1
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Karpouzas GA, Papotti B, Ormseth SR, Palumbo M, Hernandez E, Marchi C, Zimetti F, Budoff MJ, Ronda N. Serum cholesterol loading capacity of macrophages is regulated by seropositivity and C-reactive protein in rheumatoid arthritis patients. Rheumatology (Oxford) 2023; 62:1254-1263. [PMID: 35809057 DOI: 10.1093/rheumatology/keac394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Excessive cholesterol accumulation in macrophages is the pivotal step underlying atherosclerotic plaque formation. We here explore factors in the serum of patients with RA, and mechanisms through which they interact with and influence cholesterol loading capacity (CLC) of macrophages. METHODS In a cross-sectional observational cohort of 104 patients with RA, CLC was measured as intracellular cholesterol content in human THP-1-derived macrophages after incubation with patient serum. Low-density lipoprotein (LDL) oxidation was measured in terms of oxidized phospholipids on apoB100-containing particles (oxPL-apoB100). Antibodies against oxidized LDL (anti-oxLDL), proprotein convertase subtilisin/Kexin type-9 (PCSK9) and high-sensitivity CRP were also quantified. All analyses adjusted for atherosclerotic cardiovascular disease (ASCVD) risk score, obesity, total LDL, statin use, age at diagnosis, and anti-oxLDL IgM. RESULTS OxPL-apoB100, anti-oxLDL IgG and PCSK9 were positively associated with CLC (all P < 0.020). OxPL-apoB100 directly influenced CLC only in dual RF- and ACPA-positive patients [unstandardized b (95% bootstrap CI)=2.08 (0.38, 3.79)]. An indirect effect of oxPL-apoB100 on CLC through anti-oxLDL IgG increased, along with level of CRP [index of moderated mediation = 0.55 (0.05-1.17)]. CRP also moderated yet another indirect effect of oxPL-apoB100 on CLC through upregulation of PCSK9, but only among dual-seropositive patients [conditional indirect effect = 0.64 (0.13-1.30)]. CONCLUSION Oxidized LDL can directly influence CLC in dual-seropositive RA patients. Two additional and independent pathways-via anti-oxLDL IgG and PCSK9-may mediate the effects of oxPL-apoB100 on CLC, depending on CRP and seropositivity status. If externally validated, these findings may have clinical implications for cardiovascular risk prevention.
Collapse
Affiliation(s)
- George A Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center, The Lundquist Institute, Torrance, CA, USA
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Sarah R Ormseth
- Division of Rheumatology, Harbor-UCLA Medical Center, The Lundquist Institute, Torrance, CA, USA
| | | | - Elizabeth Hernandez
- Division of Rheumatology, Harbor-UCLA Medical Center, The Lundquist Institute, Torrance, CA, USA
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Matthew J Budoff
- Division of Cardiology, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA, USA
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Schwartz GG, Szarek M, Zeiher A, White HD, Jukema JW, Harrington RA, Goodman SG, Diaz R, Bittner V, Bhatt DL, Steg PG. Elevated C-Reactive Protein Amplifies Association of Lipoprotein(a) With Cardiovascular Risk and Clinical Benefit of Alirocumab. J Am Coll Cardiol 2022; 80:2356-2359. [PMID: 36328873 DOI: 10.1016/j.jacc.2022.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
4
|
Li YZ, Wang YY, Huang L, Zhao YY, Chen LH, Zhang C. Annexin A Protein Family in Atherosclerosis. Clin Chim Acta 2022; 531:406-417. [PMID: 35562096 DOI: 10.1016/j.cca.2022.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis, a silent chronic vascular pathology, is the cause of the majority of cardiovascular ischaemic events. Atherosclerosis is characterized by a series of deleterious changes in cellularity, including endothelial dysfunction, transmigration of circulating inflammatory cells into the arterial wall, pro-inflammatory cytokines production, lipid accumulation in the intima, vascular local inflammatory response, atherosclerosis-related cells apoptosis and autophagy. Proteins of Annexin A (AnxA) family, the well-known Ca2+ phospholipid-binding protein, have many functions in regulating inflammation-related enzymes and cell signaling transduction, thus influencing cell adhesion, migration, differentiation, proliferation and apoptosis. There is now accumulating evidence that some members of the AnxA family, such as AnxA1, AnxA2, AnxA5 and AnxA7, play major roles in the development of atherosclerosis. This article discusses the major roles of AnxA1, AnxA2, AnxA5 and AnxA7, and the multifaceted mechanisms of the main biological process in which they are involved in atherosclerosis. Considering these evidences, it has been proposed that AnxA are drivers- and not merely participator- on the road to atherosclerosis, thus the progression of atherosclerosis may be prevented by targeting the expression or function of the AnxA family proteins.
Collapse
Affiliation(s)
- Yong-Zhen Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
5
|
Mui L, Martin CM, Tschirhart BJ, Feng Q. Therapeutic Potential of Annexins in Sepsis and COVID-19. Front Pharmacol 2021; 12:735472. [PMID: 34566657 PMCID: PMC8458574 DOI: 10.3389/fphar.2021.735472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a continuing problem in modern healthcare, with a relatively high prevalence, and a significant mortality rate worldwide. Currently, no specific anti-sepsis treatment exists despite decades of research on developing potential therapies. Annexins are molecules that show efficacy in preclinical models of sepsis but have not been investigated as a potential therapy in patients with sepsis. Human annexins play important roles in cell membrane dynamics, as well as mediation of systemic effects. Most notably, annexins are highly involved in anti-inflammatory processes, adaptive immunity, modulation of coagulation and fibrinolysis, as well as protective shielding of cells from phagocytosis. These discoveries led to the development of analogous peptides which mimic their physiological function, and investigation into the potential of using the annexins and their analogous peptides as therapeutic agents in conditions where inflammation and coagulation play a large role in the pathophysiology. In numerous studies, treatment with recombinant human annexins and annexin analogue peptides have consistently found positive outcomes in animal models of sepsis, myocardial infarction, and ischemia reperfusion injury. Annexins A1 and A5 improve organ function and reduce mortality in animal sepsis models, inhibit inflammatory processes, reduce inflammatory mediator release, and protect against ischemic injury. The mechanisms of action and demonstrated efficacy of annexins in animal models support development of annexins and their analogues for the treatment of sepsis. The effects of annexin A5 on inflammation and platelet activation may be particularly beneficial in disease caused by SARS-CoV-2 infection. Safety and efficacy of recombinant human annexin A5 are currently being studied in clinical trials in sepsis and severe COVID-19 patients.
Collapse
Affiliation(s)
- Louise Mui
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Claudio M Martin
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Brent J Tschirhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Qingping Feng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| |
Collapse
|
6
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
7
|
Miller-Rhodes P, Gelbard HA. The Cell Culture Environment Regulates the Transcription Factor MafB in BV-2 Microglia. MATTERS 2021; 2021:https://sciencematters.io/articles/202010000001. [PMID: 33969051 PMCID: PMC8101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microglia experience dramatic molecular and functional changes when transferred from the central nervous system (CNS) to a cell culture environment. Investigators largely attribute these findings to the loss of CNS-specific microenvironmental cues that dictate the gene-regulatory networks specified by master regulator transcription factors such as V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MafB). MafB regulates macrophage differentiation and activation by activating or repressing target genes critical to these processes. Here, we show that basal MafB levels in the BV-2 microglial cell line depend on the availability of lipids in the cell culture environment. Depletion of lipids, either by serum deprivation or the use of lipid-depleted serum, reduced MafB protein levels in BV-2 cells. Using live imaging, we also observed the engulfment of apoptotic BV-2 cell debris by neighboring BV-2 cells, highlighting an additional potential source of lipids in the cell culture environment. This observation was supported by experiments showing reduced MafB protein levels in BV-2 cells cultured with various phagocytosis inhibitors (cytochalasin D, annexin V) and reduced BV-2 cell phagocytic activity with serum deprivation. In aggregate, our data suggest that serum exposure regulates the transcription factor MafB in BV-2 cells through direct and indirect mechanisms.
Collapse
Affiliation(s)
- Patrick Miller-Rhodes
- Center for Neurotherapeutics Discovery, Department of Neuroscience, Department of Immunology and Microbiology, Department of Neurology, Department of Pediatrics, University of Rochester Medical Center
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, Department of Neuroscience, Department of Immunology and Microbiology, Department of Neurology, Department of Pediatrics, University of Rochester Medical Center
| |
Collapse
|
8
|
Cinoku II, Mavragani CP, Moutsopoulos HM. Atherosclerosis: Beyond the lipid storage hypothesis. The role of autoimmunity. Eur J Clin Invest 2020; 50:e13195. [PMID: 31868918 DOI: 10.1111/eci.13195] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis has long been considered as a lipid storage disease. Recent data suggest that autoimmune mechanisms seem to be involved in the pathophysiology of atherosclerosis. The presence of activated endothelial vascular cells, neutrophils, macrophages, T and to a lesser extent B cells in atherosclerotic plaques, together with the proinflammatory cytokine burden suggest mobilization of both innate and adaptive immune pathways in atherosclerosis pathobiology. The development of antibodies to oxidized low-density lipoprotein (ox-LDL), the experimental induction of atherosclerosis either via the transfer of T cells or immunization with autoantigens such as β2 glycoprotein Ι (β2-GPI) and heat shock proteins (HSP) further support the autoimmune nature of atherosclerosis. However, classical immunosuppressive and immune-modulatory drugs, successfully used in the therapy of autoimmune rheumatic diseases have shown limited benefits so far in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ilir I Cinoku
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Haralampos M Moutsopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academy of Athens, Athens, Greece
| |
Collapse
|
9
|
Singh SK, Agrawal A. Functionality of C-Reactive Protein for Atheroprotection. Front Immunol 2019; 10:1655. [PMID: 31379851 PMCID: PMC6646712 DOI: 10.3389/fimmu.2019.01655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
C-reactive protein (CRP) is a pentameric molecule made up of identical monomers. CRP can be seen in three different forms: native pentameric CRP (native CRP), non-native pentameric CRP (non-native CRP), and monomeric CRP (mCRP). Both native and non-native CRP execute ligand-recognition functions for host defense. The fate of any pentameric CRP after binding to a ligand is dissociation into ligand-bound mCRP. If ligand-bound mCRP is proinflammatory, like free mCRP has been shown to be in vitro, then mCRP along with the bound ligand must be cleared from the site of inflammation. Once pentameric CRP is bound to atherogenic low-density lipoprotein (LDL), it reduces both formation of foam cells and proinflammatory effects of atherogenic LDL. A CRP mutant, that is non-native CRP, which readily binds to atherogenic LDL, has been found to be atheroprotective in a murine model of atherosclerosis. Thus, unlike statins, a drug that can lower only cholesterol levels but not CRP levels should be developed. Since non-native CRP has been shown to bind to all kinds of malformed proteins in general, it is possible that non-native CRP would be protective against all inflammatory states in which host proteins become pathogenic. If it is proven through experimentation employing transgenic mice that non-native CRP is beneficial for the host, then using a small-molecule compound to target CRP with the goal of changing the conformation of endogenous native CRP would be preferred over using recombinant non-native CRP as a biologic to treat diseases caused by pathogenic proteins such as oxidized LDL.
Collapse
Affiliation(s)
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
10
|
Momtazi-Borojeni AA, Ayati SH, Jaafari MR, Sahebkar A. A simple and rapid-acting approach for the reduction of C-reactive protein. Biomed Pharmacother 2019; 109:2305-2308. [DOI: 10.1016/j.biopha.2018.11.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 12/12/2022] Open
|
11
|
Erdem-Eraslan L, Hens JJH, van Rossum AP, Frasa MAM, Keuren JFW. Inter-individual variability in phospholipid-dependent interference of C-reactive protein on activated partial thromboplastin time. Br J Haematol 2017; 183:681-683. [DOI: 10.1111/bjh.15013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lale Erdem-Eraslan
- Department of Clinical Chemistry; Erasmus MC; University Medical Center; Rotterdam the Netherlands
- Department of Clinical Chemistry; Groene Hart Hospital; Gouda the Netherlands
| | - Jacques J. H. Hens
- Department of Clinical Chemistry; Groene Hart Hospital; Gouda the Netherlands
| | | | - Marieke A. M. Frasa
- Department of Clinical Chemistry; Langeland Hospital; Zoetermeer the Netherlands
| | | |
Collapse
|
12
|
Abstract
Chronic inflammatory state in obesity causes dysregulation of the endocrine and paracrine actions of adipocyte-derived factors, which disrupt vascular homeostasis and contribute to endothelial vasodilator dysfunction and subsequent hypertension. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Adipose tissue inflammation, nitric oxide (NO)-bioavailability, insulin resistance and oxidized low-density lipoprotein (oxLDL) are main participating factors in endothelial dysfunction of obesity. In this chapter, disruption of inter-endothelial junctions between endothelial cells, significant increase in the production of reactive oxygen species (ROS), inflammation mediators, which are originated from inflamed endothelial cells, the balance between NO synthesis and ROS , insulin signaling and NO production, and decrease in L-arginine/endogenous asymmetric dimethyl-L-arginine (ADMA) ratio are discussed in connection with endothelial dysfunction in obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
13
|
Cui CJ, Li S, Zhu CG, Sun J, Du Y, Zhang Y, Wu NQ, Guo YL, Xu RX, Gao Y, Li JJ. Enhanced pro-protein convertase subtilisin/kexin type 9 expression by C-reactive protein through p38MAPK-HNF1α pathway in HepG2 cells. J Cell Mol Med 2016; 20:2374-2383. [PMID: 27633999 PMCID: PMC5134380 DOI: 10.1111/jcmm.12931] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
Plasma C‐reactive protein (CRP) concentration is associated positively with cardiovascular risk, including dyslipidemia. We suggested a regulating role of CRP on pro‐protein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of low‐density lipoprotein (LDL) metabolism, and demonstrated the PCSK9 as a pathway linking CRP and LDL regulation. Firstly, experiments were carried out in the presence of human CRP on the protein and mRNA expression of PCSK9 and LDL receptor (LDLR) in human hepatoma cell line HepG2 cells. Treatment with CRP (10 μg/ml) enhanced significantly the mRNA and protein expression of PCSK9 and suppressed the expression of LDLR. Of note, a late return of LDLR mRNA levels occurred at 12 hrs, while the LDLR protein continued to decrease at 24 hrs, suggesting that the late decrease in LDLR protein levels was unlikely to be accounted for the decrease in LDL mRNA. Secondly, the role of PCSK9 in CRP‐induced LDLR decrease and the underlying pathways were investigated. As a result, the inhibition of PCSK9 expression by small interfering RNA (siRNA) returned partly the level of LDLR protein and LDL uptake during CRP treatment; CRP‐induced PCSK9 increase was inhibited by the p38MAPK inhibitor, SB203580, resulting in a significant rescue of LDLR protein expression and LDL uptake; the pathway was involved in hepatocyte nuclear factor 1α (HNF1α) but not sterol responsive element‐binding proteins (SREBPs) preceded by the phosphorylation of p38MAPK. These findings indicated that CRP increased PCSK9 expression by activating p38MAPK‐HNF1α pathway, with a certain downstream impairment in LDL metabolism in HepG2 cells.
Collapse
Affiliation(s)
- Chuan-Jue Cui
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Sha Li
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Sun
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Du
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Na-Qiong Wu
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Gao
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Division of Dyslipidemia, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Burgmaier M, Schurgers L, Reutelingsperger C. Response to letter to the editor: annexin A5 levels or circulating microparticles: what we see depends mainly on what we look for. J Intern Med 2016; 279:606-7. [PMID: 26782085 DOI: 10.1111/joim.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Click here to view the article Letter to the Editor by S. Shetty et al.
Collapse
Affiliation(s)
- M Burgmaier
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - L Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - C Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Devreese KMJ, Verfaillie CJ, De Bisschop F, Delanghe JR. Interference of C-reactive protein with clotting times. Clin Chem Lab Med 2016; 53:e141-5. [PMID: 25324454 DOI: 10.1515/cclm-2014-0906] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 11/15/2022]
|
16
|
Kakino A, Fujita Y, Nakano A, Horiuchi S, Sawamura T. Developmental Endothelial Locus-1 (Del-1) Inhibits Oxidized Low-Density Lipoprotein Activity by Direct Binding, and Its Overexpression Attenuates Atherogenesis in Mice. Circ J 2016; 80:2541-2549. [DOI: 10.1253/circj.cj-16-0808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akemi Kakino
- Institute for Biomedical Sciences, Shinshu University
- Department of Physiology, School of Medicine, Shinshu University
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center
| | - Yoshiko Fujita
- Department of Physiology, School of Medicine, Shinshu University
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center
| | - Atsushi Nakano
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center
| | - Sayaka Horiuchi
- Department of Physiology, School of Medicine, Shinshu University
| | - Tatsuya Sawamura
- Department of Physiology, School of Medicine, Shinshu University
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center
| |
Collapse
|
17
|
Stancel N, Chen CC, Ke LY, Chu CS, Lu J, Sawamura T, Chen CH. Interplay between CRP, Atherogenic LDL, and LOX-1 and Its Potential Role in the Pathogenesis of Atherosclerosis. Clin Chem 2015; 62:320-7. [PMID: 26607724 DOI: 10.1373/clinchem.2015.243923] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Studies have shown that the classic acute-phase protein C-reactive protein (CRP) has proinflammatory effects on vascular cells and may play a causal role in the pathogenesis of coronary artery disease. A growing body of evidence has suggested that interplay between CRP, lectin-like oxidized LDL receptor-1 (LOX-1), and atherogenic LDL may underlie the mechanism of endothelial dysfunction that leads to atherosclerosis. CONTENT We review the biochemical evidence for an association of CRP, LOX-1, and either oxidized LDL (OxLDL) or electronegative L5 LDL with the pathogenesis of coronary artery disease. Artificially oxidized OxLDL has been studied extensively for its role in atherogenesis, as has electronegative L5 LDL, which is present at increased levels in patients with increased cardiovascular risks. OxLDL and L5 have been shown to stimulate human aortic endothelial cells to produce CRP, indicating that CRP is synthesized locally in the endothelium. The ligand-binding face (B-face) of CRP has been shown to bind the LOX-1 scavenger receptor and increase LOX-1 expression in endothelial cells, thereby promoting the uptake of OxLDL or L5 by LOX-1 into endothelial cells to induce endothelial dysfunction. SUMMARY CRP and LOX-1 may form a positive feedback loop with OxLDL or L5 in atherogenesis, whereby increased levels of atherogenic LDL in patients with cardiovascular risks induce endothelial cells to express CRP, which may in turn increase the expression of LOX-1 to promote the uptake of atherogenic LDL into endothelial cells. Further research is needed to confirm a causal role for CRP in atherogenesis.
Collapse
Affiliation(s)
- Nicole Stancel
- Department of Vascular and Medicinal Research, Texas Heart Institute, Houston, TX
| | - Chih-Chieh Chen
- Center for Lipid Biosciences, Kaohsiung Medical University (KMU) Hospital, KMU, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Liang-Yin Ke
- Center for Lipid Biosciences, Kaohsiung Medical University (KMU) Hospital, KMU, Kaohsiung, Taiwan; Lipid Science and Aging Research Center, KMU, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, KMU, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University (KMU) Hospital, KMU, Kaohsiung, Taiwan; Department of Internal Medicine, KMU Hospital, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, KMU, Kaohsiung, Taiwan
| | - Jonathan Lu
- Department of Vascular and Medicinal Research, Texas Heart Institute, Houston, TX
| | - Tatsuya Sawamura
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan;
| | - Chu-Huang Chen
- Department of Vascular and Medicinal Research, Texas Heart Institute, Houston, TX; Center for Lipid Biosciences, Kaohsiung Medical University (KMU) Hospital, KMU, Kaohsiung, Taiwan; Lipid Science and Aging Research Center, KMU, Kaohsiung, Taiwan; Cardiovascular Research Center, China Medical University (CMU) Hospital, CMU, Taichung, Taiwan; Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX; Current affiliation: New York Heart Research Foundation, Mineola, NY.
| |
Collapse
|
18
|
Obradovic MM, Trpkovic A, Bajic V, Soskic S, Jovanovic A, Stanimirovic J, Panic M, Isenovic ER. Interrelatedness between C-reactive protein and oxidized low-density lipoprotein. ACTA ACUST UNITED AC 2015; 53:29-34. [DOI: 10.1515/cclm-2014-0590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/19/2014] [Indexed: 11/15/2022]
Abstract
AbstractC-reactive protein (CRP) is a marker of inflammation. Atherosclerosis is now recognized as inflammatory disease, and it seems that CRP directly contributes to atherogenesis. Oxidation of low-density lipoprotein (LDL) molecule increases the uptake of lipid products by macrophages leading to cholesterol accumulation and subsequent foam cell formation. The elevated levels of high sensitivity CRP (hsCRP) and oxidized LDL (OxLDL) in the blood were found to be associated with cardiovascular diseases (CVD). In this review, we highlighted the evidence that CRP and OxLDL are involved in interrelated (patho) physiological pathways. The findings on association between hsCRP and OxLDL in the clinical setting will be also summarized.
Collapse
|
19
|
Hiddink L, Dallinga-Thie GM, Hovingh GK, de Visser MCH, Peer PGM, Stalenhoef AFH, van Heerde WL. Annexin A5 haplotypes in familial hypercholesterolemia: lack of association with carotid intima-media thickness and cardiovascular disease risk. Atherosclerosis 2014; 238:195-200. [PMID: 25525746 DOI: 10.1016/j.atherosclerosis.2014.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/14/2014] [Accepted: 11/28/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Annexin A5 (ANXA5) has been suggested to possess antiatherogenic properties. We investigated whether ANXA5 genetic variations and plasma ANXA5 levels were associated with carotid atherosclerosis and contributed to cardiovascular disease (CVD) risk in patients with familial hypercholesterolemia (FH). METHODS We sequenced the promoter region and exon 2 of ANXA5 in 284 FH patients from the ASAP (Atorvastatin versus Simvastatin on Atherosclerosis Progression) trial. Common haplotypes (H) were constructed based on seven single nucleotide polymorphisms (SNPs). We studied whether plasma ANXA5 levels or ANXA5 haplotypes were associated with the extent of atherosclerosis (evaluated by carotid intima-media thickness (IMT). The association between ANXA5 haplotypes and the risk for CVD events was investigated in 1730 FH patients from the GIRaFH (Genetic Identification of Risk factors in Familial Hypercholesterolemia) study. RESULTS In ASAP, individuals carrying the ANXA5 haplotype H2 exhibited lower plasma ANXA5 levels, whereas H4 carriers had increased levels of circulating ANXA5 compared to non-carriers. Plasma ANXA5 levels were not associated with carotid IMT. None of the four ANXA5 haplotypes correlated with the age-related IMT progression (ASAP study) or contributed to CVD risk (GIRaFH cohort). CONCLUSIONS Both ANXA5 haplotypes and plasma ANXA5 levels were not associated with carotid IMT progression or CVD risk in FH patients.
Collapse
Affiliation(s)
- Larissa Hiddink
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marieke C H de Visser
- Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Petronella G M Peer
- Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Anton F H Stalenhoef
- Department of General Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525 GA Nijmegen, The Netherlands
| | - Waander L van Heerde
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Recognition functions of pentameric C-reactive protein in cardiovascular disease. Mediators Inflamm 2014; 2014:319215. [PMID: 24948846 PMCID: PMC4052174 DOI: 10.1155/2014/319215] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 02/02/2023] Open
Abstract
C-reactive protein (CRP) performs two recognition functions that are relevant to cardiovascular disease. First, in its native pentameric conformation, CRP recognizes molecules and cells with exposed phosphocholine (PCh) groups, such as microbial pathogens and damaged cells. PCh-containing ligand-bound CRP activates the complement system to destroy the ligand. Thus, the PCh-binding function of CRP is defensive if it occurs on foreign pathogens because it results in the killing of the pathogen via complement activation. On the other hand, the PCh-binding function of CRP is detrimental if it occurs on injured host cells because it causes more damage to the tissue via complement activation; this is how CRP worsens acute myocardial infarction and ischemia/reperfusion injury. Second, in its nonnative pentameric conformation, CRP also recognizes atherogenic low-density lipoprotein (LDL). Recent data suggest that the LDL-binding function of CRP is beneficial because it prevents formation of macrophage foam cells, attenuates inflammatory effects of LDL, inhibits LDL oxidation, and reduces proatherogenic effects of macrophages, raising the possibility that nonnative CRP may show atheroprotective effects in experimental animals. In conclusion, temporarily inhibiting the PCh-binding function of CRP along with facilitating localized presence of nonnative pentameric CRP could be a promising approach to treat atherosclerosis and myocardial infarction. There is no need to stop the biosynthesis of CRP.
Collapse
|
21
|
Elseweidy MM, Abdallah FR, Younis NN, Aldohmy S, Kassem HM. 10-Dehydrogingerdione raises HDL-cholesterol through a CETP inhibition and wards off oxidation and inflammation in dyslipidemic rabbits. Atherosclerosis 2013; 231:334-40. [PMID: 24267247 DOI: 10.1016/j.atherosclerosis.2013.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/23/2013] [Indexed: 02/08/2023]
|
22
|
Kristan SS. Blood specimen biomarkers of inflammation, matrix degradation, angiogenesis, and cardiac involvement: a future useful tool in assessing clinical outcomes of COPD patients in clinical practice? Arch Immunol Ther Exp (Warsz) 2013; 61:469-81. [PMID: 23703244 DOI: 10.1007/s00005-013-0237-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 05/13/2013] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is not fully reversible; this airflow limitation is both progressive and associated with an abnormal inflammatory response of the lung to noxious particles or gasses. COPD is undoubtedly an umbrella term, and it seems unlikely that all patients with COPD have the same underlying disease processes; thus, there is a need for differential treatment of different subgroups. A potential solution is to find modifiable biomarkers that can assist in drug development and distinguish subgroups of COPD. With the exception of lung function tests, there are currently no well-validated biomarkers or surrogate endpoints that can be used to establish the efficacy of a drug for COPD. This article discusses biomarkers of inflammation (fibrinogen, C-reactive protein, pulmonary and activation-regulated chemokine/CC-chemokine ligand-18, serum surfactant protein D, interleukin (IL)-6, IL-8 and tumor necrosis factor α, complement factor C5a), angiogenesis factors as a part of the pathogenetic aspect in this disease (vascular endothelial growth factor, angiogenin, and IL-8), and matrix degradation biomarkers. Troponin and natriuretic peptides are presented as biomarkers of cardiac involvement in the light of COPD comorbidities. Trials based on research on known clinical variables such as FEV1, BODE, and 6MWT in combination with biomarkers from lung and blood specimens will probably clarify part of the prognosis and natural history of the disease. This will also represent an additional step in COPD phenotyping and new treatment possibilities.
Collapse
|
23
|
Early post-mortem sarcoplasmic proteome of porcine muscle related to lipid oxidation in aged and cooked meat. Food Chem 2012; 135:2238-44. [DOI: 10.1016/j.foodchem.2012.07.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/20/2022]
|
24
|
Chang MK, Hartvigsen K, Ryu J, Kim Y, Han KH. The pro-atherogenic effects of macrophages are reduced upon formation of a complex between C-reactive protein and lysophosphatidylcholine. JOURNAL OF INFLAMMATION-LONDON 2012; 9:42. [PMID: 23114023 PMCID: PMC3506444 DOI: 10.1186/1476-9255-9-42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/17/2012] [Indexed: 12/03/2022]
Abstract
Rationale C-reactive protein (CRP) and lysophosphatidylcholine (LPC) are phosphorylcholine-(PC)-containing oxidized phospholipids (oxPLs) found in oxidized LDL (oxLDL), which trigger pro-atherogenic activities of macrophages during the process of atherosclerosis. It has been previously reported that CRP binds to the PC head group of oxLDL in a calcium-dependent manner. The aim of this study was to investigate the importance of binding between CRP and LPC to the pro-atherogenic activities of macrophages. Objectives and findings A chemiluminescent immunoassay and HPLC showed that human recombinant CRP formed a stable complex with LPC in the presence of calcium. The Kd value of the binding of the CRP-LPC complex to the receptors FcγRIA or FcγRIIA was 3–5 fold lower than that of CRP alone. The CRP-LPC complex triggered less potent generation of reactive oxygen species and less activation of the transcription factors AP-1 and NF-kB by human monocyte-derived macrophages in comparison to CRP or LPC alone. However, CRP did not affect activities driven by components of oxLDL lacking PC, such as upregulation of PPRE, ABCA1, CD36 and PPARγ and the enhancement of cholesterol efflux by human macrophages. The presence of CRP inhibited the association of Dil-labelled oxLDL to human macrophages. Conclusions The formation of complexes between CRP and PC-containing oxPLs, such as LPC, suppresses the pro-atherogenic effects of CRP and LPC on macrophages. This effect may in part retard the progression of atherosclerosis.
Collapse
Affiliation(s)
- Mi-Kyung Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Present address: Bayer Korea, 7th fl. Samsung-Boramae Omni Tower, 395-62, Sindaebang dong Dongzak-gu, Seoul, South Korea
| | - Karsten Hartvigsen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jewon Ryu
- University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong Songpa-gu 138-736, Seoul, South Korea
| | - Yuna Kim
- University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong Songpa-gu 138-736, Seoul, South Korea
| | - Ki Hoon Han
- University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong Songpa-gu 138-736, Seoul, South Korea
| |
Collapse
|
25
|
Wang MS, Messersmith RE, Reed SM. Membrane curvature recognition by C-reactive protein using lipoprotein mimics. SOFT MATTER 2012; 8:7909-7918. [PMID: 24027600 PMCID: PMC3767169 DOI: 10.1039/c2sm25779c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It has been reported that the oxidation of phosphatidylcholine (PC) is necessary for C-reactive protein (CRP) to bind to lipid membranes, but it remains elusive why CRP only binds oxidized membranes. Here we offer a new perspective on the role of membrane curvature and CRP binding using engineered lipoprotein particle (LPP) mimics. We show that CRP binds preferentially to LPP mimics with diameters of ≤ 28 nm, and binding of CRP to these mimics leads to the dissociation of native CRP into monomeric CRP, exposing CRP neo-epitopes that bind C1q. We also show that the smaller LPP mimics compete for CRP binding to oxidized low density lipoproteins (oxLDLs), suggesting that these mimics expose the same PC epitopes as those found on oxLDLs. Results from this study suggest that membrane curvature could be an additional factor influencing CRP binding of damaged membranes distinct from the oxidation of PC lipids.
Collapse
Affiliation(s)
- Min S. Wang
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217
| | | | - Scott M. Reed
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217
| |
Collapse
|
26
|
Pentameric CRP attenuates inflammatory effects of mmLDL by inhibiting mmLDL--monocyte interactions. Atherosclerosis 2012; 224:384-93. [PMID: 22901456 DOI: 10.1016/j.atherosclerosis.2012.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/21/2022]
Abstract
Previous studies have reported that C-reactive protein (CRP) interacting with low-density lipoproteins (LDL) affects macrophage activation and LDL uptake. However, the physiological relevance of CRP-LDL interaction with circulating monocytes remains elusive. Moreover, recent studies have shown that CRP exists in two isoforms with partly opposing characteristics pentameric (pCRP) and monomeric CRP (mCRP). Here we investigated the effects of CRP interacting with minimally modified low-density lipoprotein (mmLDL) interaction in regard to events involved in formation of atherosclerotic plaque. We analyzed the effect of mmLDL on human monocytes and found a substantial increase in monocyte activation as evaluated by CD11b/CD18 expression and increased monocyte adhesion under static and under shear flow conditions to human endothelial cells. Monocyte adhesion and activation was attenuated by pCRP via the prevention of mmLDL binding to monocytes. These anti-inflammatory properties of pCRP were lost when it dissociates to the monomeric form. Our results elucidate the physiological relevance of the CRP-mmLDL interaction and furthermore confirm the importance of the previously described pCRP dissociation to mCRP as a localized inflammatory "activation" mechanism.
Collapse
|
27
|
Wang X, Liu X, Kishimoto C, Yuan Z. The role of Fcγ receptors in atherosclerosis. Exp Biol Med (Maywood) 2012; 237:609-16. [PMID: 22688821 DOI: 10.1258/ebm.2012.011373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis is widely considered to be an immune-mediated process. Fcγ receptors (Fcγ Rs) contribute to the regulation of a multitude of immune and inflammatory responses and are implicated in human atherosclerotic lesions. Major cell types involved in the pathogenesis of atherosclerosis express Fcγ Rs and their proatherogenic ligands such as immune complexes and C-reactive protein, which act to activate Fcγ R signaling pathways. This review summarizes recent significant progress addressing the multifaceted roles of Fcγ Rs in atherogenesis which comes from the studies of Fcγ R-deficient animal models, clinical investigations and in vitro molecular and cellular studies. These new findings help us appreciate the emerging role of Fcγ Rs in atherosclerosis, and suggest Fcγ Rs as a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Xinhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | | | | | | |
Collapse
|
28
|
Weismann D, Binder CJ. The innate immune response to products of phospholipid peroxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2465-75. [PMID: 22305963 PMCID: PMC3790971 DOI: 10.1016/j.bbamem.2012.01.018] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/04/2012] [Accepted: 01/19/2012] [Indexed: 11/11/2022]
Abstract
Lipid peroxidation occurs in the context of many physiological processes but is greatly increased in various pathological situations. A consequence of phospholipid peroxidation is the generation of oxidation-specific epitopes, such as phosphocholine of oxidized phospholipids and malondialdehyde, which form neo-self determinants on dying cells and oxidized low-density lipoproteins. In this review we discuss evidence demonstrating that pattern recognition receptors of the innate immune system recognize oxidation-specific epitopes as endogenous damage-associated molecular patterns, allowing the host to identify dangerous biological waste. Oxidation-specific epitopes are important targets of both cellular and soluble pattern recognition receptors, including toll-like and scavenger receptors, C-reactive protein, complement factor H, and innate natural IgM antibodies. This recognition allows the innate immune system to mediate important physiological house keeping functions, for example by promoting the removal of dying cells and oxidized molecules. Once this system is malfunctional or overwhelmed the development of diseases, such as atherosclerosis and age-related macular degeneration is favored. Understanding the molecular components and mechanisms involved in this process, will help the identification of individuals with increased risk of developing chronic inflammation, and indicate novel points for therapeutic intervention. This article is part of a Special Issue entitled: Oxidized phospholipids—their properties and interactions with proteins.
Collapse
|
29
|
van Rossum AP, Vlasveld LT, van den Hoven LJM, de Wit CWM, Castel A. False prolongation of the activated partial thromboplastin time (aPTT) in inflammatory patients: interference of C-reactive protein. Br J Haematol 2012; 157:394-5. [PMID: 22224499 DOI: 10.1111/j.1365-2141.2011.08990.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Singh SK, Thirumalai A, Hammond DJ, Pangburn MK, Mishra VK, Johnson DA, Rusiñol AE, Agrawal A. Exposing a hidden functional site of C-reactive protein by site-directed mutagenesis. J Biol Chem 2011; 287:3550-8. [PMID: 22158621 DOI: 10.1074/jbc.m111.310011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C-reactive protein (CRP) is a cyclic pentameric protein whose major binding specificity, at physiological pH, is for substances bearing exposed phosphocholine moieties. Another pentameric form of CRP, which exists at acidic pH, displays binding activity for oxidized LDL (ox-LDL). The ox-LDL-binding site in CRP, which is hidden at physiological pH, is exposed by acidic pH-induced structural changes in pentameric CRP. The aim of this study was to expose the hidden ox-LDL-binding site of CRP by site-directed mutagenesis and to generate a CRP mutant that can bind to ox-LDL without the requirement of acidic pH. Mutation of Glu(42), an amino acid that participates in intersubunit interactions in the CRP pentamer and is buried, to Gln resulted in a CRP mutant (E42Q) that showed significant binding activity for ox-LDL at physiological pH. For maximal binding to ox-LDL, E42Q CRP required a pH much less acidic than that required by wild-type CRP. At any given pH, E42Q CRP was more efficient than wild-type CRP in binding to ox-LDL. Like wild-type CRP, E42Q CRP remained pentameric at acidic pH. Also, E42Q CRP was more efficient than wild-type CRP in binding to several other deposited, conformationally altered proteins. The E42Q CRP mutant provides a tool to investigate the functions of CRP in defined animal models of inflammatory diseases including atherosclerosis because wild-type CRP requires acidic pH to bind to deposited, conformationally altered proteins, including ox-LDL, and available animal models may not have sufficient acidosis or other possible modifiers of the pentameric structure of CRP at the sites of inflammation.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Berg G, Miksztowicz V, Schreier L. Metalloproteinases in metabolic syndrome. Clin Chim Acta 2011; 412:1731-9. [PMID: 21703252 DOI: 10.1016/j.cca.2011.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 12/16/2022]
Abstract
Experimental and clinical evidence supports the concept that metalloproteinases (MMPs), beyond different physiologic functions, also play a role in the development and rupture of the atherosclerotic plaque. Interest in MMPs has been rapidly increasing during the last years, especially as they have been proposed as biomarkers of vulnerable plaques. Different components of the metabolic syndrome (MS) have been identified as possible stimulus for the synthesis and activity of MMPs, like pro-inflammatory and pro-oxidant state, hyperglycemia, hypertension and dyslipidemia. On the other hand, anti-inflammatory cytokines like adiponectin are inversely associated with MMPs. Among the several MMPs studied, collagenases (MMP-1 and MMP-8) and gelatinases (MMP-2 and MMP-9) are the most associated with MS. Our aim was to summarize and discuss the relation between different components of the MS on MMPs, as well as the effect of the cluster of the metabolic alterations itself. It also highlights the necessity of further studies, in both animals and humans, to elucidate the function of novel MMPs identified, as well as the role of the known enzymes in different steps of metabolic diseases. Understanding the mechanisms of MS impact on MMPs and vice versa is an interesting area of research that will positively enhance our understanding of the complexity of MS and atherosclerosis.
Collapse
Affiliation(s)
- Gabriela Berg
- Lipids and Lipoproteins Laboratory. Department of Clinical Biochemistry, INFIBIOC, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina.
| | | | | |
Collapse
|
32
|
Agrawal A, Hammond DJ, Singh SK. Atherosclerosis-related functions of C-reactive protein. Cardiovasc Hematol Disord Drug Targets 2011; 10:235-40. [PMID: 20932269 DOI: 10.2174/187152910793743841] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 09/13/2010] [Indexed: 11/22/2022]
Abstract
C-reactive protein (CRP) is secreted by hepatocytes as a pentameric molecule made up of identical monomers, circulates in the plasma as pentamers, and localizes in atherosclerotic lesions. In some cases, localized CRP was detected by using monoclonal antibodies that did not react with native pentameric CRP but were specific for isolated monomeric CRP. It has been reported that, once CRP is bound to certain ligands, the pentameric structure of CRP is altered so that it can dissociate into monomers. Accordingly, the monomeric CRP found in atherosclerotic lesions may be a stationary, ligand-bound, by-product of a ligand-binding function of CRP. CRP binds to modified forms of low-density lipoprotein (LDL). The binding of CRP to oxidized LDL requires acidic pH conditions; the binding at physiological pH is controversial. The binding of CRP to enzymatically-modified LDL occurs at physiological pH; however, the binding is enhanced at acidic pH. Using enzymatically-modified LDL, CRP has been shown to prevent the formation of enzymatically-modified LDL-loaded macrophage foam cells. CRP is neither pro-atherogenic nor atheroprotective in ApoE⁻(/)⁻ and ApoB¹⁰⁰(/)¹⁰⁰Ldlr ⁻(/)⁻ murine models of atherosclerosis, except in one study where CRP was found to be slightly atheroprotective in ApoB¹⁰⁰(/)¹⁰⁰Ldlr ⁻(/)⁻ mice. The reasons for the ineffectiveness of human CRP in murine models of atherosclerosis are not defined. It is possible that an inflammatory environment, such as those characterized by acidic pH, is needed for efficient interaction between CRP and atherogenic LDL during the development of atherosclerosis and to observe the possible atheroprotective function of CRP in animal models.
Collapse
Affiliation(s)
- Alok Agrawal
- Department of Pharmacology, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | |
Collapse
|
33
|
Tapan S, Karadurmus N, Dogru T, Ercin CN, Tasci I, Bilgi C, Kurt I, Erbil MK. Decreased small dense LDL levels in Gilbert's syndrome. Clin Biochem 2010; 44:300-3. [PMID: 21167147 DOI: 10.1016/j.clinbiochem.2010.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/11/2010] [Accepted: 12/06/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the role of small dense low density lipoprotein cholesterol (sd-LDL-C) in the mechanism of decreased incidence of cardiovascular disease in Gilbert's syndrome (GS). DESIGN AND METHODS sd-LDL-C, ox-LDL, and high sensitive C reactive protein (hs-CRP) levels were investigated in subjects with GS (n=42) and compared to healthy controls (n=52). RESULTS Age, gender and body mass index (BMI) distributions were similar between the two groups. sd-LDL-C, ox-LDL and hs-CRP levels were lower in GS than the healthy controls (p<0.001, p<0.001 and p=0.001, respectively). Unconjugated bilirubin was negatively correlated with sd-LDL-C, ox-LDL and hs-CRP (r=-0.594, p<0.001; r=-0.249, p=0.016 and r=-0.373, p<0.001 respectively). In addition, sd-LDL-C was positively correlated with ox-LDL (r=0.307, p=0.003). CONCLUSIONS The findings of this preliminary study suggest that reduced sd-LDL-C, ox-LDL and hs-CRP levels may have a role in preventing atherosclerosis in subjects with GS.
Collapse
Affiliation(s)
- Serkan Tapan
- Department of Medical Biochemistry, Gulhane School of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bao L, Xia X, Cui Y. Expression QTL modules as functional components underlying higher-order phenotypes. PLoS One 2010; 5:e14313. [PMID: 21179437 PMCID: PMC3001472 DOI: 10.1371/journal.pone.0014313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/23/2010] [Indexed: 01/29/2023] Open
Abstract
Systems genetics studies often involve the mapping of numerous regulatory relations between genetic loci and expression traits. These regulatory relations form a bipartite network consisting of genetic loci and expression phenotypes. Modular network organizations may arise from the pleiotropic and polygenic regulation of gene expression. Here we analyzed the expression QTL (eQTL) networks derived from expression genetic data of yeast and mouse liver and found 65 and 98 modules respectively. Computer simulation result showed that such modules rarely occurred in randomized networks with the same number of nodes and edges and same degree distribution. We also found significant within-module functional coherence. The analysis of genetic overlaps and the evidences from biomedical literature have linked some eQTL modules to physiological phenotypes. Functional coherence within the eQTL modules and genetic overlaps between the modules and physiological phenotypes suggests that eQTL modules may act as functional units underlying the higher-order phenotypes.
Collapse
Affiliation(s)
- Lei Bao
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail: (LB); (YC)
| | - Xuefeng Xia
- Institute of Bioinformatics, Tsinghua University, Beijing, China
| | - Yan Cui
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail: (LB); (YC)
| |
Collapse
|
35
|
Shehata M, El Abd D, El Shanawani F, Abdallah EA, Darwish H, Moghazy MF, Metwaly A, Hadi AAA. Cadherin 5 and Annexin V as Circulating Endothelial Microparticles: Markers for Atherosclerotic Vascular Lesions in Patients with Chronic Renal Failure. KIDNEY 2010; 19:307-315. [DOI: 10.1007/s00596-010-0176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
36
|
Hammond DJ, Singh SK, Thompson JA, Beeler BW, Rusiñol AE, Pangburn MK, Potempa LA, Agrawal A. Identification of acidic pH-dependent ligands of pentameric C-reactive protein. J Biol Chem 2010; 285:36235-44. [PMID: 20843812 PMCID: PMC2975246 DOI: 10.1074/jbc.m110.142026] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/28/2010] [Indexed: 12/20/2022] Open
Abstract
C-reactive protein (CRP) is a phylogenetically conserved protein; in humans, it is present in the plasma and at sites of inflammation. At physiological pH, native pentameric CRP exhibits calcium-dependent binding specificity for phosphocholine. In this study, we determined the binding specificities of CRP at acidic pH, a characteristic of inflammatory sites. We investigated the binding of fluid-phase CRP to six immobilized proteins: complement factor H, oxidized low-density lipoprotein, complement C3b, IgG, amyloid β, and BSA immobilized on microtiter plates. At pH 7.0, CRP did not bind to any of these proteins, but, at pH ranging from 5.2 to 4.6, CRP bound to all six proteins. Acidic pH did not monomerize CRP but modified the pentameric structure, as determined by gel filtration, 1-anilinonaphthalene-8-sulfonic acid-binding fluorescence, and phosphocholine-binding assays. Some modifications in CRP were reversible at pH 7.0, for example, the phosphocholine-binding activity of CRP, which was reduced at acidic pH, was restored after pH neutralization. For efficient binding of acidic pH-treated CRP to immobilized proteins, it was necessary that the immobilized proteins, except factor H, were also exposed to acidic pH. Because immobilization of proteins on microtiter plates and exposure of immobilized proteins to acidic pH alter the conformation of immobilized proteins, our findings suggest that conformationally altered proteins form a CRP-ligand in acidic environment, regardless of the identity of the protein. This ligand binding specificity of CRP in its acidic pH-induced pentameric state has implications for toxic conditions involving protein misfolding in acidic environments and favors the conservation of CRP throughout evolution.
Collapse
Affiliation(s)
| | | | | | | | - Antonio E. Rusiñol
- Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Michael K. Pangburn
- the Department of Biochemistry, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas 75708, and
| | | | | |
Collapse
|
37
|
Fu YC, Yang JT, Chen HW, Wu JH. Effect of lipoprotein (a) on annexin A5 binding to cell membrane. Clin Chim Acta 2010; 411:1915-9. [PMID: 20705065 DOI: 10.1016/j.cca.2010.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 07/17/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND High blood lipoprotein (a) [Lp(a)] concentration is a risk factor for a thrombotic event. Annexin A5 is involved in anticoagulation on the endothelial surface. How Lp(a) affects the annexin A5 function is not clear. This study investigates annexin A5 binding on the cell membrane in the presence of Lp(a). METHODS Lp(a) was isolated from human blood plasma by ultracentrifugation and annexin A5 protein was purchased commercially. The cell membrane was prepared from primary human umbilical vein endothelial cells (HUVEC) and cultured cell line HepG2 by sucrose density gradient centrifugation. Enzyme-linked immunosorbent assays (ELISA) were used to examine annexin A5 binding to the cell membrane in the presence of Lp(a). Flow cytometry was used to analyze the binding of fluorescence-labeled annexin A5 to phosphatidylserine (PS)-translocated intact cells in the presence of Lp(a). RESULTS Annexin A5 binding to the cell membrane was attenuated by a high concentration of Lp(a) in both HUVEC and HepG2 membrane surfaces. The phenomenon was also observed with annexin A5 surface labeling of HepG2 cells and flow cytometry analysis. CONCLUSIONS The results imply that Lp(a) interferes with annexin A5 binding to the procoagulant PS which translocates to the membrane surface under stress condition and therefore may increase the risk for thrombosis.
Collapse
Affiliation(s)
- Yi-Chi Fu
- Department of Microbiology and Immunology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | | | | | | |
Collapse
|
38
|
Lupus Anticoagulant (LAC) testing in patients with inflammatory status: Does C-reactive protein interfere with LAC test results? Thromb Res 2010; 125:102-4. [DOI: 10.1016/j.thromres.2009.09.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/24/2009] [Accepted: 09/01/2009] [Indexed: 11/24/2022]
|
39
|
van Leuven SI, Birjmohun RS, Franssen R, Bisoendial RJ, de Kort H, Levels JHM, Basser RL, Meijers JCM, Kuivenhoven JA, Kastelein JJ, Stroes ES. ApoAI-phosphatidylcholine infusion neutralizes the atherothrombotic effects of C-reactive protein in humans. J Thromb Haemost 2009; 7:347-54. [PMID: 18983488 DOI: 10.1111/j.1538-7836.2008.03175.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND High-density lipoprotein (HDL) exerts a variety of anti-atherothrombotic functions, including a potent anti-inflammatory impact. In line, the direct pro-inflammatory effects of C-reactive protein (CRP) can be attenuated by HDL in vitro. OBJECTIVE To evaluate whether this also holds true in humans, we assessed the ability of reconstituted HDL to neutralize CRP-mediated activation of coagulation and inflammation. METHODS Fifteen healthy male volunteers received an infusion of recombinant human (rh)CRP (1.25 mg kg(-1) body weight). In eight of these volunteers, an infusion of human apoAI reconstituted with phosphatidylcholine (apoAI-PC; 80 mg kg(-1) body weight) preceded rhCRP infusion. RESULTS Infusion of rhCRP alone elicited an inflammatory response and thrombin generation. In individuals who received apoAI-PC prior to rhCRP, these effects were abolished. Parallel tests in primary human endothelial cells showed that apoAI-PC preincubation with rhCRP abolished the CRP-mediated activation of inflammation as assessed by IL-6 release. Although we were able to show that rhCRP co-eluted with HDL after size-exclusion chromatography, plasmon surface resonance indicated the absence of a direct interaction between HDL and CRP. CONCLUSION Infusion of apoAI-PC prior to rhCRP in humans completely prevents the direct atherothrombotic effects of rhCRP. These findings imply that administration of apoAI-PC may offer benefit in patients with increased CRP.
Collapse
Affiliation(s)
- S I van Leuven
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Singh SK, Suresh MV, Prayther DC, Moorman JP, Rusiñol AE, Agrawal A. C-reactive protein-bound enzymatically modified low-density lipoprotein does not transform macrophages into foam cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:4316-22. [PMID: 18322245 DOI: 10.4049/jimmunol.180.6.4316] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The formation of low-density lipoprotein (LDL) cholesterol-loaded macrophage foam cells contributes to the development of atherosclerosis. C-reactive protein (CRP) binds to atherogenic forms of LDL, but the role of CRP in foam cell formation is unclear. In this study, we first explored the binding site on CRP for enzymatically modified LDL (E-LDL), a model of atherogenic LDL to which CRP binds. As reported previously, phosphocholine (PCh) inhibited CRP-E-LDL interaction, indicating the involvement of the PCh-binding site of CRP in binding to E-LDL. However, the amino acids Phe66 and Glu81 in CRP that participate in CRP-PCh interaction were not required for CRP-E-LDL interaction. Surprisingly, blocking of the PCh-binding site with phosphoethanolamine (PEt) dramatically increased the binding of CRP to E-LDL. The PEt-mediated enhancement in the binding of CRP to E-LDL was selective for E-LDL because PEt inhibited the binding of CRP to another PCh-binding site-ligand pneumococcal C-polysaccharide. Next, we investigated foam cell formation by CRP-bound E-LDL. We found that, unlike free E-LDL, CRP-bound E-LDL was inactive because it did not transform macrophages into foam cells. The function of CRP in eliminating the activity of E-LDL to form foam cells was not impaired by the presence of PEt. Combined data lead us to two conclusions. First, PEt is a useful compound because it potentiates the binding of CRP to E-LDL and, therefore, increases the efficiency of CRP to prevent transformation of macrophages into E-LDL-loaded foam cells. Second, the function of CRP to prevent formation of foam cells may influence the process of atherogenesis.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Oxidative modification of low-density lipoprotein (LDL) is one of the earliest events in atherosclerosis. Oxidized LDL (oxLDL) represents a variety of modification of both lipid and apolipoprotein B (apoB) components by lipid peroxidation. This promotes atherosclerosis through inflammatory and immunologic mechanisms that lead to the formation of macrophage foam cells. Recent findings also suggest that oxLDL forms complexes with beta(2)-glycoprotein I (beta(2)GPI) and/or C-reactive protein (CRP) within atherosclerotic lesions and that these complexes appear in the circulation. Autoantibodies (auto-Abs) against oxLDL/beta(2)GPI complexes occur in patients with systemic lupus erythematosus (SLE) and/or antiphospholipid syndrome (APS). These autoantibodies significantly correlate with arterial thrombosis. IgG auto-Abs having similar specificity emerge spontaneously in NZWxBXSB F1 mice, which generally are considered to be an animal model of APS, and these mice produce a monoclonal IgG auto-Ab (WB-CAL-1) against oxLDL/beta(2)GPI complexes. WB-CAL-1 significantly increased the in vitro uptake of oxLDL/beta(2)GPI complexes by macrophages, which suggests that such IgG auto-Abs are pro-atherogenic. In contrast, IgM anti-oxLDL natural Abs found in the atherosclerosis-prone mice have been proposed to be protective. The presence of such Abs in humans has been documented in many publications but their exact pathophysiological significance remains unclear. In this article, we review recent progress in our understanding of the clinical significance of oxidation of LDL, formation of oxLDL complexes, and Abs in atherosclerotic and/or autoimmune disease.
Collapse
Affiliation(s)
- Eiji Matsuura
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | |
Collapse
|
42
|
Singh SK, Suresh MV, Prayther DC, Moorman JP, Rusiñol AE, Agrawal A. Phosphoethanolamine-complexed C-reactive protein: a pharmacological-like macromolecule that binds to native low-density lipoprotein in human serum. Clin Chim Acta 2008; 394:94-8. [PMID: 18486609 DOI: 10.1016/j.cca.2008.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND C-reactive protein (CRP) is an acute phase plasma protein. An important binding specificity of CRP is for the modified forms of low-density lipoprotein (LDL) in which the phosphocholine-binding sites of CRP participate. CRP, however, does not bind to native LDL. METHODS We investigated the interaction of CRP with native LDL using sucrose density gradient ultracentrifugation. RESULTS We found that the blocking of the phosphocholine-binding sites of CRP with phosphoethanolamine (PEt) converted CRP into a potent molecule for binding to native LDL. In the presence of PEt, CRP acquired the ability to bind to fluid-phase purified native LDL. Because purified native LDL may undergo subtle modifications, we also used whole human serum as the source of native LDL. In the presence of PEt, CRP bound to native LDL in serum also. The effect of PEt on CRP was selective for LDL because PEt-complexed CRP did not bind to high-density lipoprotein in the serum. CONCLUSIONS The pharmacologic intervention of endogenous CRP by PEt-based compounds, or the use of exogenously prepared CRP-PEt complexes, may turn out to be an effective approach to capture native LDL cholesterol in vivo to prevent the development of atherosclerosis.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | |
Collapse
|
43
|
Mattila JP, Sabatini K, Kinnunen PKJ. Interaction of cytochrome c with 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine: evidence for acyl chain reversal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:4157-4160. [PMID: 18315024 DOI: 10.1021/la703940s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The conformational dynamics of the oxidatively modified phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) were assessed by observing by fluorescence energy transfer the association of the water-soluble cationic protein cytochrome c with micelles composed of this lipid. In keeping with reversal of the azelaoyl chain so as to expose its carboxyl function on the micelle surface, cytochrome c bound avidly to the micelles. In contrast, the aldehyde group bearing 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) interacted only weakly. While the physiological significance of the above interaction is uncertain, our results demonstrate that oxidative damage alters the physical properties of lipid bilayers, involving enrichment of the polar moieties of oxidatively modified lipid chains within the membrane surface.
Collapse
Affiliation(s)
- Juha-Pekka Mattila
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine/Medical Biochemistry (Haartmaninkatu 8), University of Helsinki, Finland
| | | | | |
Collapse
|
44
|
Singh U, Dasu MR, Yancey PG, Afify A, Devaraj S, Jialal I. Human C-reactive protein promotes oxidized low density lipoprotein uptake and matrix metalloproteinase-9 release in Wistar rats. J Lipid Res 2008; 49:1015-23. [PMID: 18245817 DOI: 10.1194/jlr.m700535-jlr200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-reactive protein (CRP) is present in the atherosclerotic plaques and appears to promote atherogenesis. Intraplaque CRP colocalizes with oxidized low density lipoprotein (OxLDL) and macrophages in human atherosclerotic lesions. Matrix metalloproteinase-9 (MMP-9) has been implicated in plaque rupture. CRP promotes OxLDL uptake and MMP induction in vitro; however, these have not been investigated in vivo. We examined the effect of CRP on OxLDL uptake and MMP-9 production in vivo in Wistar rats. CRP significantly increased OxLDL uptake in the peritoneal and sterile pouch macrophages compared with human serum albumin (huSA). CRP also significantly increased intracellular cholesteryl ester accumulation compared with huSA. The increased uptake of OxLDL by CRP was inhibited by pretreatment with antibodies to CD32, CD64, CD36, and fucoidin, suggesting uptake by both scavenger receptors and Fc-gamma receptors. Furthermore, CRP treatment increased MMP-9 activity in macrophages compared with huSA, which was abrogated by inhibitors to p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), and nuclear factor (NF)-kappaB but not Jun N-terminal kinase (JNK) before human CRP treatment. Because OxLDL uptake by macrophages contributes to foam cell formation and MMP release contributes to plaque instability, this study provides novel in vivo evidence for the role of CRP in atherosclerosis.
Collapse
Affiliation(s)
- U Singh
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The connection between C-reactive protein (CRP) and atherosclerosis lies on three grounds. First, the concentration of CRP in the serum, which is measured by using highly sensitive (a.k.a. 'hs') techniques, correlates with the occurrence of cardiovascular disease. Second, although CRP binds only to Fcgamma receptor-bearing cells and, in general, to apoptotic and damaged cells, almost every type of cultured mammalian cells has been shown to respond to CRP treatment. Many of these responses indicate proatherogenic functions of CRP but are being reinvestigated using CRP preparations that are free of endotoxins, sodium azide, and biologically active peptides derived from the protein itself. Third, CRP binds to modified forms of low-density lipoprotein (LDL), and, when aggregated, CRP can bind to native LDL as well. Accordingly, CRP is seen with LDL and damaged cells at the atherosclerotic lesions and myocardial infarcts. In experimental rats, human CRP was found to increase the infarct size, an effect that could be abrogated by blocking CRP-mediated complement activation. In the Apob (100/100) Ldlr (-/-) murine model of atherosclerosis, human CRP was shown to be atheroprotective, and the importance of CRP-LDL interactions in this protection was noted. Despite all this, at the end, the question whether CRP can protect humans from developing atherosclerosis remains unanswered.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | |
Collapse
|
46
|
Potential Markers of Arterial and/or Venous Thromboses and their Complications in Primary Antiphospholipid Syndrome. J Med Biochem 2007. [DOI: 10.2478/v10011-007-0031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Potential Markers of Arterial and/or Venous Thromboses and their Complications in Primary Antiphospholipid SyndromeAntiphospholipid syndrome is characterized by venous or arterial thromboses and/or recurrent abortions accompanied by antiphospholipid antibodies and it can be primary (PAPS) or secondary (SAPS) to another disease. Arterial thromboses are less common than venous and most frequently they manifest as ischemia or infarction. Venous thromboses are usually multiple and bilateral and the most common complication of venous thromboses are pulmonary emboli. Considering that laboratory diagnosis of PAPS is currently based on persistently positive aCL, aβ2gpl and/or LA tests, and that neither one of those tests can discriminate between PAPS patients with arterial or venous thromboses or their complications, the aim of this study was to investigate the diagnostical significance of the determination of apo(a), oxLDL, anti-oxLDL antibodies, antianxA5 antibodies, hsCRP, C3 and C4 complement components and HPT for discrimination between PAPS patients with diverse clinical manifestations. Considering that elevated oxLDL and anti-oxLDL antibodies concentrations were found in PAPS patients, and also in subgroups of PAPS patients with MI or PE, it can be concluded that those parameters represent additional risk factors which together with other factors may lead to thromboses and their complications in PAPS. Regarding the fact that C3 and C4 concentrations were decreased in PAPS patients and that a positive correlation was found between hsCRP and C3 concentrations, this finding could indicate potential roles of these parameters as markers of atherosclerosis, which represents the leading cause of morbidity and mortality. HPT and apo(a) concentrations are not independent risk factors for MI in PAPS because lower levels were found in those patients in comparison to MI survivors without PAPS. No significant correlation of anti-anxA5 antibodies and the presence of arterial or venous thromboses or their complications was found, but increased concentrations of the IgG isotype of those antibodies could be a marker for recurrent abortions in PAPS, although this finding should be further investigated on a larger number of patients with this clinical finding. Determination of hsCRP in PAPS patients could not be an adequate parameter which would provide discrimination between patients with increased risk for development and/or recurrence of venous and/or arterial thromboses, nor for their complications, because no statistically significant difference in concentrations of this parameter was found among PAPS, IM, PE and SLE patients who were included in this study.
Collapse
|
47
|
Cederholm A, Frostegård J. Annexin A5 as a novel player in prevention of atherothrombosis in SLE and in the general population. Ann N Y Acad Sci 2007; 1108:96-103. [PMID: 17893975 DOI: 10.1196/annals.1422.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During recent years it has become evident that atherosclerosis is an inflammatory disease. Furthermore, immune reactions and especially autoimmunity, were demonstrated to modulate atherosclerosis in animal experiments. An interesting example of how autoimmune reactions can influence atherosclerosis and consequences thereafter, is systemic lupus erythematosus (SLE)-associated cardiovascular disease (CVD). Antithrombotic effect exerted by Annexin A5 (ANXA5) is thought to be mediated mainly by forming a mechanical shield over phospholipids (PLs) reducing availability of PLs for coagulation reactions. However, more specific properties of ANXA5 might be of importance for its antithrombotic function. Such examples include downregulation of surface-expressed tissue factor (TF), as well as upregulation of urokinase-type plasminogen activator (uPA) by ANXA5. Also, interaction of ANXA5 with ligands involved in hemostasis, such as sulfatide and heparin, has been demonstrated. We have recently described a novel mechanism potentially contributing to atherothrombosis in SLE, with ANXA5 binding to endothelium decreased in SLE, an effect caused by antiphospholipid antibodies (aPL). It may be hypothesized that ANXA5 can be effective as a treatment to prevent plaque rupture and atherothrombosis not only in SLE, but also in the general population prone to CVD. Antiatherothrombotic potential of ANXA5 deserves further attention and careful studies as the mechanism behind the majority of clinically significant cardiovascular ischemic disease is atherothrombosis, formed on an underlying vulnerable atherosclerotic lesion. It may be hypothesized that ANXA5 can be effective as a treatment to prevent plaque rupture and atherothrombosis not only in SLE, but also in a general population prone to CVD.
Collapse
Affiliation(s)
- Anna Cederholm
- Department of Medicine, Karolinska University Hospital, Huddinge, Sweden.
| | | |
Collapse
|
48
|
Puccetti L, Pasqui AL, Bruni F, Pastorelli M, Ciani F, Palazzuoli A, Pontani A, Ghezzi A, Auteri A. Lectin-like oxidized-LDL receptor-1 (LOX-1) polymorphisms influence cardiovascular events rate during statin treatment. Int J Cardiol 2007; 119:41-7. [PMID: 17050011 DOI: 10.1016/j.ijcard.2006.07.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/01/2006] [Accepted: 07/09/2006] [Indexed: 12/01/2022]
Abstract
BACKGROUND Oxidized-LDL (ox-LDL) are involved in atherothrombosis by induction of endothelial dysfunction and thrombosis. The specific receptor lectin-like oxidized-LDL receptor-1 (LOX-1) is expressed in endothelial cells, monocytes and platelets. LOX-1 gene allelic variants (3'UTR/T) have been related with cardiovascular events and reduced anti-platelet activity induced by statins. OBJECTIVES To detect whether LOX-1 polymorphisms could affect statins effectiveness in cardiovascular prevention. PATIENTS/METHODS The present was a retrospective study performed in 751 white hypercholesterolemic subjects treated with increasing doses of atorvastatin (n=382, 247 male, 135 female) or simvastatin (n=369, 244 male, 125 female) up to 4 years, whose LDL target was 3.36 mmol/L according to the National Cholesterol Education Program, Adult Treatment Panel III (NCEP-ATPIII). Single nucleotide polymorphism were evaluated by allelic discrimination assays (PCR), lipid profile by enzymatic-colorimetric methods and C-reactive protein (CRP) by a nephelometric technique. RESULTS Twenty-three non-ST elevation (NSTEMI) and eleven ST-elevation myocardial infarction (STEMI) were encountered in the observational period without differences between treatments (p=0.175) and sex (p=0.139). Each symptomatic subject (10 reaching the appropriate LDL target and 24 with still undesirable LDL) had the 3'UTR/T allelic variant (adjusted O.R. 4.63, 95% C.I. 3.46-6.70, p<0.0001). Among patients not reaching LDL target the C allele resulted protective with respect to T carriers (p<0.00001). Also, similar changes of CRP resulted in different event rate between T and C carriers (p<0.001) in the whole cohort. CONCLUSIONS In the studied population LOX-1 genetic variants influence cardiovascular risk reduction induced by statins also in patients not reaching the LDL target. The previously described LOX-1-related antithrombotic actions of both statins employed could have a specific role in what observed, suggesting a genetic influence in statins LDL-lowering partially related actions.
Collapse
Affiliation(s)
- L Puccetti
- Department of Clinical Medicine and Immunology, Internal Medicine Division, Center for Atherosclerosis Research, Policlinico Le Scotte, University of Siena, V.le Bracci, 53100, Siena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
van Tits LJH, van Heerde WL, van der Vleuten GM, de Graaf J, Grobbee DE, van de Vijver LPL, Stalenhoef AF, Princen HM. Plasma annexin A5 level relates inversely to the severity of coronary stenosis. Biochem Biophys Res Commun 2007; 356:674-80. [PMID: 17374363 DOI: 10.1016/j.bbrc.2007.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 03/03/2007] [Indexed: 11/21/2022]
Abstract
Exogenous radiolabeled annexin A5 is taken up by atherosclerotic tissue. We measured endogenous plasma annexin A5 and circulating oxidized low-density lipoprotein (oxLDL), a biochemical marker of atherosclerosis, in men with either severe angiographically determined coronary stenosis (n=90) or no or only minor stenosis (n=96). Men without history of cardiac disease or treatment and free of plaques in the carotid artery (by ultrasonography) were taken as controls (n=87). Opposite to oxLDL, annexin A5 decreased at increasing severity of stenosis. OxLDL was lowest and annexin A5 was highest in controls. Percentage differences between groups were higher for annexin A5 than for oxLDL, and highest for oxLDL/annexin A5 ratio. The oxLDL/annexin A5 ratio is a better marker of the severity of coronary stenosis than oxLDL alone, may reflect the presence and extent of the atherosclerotic cardiovascular disease, and might prove useful for preclinical screening purposes.
Collapse
Affiliation(s)
- Lambertus J H van Tits
- Department of General Internal Medicine 441, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dahl M, Vestbo J, Lange P, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. C-reactive Protein As a Predictor of Prognosis in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2007; 175:250-5. [PMID: 17053205 DOI: 10.1164/rccm.200605-713oc] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Patients with chronic obstructive pulmonary disease (COPD) have an ongoing systemic inflammation, which can be assessed by measuring serum C-reactive protein (CRP). OBJECTIVE To determine whether increased serum CRP in individuals with airway obstruction predicts future hospitalization and death from COPD. METHODS We performed a cohort study with a median of 8-yr follow-up of 1,302 individuals with airway obstruction selected from the ongoing Copenhagen City Heart Study. MEASUREMENTS AND MAIN RESULTS We measured serum CRP at baseline, and recorded COPD admissions and deaths as outcomes. During follow-up, 185 (14%) individuals were hospitalized due to COPD and 83 (6%) died of COPD. Incidences of COPD hospitalization and COPD death were increased in individuals with baseline CRP > 3 mg/L versus < or = 3 mg/L (log rank: p < 0.001). After adjusting for sex, age, FEV(1)% predicted, tobacco consumption, and ischemic heart disease, the hazard ratios for hospitalization and death due to COPD were increased at 1.4 (95% confidence interval, 1.0-2.0) and 2.2 (1.2-3.9) in individuals with baseline CRP > 3 mg/L versus < or = 3 mg/L. After close matching for FEV(1)% predicted and adjusting for potential confounders, baseline CRP was, on average, increased by 1.2 mg/L (analysis of variance: p = 0.002) and 4.1 mg/L (p = 0.001) in those who were subsequently hospitalized or died of COPD, respectively. The absolute 10-yr risks for COPD hospitalization and death in individuals with CRP above 3 mg/L were 54 and 57%, respectively, among those older than 70 yr with a tobacco consumption above 15 g/d and an FEV(1)% predicted of less than 50. CONCLUSIONS CRP is a strong and independent predictor of future COPD outcomes in individuals with airway obstruction.
Collapse
Affiliation(s)
- Morten Dahl
- Department of Clinical Biochemistry, Herlev University Hospital, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|