko M, Zirlik A. P2X 7 Deficiency Blocks Lesional Inflammasome Activity and Ameliorates Atherosclerosis in Mice. Circulation 2017; 135:2524-2533. [PMID: 28377486 DOI: 10.1161/circulationaha.117.027400] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/24/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) binds as a danger signal to purinergic receptor P2X7 and promotes inflammasome assembly and interleukin-1β expression. We hypothesized a functional role of the signal axis ATP-P2X7 in inflammasome activation and the chronic inflammation driving atherosclerosis. METHODS P2X7-competent and P2X7-deficient macrophages were isolated and stimulated with lipopolysaccharide, ATP, or both. To assess whether P2X7 may have a role in atherosclerosis, P2X7 expression was analyzed in aortic arches from low density lipoprotein receptor-/- mice consuming a high-cholesterol or chow diet. P2X7+/+ and P2X7-/- low density lipoprotein receptor-/- mice were fed a high-cholesterol diet to investigate the functional role of P2X7 knockout in atherosclerosis. Human plaques were derived from carotid endarterectomy and stained against P2X7. RESULTS Lipopolysaccharide or ATP stimulation alone did not activate caspase 1 in isolated macrophages. However, priming with lipopolysaccharide, followed by stimulation with ATP, led to an activation of caspase 1 and interleukin-1β in P2X7-competent macrophages. In contrast, P2X7-deficient macrophages showed no activation of caspase 1 after sequential stimulation while still expressing a basal amount of interleukin-1β. P2X7 receptor was higher expressed in murine atherosclerotic lesions, particularly by lesional macrophages. After 16 weeks of a high-cholesterol diet, P2X7-deficient mice showed smaller atherosclerotic lesions than P2X7-competent mice (0.162 cm2±0.023 [n=9], P2X7-/- low density lipoprotein receptor-/- : 0.084 cm2±0.01 [n=11], P=0.004) with a reduced amount of lesional macrophages. In accord with our in vitro findings, lesional caspase 1 activity was abolished in P2X7-/- mice. In addition, intravital microscopy revealed reduced leukocyte rolling and adhesion in P2X7-deficient mice. Last, we observe increased P2X7 expression in human atherosclerotic lesions, suggesting that our findings in mice are relevant for human disease. CONCLUSIONS P2X7 deficiency resolved plaque inflammation by inhibition of lesional inflammasome activation and reduced experimental atherosclerosis. Therefore, P2X7 represents an interesting potential new target to combat atherosclerosis.
Collapse
Affiliation(s)
- Peter Stachon
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany.
| | - Adrian Heidenreich
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Julian Merz
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Ingo Hilgendorf
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Dennis Wolf
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Florian Willecke
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Sunaina von Garlen
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Philipp Albrecht
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Carmen Härdtner
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Nicolas Ehrat
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Natalie Hoppe
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Jochen Reinöhl
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Constantin von Zur Mühlen
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Christoph Bode
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Marco Idzko
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| | - Andreas Zirlik
- From Department of Cardiology and Angiology I, Heart Center Freiburg University, Germany (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., A.Z.); and Faculty of Medicine (P.S., A.H., J.M., I.H., D.W., F.W., S.v.G., P.A., C.H., N.H., J.R., C.v.z.M., C.B., M.I., A.Z.) and Faculty of Biology (J.M.) and Department of Pneumology (N.E., M.I.), University of Freiburg, Germany
| |
Collapse
|
26
|
Fatkhullina AR, Peshkova IO, Koltsova EK. The Role of Cytokines in the Development of Atherosclerosis. BIOCHEMISTRY (MOSCOW) 2017; 81:1358-1370. [PMID: 27914461 DOI: 10.1134/s0006297916110134] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis contributes to the development of many cardiovascular diseases, which remain the leading cause of death in developed countries. Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries. It is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Inflammation is a key factor at all stages of atherosclerosis progression. Cells involved in pathogenesis of atherosclerosis were shown to be activated by soluble factors, cytokines, that strongly influence the disease development. Pro-inflammatory cytokines accelerate atherosclerosis progression, while anti-inflammatory cytokines ameliorate the disease. In this review, we discuss the latest findings on the role of cytokines in the development and progression of atherosclerosis.
Collapse
|
27
|
Physical Exercise Is a Potential "Medicine" for Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:269-286. [PMID: 29022268 DOI: 10.1007/978-981-10-4307-9_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) has been recognized as the number one killer for decades. The most well-known risk factor is atherosclerosis. Unlike the acuity of CVD, atherosclerosis is a chronic, progressive pathological change. This process involves inflammatory response, oxidative reaction, macrophage activity, and different interaction of inflammatory factors. Physical exercise has long been known as good for health in general. In recent studies, physical exercise has been demonstrated to be a therapeutic tool for atherosclerosis. However, its therapeutic effect has dosage-dependent effect. Un-proper over exercise might also cause damage to the heart. Here we summarize the mechanism of Physical exercise's beneficial effects and its potential clinical use.
Collapse
|
28
|
Sakamuri SSVP, Higashi Y, Sukhanov S, Siddesha JM, Delafontaine P, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice. Atherosclerosis 2016; 252:153-160. [PMID: 27237075 DOI: 10.1016/j.atherosclerosis.2016.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a major cause of heart attack and stroke. Inflammation plays a critical role in the development of atherosclerosis. Since the cytoplasmic adaptor molecule TRAF3IP2 (TRAF3-Interacting Protein 2) plays a causal role in various autoimmune and inflammatory diseases, we hypothesized that TRAF3IP2 mediates atherosclerotic plaque development. METHODS TRAF3IP2/ApoE double knockout (DKO) mice were generated by crossing TRAF3IP2(-/-) and ApoE(-/-) mice. ApoE(-/-) mice served as controls. Both DKO and control mice were fed a high-fat diet for 12 weeks. Plasma lipids were measured by ELISA, atherosclerosis by en face analysis of aorta and plaque cross-section measurements at the aortic valve region, plaque necrotic core area, collagen and smooth muscle cell (SMC) content by histomorphometry, and aortic gene expression by RT-qPCR. RESULTS The plasma lipoprotein profile was not altered by TRAF3IP2 gene deletion in ApoE(-/-) mice. While total aortic plaque area was decreased in DKO female, but not male mice, the plaque necrotic area was significantly decreased in DKO mice of both genders. Plaque collagen and SMC contents were increased significantly in both female and male DKO mice compared to respective controls. Aortic expression of proinflammatory cytokine (Tumor necrosis factor α, TNFα), chemokine (Chemokine (C-X-C motif) Ligand 1, CXCL1) and adhesion molecule (Vascular cell adhesion molecule 1, VCAM1; and Intercellular adhesion molecule 1, ICAM1) gene expression were decreased in both male and female DKO mice. In addition, the male DKO mice expressed markedly reduced levels of extracellular matrix (ECM)-related genes, including TIMP1 (Tissue inhibitor of metalloproteinase 1), RECK (Reversion-Inducing-Cysteine-Rich Protein with Kazal Motifs) and ADAM17 (A Disintegrin And Metalloproteinase 17). CONCLUSIONS TRAF3IP2 plays a causal role in atherosclerotic plaque development and vulnerability, possibly by inducing the expression of multiple proinflammatory mediators. TRAF3IP2 could be a potential therapeutic target in atherosclerotic vascular diseases.
Collapse
Affiliation(s)
| | - Yusuke Higashi
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Sergiy Sukhanov
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Jalahalli M Siddesha
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Ulrich Siebenlist
- Laboratory of Immunoregulation, NIAID/NIH, Bethesda, MD, 20892, United States
| | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States; HS Truman Memorial Veterans Hospital, 800 Hospital Drive, Columbia, MO, 75201, United States.
| |
Collapse
|
29
|
|
30
|
Ballak DB, Stienstra R, Tack CJ, Dinarello CA, van Diepen JA. IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue inflammation and insulin resistance. Cytokine 2015; 75:280-90. [PMID: 26194067 PMCID: PMC4553099 DOI: 10.1016/j.cyto.2015.05.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
Abstract
Obesity is characterized by a chronic, low-grade inflammation that contributes to the development of insulin resistance and type 2 diabetes. Cytokines and chemokines produced by immunocompetent cells influence local as well as systemic inflammation and are therefore critical contributors to the pathogenesis of type 2 diabetes. Hence, cytokines that modulate inflammatory responses are emerging as potential targets for intervention and treatment of the metabolic consequences of obesity. The interleukin-1 (IL-1) family of cytokines and receptors are key mediators of innate inflammatory responses and exhibit both pro- and anti-inflammatory functions. During the last decades, mechanistic insights into how the IL-1 family affects the initiation and progression of obesity-induced insulin resistance have increased significantly. Here, we review the current knowledge and understanding, with emphasis on the therapeutic potential of individual members of the IL-1 family of cytokines for improving insulin sensitivity in patients with diabetes.
Collapse
Affiliation(s)
- Dov B Ballak
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Department of Medicine, University of Colorado Denver, Aurora, CO, USA.
| | - Rinke Stienstra
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Cees J Tack
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charles A Dinarello
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Janna A van Diepen
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Jovanović I, Zivković M, Djurić T, Popović M, Alavantić D, Stanković A. CXCL16 in Vascular Pathology Research: from Macro Effects to microRNAs. J Atheroscler Thromb 2015; 22:1012-24. [PMID: 26289084 DOI: 10.5551/jat.29942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chemokines and their receptors have become significant factors in atherosclerosis research. CXCL16 is a multifunctional agent located on a separate locus to all other known chemokines and binds only to its "unique" receptor named CXCR6. As a scavenger receptor, adhesion molecule, and chemokine, it quickly became an interesting target in atherosclerosis research as all its functions have a role in vascular pathology. The investigation of the role of CXCL16 in atherosclerosis, although shown in in vitro studies, animal knockout models, and CXCL16 gene polymorphisms, haplotypes, and circulating levels, still shows puzzling results. Genetic and epigenetic studies have just scratched the surface of research necessary for a better assessment of the significance and perspective of this marker in plaque development and progression. In this review, we will summarize current knowledge about CXCL16 in atherosclerosis. Additionally, we will point out the importance of bioinformatics tools for the detection of potentially new CXCL16 regulatory networks through microRNA activity. This review aims to provide a better understanding of the underlying mechanisms, define more specific biomarkers, and discover new therapeutic targets.
Collapse
Affiliation(s)
- Ivan Jovanović
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade
| | | | | | | | | | | |
Collapse
|
32
|
Wang J, Sun C, Gerdes N, Liu C, Liao M, Liu J, Shi MA, He A, Zhou Y, Sukhova GK, Chen H, Cheng XW, Kuzuya M, Murohara T, Zhang J, Cheng X, Jiang M, Shull GE, Rogers S, Yang CL, Ke Q, Jelen S, Bindels R, Ellison DH, Jarolim P, Libby P, Shi GP. Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat Med 2015; 21:820-6. [PMID: 26099046 PMCID: PMC4554539 DOI: 10.1038/nm.3890] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
Interleukin-18 (IL18) participates in atherogenesis through several putative mechanisms. Interruption of IL18 action reduces atherosclerosis in mice. Here, we show that absence of the IL18 receptor (IL18r) does not affect atherosclerosis in apolipoprotein E-deficient (Apoe(-/-)) mice, nor does it affect IL18 cell surface binding to or signaling in endothelial cells. As identified initially by co-immunoprecipitation with IL18, we found that IL18 interacts with the Na-Cl co-transporter (NCC; also known as SLC12A3), a 12-transmembrane-domain ion transporter protein preferentially expressed in the kidney. NCC is expressed in atherosclerotic lesions, where it colocalizes with IL18r. In Apoe(-/-) mice, combined deficiency of IL18r and NCC, but not single deficiency of either protein, protects mice from atherosclerosis. Peritoneal macrophages from Apoe(-/-) mice or from Apoe(-/-) mice lacking IL18r or NCC show IL18 binding and induction of cell signaling and cytokine and chemokine expression, but macrophages from Apoe(-/-) mice with combined deficiency of IL18r and NCC have a blunted response. An interaction between NCC and IL18r on macrophages was detected by co-immunoprecipitation. IL18 binds to the cell surface of NCC-transfected COS-7 cells, which do not express IL18r, and induces cell signaling and cytokine expression. This study identifies NCC as an IL18-binding protein that collaborates with IL18r in cell signaling, inflammatory molecule expression, and experimental atherogenesis.
Collapse
Affiliation(s)
- Jing Wang
- 1] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Chongxiu Sun
- 1] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Norbert Gerdes
- 1] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
| | - Conglin Liu
- 1] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengyang Liao
- 1] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jian Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael A Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Aina He
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Huimei Chen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xian Wu Cheng
- Departments of Cardiology and Geriatrics, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Masafumi Kuzuya
- Departments of Cardiology and Geriatrics, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toyoaki Murohara
- Departments of Cardiology and Geriatrics, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Jie Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiang Cheng
- 1] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Jiang
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shaunessy Rogers
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon, USA
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon, USA
| | - Qiang Ke
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sabina Jelen
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - René Bindels
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - David H Ellison
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon, USA
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev 2015; 26:673-85. [PMID: 26005197 PMCID: PMC4671520 DOI: 10.1016/j.cytogfr.2015.04.003] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic inflammatory disorder of the arteries, is responsible for most deaths in westernized societies with numbers increasing at a marked rate in developing countries. The disease is initiated by the activation of the endothelium by various risk factors leading to chemokine-mediated recruitment of immune cells. The uptake of modified lipoproteins by macrophages along with defective cholesterol efflux gives rise to foam cells associated with the fatty streak in the early phase of the disease. As the disease progresses, complex fibrotic plaques are produced as a result of lysis of foam cells, migration and proliferation of vascular smooth muscle cells and continued inflammatory response. Such plaques are stabilized by the extracellular matrix produced by smooth muscle cells and destabilized by matrix metalloproteinase from macrophages. Rupture of unstable plaques and subsequent thrombosis leads to clinical complications such as myocardial infarction. Cytokines are involved in all stages of atherosclerosis and have a profound influence on the pathogenesis of this disease. This review will describe our current understanding of the roles of different cytokines in atherosclerosis together with therapeutic approaches aimed at manipulating their actions.
Collapse
|
34
|
Haneklaus M, O'Neill LAJ. NLRP3 at the interface of metabolism and inflammation. Immunol Rev 2015; 265:53-62. [DOI: 10.1111/imr.12285] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Moritz Haneklaus
- School of Biochemistry & Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin 2 Ireland
| | - Luke A. J. O'Neill
- School of Biochemistry & Immunology; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
35
|
Gao Q, Li Y, Li M. The potential role of IL-33/ST2 signaling in fibrotic diseases. J Leukoc Biol 2015; 98:15-22. [PMID: 25881899 DOI: 10.1189/jlb.3ru0115-012r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/26/2015] [Indexed: 12/15/2022] Open
Abstract
IL-33, a new member of the IL-1F, is widely expressed throughout the body and can be up-regulated by stimulation with proinflammatory factors. It has been identified as a functional ligand for the plasma membrane receptor complex that is a heterodimer consisting of membrane-bound ST2L, which is a member of the IL-1R family, and IL-1RAcP. IL-33 is crucial for the induction of Th2 immune responses. Additionally, under other circumstances, it can also act as an endogenous danger signal. Recently, many studies have demonstrated that IL-33 may be related to the development and progression of fibrotic diseases. It has proinflammatory effects in some fibrotic diseases but has anti-inflammatory effects in others. In this review, the biologic characteristics of IL-33 and the role of the IL-33/ST2 signaling pathway in various fibrotic diseases will be discussed. We hope this overview will provide new insights for the treatment of these diseases.
Collapse
Affiliation(s)
- Qiaoyan Gao
- Department of Immunology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Yan Li
- Department of Immunology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Mingcai Li
- Department of Immunology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
36
|
Buckley ML, Ramji DP. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1498-510. [PMID: 25887161 DOI: 10.1016/j.bbadis.2015.04.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
Atherosclerosis, the underlying cause of myocardial infarction and thrombotic cerebrovascular events, is responsible for the majority of deaths in westernized societies. Mortality from this disease is also increasing at a marked rate in developing countries due to the acquisition of a westernized lifestyle accompanied with elevated rates of obesity and diabetes. Atherosclerosis is recognized as a chronic inflammatory disorder associated with lipid accumulation and the development of fibrotic plaques within the walls of medium and large arteries. A range of immune cells, such as macrophages and T-lymphocytes, through the action of various cytokines, such as interleukins-1 and -33, transforming growth factor-β and interferon-γ, orchestrates the inflammatory response in this disease. The disease is also characterized by marked dysfunction in lipid homeostasis and signaling pathways that control the inflammatory response. This review will discuss the molecular basis of atherosclerosis with particular emphasis on the roles of the immune cells and cytokines along with the dysfunctional lipid homeostasis and cell signaling associated with this disease.
Collapse
Affiliation(s)
- Melanie L Buckley
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
37
|
Abstract
Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.
Collapse
Affiliation(s)
- Pascal J H Kusters
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, L01-146.1, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany.
| |
Collapse
|
38
|
Bhat OM, Kumar PU, Giridharan NV, Kaul D, Kumar MJM, Dhawan V. Interleukin-18-induced atherosclerosis involves CD36 and NF-κB crosstalk in Apo E-/- mice. J Cardiol 2014; 66:28-35. [PMID: 25475966 DOI: 10.1016/j.jjcc.2014.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/15/2014] [Accepted: 10/06/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Interleukin (IL)-18 is a pleotropic cytokine involved in various inflammatory disorders. The transcription factor, nuclear factor kappa-B (NF-κB), is thought to play an important role in IL-18 signaling. The present study proposes a novel role for IL-18 in cholesterol efflux and plaque stability and demonstrates that pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor blocks IL-18 signaling in apolipoprotein (Apo) E-/- mice. METHODS Three groups of normal chow-diet-fed, male Apo E-/- mice, aged 12 weeks (n=6/group) were employed: Gp I, PBS (2mo); Gp II, recombinant (r)IL-18 (1mo) followed by PBS (1mo); Gp III, rIL-18 (1mo) followed by PDTC (1mo). RESULTS Significantly augmented expression of IL-18 receptor (R)α by fluorescence-activated cell sorting analysis and plasma IL-18 was observed in Gp II. There was a significant increase in total cholesterol and low-density lipoprotein cholesterol whereas high-density lipoprotein cholesterol was significantly decreased in Gp II. However, this pattern was reversed in Gp III. Significantly augmented mRNA expression of IL-18, CD36, matrix metalloproteinase (MMP)-9, and NF-κB was observed in Gp II but liver X receptor alpha (LXR-α) gene was significantly reduced. A significant increase in frequency of atherosclerotic lesions was observed in Gp II animals, whereas there was a significant decrease in the Gp III. CONCLUSION IL-18 administration initiates inflammatory cascade by binding with IL-18 Rα via NF-κB which is involved in progression and destabilization of atherosclerotic plaques in Apo E-/- mice. This study also reveals that NF-κB blockade with PDTC, blocks IL-18 signaling through down-regulation of IL-18, IL-18 Rα, CD36, and MMP-9, thus reducing inflammation and restoring plaque instability via upregulation of LXR-α.
Collapse
Affiliation(s)
- Owais Mohammad Bhat
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - P Uday Kumar
- National Centre for Laboratory Animal Sciences (NCLAS), Hyderabad, Department of Histopathology, National Institute of Nutrition (NIN), Hyderabad, India
| | - N V Giridharan
- Amrita School of Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Viswavidyapeedham, Kochi, Kerala, India
| | - Deepak Kaul
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - M J Mahesh Kumar
- Animal House, Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
39
|
|
40
|
Brunetti ND, Correale M, Pellegrino PL, Munno I, Cuculo A, De Gennaro L, Gaglione A, Di Biase M. Early inflammatory cytokine response: a direct comparison between spontaneous coronary plaque destabilization vs angioplasty induced. Atherosclerosis 2014; 236:456-60. [PMID: 25173071 DOI: 10.1016/j.atherosclerosis.2014.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/13/2014] [Accepted: 07/27/2014] [Indexed: 11/29/2022]
Abstract
AIM To compare inflammatory response accompanying acute coronary syndrome (ACS) with that following coronary plaque rupture caused by coronary angioplasty (PCI). METHODS Twenty-seven consecutive subjects with either ACS or treated with PCI in the subacute phase of ACS underwent serial evaluation of circulating interleukin (IL)-2, IL-8, IL-10, interferon (IFN)-γ and tumor-necrosis-factor (TNF)-α levels. Blood samples were drawn immediately before angioplasty (T0) in the PCI group or at admission in the ACS group, 12 h (T1) and 24 h later (T2). RESULTS Differences between cytokine levels were substantially not statistically significant when comparing PCI, non-ST-elevation-ACS, and ST-elevation-ACS groups, especially 24 h after plaque rupture (T2, Type-II error 85-94%). CONCLUSIONS Inflammatory activation during the first 24 h of ACS or after PCI is comparable, regardless of myocardial damage in terms of troponin levels. Coronary plaque rupture may be presumed as being the main responsible for increased circulating cytokine levels in this early phase.
Collapse
Affiliation(s)
| | - Michele Correale
- Cardiology Department, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy
| | | | - Irene Munno
- Immunology Department, University of Bari, Piazza Giulio Cesare, 1, 70121 Bari, Italy
| | - Andrea Cuculo
- Cardiology Department, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy
| | - Luisa De Gennaro
- Cardiology Department, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy
| | - Antonio Gaglione
- Cardiology Department, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy
| | - Matteo Di Biase
- Cardiology Department, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy
| |
Collapse
|
41
|
Smirnova NF, Gayral S, Pedros C, Loirand G, Vaillant N, Malet N, Kassem S, Calise D, Goudounèche D, Wymann MP, Hirsch E, Gadeau AP, Martinez LO, Saoudi A, Laffargue M. Targeting PI3Kγ activity decreases vascular trauma-induced intimal hyperplasia through modulation of the Th1 response. ACTA ACUST UNITED AC 2014; 211:1779-92. [PMID: 25073791 PMCID: PMC4144742 DOI: 10.1084/jem.20131276] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Interventional strategies to treat atherosclerosis, such as transluminal angioplasty and stent implantation, often cause vascular injury. This leads to intimal hyperplasia (IH) formation that induces inflammatory and fibroproliferative processes and ultimately restenosis. We show that phosphoinositide 3-kinase γ (PI3Kγ) is a key player in IH formation and is a valid therapeutic target in its prevention/treatment. PI3Kγ-deficient mice and mice expressing catalytically inactive PI3Kγ (PI3Kγ KD) showed reduced arterial occlusion and accumulation of monocytes and T cells around sites of vascular lesion. The transfer of PI3Kγ KD CD4(+) T cells into Rag2-deficient mice greatly reduced vascular occlusion compared with WT cells, clearly demonstrating the involvement of PI3Kγ in CD4(+) T cells during IH formation. In addition we found that IH is associated with increased levels of Th1 and Th17 cytokines. A specific decrease in the Th1 response was observed in the absence of PI3Kγ activity, leading to decreased CXCL10 and RANTES production by smooth muscle cells. Finally, we show that treatment with the PI3Kγ inhibitor AS-605240 is sufficient to decrease IH in both mouse and rat models, reinforcing the therapeutic potential of PI3Kγ inhibition. Altogether, these findings demonstrate a new role for PI3Kγ activity in Th1-controlled IH development.
Collapse
Affiliation(s)
- Natalia F Smirnova
- INSERM, UMR1048, F-31300 Toulouse, France Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires, F-31300 Toulouse, France
| | - Stéphanie Gayral
- INSERM, UMR1048, F-31300 Toulouse, France Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires, F-31300 Toulouse, France
| | - Christophe Pedros
- INSERM, UMR1043, F-31300 Toulouse, France UMR CNRS, U5282, F-31300 Toulouse, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), F-31300 Toulouse, France
| | - Gervaise Loirand
- INSERM, UMR1087, F-44007 Nantes, France CNRS 6291, F-44007 Nantes, France
| | - Nathalie Vaillant
- INSERM, UMR1087, F-44007 Nantes, France CNRS 6291, F-44007 Nantes, France
| | - Nicole Malet
- INSERM, UMR1048, F-31300 Toulouse, France Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires, F-31300 Toulouse, France
| | - Sahar Kassem
- INSERM, UMR1043, F-31300 Toulouse, France UMR CNRS, U5282, F-31300 Toulouse, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), F-31300 Toulouse, France
| | - Denis Calise
- INSERM, UMR1048, F-31300 Toulouse, France Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires, F-31300 Toulouse, France
| | - Dominique Goudounèche
- Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires, F-31300 Toulouse, France CMEAB, F-31000 Toulouse, France
| | - Matthias P Wymann
- Institute of Biochemistry and Genetics, University of Basel, 4058 Basel, Switzerland
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy
| | | | - Laurent O Martinez
- INSERM, UMR1048, F-31300 Toulouse, France Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires, F-31300 Toulouse, France
| | - Abdelhadi Saoudi
- INSERM, UMR1043, F-31300 Toulouse, France UMR CNRS, U5282, F-31300 Toulouse, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), F-31300 Toulouse, France
| | - Muriel Laffargue
- INSERM, UMR1048, F-31300 Toulouse, France Université Toulouse III, Institut de Maladies Métaboliques et Cardiovasculaires, F-31300 Toulouse, France
| |
Collapse
|
42
|
Qin M, Guo Y, Jiang L, Wang X. Elevated levels of serum sCXCL16 in systemic lupus erythematosus; potential involvement in cutaneous and renal manifestations. Clin Rheumatol 2014; 33:1595-601. [PMID: 25015061 DOI: 10.1007/s10067-014-2741-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate the levels and clinical significance of serum soluble chemokine (C-X-C motif) ligand 16 (sCXCL16) in patients with systemic lupus erythematosus (SLE), as well as the sCXCL16 molecule's associations with disease activity and organ damage. Thirty-five patients with SLE, 16 patients with rheumatoid arthritis (RA), and 15 healthy controls were included in this study. The demographic and clinical features of the patients were recorded. The serum levels of sCXCL16 were determined. Disease activity was assessed using the SLE Disease Activity Index (SLEDAI), and organ damage was evaluated with the Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index (SDI). The serum levels of sCXCL16 in the patients with SLE were higher than those in the patients with RA (P = 0.002) or healthy controls (P < 0.0001). The levels in the patients with active SLE were higher than those in the disease inactive patients (P = 0.008). Positive correlations were identified between serum sCXCL16 concentrations and both SLEDAI (r = 0.564; P < 0.0001) and SDI scores (r = 0.396; P = 0.018). Both SLEDAI (P = 0.021) and serum levels of CXCL16 (P = 0.023) decreased after conventional treatment in 12 initial onset cases of SLE patients. Elevated serum sCXCL16 levels were discovered in the SLE patients with cutaneous (P = 0.006) and renal involvement (P = 0.032). Soluble CXCL16 may become a useful serological marker of disease activity and skin and renal involvement in SLE patients; thus, it may be used for evaluation of therapeutic interventions.
Collapse
Affiliation(s)
- Muting Qin
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | | | | | | |
Collapse
|
43
|
Sedimbi SK, Hägglöf T, Karlsson MCI. IL-18 in inflammatory and autoimmune disease. Cell Mol Life Sci 2013; 70:4795-808. [PMID: 23892891 PMCID: PMC11113411 DOI: 10.1007/s00018-013-1425-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022]
Abstract
Inflammation serves as the first line of defense in response to tissue injury, guiding the immune system to ensure preservation of the host. The inflammatory response can be divided into a quick initial phase mediated mainly by innate immune cells including neutrophils and macrophages, followed by a late phase that is dominated by lymphocytes. Early in the new millennium, a key component of the inflammatory reaction was discovered with the identification of a number of cytosolic sensor proteins (Nod-like receptors) that assembled into a common structure, the 'inflammasome'. This structure includes an enzyme, caspase-1, which upon activation cleaves pro-forms of cytokines leading to subsequent release of active IL-1 and IL-18. This review focuses on the role of IL-18 in inflammatory responses with emphasis on autoimmune diseases.
Collapse
Affiliation(s)
- Saikiran K. Sedimbi
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| | - Thomas Hägglöf
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| | - Mikael C. I. Karlsson
- Department of Medicine-Solna, Translational Immunology Unit, Karolinska Institutet, Karolinska University Hospital Solna, L2:04, 171 76 Stockholm, Sweden
| |
Collapse
|
44
|
Kuznik BI, Linkova NS, Tarnovskaya SI, Khavinson VK. Cytokinis and regulatory peptides: Age-related changes, atherosclerosis, and thrombotic diseases. ADVANCES IN GERONTOLOGY 2013. [DOI: 10.1134/s2079057013040048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Legein B, Temmerman L, Biessen EAL, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 2013; 70:3847-69. [PMID: 23430000 PMCID: PMC11113412 DOI: 10.1007/s00018-013-1289-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide, accounting for 16.7 million deaths each year. The underlying cause of the majority of CVD is atherosclerosis. In the past, atherosclerosis was considered to be the result of passive lipid accumulation in the vessel wall. Today's picture is far more complex. Atherosclerosis is considered a chronic inflammatory disease that results in the formation of plaques in large and mid-sized arteries. Both cells of the innate and the adaptive immune system play a crucial role in its pathogenesis. By transforming immune cells into pro- and anti-inflammatory chemokine- and cytokine-producing units, and by guiding the interactions between the different immune cells, the immune system decisively influences the propensity of a given plaque to rupture and cause clinical symptoms like myocardial infarction and stroke. In this review, we give an overview on the newest insights in the role of different immune cells and subtypes in atherosclerosis.
Collapse
Affiliation(s)
- Bart Legein
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Lieve Temmerman
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Erik A. L. Biessen
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, Pettenkoferstrasse 8a/9, 80336 Munich, Germany
| |
Collapse
|
46
|
Interleukin-18 Promoter Gene Polymorphisms are not Associated with Myocardial Infarction in Type 2 Diabetes in Slovenia. Balkan J Med Genet 2013; 14:3-9. [PMID: 24052696 PMCID: PMC3776693 DOI: 10.2478/v10034-011-0011-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetes is a major risk factor for myocardial infarction (MI) and chronic inflammation may play a central role in both diseases. Interleukin (IL)-18 is a potent proinflammatory cytokine, which is considered important in acute coronary syndromes and type 2 diabetes. We investigated the association of the −137 (G>C), polymorphism (rs187238) and the −607 (C>A) polymorphism (rs1946518) of the IL-18 gene promoter region in 495 Caucasians with type 2 diabetes, of whom 169 had MI and 326 subjects had no clinically evident coronary artery disease (controls). We also investigated the impact of these polymorphisms on the serum IL-18 level in subsets of both groups and in a normal group. Genotype distributions of the polymorphisms showed no significant difference between cases and controls. However, IL-18 serum levels were significantly lower in diabetics with the 137 CC genotype than in those with other genotypes (241.5 ± 132.7 ng/L vs. 340.2 ± 167.4 ng/L; p <0.05). High sensitivity C-reactive protein and IL-18 serum levels were higher in diabetics in the MI group than in the control group. We conclude that these IL-18 promoter gene polymorphisms are not risk factors for MI in Caucasians with type 2 diabetes.
Collapse
|
47
|
Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc Med 2013; 24:45-51. [PMID: 23916809 DOI: 10.1016/j.tcm.2013.06.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/23/2022]
Abstract
Atherosclerosis is considered to be a chronic inflammatory disease of the arterial wall. Atherogenesis is accompanied by local production and release of inflammatory mediators, for which the macrophage is a major source. The proinflammatory cytokine, interferon (IFN)-γ derived from T cells, is expressed at high levels in atherosclerotic lesions. IFN-γ is the classic macrophage-activating factor, vital for both innate and adaptive immunity. It primes macrophages to produce chemokines and cytotoxic molecules and induces expression of genes that regulate lipid uptake. IFN-γ is a key trigger for the formation and release of reactive oxygen species. IFN-γ has important effects on endothelial cells, promoting expression of adhesion molecules. Atherogenic effects of IFN-γ have been shown in murine models where exogenous administration enhances atherosclerotic lesion formation while knockout of IFN-γ or its receptor reduces lesion size. IFN-γ signaling is largely mediated by a Janus kinase (JAK) to signal transduction and activator of transcription (STAT)1 cytosolic factor pathway. A clear understanding of IFN-γ effects on atherogenesis should enable development of novel targeted interventions for clinical use in the prevention and treatment of atherosclerosis. This review will discuss the actions of the cytokine IFN-γ and its complex effects on cells involved in atherosclerosis.
Collapse
|
48
|
Patel OV, Wilson WB, Qin Z. Production of LPS-induced inflammatory mediators in murine peritoneal macrophages: neocuproine as a broad inhibitor and ATP7A as a selective regulator. Biometals 2013; 26:415-25. [DOI: 10.1007/s10534-013-9624-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/27/2013] [Indexed: 11/28/2022]
|
49
|
Jawien J, Toton-Zuranska J, Kus K, Pawlowska M, Olszanecki R, Korbut R. The effect of AVE 0991, nebivolol and doxycycline on inflammatory mediators in an apoE-knockout mouse model of atherosclerosis. Med Sci Monit 2013; 18:BR389-93. [PMID: 23018345 PMCID: PMC3560549 DOI: 10.12659/msm.883478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate whether the 3 different substances that can decrease the development of atherosclerosis--nebivolol, AVE 0991 and doxycycline--could at the same time diminish the level of inflammatory indicators interleukin-6 (IL-6), interleukin-12 (IL-12), serum amyloid A (SAA), and monocyte chemotactic protein-1 (MCP-1). MATERIAL/METHODS Forty 8-week-old female apoE-knockout mice on the C57BL/6J background were divided into 4 groups and put on chow diet for 4 months. Three experimental groups received the same diet as a control group, mixed with AVE 0991 at a dose 0.58 µmol per kg of body weight per day, nebivolol at a dose 2.0 µmol per kg of body weight per day, and doxycycline at a dose 1.5 mg per kg of body weight per day. At the age of 6 months, the mice were sacrificed. RESULTS All inflammatory indicators (MCP-1, IL-6, IL-12 and SAA) were diminished by AVE 0991. There was also a tendency to lower MCP-1, IL-6, IL-12 and SAA levels by nebivolol and doxycycline; however, it did not reach statistical significance. CONCLUSIONS Of the 3 presented substances, only AVE 0991 was able to diminish the rise of inflammatory markers. Therefore, drug manipulations in the renin-angiotensin-aldosterone axis seem to be the most promising in the future treatment of atherogenesis.
Collapse
Affiliation(s)
- Jacek Jawien
- Jagiellonian University School of Medicine, Cracow, Poland.
| | | | | | | | | | | |
Collapse
|
50
|
Zhao G, Wang S, Wang Z, Sun A, Yang X, Qiu Z, Wu C, Zhang W, Li H, Zhang Y, Zhao J, Zou Y, Ge J. CXCR6 deficiency ameliorated myocardial ischemia/reperfusion injury by inhibiting infiltration of monocytes and IFN-γ-dependent autophagy. Int J Cardiol 2012; 168:853-62. [PMID: 23158928 DOI: 10.1016/j.ijcard.2012.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 05/05/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Emerging evidence shows that the chemokine CXCL16 plays an important role in the pathogenesis of myocardial remodeling and development of heart failure following ischemia/reperfusion (I/R) injury. CXCR6, the receptor for CXCL16, is also critically involved. However, the underlying mechanism remained uncertain, and the aim of this research was to investigate this mechanism in CXCR6 knockout (KO) mice. METHODS AND RESULTS CXCR6 KO mice and wild type (WT) mice had no overt phenotype at baseline in the absence of injury, but difference was shown in response to I/R induction. Compared with WT mice, CXCR6 KO mice exhibited a lower infarction size (31.86 ± 1.808% vs. 43.09 ± 1.519%), and better cardiac function (measured by LVEF, LVFS, +dp/dt, LVEDP, and LVSP) following I/R. Moreover, cardiac levels of IFN-γ and IFN-γ-dependent autophagy were found to be significantly attenuated in CXCR6 KO mice. Further data showed that cardiac-enhanced IFN-γ secretion was not induced by cardiomyocytes, but by infiltrated monocytes in the myocardium in response to I/R injury. In vivo injection of IFN-γ and in vitro co-cultured cardiomyocytes with CD11b+ monocytes confirmed IFN-γ activated autophagic response, and induced cardiac dysfunction in a paracrine manner. CONCLUSIONS The study suggested that since disruption of the CXCL16/CXCR6 signaling cascade had a cardio-protective effect against I/R injury, the underlying mechanism might be that I/R triggered the infiltration of monocytes into the myocardium, and induced cardiac autophagy through CXCL16/CXCR6-dependent paracrine secretion of IFN-γ.
Collapse
Affiliation(s)
- Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, 180 Feng Lin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|