1
|
Manthei KA, Tremonti GE, Chang L, Niemelä A, Giorgi L, Koivuniemi A, Tesmer JJG. Rescue of Familial Lecithin:Cholesterol Acyltranferase Deficiency Mutations with an Allosteric Activator. Mol Pharmacol 2024; 106:188-197. [PMID: 39151949 PMCID: PMC11413911 DOI: 10.1124/molpharm.124.000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) deficiencies represent severe disorders characterized by aberrant cholesterol esterification in plasma, leading to life-threatening conditions. This study investigates the efficacy of Compound 2, a piperidinyl pyrazolopyridine allosteric activator that binds the membrane-binding domain of LCAT, in rescuing the activity of LCAT variants associated with disease. The variants K218N, N228K, and G230R, all located in the cap and lid domains of LCAT, demonstrated notable activity restoration in response to Compound 2. Molecular dynamics simulations and structural modeling indicate that these mutations disrupt the lid and membrane binding domain, with Compound 2 potentially dampening these structural alterations. Conversely, variants such as M252K and F382V in the cap and α/β-hydrolase domain, respectively, exhibited limited or no rescue by Compound 2. Future research should prioritize in vivo investigations that would validate the therapeutic potential of Compound 2 and related activators in familial LCAT deficiency patients with mutations in the cap and lid of the enzyme. SIGNIFICANCE STATEMENT: Lecithin:cholesterol acyltranferase (LCAT) catalyzes the first step of reverse cholesterol transport, namely the esterification of cholesterol in high density lipoprotein particles. Somatic mutations in LCAT lead to excess cholesterol in blood plasma and, in severe cases, kidney failure. In this study, we show that recently discovered small molecule activators can rescue function in LCAT-deficient variants when the mutations occur in the lid and cap domains of the enzyme.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Grace E Tremonti
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Louise Chang
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Akseli Niemelä
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Laura Giorgi
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Artturi Koivuniemi
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John Joseph Grubb Tesmer
- Department of Molecular Pharmacology, University of Michigan, Ann Arbor, Michigan (K.A.M., G.E.T., L.C.); Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland (A.N., L.G., A.K.); and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
2
|
Niemelä A, Koivuniemi A. Systematic evaluation of lecithin:cholesterol acyltransferase binding sites in apolipoproteins via peptide based nanodiscs: regulatory role of charged residues at positions 4 and 7. PLoS Comput Biol 2024; 20:e1012137. [PMID: 38805510 PMCID: PMC11161081 DOI: 10.1371/journal.pcbi.1012137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) exhibits α-activity on high-density and β-activity on low-density lipoproteins. However, the molecular determinants governing LCAT activation by different apolipoproteins remain elusive. Uncovering these determinants would offer the opportunity to design and explore advanced therapies against dyslipidemias. Here, we have conducted coarse-grained and all-atom molecular dynamics simulations of LCAT with nanodiscs made with α-helical amphiphilic peptides either derived from apolipoproteins A1 and E (apoA1 and apoE) or apoA1 mimetic peptide 22A that was optimized to activate LCAT. This study aims to explore what drives the binding of peptides to our previously identified interaction site in LCAT. We hypothesized that this approach could be used to screen for binding sites of LCAT in different apolipoproteins and would provide insights to differently localized LCAT activities. Our screening approach was able to discriminate apoA1 helixes 4, 6, and 7 as key contributors to the interaction with LCAT supporting the previous research data. The simulations provided detailed molecular determinants driving the interaction with LCAT: the formation of hydrogen bonds or salt bridges between peptides E4 or D4 and LCAT S236 or K238 residues. Additionally, salt bridging between R7 and D73 was observed, depending on the availability of R7. Expanding our investigation to diverse plasma proteins, we detected novel LCAT binding helixes in apoL1, apoB100, and serum amyloid A. Our findings suggest that the same binding determinants, involving E4 or D4 -S236 and R7-D73 interactions, influence LCAT β-activity on low-density lipoproteins, where apoE and or apoB100 are hypothesized to interact with LCAT.
Collapse
Affiliation(s)
- Akseli Niemelä
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Artturi Koivuniemi
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
He Y, Pavanello C, Hutchins PM, Tang C, Pourmousa M, Vaisar T, Song HD, Pastor RW, Remaley AT, Goldberg IJ, Costacou T, Sean Davidson W, Bornfeldt KE, Calabresi L, Segrest JP, Heinecke JW. Flipped C-Terminal Ends of APOA1 Promote ABCA1-Dependent Cholesterol Efflux by Small HDLs. Circulation 2024; 149:774-787. [PMID: 38018436 PMCID: PMC10913861 DOI: 10.1161/circulationaha.123.065959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.
Collapse
Affiliation(s)
- Yi He
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| | - Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (C.P., L.C.)
| | - Patrick M. Hutchins
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| | - Mohsen Pourmousa
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (M.P., R.W.P.), National Institutes of Health, Bethesda, MD
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| | - Hyun D. Song
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.D.S., J.P.S.)
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute (M.P., R.W.P.), National Institutes of Health, Bethesda, MD
| | - Alan T. Remaley
- Department of Laboratory Medicine (A.T.R.), National Institutes of Health, Bethesda, MD
| | - Ira J. Goldberg
- Department of Medicine, New York University, New York, NY (I.J.G.)
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, PA (T.C.)
| | - W. Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, OH (W.S.D.)
| | - Karin E. Bornfeldt
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (C.P., L.C.)
| | - Jere P. Segrest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.D.S., J.P.S.)
| | - Jay W. Heinecke
- Department of Medicine, University of Washington, Seattle (Y.H., P.M.H., C.T., T.V., K.E.B., J.W.H.)
| |
Collapse
|
4
|
Ciro Acosta S, Díaz-Ordóñez L, Gutierrez-Medina JD, Silva-Cuero YK, Arango-Vélez LG, García-Trujillo AO, Pachajoa H. Familial LCAT Deficiency and Low HDL-C Levels: In silico Characterization of Two Rare LCAT Missense Mutations. Appl Clin Genet 2024; 17:23-32. [PMID: 38404612 PMCID: PMC10893891 DOI: 10.2147/tacg.s438135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/16/2023] [Indexed: 02/27/2024] Open
Abstract
Mutations in the lecithin-cholesterol acyltransferase (LCAT) gene, which catalyzes the esterification of cholesterol, result in two types of autosomal recessive disorders: Familial LCAT deficiency (FLD) and Fish Eye Disease (FED). While both phenotypes are characterized by corneal opacities and different forms of dyslipidemia, such as low levels of high-density lipoprotein-cholesterol (HDL-C), FLD exhibits more severe clinical manifestations like splenomegaly, anemia, and renal failure. We describe the first clinically and genetically confirmed case of FLD in Colombia which corresponds to a 46-year-old woman with corneal opacity, hypothyroidism, and dyslipidemia, who does not have any manifestations of renal failure, with two pathogenic heterozygous missense variants in the LCAT gene: LCAT (NM_000229.2):c.803G>A (p.Arg268His) and LCAT (NM_000229.2):c.368G>C (p.Arg123Pro). In silico analysis of the mutations predicted the physicochemical properties of the mutated protein, causing instability and potentially decreased LCAT function. These compound mutations highlight the clinical heterogeneity of the phenotypes associated with LCAT gene mutations.
Collapse
Affiliation(s)
- Sebastian Ciro Acosta
- Centro de Investigaciones en Anomalias Congenitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | - Lorena Díaz-Ordóñez
- Centro de Investigaciones en Anomalias Congenitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Departamento de Ciencias Basicas Medicas, Facultad de Salud, Universidad Icesi, Cali, Colombia
| | - Juan David Gutierrez-Medina
- Centro de Investigaciones en Anomalias Congenitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Centro de Investigaciones Clinicas, Fundacion Valle del Lili, Cali, Colombia
| | - Yisther Katherine Silva-Cuero
- Centro de Investigaciones en Anomalias Congenitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Departamento de Ciencias Basicas Medicas, Facultad de Salud, Universidad Icesi, Cali, Colombia
| | - Luis Guillermo Arango-Vélez
- Servicio de Endocrinologia, Fundacion Valle del Lili, Cali, Colombia
- Departamento de Medicina interna, Seccion de Endocrinologia, Universidad Icesi, Cali, Colombia
| | - Andrés Octavio García-Trujillo
- Servicio de Endocrinologia, Fundacion Valle del Lili, Cali, Colombia
- Departamento de Medicina interna, Seccion de Endocrinologia, Universidad Icesi, Cali, Colombia
| | - Harry Pachajoa
- Centro de Investigaciones en Anomalias Congenitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
- Departamento de Ciencias Basicas Medicas, Facultad de Salud, Universidad Icesi, Cali, Colombia
- Genetic Division, Fundacion Valle del Lili, Cali, Colombia
| |
Collapse
|
5
|
He Y, Pavanello C, Hutchins PM, Tang C, Pourmousa M, Vaisar T, Song HD, Pastor RW, Remaley AT, Goldberg IJ, Costacou T, Davidson WS, Bornfeldt KE, Calabresi L, Segrest JP, Heinecke JW. Flipped C-Terminal Ends of APOA1 Promote ABCA1-dependent Cholesterol Efflux by Small HDLs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.03.23297986. [PMID: 37961344 PMCID: PMC10635269 DOI: 10.1101/2023.11.03.23297986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Cholesterol efflux capacity (CEC) predicts cardiovascular disease (CVD) independently of HDL cholesterol (HDL-C) levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 pathway, but the underlying mechanisms are unclear. Methods We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 in the different particles, and the CECs of plasma and isolated HDLs. Results We quantified macrophage and ABCA1 CEC of four distinct sizes of reconstituted HDL (r-HDL). CEC increased as particle size decreased. MS/MS analysis of chemically crosslinked peptides and molecular dynamics simulations of APOA1 (HDL's major protein) indicated that the mobility of that protein's C-terminus was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs-like r-HDLs-are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3-5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. Conclusions We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the two antiparallel molecules of APOA1 are flipped off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased CVD risk. Thus, extra-small and small HDLs may be key mediators and indicators of HDL's cardioprotective effects.
Collapse
Affiliation(s)
- Yi He
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Patrick M Hutchins
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Mohsen Pourmousa
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Hyun D Song
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan T Remaley
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892
| | - Ira J Goldberg
- Department of Medicine, New York University, New York, NY, 10016, USA
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45237, USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
6
|
Vitali C, Pavanello C, Turri M, Lund-Katz S, Phillips MC, Catapano AL, Baragetti A, Norata GD, Veglia F, Calabresi L. Apolipoprotein E isoforms differentially affect LCAT-dependent cholesterol esterification. Atherosclerosis 2023; 382:117266. [PMID: 37725860 DOI: 10.1016/j.atherosclerosis.2023.117266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND AND AIMS LCAT esterifies cholesterol in both HDL (α-activity) and apoB-containing lipoproteins (β-activity). The main activator of LCAT β-activity is apoE, which in humans exists in 3 main different isoforms (E2, E3 and E4). Here, to gather insights into the potential role of LCAT in apoB-containing lipoprotein metabolism, we investigated the ability of apoE isoforms to promote LCAT-mediated cholesterol esterification. METHODS We evaluated the plasma cholesterol esterification rate (CER) in 311 individuals who express functional LCAT and either apoE2, apoE3, or apoE4 and in 28 individuals who also carried LCAT mutations causing selective loss of LCAT α-activity (Fish-Eye Disease (FED)-causing mutations). The association of carrier status with CER was determined using an adjusted linear regression model. The kinetic of LCAT activity towards reconstituted HDLs (rHDLs) containing each apoE isoform was determined using the Michaelis-Menten model. RESULTS Plasma CER was ∼20% higher in apoE2 carriers compared to apoE3 carriers, and ∼30% higher in apoE2 carriers compared to apoE4 carriers. After adjusting for age, sex, total cholesterol, HDL-C, apoA-I, apoB, chronic kidney disease diagnosis, zygosity, and LCAT concentration, CER remained significantly different among carriers of the three apoE isoforms. The same trend was observed in carriers of FED-causing mutations. rHDLs containing apoE2 were associated with a lower affinity but higher maximal esterification rate, compared to particles containing apoE3 or apoE4. CONCLUSION The present results suggest that the apoE2 isoform is associated with a higher LCAT-mediated cholesterol esterification. This observation may contribute to the characterization of the peculiar functional properties of apoE2.
Collapse
Affiliation(s)
- Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Marta Turri
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Sissel Lund-Katz
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Phillips
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Andrea Baragetti
- IRCCS Multimedica, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
7
|
Bigazzi F, Dal Pino B, Pavanello C, Sbrana F, Aquaro GD, Napoli V, Palmieri C, Barison A, Calabresi L, Sampietro T. Familial LCAT deficiency and cardiovascular disease: the game is not over. A case of dramatic multivessel atherosclerosis. Minerva Med 2023; 114:535-537. [PMID: 32486613 DOI: 10.23736/s0026-4806.20.06633-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Federico Bigazzi
- Lipoapheresis Unit, Reference Center for the Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana "Gabriele Monasterio", Pisa, Italy
| | - Beatrice Dal Pino
- Lipoapheresis Unit, Reference Center for the Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana "Gabriele Monasterio", Pisa, Italy
| | - Chiara Pavanello
- E. Grossi Paoletti Center, Department of Pharmacology and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Francesco Sbrana
- Lipoapheresis Unit, Reference Center for the Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana "Gabriele Monasterio", Pisa, Italy -
| | - Giovanni D Aquaro
- MRI Lab, Department of Cardiology, Fondazione Toscana "Gabriele Monasterio", Pisa, Italy
| | - Vinicio Napoli
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University, Pisa, Italy
| | - Cataldo Palmieri
- Division of Interventional Cardiology, Fondazione Toscana "Gabriele Monasterio", Pisa, Italy
| | - Andrea Barison
- MRI Lab, Department of Cardiology, Fondazione Toscana "Gabriele Monasterio", Pisa, Italy
| | - Laura Calabresi
- E. Grossi Paoletti Center, Department of Pharmacology and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Tiziana Sampietro
- Lipoapheresis Unit, Reference Center for the Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana "Gabriele Monasterio", Pisa, Italy
| |
Collapse
|
8
|
Gomaraschi M, Turri M, Strazzella A, Lhomme M, Pavanello C, Le Goff W, Kontush A, Calabresi L, Ossoli A. Abnormal Lipoproteins Trigger Oxidative Stress-Mediated Apoptosis of Renal Cells in LCAT Deficiency. Antioxidants (Basel) 2023; 12:1498. [PMID: 37627492 PMCID: PMC10451761 DOI: 10.3390/antiox12081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disease caused by the loss of function mutations in the LCAT gene. LCAT deficiency is characterized by an abnormal lipoprotein profile with severe reduction in plasma levels of high-density lipoprotein (HDL) cholesterol and the accumulation of lipoprotein X (LpX). Renal failure is the major cause of morbidity and mortality in FLD patients; the pathogenesis of renal disease is only partly understood, but abnormalities in the lipoprotein profile could play a role in disease onset and progression. Serum and lipoprotein fractions from LCAT deficient carriers and controls were tested for renal toxicity on podocytes and tubular cells, and the underlying mechanisms were investigated at the cellular level. Both LpX and HDL from LCAT-deficient carriers triggered oxidative stress in renal cells, which culminated in cell apoptosis. These effects are partly explained by lipoprotein enrichment in unesterified cholesterol and ceramides, especially in the HDL fraction. Thus, alterations in lipoprotein composition could explain some of the nephrotoxic effects of LCAT deficient lipoproteins on podocytes and tubular cells.
Collapse
Affiliation(s)
- Monica Gomaraschi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| | - Marta Turri
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| | - Arianna Strazzella
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| | - Marie Lhomme
- Foundation for Innovation in Cardiometabolism and Nutrition (ANR-10-IAHU-05), IHU ICAN (ICAN OMICS and ICAN I/O), 75013 Paris, France;
| | - Chiara Pavanello
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| | - Wilfried Le Goff
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, 75013 Paris, France; (W.L.G.); (A.K.)
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, 75013 Paris, France; (W.L.G.); (A.K.)
| | - Laura Calabresi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| | - Alice Ossoli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; (M.G.); (M.T.); (C.P.); (A.O.)
| |
Collapse
|
9
|
Pavanello C, Ossoli A. HDL and chronic kidney disease. ATHEROSCLEROSIS PLUS 2023; 52:9-17. [PMID: 37193017 PMCID: PMC10182177 DOI: 10.1016/j.athplu.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 05/18/2023]
Abstract
Low HDL-cholesterol (HDL-C) concentrations are a typical trait of the dyslipidemia associated with chronic kidney disease (CKD). In this condition, plasma HDLs are characterized by alterations in structure and function, and these particles can lose their atheroprotective functions, e.g., the ability to promote cholesterol efflux from peripheral cells, anti-oxidant and anti-inflammatory proprieties and they can even become dysfunctional, i.e., exactly damaging. The reduction in plasma HDL-C levels appears to be the only lipid alteration clearly linked to the progression of renal disease in CKD patients. The association between the HDL system and CKD development and progression is also supported by the presence of genetic kidney alterations linked to HDL metabolism, including mutations in the APOA1, APOE, APOL and LCAT genes. Among these, renal disease associated with LCAT deficiency is well characterized and lipid abnormalities detected in LCAT deficiency carriers mirror the ones observed in CKD patients, being present also in acquired LCAT deficiency. This review summarizes the major alterations in HDL structure and function in CKD and how genetic alterations in HDL metabolism can be linked to kidney dysfunction. Finally, the possibility of targeting the HDL system as possible strategy to slow CKD progression is reviewed.
Collapse
Affiliation(s)
| | - Alice Ossoli
- Corresponding author. Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via G. Balzaretti, 9, 20133, Milano, Italy.
| |
Collapse
|
10
|
Turri M, Conti E, Pavanello C, Gastoldi F, Palumbo M, Bernini F, Aprea V, Re F, Barbiroli A, Emide D, Galimberti D, Tremolizzo L, Zimetti F, Calabresi L. Plasma and cerebrospinal fluid cholesterol esterification is hampered in Alzheimer's disease. Alzheimers Res Ther 2023; 15:95. [PMID: 37210544 PMCID: PMC10199596 DOI: 10.1186/s13195-023-01241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate cholesterol esterification and HDL subclasses in plasma and cerebrospinal fluid (CSF) of Alzheimer's disease (AD) patients. METHODS The study enrolled 70 AD patients and 74 cognitively normal controls comparable for age and sex. Lipoprotein profile, cholesterol esterification, and cholesterol efflux capacity (CEC) were evaluated in plasma and CSF. RESULTS AD patients have normal plasma lipids but significantly reduced unesterified cholesterol and unesterified/total cholesterol ratio. Lecithin:cholesterol acyltransferase (LCAT) activity and cholesterol esterification rate (CER), two measures of the efficiency of the esterification process, were reduced by 29% and 16%, respectively, in the plasma of AD patients. Plasma HDL subclass distribution in AD patients was comparable to that of controls but the content of small discoidal preβ-HDL particles was significantly reduced. In agreement with the reduced preβ-HDL particles, cholesterol efflux capacity mediated by the transporters ABCA1 and ABCG1 was reduced in AD patients' plasma. The CSF unesterified to total cholesterol ratio was increased in AD patients, and CSF CER and CEC from astrocytes were significantly reduced in AD patients. In the AD group, a significant positive correlation was observed between plasma unesterified cholesterol and unesterified/total cholesterol ratio with Aβ1-42 CSF content. CONCLUSION Taken together our data indicate that cholesterol esterification is hampered in plasma and CSF of AD patients and that plasma cholesterol esterification biomarkers (unesterified cholesterol and unesterified/total cholesterol ratio) are significantly associated to disease biomarkers (i.e., CSF Aβ1-42).
Collapse
Affiliation(s)
- Marta Turri
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | - Elisa Conti
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | - Francesco Gastoldi
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | | | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Vittoria Aprea
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Alberto Barbiroli
- Dipartimento Di Scienze Per Gli Alimenti, La Nutrizione E L'Ambiente, Università Degli Studi Di Milano, Milano, Italy
| | - Davide Emide
- Dipartimento Di Scienze Per Gli Alimenti, La Nutrizione E L'Ambiente, Università Degli Studi Di Milano, Milano, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | | | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy.
| |
Collapse
|
11
|
Zuzda K, Grycuk W, Małyszko J, Małyszko J. Kidney and lipids: novel potential therapeutic targets for dyslipidemia in kidney disease? Expert Opin Ther Targets 2022; 26:995-1009. [PMID: 36548906 DOI: 10.1080/14728222.2022.2161887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Altered lipid distribution and metabolism may lead to the development and/or progression of chronic kidney disease (CKD). Dyslipidemia is a major risk factor for CKD and increases the risk of cardiovascular events and mortality. Therefore, lipid-lowering treatments may decrease cardiovascular risk and prevent death. AREAS COVERED Key players involved in regulating lipid accumulation in the kidney; contribution of lipids to CKD progression, lipotoxicity, and mitochondrial dysfunction in kidney disease; recent therapeutic approaches for dyslipidemia. EXPERT OPINION The precise mechanisms for regulating lipid metabolism, particularly in kidney disease, are poorly understood. Guidelines for lipid-lowering therapy for CKD are controversial. Several hypolipemic therapies are available, but compared to others, statin therapy is the most common. No clinical trial has evaluated the efficacy of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) in preventing cardiovascular events or improving kidney function among patients with CKD or kidney transplant recipients. Attractive alternatives, such as PCSK9-small interfering RNA (siRNA) molecules or evinacumab are available. Additionally, several promising agents, such as cyclodextrins and the FXR/TGR5 dual agonist, INT-767, can improve renal lipid metabolism disorders and delay CKD progression. Drugs targeting mitochondrial dysfunction could be an option for the treatment of dyslipidemia and lipotoxicity, particularly in renal diseases.
Collapse
Affiliation(s)
- Konrad Zuzda
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| | - Wiktoria Grycuk
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| | - Jacek Małyszko
- 1st Department of Nephrology and Transplantology, Medical University of Bialystok, Bialystok, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| |
Collapse
|
12
|
Pisciotta L, Ossoli A, Ronca A, Garuti A, Fresa R, Favari E, Calabresi L, Calandra S, Bertolini S. Plasma HDL pattern, cholesterol efflux and cholesterol loading capacity of serum in carriers of a novel missense variant (Gly176Trp) of endothelial lipase. J Clin Lipidol 2022; 16:694-703. [PMID: 36002365 DOI: 10.1016/j.jacl.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Loss of function variants of LIPG gene encoding endothelial lipase (EL) are associated with primary hyperalphalipoproteinemia (HALP), a lipid disorder characterized by elevated plasma levels of high density lipoprotein cholesterol (HDL-C). OBJECTIVE Aim of the study was the phenotypic and genotypic characterization of a family with primary HALP. METHODS HDL subclasses distribution was determined by polyacrylamide gradient gel electrophoresis. Serum content of preβ-HDL was assessed by (2D)-electrophoresis. Cholesterol efflux capacity (CEC) of serum mediated by ABCA1, ABCG1 or SR-BI was assessed using cells expressing these proteins. Cholesterol loading capacity (CLC) of serum was assayed using cultured human macrophages. Next generation sequencing was used for DNA analysis. Plasma EL mass was determined by ELISA. RESULTS Three family members had elevated plasma HDL-C, apoA-I and total phospholipids, as well as a reduced content of preβ-HDL. These subjects were heterozygous carriers of a novel variant of LIPG gene [c.526 G>T, p.(Gly176Trp)] found to be deleterious in silico. Plasma EL mass in carriers was lower than in controls. CEC of sera mediated by ABCA1 and ABCG1 transporters was substantially reduced in the carriers. This effect was maintained after correction for serum HDL concentration. The sera of carriers were found to have a higher CLC in cultured human macrophages than control sera. CONCLUSION The novel p.(Gly176Trp) variant of endothelial lipase is associated with changes in HDL composition and subclass distribution as well as with functional changes affecting cholesterol efflux capacity of serum which suggest a defect in the early steps of revere cholesterol transport.
Collapse
Affiliation(s)
- Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini); Dietetics and Clinical Nutrition Unit, IRCCS-Polyclinic Hospital San Martino, Genoa, Italy (Dr Pisciotta).
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy (Dr Ossoli)
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy (Drs Ronca and Favari)
| | - Anna Garuti
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| | - Raffaele Fresa
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy (Drs Ronca and Favari)
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy (Dr Ossoli)
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (Dr Calandra)
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| |
Collapse
|
13
|
Pavanello C, Ossoli A, Strazzella A, Risè P, Veglia F, Lhomme M, Parini P, Calabresi L. Plasma FA composition in familial LCAT deficiency indicates SOAT2-derived cholesteryl ester formation in humans. J Lipid Res 2022; 63:100232. [PMID: 35598637 PMCID: PMC9198958 DOI: 10.1016/j.jlr.2022.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022] Open
Abstract
Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0-37.8] mg/dl) and slightly reduced in heterozygotes (218 [153-234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.
Collapse
Affiliation(s)
- Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Arianna Strazzella
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Risè
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | | | - Marie Lhomme
- ICAN analytics, IHU ICAN Foundation for Innovation in Cardiometabolism and Nutrition, Paris, France
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Medicine and Department of Laboratory Medicine, Karolinska Institutet, and Medicine Unit Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
14
|
Fistrek Prlic M, Coric M, Calabresi L, Pavanello C, Mosca L, Cavallari U, Vukovic Brinar I, Karanovic S, Laganovic M, Jelakovic B. Two novel variants in the lecithin:cholesterol acyltransferase gene resulted in classic LCAT deficiency. ATHEROSCLEROSIS PLUS 2022; 49:28-31. [PMID: 36644204 PMCID: PMC9833264 DOI: 10.1016/j.athplu.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023]
Abstract
Background and aims We report the first two cases of familial lecithin:cholesterol acyltransferase (LCAT) deficiency in Croatia with classical clinical and biochemical features. Patients and methods A 30-year-old man with nephrotic syndrome, corneal opacities, hepatosplenomegaly, anemia, low high-density lipoprotein (HDL)-cholesterol levels and arterial hypertension (blood pressure >200/100 mmHg) was admitted to our department. At admission, he had an elevated creatinine serum level (233 μmol/L), proteinuria of 12 g in 24-h urine (g/24 h), 3-7 erythrocytes in urine sediment and notable anemia (hemoglobin level 90 g/l). His HDL-cholesterol was significantly low (0.42 mmol/L). Besides chronic kidney disease (CKD), other secondary causes of hypertension were ruled out. The patient was previously diagnosed with membranous nephropathy and treated unsuccessfully with immunosuppressive agents (steroids, cyclosporine, cyclophosphamide). Re-evaluation of histopathological findings of kidney biopsy revealed massive deposition of lipid material in the glomerular basal membrane and in the mesangial region. His 4-year younger brother was also evaluated due to corneal opacities and new-onset arterial hypertension. Nephrotic range proteinuria with preserved global renal function was determined. He also had very low HDL-cholesterol levels. Results Kidney biopsies from both patients were consistent with LCAT deficiency. The disease was confirmed by measurement of LCAT enzyme activity, plasma cholesterol esterification rate, and genetic testing. Two novel missense variants in the LCAT gene (c.496G > A and c.1138T > C) were found. Conclusions To our knowledge, the presented cases are the first reported cases of genetic LCAT deficiency in Croatia. Given the clinical presentation, the complete lack of LCAT activity and cholesterol esterification rate, diagnosis of familial LCAT deficiency was made.
Collapse
Affiliation(s)
- Margareta Fistrek Prlic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia,Corresponding author. Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, UHC Zagreb, Kispaticeva ulica 12, 10000, Zagreb, Croatia.
| | - Marijana Coric
- Department of Pathology, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Laura Calabresi
- Center E. Grossi Paoletti, Department of Pharmacology, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Chiara Pavanello
- Center E. Grossi Paoletti, Department of Pharmacology, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Lorena Mosca
- Medical Genetics Unit, Department of Services, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Ugo Cavallari
- Medical Genetics Unit, Department of Services, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Ivana Vukovic Brinar
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Sandra Karanovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Mario Laganovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia,Department of Nephrology, University Hospital Merkur, University of Zagreb, School of Medicine, Zajceva 19, 10000, Zagreb, Croatia
| | - Bojan Jelakovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| |
Collapse
|
15
|
LCAT- targeted therapies: Progress, failures and future. Biomed Pharmacother 2022; 147:112677. [PMID: 35121343 DOI: 10.1016/j.biopha.2022.112677] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Lecithin: cholesterol acyltransferase (LCAT) is the only enzyme in plasma which is able to esterify cholesterol and boost cholesterol esterify with phospholipid-derived acyl chains. In order to better understand the progress of LCAT research, it is always inescapable that it is linked to high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT). Because LCAT plays a central role in HDL metabolism and RCT, many animal studies and clinical studies are currently aimed at improving plasma lipid metabolism by increasing LCAT activity in order to find better treatment options for familial LCAT deficiency (FLD), fish eye disease (FED), and cardiovascular disease. Recombinant human LCAT (rhLCAT) injections, cells and gene therapy, and small molecule activators have been carried out with promising results. Recently rhLCAT therapies have entered clinical phase II trials with good prospects. In this review, we discuss the diseases associated with LCAT and therapies that use LCAT as a target hoping to find out whether LCAT can be an effective therapeutic target for coronary heart disease and atherosclerosis. Also, probing the mechanism of action of LCAT may help better understand the heterogeneity of HDL and the action mechanism of dynamic lipoprotein particles.
Collapse
|
16
|
Pavanello C, Turri M, Strazzella A, Tulissi P, Pizzolitto S, De Maglio G, Nappi R, Calabresi L, Boscutti G. The HDL mimetic CER-001 remodels plasma lipoproteins and reduces kidney lipid deposits in inherited lecithin:cholesterol acyltransferase deficiency. J Intern Med 2022; 291:364-370. [PMID: 34761839 PMCID: PMC9299003 DOI: 10.1111/joim.13404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Kidney failure is the major cause of morbidity and mortality in familial lecithin:cholesterol acyltransferase deficiency (FLD), a rare inherited lipid disorder with no cure. Lipoprotein X (LpX), an abnormal lipoprotein, is primarily accountable for nephrotoxicity. METHODS CER-001 was tested in an FLD patient with dramatic kidney disease for 12 weeks. RESULTS Infusions of CER-001 normalized the lipoprotein profile, with a disappearance of the abnormal LpX in favour of normal-sized LDL. The worsening of kidney function was slowed by the treatment, and kidney biopsy showed a slight reduction of lipid deposits and a stabilization of the disease. In vitro experiments demonstrate that CER-001 progressively reverts lipid accumulation in podocytes by a dual effect: remodelling plasma lipoproteins and removing LpX-induced lipid deposit. CONCLUSION This study demonstrates that CER-001 may represent a therapeutic option in FLD patients. It also has the potential to be beneficial in other renal diseases characterized by kidney lipid deposits.
Collapse
Affiliation(s)
- Chiara Pavanello
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Marta Turri
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Arianna Strazzella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Tulissi
- Unit of Nephrology, Dialysis and Renal Transplantation, S. Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Stefano Pizzolitto
- Unit of Pathology, S. Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Giovanna De Maglio
- Unit of Pathology, S. Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Riccardo Nappi
- Unit of Nephrology, Dialysis and Renal Transplantation, S. Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Laura Calabresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Giuliano Boscutti
- Unit of Nephrology, Dialysis and Renal Transplantation, S. Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| |
Collapse
|
17
|
de Serpa Brandão RMS, Britto FB, do Monte Neto JT, Lima MC, do Monte SJH, de Sousa Lima AV, Pereira EM, da Silva HJN, Oliveira DMTE, Coelho AGB, da Silva AS. Familial lecithin-cholesterol acyltransferase deficiency: If so rare, why so frequent in the state of Piauí, northeastern Brazil? Mol Genet Metab Rep 2022; 30:100840. [PMID: 35242572 PMCID: PMC8856911 DOI: 10.1016/j.ymgmr.2021.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Lecithin-cholesterol acyltransferase (LCAT), an enzyme that participates in lipoprotein metabolism, plays an important role in cholesterol homeostasis. Mutations in the LCAT gene can cause two rare genetic disorders: familial LCAT deficiency (FLD), which is characterized by corneal opacities, normocytic anemia, dyslipidemia, and proteinuria progressing to chronic renal failure, and fish-eye disease (FED), which causes dyslipidemia and progressive corneal opacities. Herein, we report six suspected cases of FLD in the backlands of Piauí, located in northeast Brazil. A genetic diagnosis was performed in index cases. Among these, a further investigation was performed to identify new cases in the families. In addition, molecular analyses were performed to verify the levels of consanguinity within families and the existence of a genetic relationship between them. All six index cases were confirmed as FLD with an identical mutation (c.803G > A, p.R268H). The genetic investigation confirmed another 7 new cases of FLD, 52 heterozygous and 6 individuals without mutations. The rate of consanguinity revealed that marriages within the family did not contribute to the high number of FLD cases within the restricted region. The elders of each family (patriarchs and matriarchs) were subjected to a kinship analysis and were more genetically related to each other than the control group. Bayesian analysis was implemented to confirm the hypothesis of connectivity among patriarchs and matriarchs and indicated that they were genetically more related to each other than would be randomly expected, thus suggesting the occurrence of a possible founder effect in these families.
Collapse
Affiliation(s)
- Rafael Melo Santos de Serpa Brandão
- Laboratory of Immunogenetics and Molecular Biology, Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella - SG 16. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
- Corresponding author.
| | - Fábio Barros Britto
- Department of Biology, Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella - SG 01. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| | - José Tiburcio do Monte Neto
- Department of General Practice – Nephrology, Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| | - Marcelo Cunha Lima
- Universitary Hospital (HU-UFPI/EBSERH), Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| | - Semiramis Jamil Hadad do Monte
- Laboratory of Immunogenetics and Molecular Biology, Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella - SG 16. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| | - Antonio Vanildo de Sousa Lima
- Laboratory of Immunogenetics and Molecular Biology, Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella - SG 16. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| | - Ester Miranda Pereira
- Laboratory of Immunogenetics and Molecular Biology, Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella - SG 16. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| | - Higo José Neri da Silva
- Master's Program in Science and Health, Federal University of Piauí, Teresina, Brazil, Centro de Ciências da Saúde, Avenida Frei Serafim n° 2280. Bairro Centro, Teresina, Piauí 64001-020, Brazil
| | - Deylane Menezes Teles e Oliveira
- Graduate Program in Biotechnology - RENORBIO, Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| | - Antonio Gilberto Borges Coelho
- Laboratory of Immunogenetics and Molecular Biology, Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella - SG 16. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| | - Adalberto Socorro da Silva
- Laboratory of Immunogenetics and Molecular Biology, Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella - SG 16. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
- Department of Biology, Federal University of Piauí, Teresina, Brazil, Campus Ministro Petrônio Portella - SG 01. Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| |
Collapse
|
18
|
Vitali C, Bajaj A, Nguyen C, Schnall J, Chen J, Stylianou K, Rader DJ, Cuchel M. A systematic review of the natural history and biomarkers of primary lecithin:cholesterol acyltransferase deficiency. J Lipid Res 2022; 63:100169. [PMID: 35065092 PMCID: PMC8953693 DOI: 10.1016/j.jlr.2022.100169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 10/31/2022] Open
Abstract
Syndromes associated with LCAT deficiency, a rare autosomal recessive condition, include fish-eye disease (FED) and familial LCAT deficiency (FLD). FLD is more severe and characterized by early and progressive chronic kidney disease (CKD). No treatment is currently available for FLD, but novel therapeutics are under development. Furthermore, although biomarkers of LCAT deficiency have been identified, their suitability to monitor disease progression and therapeutic efficacy is unclear, as little data exist on the rate of progression of renal disease. Here, we systematically review observational studies of FLD, FED, and heterozygous subjects, which summarize available evidence on the natural history and biomarkers of LCAT deficiency, in order to guide the development of novel therapeutics. We identified 146 FLD and 53 FED patients from 219 publications, showing that both syndromes are characterized by early corneal opacity and markedly reduced HDL-C levels. Proteinuria/hematuria were the first signs of renal impairment in FLD, followed by rapid decline of renal function. Furthermore, LCAT activity toward endogenous substrates and the percentage of circulating esterified cholesterol (EC%) were the best discriminators between these two syndromes. In FLD, higher levels of total, non-HDL, and unesterified cholesterol were associated with severe CKD. We reveal a nonlinear association between LCAT activity and EC% levels, in which subnormal levels of LCAT activity were associated with normal EC%. This review provides the first step toward the identification of disease biomarkers to be used in clinical trials and suggests that restoring LCAT activity to subnormal levels may be sufficient to prevent renal disease progression.
Collapse
Affiliation(s)
- Cecilia Vitali
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Archna Bajaj
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Nguyen
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jill Schnall
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinbo Chen
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kostas Stylianou
- Department of Nephrology, Heraklion University Hospital, Crete, Greece
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Abstract
Plasma HDL-cholesterol concentrations correlate negatively with the risk of atherosclerotic cardiovascular disease (ASCVD). According to a widely cited model, HDL elicits its atheroprotective effect through its role in reverse cholesterol transport, which comprises the efflux of cholesterol from macrophages to early forms of HDL, followed by the conversion of free cholesterol (FCh) contained in HDL into cholesteryl esters, which are hepatically extracted from the plasma by HDL receptors and transferred to the bile for intestinal excretion. Given that increasing plasma HDL-cholesterol levels by genetic approaches does not reduce the risk of ASCVD, the focus of research has shifted to HDL function, especially in the context of macrophage cholesterol efflux. In support of the reverse cholesterol transport model, several large studies have revealed an inverse correlation between macrophage cholesterol efflux to plasma HDL and ASCVD. However, other studies have cast doubt on the underlying reverse cholesterol transport mechanism: in mice and humans, the FCh contained in HDL is rapidly cleared from the plasma (within minutes), independently of esterification and HDL holoparticle uptake by the liver. Moreover, the reversibility of FCh transfer between macrophages and HDL has implicated the reverse process - that is, the transfer of FCh from HDL to macrophages - in the aetiology of increased ASCVD under conditions of very high plasma HDL-FCh concentrations.
Collapse
|
20
|
Mehta R, Elías-López D, Martagón AJ, Pérez-Méndez OA, Sánchez MLO, Segura Y, Tusié MT, Aguilar-Salinas CA. LCAT deficiency: a systematic review with the clinical and genetic description of Mexican kindred. Lipids Health Dis 2021; 20:70. [PMID: 34256778 PMCID: PMC8276382 DOI: 10.1186/s12944-021-01498-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND LCAT (lecithin-cholesterol acyltransferase) deficiency is characterized by two distinct phenotypes, familial LCAT deficiency (FLD) and Fish Eye disease (FED). This is the first systematic review evaluating the ethnic distribution of LCAT deficiency, with particular emphasis on Latin America and the discussion of three Mexican-Mestizo probands. METHODS A systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic review and Meta-Analysis) Statement in Pubmed and SciELO. Articles which described subjects with LCAT deficiency syndromes and an assessment of the ethnic group to which the subject pertained, were included. RESULTS The systematic review revealed 215 cases (154 FLD, 41 FED and 20 unclassified) pertaining to 33 ethnic/racial groups. There was no association between genetic alteration and ethnicity. The mean age of diagnosis was 42 ± 16.5 years, with fish eye disease identified later than familial LCAT deficiency (55 ± 13.8 vs. 41 ± 14.7 years respectively). The prevalence of premature coronary heart disease was significantly greater in FED vs. FLD. In Latin America, 48 cases of LCAT deficiency have been published from six countries (Argentina (1 unclassified), Brazil (38 FLD), Chile (1 FLD), Columbia (1 FLD), Ecuador (1 FLD) and Mexico (4 FLD, 1 FED and 1 unclassified). Of the Mexican probands, one showed a novel LCAT mutation. CONCLUSIONS The systematic review shows that LCAT deficiency syndromes are clinically and genetically heterogeneous. No association was confirmed between ethnicity and LCAT mutation. There was a significantly greater risk of premature coronary artery disease in fish eye disease compared to familial LCAT deficiency. In FLD, the emphasis should be in preventing both cardiovascular disease and the progression of renal disease, while in FED, cardiovascular risk management should be the priority. The LCAT mutations discussed in this article are the only ones reported in the Mexican- Amerindian population.
Collapse
Affiliation(s)
- Roopa Mehta
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México
| | - Daniel Elías-López
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México
| | - Alexandro J Martagón
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L, México
| | - Oscar A Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, México City, México
| | - Maria Luisa Ordóñez Sánchez
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Yayoi Segura
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Maria Teresa Tusié
- Department of Molecular Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, México City, México
| | - Carlos A Aguilar-Salinas
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga 15, Belisario Domínguez Secc. 16, , Tlalpan, 14080, México City, México. .,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L, México.
| |
Collapse
|
21
|
Kuroda M, Bujo H, Yokote K, Murano T, Yamaguchi T, Ogura M, Ikewaki K, Koseki M, Takeuchi Y, Nakatsuka A, Hori M, Matsuki K, Miida T, Yokoyama S, Wada J, Harada-Shiba M. Current Status of Familial LCAT Deficiency in Japan. J Atheroscler Thromb 2021; 28:679-691. [PMID: 33867422 PMCID: PMC8265425 DOI: 10.5551/jat.rv17051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lecithin cholesterol acyltransferase (LCAT) is a lipid-modification enzyme that catalyzes the transfer of the acyl chain from the second position of lecithin to the hydroxyl group of cholesterol (FC) on plasma lipoproteins to form cholesteryl acylester and lysolecithin. Familial LCAT deficiency is an intractable autosomal recessive disorder caused by inherited dysfunction of the LCAT enzyme. The disease appears in two different phenotypes depending on the position of the gene mutation: familial LCAT deficiency (FLD, OMIM 245900) that lacks esterification activity on both HDL and ApoB-containing lipoproteins, and fish-eye disease (FED, OMIM 136120) that lacks activity only on HDL. Impaired metabolism of cholesterol and phospholipids due to LCAT dysfunction results in abnormal concentrations, composition and morphology of plasma lipoproteins and further causes ectopic lipid accumulation and/or abnormal lipid composition in certain tissues/cells, and serious dysfunction and complications in certain organs. Marked reduction of plasma HDL-cholesterol (HDL-C) and corneal opacity are common clinical manifestations of FLD and FED. FLD is also accompanied by anemia, proteinuria and progressive renal failure that eventually requires hemodialysis. Replacement therapy with the LCAT enzyme should prevent progression of serious complications, particularly renal dysfunction and corneal opacity. A clinical research project aiming at gene/cell therapy is currently underway.
Collapse
Affiliation(s)
- Masayuki Kuroda
- Center for Advanced Medicine, Chiba University Hospital, Chiba University
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Sakura Medical Center
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Takeyoshi Murano
- Clinical Laboratory Program, Faculty of Science, Toho University
| | - Takashi Yamaguchi
- Center of Diabetes, Endocrinology and Metabolism, Toho University Sakura Medical Center
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Katsunori Ikewaki
- Division of Neurology, Anti-Aging, and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Masahiro Koseki
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine
| | - Yasuo Takeuchi
- Division of Nephrology, Kitasato University School of Medicine
| | - Atsuko Nakatsuka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Mika Hori
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Mariko Harada-Shiba
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| |
Collapse
|
22
|
High-Density Lipoproteins and the Kidney. Cells 2021; 10:cells10040764. [PMID: 33807271 PMCID: PMC8065870 DOI: 10.3390/cells10040764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Dyslipidemia is a typical trait of patients with chronic kidney disease (CKD) and it is typically characterized by reduced high-density lipoprotein (HDL)-cholesterol(c) levels. The low HDL-c concentration is the only lipid alteration associated with the progression of renal disease in mild-to-moderate CKD patients. Plasma HDL levels are not only reduced but also characterized by alterations in composition and structure, which are responsible for the loss of atheroprotective functions, like the ability to promote cholesterol efflux from peripheral cells and antioxidant and anti-inflammatory proprieties. The interconnection between HDL and renal function is confirmed by the fact that genetic HDL defects can lead to kidney disease; in fact, mutations in apoA-I, apoE, apoL, and lecithin–cholesterol acyltransferase (LCAT) are associated with the development of renal damage. Genetic LCAT deficiency is the most emblematic case and represents a unique tool to evaluate the impact of alterations in the HDL system on the progression of renal disease. Lipid abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD patients, which indeed present an acquired LCAT deficiency. In this context, circulating LCAT levels predict CKD progression in individuals at early stages of renal dysfunction and in the general population. This review summarizes the main alterations of HDL in CKD, focusing on the latest update of acquired and genetic LCAT defects associated with the progression of renal disease.
Collapse
|
23
|
Ossoli A, Strazzella A, Rottoli D, Zanchi C, Locatelli M, Zoja C, Simonelli S, Veglia F, Barbaras R, Tupin C, Dasseux JL, Calabresi L. CER-001 ameliorates lipid profile and kidney disease in a mouse model of familial LCAT deficiency. Metabolism 2021; 116:154464. [PMID: 33309714 DOI: 10.1016/j.metabol.2020.154464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE CER-001 is an HDL mimetic that has been tested in different pathological conditions, but never with LCAT deficiency. This study was designed to investigate whether the absence of LCAT affects the catabolic fate of CER-001, and to evaluate the effects of CER-001 on kidney disease associated with LCAT deficiency. METHODS Lcat-/- and wild-type mice received CER-001 (2.5, 5, 10 mg/kg) intravenously for 2 weeks. The plasma lipid/ lipoprotein profile and HDL subclasses were analyzed. In a second set of experiments, Lcat-/- mice were injected with LpX to induce renal disease and treated with CER-001 and then the plasma lipid profile, lipid accumulation in the kidney, albuminuria and glomerular podocyte markers were evaluated. RESULTS In Lcat-/- mice a decrease in total cholesterol and triglycerides, and an increase in HDL-c was observed after CER-001 treatment. While in wild-type mice CER-001 entered the classical HDL remodeling pathway, in the absence of LCAT it disappeared from the plasma shortly after injection and ended up in the kidney. In a mouse model of renal disease in LCAT deficiency, treatment with CER-001 at 10 mg/kg for one month had beneficial effects not only on the lipid profile, but also on renal disease, by limiting albuminuria and podocyte dysfunction. CONCLUSIONS Treatment with CER-001 ameliorates the dyslipidemia typically associated with LCAT deficiency and more importantly limits renal damage in a mouse model of renal disease in LCAT deficiency. The present results provide a rationale for using CER-001 in FLD patients.
Collapse
Affiliation(s)
- Alice Ossoli
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Arianna Strazzella
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Daniela Rottoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Cristina Zanchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sara Simonelli
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | - Laura Calabresi
- Center E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
24
|
Laurenzi T, Parravicini C, Palazzolo L, Guerrini U, Gianazza E, Calabresi L, Eberini I. rHDL modeling and the anchoring mechanism of LCAT activation. J Lipid Res 2020; 62:100006. [PMID: 33518511 PMCID: PMC7859856 DOI: 10.1194/jlr.ra120000843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
Lecithin:cholesterol-acyl transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodeling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT functionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands the LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates.
Collapse
Affiliation(s)
- Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Laura Calabresi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & DSRC, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
25
|
Pavanello C, Ossoli A, Arca M, D'Erasmo L, Boscutti G, Gesualdo L, Lucchi T, Sampietro T, Veglia F, Calabresi L. Progression of chronic kidney disease in familial LCAT deficiency: a follow-up of the Italian cohort. J Lipid Res 2020; 61:1784-1788. [PMID: 32998975 PMCID: PMC7707181 DOI: 10.1194/jlr.p120000976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Familial LCAT deficiency (FLD) is a rare genetic disorder of HDL metabolism, caused by loss-of-function mutations in the LCAT gene and characterized by a variety of symptoms including corneal opacities and kidney failure. Renal disease represents the leading cause of morbidity and mortality in FLD cases. However, the prognosis is not known and the rate of deterioration of kidney function is variable and unpredictable from patient to patient. In this article, we present data from a follow-up of the large Italian cohort of FLD patients, who have been followed for an average of 12 years. We show that renal failure occurs at the median age of 46 years, with a median time to a second recurrence of 10 years. Additionally, we identify high plasma unesterified cholesterol level as a predicting factor for rapid deterioration of kidney function. In conclusion, this study highlights the severe consequences of FLD, underlines the need of correct early diagnosis and referral of patients to specialized centers, and highlights the urgency for effective treatments to prevent or slow renal disease in patients with LCAT deficiency.
Collapse
Affiliation(s)
- Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuliano Boscutti
- Nephrology, Dialysis and Transplantation Unit, S. Maria della Misericordia Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Tiziano Lucchi
- Metabolic Disease Clinic, Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Sampietro
- Lipoapheresis Unit and Reference Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
26
|
Pavanello C, Ossoli A, Turri M, Strazzella A, Simonelli S, Laurenzi T, Kono K, Yamada K, Kiyosawa N, Eberini I, Calabresi L. Activation of Naturally Occurring Lecithin:Cholesterol Acyltransferase Mutants by a Novel Activator Compound. J Pharmacol Exp Ther 2020; 375:463-468. [PMID: 32980814 DOI: 10.1124/jpet.120.000159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is a unique plasma enzyme able to esterify cholesterol, and it plays an important role in HDL maturation and promotion of reverse cholesterol transport. Familial LCAT deficiency (FLD; OMIM number 245900) is a rare recessive disease that results from loss-of-function mutations in the LCAT gene and has no cure. In this study, we assessed the in vitro efficacy of a novel small-molecule LCAT activator. Cholesterol esterification rate (CER) and LCAT activity were tested in plasma from six controls and five FLD homozygous carriers of various LCAT mutations at different doses of the compound (0.1, 1, and 10 µg/ml). In control plasma, the compound significantly increased both CER (P < 0.001) and LCAT activity (P = 0.007) in a dose-dependent manner. Both CER and LCAT activity increased by 4- to 5-fold, reaching maximum activation at the dose of 1 µg/ml. Interestingly, Daiichi Sankyo compound produced an increase in CER in two of the five tested LCAT mutants (Leu372--Arg and Val309--Met), while LCAT activity increased in three LCAT mutants (Arg147--Trp, Thr274--Ile and Leu372--Arg); mutant Pro254--Ser was not activated at any of the tested doses. The present findings form the basis for personalized therapeutic interventions in FLD carriers and support the potential LCAT activation in secondary LCAT defects. SIGNIFICANCE STATEMENT: We characterized the pharmacology of a novel small-molecule LCAT activator in vitro on a subset of naturally occurring LCAT mutants. Our findings form the basis for personalized therapeutic interventions for familial LCAT deficiency carriers, who can face severe complications and for whom no cure exists.
Collapse
Affiliation(s)
- Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Marta Turri
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Arianna Strazzella
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Sara Simonelli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Tommaso Laurenzi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Keita Kono
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Keisuke Yamada
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Naoki Kiyosawa
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Ivano Eberini
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari (C.P., A.O., M.T., A.S., S.S., L.C.) and Dipartimento di Scienze Farmacologiche e Biomolecolari (T.L., I.E.), Università degli Studi di Milano, Milan, Italy; Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.K., N.K.); and Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan (K.Y.)
| |
Collapse
|
27
|
Falarz LJ, Xu Y, Caldo KMP, Garroway CJ, Singer SD, Chen G. Characterization of the diversification of phospholipid:diacylglycerol acyltransferases in the green lineage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2025-2038. [PMID: 32538516 DOI: 10.1111/tpj.14880] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl-CoA-independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage. Some fundamental questions remain unanswered, such as how PDATs evolved in photosynthetic organisms and whether the evolution of terrestrial plant PDATs from a lineage of charophyte green algae diverges in enzyme function. As such, we used molecular evolutionary analysis and biochemical assays to address these questions. Our results indicated that PDAT underwent divergent evolution in the green lineage: PDATs exist in a wide range of plants and algae, but not in cyanobacteria. Although PDATs exhibit the conservation of several features, phylogenetic and selection-pressure analyses revealed that overall they evolved to be highly divergent, driven by different selection constraints. Positive selection, as one major driving force, may have resulted in enzymes with a higher functional importance in land plants than green algae. Further structural and mutagenesis analyses demonstrated that some amino acid sites under positive selection are critically important to PDAT structure and function, and may be central in lecithin:cholesterol acyltransferase family enzymes in general.
Collapse
Affiliation(s)
- Lucas J Falarz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Genetic LCAT deficiency is a rare metabolic disorder characterized by low-plasma HDL cholesterol levels. Clinical manifestations of the disease include corneal opacification, anemia, and renal disease, which represents the major cause of morbidity and mortality in carriers. RECENT FINDINGS Biochemical and clinical manifestations of the disease are very heterogeneous among carriers. The collection of large series of affected individuals is needed to answer various open questions on this rare disorder of lipid metabolism, such as the cause of renal damage in patients with complete LCAT deficiency and the cardiovascular risk in carriers of different LCAT gene mutations. SUMMARY Familial LCAT deficiency is a rare disease, with serious clinical manifestations, which can occur in the first decades of life, and presently with no cure. The timely diagnosis in carriers, together with the identification of disease biomarkers able to predict the evolution of clinical manifestations, would be of great help in the identification of carriers to address to future available therapies.
Collapse
Affiliation(s)
- Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
29
|
Baragetti A, Ossoli A, Strazzella A, Simonelli S, Baragetti I, Grigore L, Pellegatta F, Catapano AL, Norata GD, Calabresi L. Low Plasma Lecithin: Cholesterol Acyltransferase (LCAT) Concentration Predicts Chronic Kidney Disease. J Clin Med 2020; 9:jcm9072289. [PMID: 32708515 PMCID: PMC7408930 DOI: 10.3390/jcm9072289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 01/22/2023] Open
Abstract
Low high-density lipoprotein-cholesterol (HDL-c) is the most remarkable lipid trait both in mild-to-moderate chronic kidney disease (CKD) patients as well as in advanced renal disease stages, and we have previously shown that reduced lecithin:cholesterol acyltransferase (LCAT) concentration is a major determinant of the low HDL phenotype. In the present study, we test the hypothesis that reduced LCAT concentration in CKD contributes to the progression of renal damage. The study includes two cohorts of subjects selected from the PLIC study: a cohort of 164 patients with CKD (NefroPLIC cohort) and a cohort of 164 subjects selected from the PLIC participants with a basal estimated glomerular filtration rate (eGFR) > 60 mL/min/1.73 m2 (PLIC cohort). When the NefroPLIC patients were categorized according to the LCAT concentration, patients in the 1st tertile showed the highest event rate at follow-up with an event hazard ratio significantly higher compared to the 3rd LCAT tertile. Moreover, in the PLIC cohort, subjects in the 1st LCAT tertile showed a significantly faster impairment of kidney function compared to subjects in the 3rd LCAT tertile. Serum from subjects in the 1st LCAT tertile promoted a higher reactive oxygen species (ROS) production in renal cells compared to serum from subjects in the third LCAT tertile, and this effect was contrasted by pre-incubation with recombinant human LCAT (rhLCAT). The present study shows that reduced plasma LCAT concentration predicts CKD progression over time in patients with renal dysfunction, and, even more striking, it predicts the impairment of kidney function in the general population.
Collapse
Affiliation(s)
- Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, 20133 Milano, Italy; (A.O.); (A.S.); (S.S.)
| | - Arianna Strazzella
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, 20133 Milano, Italy; (A.O.); (A.S.); (S.S.)
| | - Sara Simonelli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, 20133 Milano, Italy; (A.O.); (A.S.); (S.S.)
| | - Ivano Baragetti
- Department of Nephrology and Dialysis, Ospedale Bassini, ASST Nord Milano-Cinisello Balsamo, 20092 Milano, Italy;
| | - Liliana Grigore
- S.I.S.A. Centro per lo Studio della Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, 20092 Milano, Italy; (L.G.); (F.P.)
- IRCCS Ospedale Multimedica, Sesto San Giovanni, 20099 Milano, Italy
| | - Fabio Pellegatta
- S.I.S.A. Centro per lo Studio della Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, 20092 Milano, Italy; (L.G.); (F.P.)
- IRCCS Ospedale Multimedica, Sesto San Giovanni, 20099 Milano, Italy
| | - Alberico L. Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy;
- IRCCS Ospedale Multimedica, Sesto San Giovanni, 20099 Milano, Italy
- Correspondence: (A.L.C.); (G.D.N.); (L.C.); Tel.: +39-0250318302 (A.L.C.); +39-0250318313 (G.D.N.); +39-0250319906 (L.C.); Fax: +39-0250318386 (A.L.C.); +39-0250318386 (G.D.N.); +39-0250319900 (L.C.)
| | - Giuseppe Danilo Norata
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy;
- S.I.S.A. Centro per lo Studio della Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, 20092 Milano, Italy; (L.G.); (F.P.)
- Correspondence: (A.L.C.); (G.D.N.); (L.C.); Tel.: +39-0250318302 (A.L.C.); +39-0250318313 (G.D.N.); +39-0250319906 (L.C.); Fax: +39-0250318386 (A.L.C.); +39-0250318386 (G.D.N.); +39-0250319900 (L.C.)
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, 20133 Milano, Italy; (A.O.); (A.S.); (S.S.)
- Correspondence: (A.L.C.); (G.D.N.); (L.C.); Tel.: +39-0250318302 (A.L.C.); +39-0250318313 (G.D.N.); +39-0250319906 (L.C.); Fax: +39-0250318386 (A.L.C.); +39-0250318386 (G.D.N.); +39-0250319900 (L.C.)
| |
Collapse
|
30
|
LIPA gene mutations affect the composition of lipoproteins: Enrichment in ACAT-derived cholesteryl esters. Atherosclerosis 2020; 297:8-15. [DOI: 10.1016/j.atherosclerosis.2020.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023]
|
31
|
Ossoli A, Simonelli S, Varrenti M, Morici N, Oliva F, Stucchi M, Gomaraschi M, Strazzella A, Arnaboldi L, Thomas MJ, Sorci-Thomas MG, Corsini A, Veglia F, Franceschini G, Karathanasis SK, Calabresi L. Recombinant LCAT (Lecithin:Cholesterol Acyltransferase) Rescues Defective HDL (High-Density Lipoprotein)-Mediated Endothelial Protection in Acute Coronary Syndrome. Arterioscler Thromb Vasc Biol 2020; 39:915-924. [PMID: 30894011 DOI: 10.1161/atvbaha.118.311987] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objective- Aim of this study was to evaluate changes in LCAT (lecithin:cholesterol acyltransferase) concentration and activity in patients with an acute coronary syndrome, to investigate if these changes are related to the compromised capacity of HDL (high-density lipoprotein) to promote endothelial nitric oxide (NO) production, and to assess if rhLCAT (recombinant human LCAT) can rescue the defective vasoprotective HDL function. Approach and Results- Thirty ST-segment-elevation myocardial infarction (STEMI) patients were enrolled, and plasma was collected at hospital admission, 48 and 72 hours thereafter, at hospital discharge, and at 30-day follow-up. Plasma LCAT concentration and activity were measured and related to the capacity of HDL to promote NO production in cultured endothelial cells. In vitro studies were performed in which STEMI patients' plasma was added with rhLCAT and HDL vasoprotective activity assessed by measuring NO production in endothelial cells. The plasma concentration of the LCAT enzyme significantly decreases during STEMI with a parallel significant reduction in LCAT activity. HDL isolated from STEMI patients progressively lose the capacity to promote NO production by endothelial cells, and the reduction is related to decreased LCAT concentration. In vitro incubation of STEMI patients' plasma with rhLCAT restores HDL ability to promote endothelial NO production, possibly related to significant modification in HDL phospholipid classes. Conclusions- Impairment of cholesterol esterification may be a major factor in the HDL dysfunction observed during acute coronary syndrome. rhLCAT is able to restore HDL-mediated NO production in vitro, suggesting LCAT as potential therapeutic target for restoring HDL functionality in acute coronary syndrome.
Collapse
Affiliation(s)
- Alice Ossoli
- From the Centro E. Grossi Paoletti (A.O., S.S., M.G., A.S., G.F., L.C.), Università degli Studi di Milano, Italy
| | - Sara Simonelli
- From the Centro E. Grossi Paoletti (A.O., S.S., M.G., A.S., G.F., L.C.), Università degli Studi di Milano, Italy
| | - Marisa Varrenti
- Cardiologia 1-Emodinamica, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy (M.V., N.M., F.O., M.S.).,Università degli Studi di Milano-Bicocca, Italy (M.V.)
| | - Nuccia Morici
- Department of Clinical Sciences and Community Health (N.M.), Università degli Studi di Milano, Italy.,Cardiologia 1-Emodinamica, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy (M.V., N.M., F.O., M.S.)
| | - Fabrizio Oliva
- Cardiologia 1-Emodinamica, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy (M.V., N.M., F.O., M.S.)
| | - Miriam Stucchi
- Cardiologia 1-Emodinamica, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy (M.V., N.M., F.O., M.S.)
| | - Monica Gomaraschi
- From the Centro E. Grossi Paoletti (A.O., S.S., M.G., A.S., G.F., L.C.), Università degli Studi di Milano, Italy
| | - Arianna Strazzella
- From the Centro E. Grossi Paoletti (A.O., S.S., M.G., A.S., G.F., L.C.), Università degli Studi di Milano, Italy
| | - Lorenzo Arnaboldi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (L.A., A.C.), Università degli Studi di Milano, Italy
| | - Michael J Thomas
- Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee
| | - Mary G Sorci-Thomas
- Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine (M.G.S.-T.), Medical College of Wisconsin, Milwaukee
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (L.A., A.C.), Università degli Studi di Milano, Italy
| | | | - Guido Franceschini
- From the Centro E. Grossi Paoletti (A.O., S.S., M.G., A.S., G.F., L.C.), Università degli Studi di Milano, Italy
| | | | - Laura Calabresi
- From the Centro E. Grossi Paoletti (A.O., S.S., M.G., A.S., G.F., L.C.), Università degli Studi di Milano, Italy
| |
Collapse
|
32
|
Tobar HE, Cataldo LR, González T, Rodríguez R, Serrano V, Arteaga A, Álvarez-Mercado A, Lagos CF, Vicuña L, Miranda JP, Pereira A, Bravo C, Aguilera CM, Eyheramendy S, Uauy R, Martínez Á, Gil Á, Francone O, Rigotti A, Santos JL. Identification and functional analysis of missense mutations in the lecithin cholesterol acyltransferase gene in a Chilean patient with hypoalphalipoproteinemia. Lipids Health Dis 2019; 18:132. [PMID: 31164121 PMCID: PMC6549291 DOI: 10.1186/s12944-019-1045-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022] Open
Abstract
Background Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme that esterifies cholesterol in high- and low-density lipoproteins (HDL and LDL). Mutations in LCAT gene causes familial LCAT deficiency, which is characterized by very low plasma HDL-cholesterol levels (Hypoalphalipoproteinemia), corneal opacity and anemia, among other lipid-related traits. Our aim is to evaluate clinical/biochemical features of a Chilean family with a proband showing clinical signs of familial LCAT deficiency, as well as to identify and assess the functional effects of LCAT mutations. Methods An adult female proband with hypoalphalipoproteinemia, corneal opacity and mild anemia, as well as her first-degree relatives, were recruited for clinical, biochemical, genetic, in-silico and in-vitro LCAT analysis. Sequencing of exons and intron-exon boundaries was performed to identify mutations. Site-directed mutagenesis was carried out to generate plasmids containing cDNA with wild type or mutant sequences. Such expression vectors were transfected to HEK-239 T cells to asses the effect of LCAT variants in expression, synthesis, secretion and enzyme activity. In-silico prediction analysis and molecular modeling was also used to evaluate the effect of LCAT variants. Results LCAT sequencing identified rare p.V333 M and p.M404 V missense mutations in compound heterozygous state in the proband, as well the common synonymous p.L363 L variant. LCAT protein was detected in proband’s plasma, but with undetectable enzyme activity compared to control relatives. HEK-293 T transfected cells with vector expression plasmids containing either p.M404 V or p.V333 M cDNA showed detectable LCAT protein expression both in supernatants and lysates from cultured cells, but with much lower enzyme activity compared to cells transfected with the wild-type sequence. Bioinformatic analyses also supported a causal role of such rare variations in LCAT lack of function. Additionally, the proband carried the minor allele of the synonymous p.L363 L variant. However, this variant is unlikely to affect the clinical phenotype of the proband given its relatively high frequency in the Chilean population (4%) and its small putative effect on plasma HDL-cholesterol levels. Conclusion Genetic, biochemical, in vitro and in silico analyses indicate that the rare mutations p.M404 V and p.V333 M in LCAT gene lead to suppression of LCAT enzyme activity and cause clinical features of familial LCAT deficiency. Electronic supplementary material The online version of this article (10.1186/s12944-019-1045-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo E Tobar
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis R Cataldo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Trinidad González
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Rodríguez
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Serrano
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio Arteaga
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Carlos F Lagos
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Santiago, Chile
| | - Lucas Vicuña
- Departamento de Estadísticas, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José P Miranda
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Carolina Bravo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Granada, Spain
| | - Susana Eyheramendy
- Departamento de Estadísticas, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Uauy
- INTA, Universidad de Chile, Santiago, Chile.,División de Pediatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Ángel Gil
- INYTA, University of Granada, Granada, Spain
| | - Omar Francone
- Pfizer Global Research and Development, San Diego, USA
| | - Attilio Rigotti
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Nutrición Molecular y Enfermedades Crónicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
33
|
Oliaei F, Batebi B, Tabaripour R, Akhavan Niaki H. Finding a very rare mutation in non-Caucasian LCAT patients from Southwest Asia for the first time. J Cell Biochem 2019; 120:7096-7100. [PMID: 30506915 DOI: 10.1002/jcb.27981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Lecithin cholesterol acyltransferase (LCAT) deficiency is an autosomal recessive disorder occurred by different mutations in the LCAT gene that cause two extremely rare syndromes including familial LCAT deficiency (FLD) and fish-eye disease (FED). Unlike FED in FLD renal failure is the most important defect due to deposition of abnormal lipoproteins in the renal stroma. In this study, FLD patients from the North of Iran were investigated for mutations in the LCAT gene. MATERIALS AND METHODS Eight patients with corneal opacification and renal defect were analyzed for mutations in the LCAT gene by PCR sequencing. RESULTS Sequencing analysis revealed a missense pathogenic variation c.301 G>A in exon 2 of LCAT gene in all patients changing the amino acid aspartate to asparagine at the conserved position of amino acid 101 of LCAT protein. CONCLUSION In this study, a very rare variation was reported for the first time in this part of the world. Investigation of a larger number of LCAT patients in different parts of Iran can provide availability of mutations panel that is useful for phenotype prediction and also prenatal diagnosis programming in families with a previous history of the disease.
Collapse
Affiliation(s)
- Farshid Oliaei
- Cellular and Molecular Biology Research Center, Health Research Institute. Clinical Research Center, Shahid Beheshti Hospital, Department of Internal Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Behdokht Batebi
- Department of Cellular and Molecular Biology, Islamic Azad University, Babol Branch, Iran
| | - Reza Tabaripour
- Department of Cellular and Molecular Biology, Islamic Azad University, Babol Branch, Iran
| | - Haleh Akhavan Niaki
- Genetic laboratory of Amirkola Children's Hospital, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
34
|
A proteomic approach to identify novel disease biomarkers in LCAT deficiency. J Proteomics 2018; 198:113-118. [PMID: 30529744 DOI: 10.1016/j.jprot.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022]
Abstract
Genetic LCAT deficiency is a rare recessive autosomal disease due to loss-of-function mutations in the gene coding for the enzyme lecithin:cholesterol acyltransferase (LCAT). Homozygous carriers are characterized by corneal opacity, haemolytic anaemia and renal disease, which represent the first cause of morbidity and mortality in these subjects. Diagnostic and prognostic markers capable of early detecting declining kidney function in these subjects are not available, and the specific serum or urine proteomic signature of LCAT deficient carriers has never been assessed. Taking advantage of a proteomic approach, we performed 2-DE analysis of carriers' plasma and identified proteins present at different concentration in samples from homozygous carriers. Our data confirm the well-known alterations in the concentration of circulating apolipoproteins, with a statistically significant decrease of both apoA-I and apoA-II and a statistically significant increase of apoC-III. Furthermore, we observed increased level of alpha-1-antitrypsin, zinc-alpha-2-glycoprotein and retinol-binding protein 4, and reduced level of clusterin and haptoglobin. Interestingly, only beta but not alpha subunit of haptoglobin is significant reduced in homozygous subjects. Despite the limited sample size, our findings set the basis for assessing the identified protein in a larger population and for correlating their levels with clinical markers of renal function and anaemia. SIGNIFICANCE: This investigation defines the effects of LCAT deficiency on the level of the major plasma proteins in homozygous and heterozygous carriers. Increase for some proteins, with different function, together with a drop for haptoglobin, and specifically for haptoglobin beta chains, are reported for the first time as part of a coherent signature. We are glad to have the opportunity to report our findings on this subject, which is one of the main interests for our research group, when Journal of Proteomics celebrates its 10th anniversary. With its various sections devoted to different areas of research, this journal is a privileged forum for publishing proteomic investigations without restrictions either in sample type or in technical approach. It is as well a privileged forum for reviewing literature data on various topics related to proteomics investigation, as colleagues in our research group have done over the years; by the way, a good share of the reviewed papers were as well reports published in Journal of Proteomics itself. The journal also offers opportunities for focused surveys through thematic issues devoted to a variety of subjects, timely selected for their current relevance in research; it was an honour for colleagues in our group to recently act as editors of one of those. Out of this diverse experience, we express our appreciation for the endeavour of Journal of Proteomics in its first 10 years of life - and wish identical and possibly greater success for the time to come.
Collapse
|
35
|
Gerl MJ, Vaz WLC, Domingues N, Klose C, Surma MA, Sampaio JL, Almeida MS, Rodrigues G, Araújo-Gonçalves P, Ferreira J, Borbinha C, Marto JP, Viana-Baptista M, Simons K, Vieira OV. Cholesterol is Inefficiently Converted to Cholesteryl Esters in the Blood of Cardiovascular Disease Patients. Sci Rep 2018; 8:14764. [PMID: 30282999 PMCID: PMC6170447 DOI: 10.1038/s41598-018-33116-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Shotgun lipidomic analysis of 203 lipids in 13 lipid classes performed on blood plasma of donors who had just suffered an acute coronary syndrome (ACS, n = 74), or an ischemic stroke (IS, n = 21), or who suffer from stable angina pectoris (SAP, n = 78), and an age-matched control cohort (n = 52), showed some of the highest inter-lipid class correlations between cholesteryl esters (CE) and phosphatidylcholines (PC) sharing a common fatty acid. The concentration of lysophospatidylcholine (LPC) and ratios of concentrations of CE to free cholesterol (Chol) were also lower in the CVD cohorts than in the control cohort, indicating a deficient conversion of Chol to CE in the blood plasma in the CVD subjects. A non-equilibrium reaction quotient, Q′, describing the global homeostasis of cholesterol as manifested in the blood plasma was shown to have a value in the CVD cohorts (Q′ACS = 0.217 ± 0.084; Q′IS = 0.201 ± 0.084; Q′SAP = 0.220 ± 0.071) that was about one third less than in the control cohort (Q′Control = 0.320 ± 0.095, p < 1 × 10−4), suggesting its potential use as a rapid predictive/diagnostic measure of CVD-related irregularities in cholesterol homeostasis.
Collapse
Affiliation(s)
| | - Winchil L C Vaz
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal
| | - Neuza Domingues
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal
| | | | | | - Júlio L Sampaio
- Lipotype GmbH, Tatzberg 47, 01307, Dresden, Germany.,Centre de Recherche, Institut Curie, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Manuel S Almeida
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Gustavo Rodrigues
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Pedro Araújo-Gonçalves
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Jorge Ferreira
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134, Carnaxide, Portugal
| | - Claudia Borbinha
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisboa, Portugal
| | - João Pedro Marto
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisboa, Portugal
| | - Miguel Viana-Baptista
- Neurology Department, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisboa, Portugal
| | - Kai Simons
- Lipotype GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Otilia V Vieira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
36
|
Kosmas CE, Silverio D, Sourlas A, Garcia F, Montan PD, Guzman E. Primary genetic disorders affecting high density lipoprotein (HDL). Drugs Context 2018; 7:212546. [PMID: 30214464 PMCID: PMC6135231 DOI: 10.7573/dic.212546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/21/2023] Open
Abstract
There is extensive evidence demonstrating that there is a clear inverse correlation between plasma high density lipoprotein cholesterol (HDL-C) concentration and cardiovascular disease (CVD). On the other hand, there is also extensive evidence that HDL functionality plays a very important role in atheroprotection. Thus, genetic disorders altering certain enzymes, lipid transfer proteins, or specific receptors crucial for the metabolism and adequate function of HDL, may positively or negatively affect the HDL-C levels and/or HDL functionality and subsequently either provide protection or predispose to atherosclerotic disease. This review aims to describe certain genetic disorders associated with either low or high plasma HDL-C and discuss their clinical features, associated risk for cardiovascular events, and treatment options.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Delia Silverio
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | | | - Frank Garcia
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Peter D Montan
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
37
|
Oldoni F, Baldassarre D, Castelnuovo S, Ossoli A, Amato M, van Capelleveen J, Hovingh GK, De Groot E, Bochem A, Simonelli S, Barbieri S, Veglia F, Franceschini G, Kuivenhoven JA, Holleboom AG, Calabresi L. Complete and Partial Lecithin:Cholesterol Acyltransferase Deficiency Is Differentially Associated With Atherosclerosis. Circulation 2018; 138:1000-1007. [DOI: 10.1161/circulationaha.118.034706] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Federico Oldoni
- Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.A.K.)
| | - Damiano Baldassarre
- Centro Cardiologico Monzino IRCCS, Milano, Italy (D.B., M.A., S.B., F.V.)
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy (D.B.)
| | | | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (A.O., S.S., G.F., L.C.)
| | - Mauro Amato
- Centro Cardiologico Monzino IRCCS, Milano, Italy (D.B., M.A., S.B., F.V.)
| | - Julian van Capelleveen
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.v.C., G.K.H., E.D.G., A.B., A.G.M.)
| | - G. Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.v.C., G.K.H., E.D.G., A.B., A.G.M.)
| | - Eric De Groot
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.v.C., G.K.H., E.D.G., A.B., A.G.M.)
| | - Andrea Bochem
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.v.C., G.K.H., E.D.G., A.B., A.G.M.)
| | - Sara Simonelli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (A.O., S.S., G.F., L.C.)
| | - Simone Barbieri
- Centro Cardiologico Monzino IRCCS, Milano, Italy (D.B., M.A., S.B., F.V.)
| | - Fabrizio Veglia
- Centro Cardiologico Monzino IRCCS, Milano, Italy (D.B., M.A., S.B., F.V.)
| | - Guido Franceschini
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (A.O., S.S., G.F., L.C.)
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section of Molecular Genetics, University Medical Centre Groningen, University of Groningen, The Netherlands (F.O., J.A.K.)
| | - Adriaan G. Holleboom
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands (J.v.C., G.K.H., E.D.G., A.B., A.G.M.)
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy (A.O., S.S., G.F., L.C.)
| |
Collapse
|
38
|
Ruscica M, Simonelli S, Botta M, Ossoli A, Lupo MG, Magni P, Corsini A, Arca M, Pisciotta L, Veglia F, Franceschini G, Ferri N, Calabresi L. Plasma PCSK9 levels and lipoprotein distribution are preserved in carriers of genetic HDL disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:991-997. [DOI: 10.1016/j.bbalip.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/18/2018] [Accepted: 05/27/2018] [Indexed: 01/27/2023]
|
39
|
Hanna EV, Simonelli S, Chamney S, Ossoli A, Mullan RN. Paradoxical fall in proteinuria during pregnancy in an LCAT-deficient patient-A case report. J Clin Lipidol 2018; 12:1151-1156. [PMID: 30201532 DOI: 10.1016/j.jacl.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/03/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023]
Abstract
A 29-year-old lady was diagnosed with lecithin:cholesterol acyltransferase (LCAT) deficiency having presented with bilateral corneal clouding, severely reduced high density lipoproteins cholesterol, and proteinuria. She is a compound heterozygote with two LCAT gene mutations, one of which is novel, c.321C>A in exon 3. Surprisingly, the level of proteinuria significantly improved during pregnancy, despite stopping the angiotensin-converting enzyme inhibitor. However, LCAT concentration and activity remained identical during pregnancy and postpartum. Her pregnancy was complicated by rising triglyceride levels from the second trimester requiring treatment with omega-3 fatty acid and fenofibrate. In the last trimester, a further complication arose when she became hypertensive and proteinuria worsened. She was diagnosed with pre-eclampsia and had an emergency cesarean section at 39 weeks delivering a healthy baby. This case adds to the knowledge of the pathophysiology of LCAT deficiency during pregnancy and will be useful in future patient management.
Collapse
Affiliation(s)
- Elinor V Hanna
- Department of Biochemistry, Antrim Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, UK.
| | - Sara Simonelli
- Department of Pharmacological and Biomolecular Sciences, Center E. Grossi Paoletti, Università degli Studi di Milano, Milano, Italy
| | - Sarah Chamney
- Department of Opthalmology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Alice Ossoli
- Department of Pharmacological and Biomolecular Sciences, Center E. Grossi Paoletti, Università degli Studi di Milano, Milano, Italy.
| | - Robert N Mullan
- Renal Unit, Antrim Hospital, Northern Health and Social Care Trust, Antrim, Northern Ireland, UK
| |
Collapse
|
40
|
Ishibashi R, Takemoto M, Tsurutani Y, Kuroda M, Ogawa M, Wakabayashi H, Uesugi N, Nagata M, Imai N, Hattori A, Sakamoto K, Kitamoto T, Maezawa Y, Narita I, Hiroi S, Furuta A, Miida T, Yokote K. Immune-mediated acquired lecithin-cholesterol acyltransferase deficiency: A case report and literature review. J Clin Lipidol 2018; 12:888-897.e2. [PMID: 29937398 DOI: 10.1016/j.jacl.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/21/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND Recessive inherited disorder lecithin-cholesterol acyltransferase (LCAT) deficiency causes severe hypocholesterolemia and nephrotic syndrome. Characteristic lipoprotein subfractions have been observed in familial LCAT deficiency (FLD) with renal damage. OBJECTIVE We described a case of acquired LCAT deficiencies with literature review. METHODS The lipoprotein profiles examined by gel permeation-high-performance liquid chromatography (GP-HPLC) and native 2-dimensional electrophoresis before and after prednisolone (PSL) treatment. RESULTS Here we describe the case of a 67-year-old man with severely low levels of cholesterol. The serum LCAT activity was undetectable, and autoantibodies against it were detected. The patient developed nephrotic syndrome at the age of 70 years. Renal biopsy revealed not only membranous glomerulonephritis but also lesions similar to those seen in FLD. We initiated PSL treatment, which resulted in remission of the nephrotic syndrome. In GP-HPLC analysis, lipoprotein profile was similar to that of FLD although lipoprotein X level was low. Acquired LCAT deficiencies are extremely rare with only 7 known cases including ours. Patients with undetectable LCAT activity levels develop nephrotic syndrome that requires PSL treatment; cases whose LCAT activity levels can be determined may also develop nephrotic syndrome, but spontaneously recover. CONCLUSION Lipoprotein X may play a role in the development of renal impairment in individuals with FLD. However, the effect might be less significant in individuals with acquired LCAT deficiency.
Collapse
Affiliation(s)
- Ryoichi Ishibashi
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Kimitsu Chuo Hospital, Kisarazu, Chiba, Japan
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Nartita, Chiba, Japan.
| | | | - Masayuki Kuroda
- Center for Advanced Medicine, Chiba University Hospital, Chiba, Japan
| | - Makoto Ogawa
- Chiba Prefectural University of Health Science, Chiba, Japan
| | - Hanae Wakabayashi
- Department of Gastroenterology and Nephrology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Noriko Uesugi
- Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naofumi Imai
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Akiko Hattori
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Kimitsu Chuo Hospital, Kisarazu, Chiba, Japan
| | - Kenichi Sakamoto
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takumi Kitamoto
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Sadayuki Hiroi
- Department of Pathology, School of Laboratory Medicine, Nitobebunka College, Tokyo, Japan
| | - Ayaka Furuta
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
41
|
High Density Lipoproteins Inhibit Oxidative Stress-Induced Prostate Cancer Cell Proliferation. Sci Rep 2018; 8:2236. [PMID: 29396407 PMCID: PMC5797231 DOI: 10.1038/s41598-018-19568-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/04/2018] [Indexed: 01/06/2023] Open
Abstract
Recent evidence suggests that oxidative stress can play a role in the pathogenesis and the progression of prostate cancer (PCa). Reactive oxygen species (ROS) generation is higher in PCa cells compared to normal prostate epithelial cells and this increase is proportional to the aggressiveness of the phenotype. Since high density lipoproteins (HDL) are known to exert antioxidant activities, their ability to reduce ROS levels and the consequent impact on cell proliferation was tested in normal and PCa cell lines. HDL significantly reduced basal and H2O2-induced oxidative stress in normal, androgen receptor (AR)-positive and AR-null PCa cell lines. AR, scavenger receptor BI and ATP binding cassette G1 transporter were not involved. In addition, HDL completely blunted H2O2-induced increase of cell proliferation, through their capacity to prevent the H2O2-induced shift of cell cycle distribution from G0/G1 towards G2/M phase. Synthetic HDL, made of the two main components of plasma-derived HDL (apoA-I and phosphatidylcholine) and which are under clinical development as anti-atherosclerotic agents, retained the ability of HDL to inhibit ROS production in PCa cells. Collectively, HDL antioxidant activity limits cell proliferation induced by ROS in AR-positive and AR-null PCa cell lines, thus supporting a possible role of HDL against PCa progression.
Collapse
|
42
|
Vitali C, Khetarpal SA, Rader DJ. HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics. Curr Cardiol Rep 2017; 19:132. [PMID: 29103089 DOI: 10.1007/s11886-017-0940-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Elevated high-density lipoprotein cholesterol levels in the blood (HDL-C) represent one of the strongest epidemiological surrogates for protection against coronary heart disease (CHD), but recent human genetic and pharmacological intervention studies have raised controversy about the causality of this relationship. Here, we review recent discoveries from human genome studies using new analytic tools as well as relevant animal studies that have both addressed, and in some cases, fueled this controversy. RECENT FINDINGS Methodologic developments in genotyping and sequencing, such as genome-wide association studies (GWAS), exome sequencing, and exome array genotyping, have been applied to the study of HDL-C and risk of CHD in large, multi-ethnic populations. Some of these efforts focused on population-wide variation in common variants have uncovered new polymorphisms at novel loci associated with HDL-C and, in some cases, CHD risk. Other efforts have discovered loss-of-function variants for the first time in genes previously implicated in HDL metabolism through common variant studies or animal models. These studies have allowed the genetic relationship between these pathways, HDL-C and CHD to be explored in humans for the first time through analysis tools such as Mendelian randomization. We explore these discoveries for selected key HDL-C genes CETP, LCAT, LIPG, SCARB1, and novel loci implicated from GWAS including GALNT2, KLF14, and TTC39B. Recent human genetics findings have identified new nodes regulating HDL metabolism while reshaping our current understanding of known candidate genes to HDL and CHD risk through the study of critical variants across model systems. Despite their effect on HDL-C, variants in many of the reviewed genes were found to lack any association with CHD. These data collectively indicate that HDL-C concentration, which represents a static picture of a very dynamic and heterogeneous metabolic milieu, is unlikely to be itself causally protective against CHD. In this context, human genetics represent an extremely valuable tool to further explore the biological mechanisms regulating HDL metabolism and investigate what role, if any, HDL plays in the pathogenesis of CHD.
Collapse
Affiliation(s)
- Cecilia Vitali
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Sumeet A Khetarpal
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Daniel J Rader
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA. .,Departments of Genetics and Medicine, Cardiovascular Institute, and Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Castro-Ferreira I, Carmo R, Silva SE, Corrêa O, Fernandes S, Sampaio S, Pedro RP, Praça A, Oliveira JP. Novel Missense LCAT Gene Mutation Associated with an Atypical Phenotype of Familial LCAT Deficiency in Two Portuguese Brothers. JIMD Rep 2017; 40:55-62. [PMID: 28983876 DOI: 10.1007/8904_2017_57] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Familial lecithin-cholesterol acyltransferase deficiency (FLD) is a rare recessive disorder of cholesterol metabolism, caused by loss-of-function mutations in the human LCAT gene, leading to alterations in the lipid/lipoprotein profile, with extremely low HDL levels.The classical FLD phenotype is characterized by diffuse corneal opacification, haemolytic anaemia and proteinuric chronic kidney disease (CKD); an incomplete form, only affecting the corneas, has been reported in a few families worldwide.We describe an intermediate phenotype of LCAT deficiency, with CKD preceding the development of corneal clouding, in two Portuguese brothers apparently homozygous for a novel missense LCAT gene mutation. The atypical phenotype, the diagnosis of membranous nephropathy in the proband's native kidney biopsy, the late-onset and delayed recognition of the corneal opacification, the co-segregation with Gilbert syndrome and the late recurrence of the primary disease in kidney allograft all contributed to obscure the diagnosis of an LCAT deficiency syndrome for many years.A major teaching point is that on standard light microscopy examination the kidney biopsies of patients with LCAT deficiency with residual enzyme activity may not show significant vacuolization and may be misdiagnosed as membranous nephropathy. The cases of these two patients also illustrate the importance of performing detailed physical examination in young adults presenting with proteinuric CKD, as the most important clue to the diagnosis of FLD is in the eyes.
Collapse
Affiliation(s)
- I Castro-Ferreira
- Service of Nephrology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal.
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Oporto, Portugal.
| | - Rute Carmo
- Service of Nephrology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal
| | - Sérgio Estrela Silva
- Service of Ophthalmology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal
- Department of Organs of the Senses, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal
| | - Otília Corrêa
- Labco Clinical Laboratory Dr. Joāo Ribeiro, Rua Augusto Simões, 1430 - 1°, salas 1-3, 4470-147, Maia, Portugal
| | - Susana Fernandes
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Oporto, Portugal
- Unit of Genetics, Department of Pathology, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal
| | - Susana Sampaio
- Service of Nephrology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Oporto, Portugal
| | - Rodrigues-Pereira Pedro
- Service of Pathology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal
- Department of Pathology, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal
| | - Augusta Praça
- Service of Nephrology, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal
- NephroCare Haemodialysis Clinic, Rua João Mendes Cardoso, 24-C, 4520-233, Santa Maria da Feira, Portugal
| | - João Paulo Oliveira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Oporto, Portugal
- NephroCare Haemodialysis Clinic, Rua João Mendes Cardoso, 24-C, 4520-233, Santa Maria da Feira, Portugal
- Service of Medical Genetics and Reference Centre for Inherited Metabolic Diseases, Centro Hospitalar São João, Alameda Prof. Hernâni Monteiro, 4200-319, Oporto, Portugal
| |
Collapse
|
44
|
Khalil A, Kamtchueng Simo O, Ikhlef S, Berrougui H. The role of paraoxonase 1 in regulating high-density lipoprotein functionality during aging. Can J Physiol Pharmacol 2017; 95:1254-1262. [DOI: 10.1139/cjpp-2017-0117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pharmacological interventions to increase the concentration of high-density lipoprotein (HDL) have led to disappointing results and have contributed to the emergence of the concept of HDL functionality. The anti-atherogenic activity of HDLs can be explained by their functionality or quality. The capacity of HDLs to maintain cellular cholesterol homeostasis and to transport cholesterol from peripheral cells to the liver for elimination is one of their principal anti-atherogenic activities. However, HDLs possess several other attributes that contribute to their protective effect against cardiovascular diseases. HDL functionality is regulated by various proteins and lipids making up HDL particles. However, several studies investigated the role of paraoxonase 1 (PON1) and suggest a significant role of this protein in the regulation of the functionality of HDLs. Moreover, research on PON1 attracted much interest following several studies indicating that it is involved in cardiovascular protection. However, the mechanisms by which PON1 exerts these effects remain to be elucidated.
Collapse
Affiliation(s)
- Abdelouahed Khalil
- Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | | | - Souade Ikhlef
- Research Centre on Aging, Sherbrooke, QC J1H 4C4, Canada
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, BP 592, 23000 Beni Mellal, Morocco
| |
Collapse
|
45
|
Rial-Crestelo D, Santos-Recuero I, Julve J, Blanco-Vaca F, Torralba M. A novel homozygous mutation causing lecithin-cholesterol acyltransferase deficiency in a proband of Romanian origin with a record of extreme gestational hyperlipidemia. J Clin Lipidol 2017; 11:1475-1479.e3. [PMID: 28942093 DOI: 10.1016/j.jacl.2017.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
A patient from Romania with extraordinarily high total cholesterol levels and clinical and biochemical features consistent with familial lecithin-cholesterol acyltransferase deficiency is reported. The genetic analysis performed on our proband showed a novel homozygous mutation on codon 119 of lecithin-cholesterol acyltransferase gene that causes the substitution of glycine by aspartate. The same mutation, also in homozygosis, was observed in her older sister, whereas his brother presented it in heterozygosis.
Collapse
Affiliation(s)
- David Rial-Crestelo
- Departamento de Medicina Interna, Servicio de Medicina Interna, Hospital Universitario de Guadalajara, Servicio de Salud de Castilla La Mancha, Guadalajara, Castilla la Mancha, Spain; Departamento de Medicina, Universidad de Alcalá, Madrid, Spain.
| | - Ildefonso Santos-Recuero
- Departamento de Análisis Clínicos, Bioquímica, Servicio de Análisis Clínicos, Bioquímica, Hospital Universitario de Guadalajara, Servicio de Salud de Castilla La Mancha, Guadalajara, Castilla la Mancha, Spain
| | - Josep Julve
- IIB-Sant Pau, Barcelona, Cataluña, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Cataluña, Spain; CIBERDEM, Barcelona, Barcelona, Cataluña, Spain
| | - Francisco Blanco-Vaca
- IIB-Sant Pau, Barcelona, Cataluña, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Cataluña, Spain; CIBERDEM, Barcelona, Barcelona, Cataluña, Spain
| | - Miguel Torralba
- Departamento de Medicina Interna, Servicio de Medicina Interna, Hospital Universitario de Guadalajara, Servicio de Salud de Castilla La Mancha, Guadalajara, Castilla la Mancha, Spain; Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
46
|
Gomaraschi M, Ossoli A, Castelnuovo S, Simonelli S, Pavanello C, Balzarotti G, Arca M, Di Costanzo A, Sampietro T, Vaudo G, Baldassarre D, Veglia F, Franceschini G, Calabresi L. Depletion in LpA-I:A-II particles enhances HDL-mediated endothelial protection in familial LCAT deficiency. J Lipid Res 2017; 58:994-1001. [PMID: 28351888 DOI: 10.1194/jlr.p072371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/04/2017] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the vasoprotective effects of HDL isolated from carriers of LCAT deficiency, which are characterized by a selective depletion of LpA-I:A-II particles and predominance of preβ migrating HDL. HDLs were isolated from LCAT-deficient carriers and tested in vitro for their capacity to promote NO production and to inhibit vascular cell adhesion molecule-1 (VCAM-1) expression in cultured endothelial cells. HDLs from carriers were more effective than control HDLs in promoting eNOS activation with a gene-dose-dependent effect (PTrend = 0.048). As a consequence, NO production induced by HDL from carriers was significantly higher than that promoted by control HDL (1.63 ± 0.24-fold vs. 1.34 ± 0.07-fold, P = 0.031). HDLs from carriers were also more effective than control HDLs in inhibiting the expression of VCAM-1 (homozygotes, 65.0 ± 8.6%; heterozygotes, 53.1 ± 7.2%; controls, 44.4 ± 4.1%; PTrend = 0.0003). The increased efficiency of carrier HDL was likely due to the depletion in LpA-I:A-II particles. The in vitro findings might explain why carriers of LCAT deficiency showed flow-mediated vasodilation and plasma-soluble cell adhesion molecule concentrations comparable to controls, despite low HDL-cholesterol levels. These results indicate that selective depletion of apoA-II-containing HDL, as observed in carriers of LCAT deficiency, leads to an increased capacity of HDL to stimulate endothelial NO production, suggesting that changes in HDL apolipoprotein composition may be the target of therapeutic interventions designed to improve HDL functionality.
Collapse
Affiliation(s)
- Monica Gomaraschi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari Università degli Studi di Milano, Milano, Italy
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari Università degli Studi di Milano, Milano, Italy
| | - Samuela Castelnuovo
- Centro Dislipidemie, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Sara Simonelli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari Università degli Studi di Milano, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari Università degli Studi di Milano, Milano, Italy
| | - Gloria Balzarotti
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari Università degli Studi di Milano, Milano, Italy
| | - Marcello Arca
- Atherosclerosis Center, Department of Internal Medicine and Allied Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Di Costanzo
- Atherosclerosis Center, Department of Internal Medicine and Allied Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Gaetano Vaudo
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | | | - Guido Franceschini
- Section of Chemical and Biomolecular Sciences, DeFENS, Università degli Studi di Milano, Milano, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
47
|
Parmar PA, St-Pierre JP, Chow LW, Puetzer JL, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM. Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds. Adv Healthc Mater 2016; 5:1656-66. [PMID: 27219220 PMCID: PMC5405340 DOI: 10.1002/adhm.201600136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/09/2016] [Indexed: 12/21/2022]
Abstract
Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as "blank slate" collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds. Here, we show the potential of Streptococcal collagen-like 2 (Scl2) protein foams modified with peptides designed to specifically and noncovalently bind hyaluronic acid and chondroitin sulfate to improve chondrogenesis of human mesenchymal stem cells (hMSCs) compared to collagen I foams. Specific compositions of functionalized Scl2 foams lead to improved chondrogenesis compared to both nonfunctionalized Scl2 and collagen I foams, as indicated by gene expression, extracellular matrix accumulation, and compression moduli. hMSCs cultured in functionalized Scl2 foams exhibit decreased collagens I and X gene and protein expression, suggesting an advantage over collagen I foams in promoting a chondrocytic phenotype. These highly modular foams can be further modified to improve specific aspects chondrogenesis. As such, these scaffolds also have the potential to be tailored for other regenerative medicine applications.
Collapse
Affiliation(s)
- Paresh A. Parmar
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London SW7 2AZ, UK; The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Jean-Philippe St-Pierre
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| | - Lesley W. Chow
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| | - Jennifer L. Puetzer
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| | - Violet Stoichevska
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Yong Y. Peng
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Jerome A. Werkmeister
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - John A. M. Ramshaw
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Molly M. Stevens
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| |
Collapse
|
48
|
Wang L, Hu C, Liu S, Chang M, Gao P, Wang L, Pan Z, Xu G. Plasma Lipidomics Investigation of Hemodialysis Effects by Using Liquid Chromatography-Mass Spectrometry. J Proteome Res 2016; 15:1986-94. [PMID: 27151145 DOI: 10.1021/acs.jproteome.6b00170] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic kidney disease (CKD) has been a global health problem that has a great possibility of being developed into uremia in the end. Hemodialysis (HD) is the most commonly used strategy for treating uremic patients; however, the patients still have a high risk of suffering various complications. It is well recognized that lipid disorder usually occurs in maintenance HD patients. To systemically study the effects of HD on lipid metabolism associated with uremia, we employed an ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based lipidomics method. A total of 87 human plasma samples from patients with prehemodialysis (pre-HD)/posthemodialysis (post-HD) treatment and the healthy controls were enrolled in the study. As compared with pre-HD patients, many plasma lipids showed significant changes (p < 0.05) in patients receiving HD therapy. Specifically, sum of free fatty acids (FFA) as well as saturated FFA and eicosanoids and sums of lyso-phosphatidylinositols and lyso-phosphatidylethanolamines, FFA 16:1/FFA 16:0, and FFA 18:1/FFA 18:0 were obviously higher in the pre-HD group than in the controls while they were significantly lower in patients after HD. These results indicated that UPLC-Q-TOF/MS-based lipidomics is a promising approach to investigate lipid alterations in relation to uremia and it is helpful to understand complex complications involved in HD patients.
Collapse
Affiliation(s)
- Lichao Wang
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China.,Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Chunxiu Hu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Shuxin Liu
- Nephrology Department, Dalian Municipal Central Hospital , 826 Xinan Road, Dalian 116033, China
| | - Ming Chang
- Nephrology Department, Dalian Municipal Central Hospital , 826 Xinan Road, Dalian 116033, China
| | - Peng Gao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,Clinical Laboratory, Dalian Sixth People's Hospital , 269 Lugang Huibai Road, Dalian 116031, China
| | - Lili Wang
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Zaifa Pan
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
49
|
Wahl P, Ducasa GM, Fornoni A. Systemic and renal lipids in kidney disease development and progression. Am J Physiol Renal Physiol 2016; 310:F433-45. [PMID: 26697982 PMCID: PMC4971889 DOI: 10.1152/ajprenal.00375.2015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
Altered lipid metabolism characterizes proteinuria and chronic kidney diseases. While it is thought that dyslipidemia is a consequence of kidney disease, a large body of clinical and experimental studies support that altered lipid metabolism may contribute to the pathogenesis and progression of kidney disease. In fact, accumulation of renal lipids has been observed in several conditions of genetic and nongenetic origins, linking local fat to the pathogenesis of kidney disease. Statins, which target cholesterol synthesis, have not been proven beneficial to slow the progression of chronic kidney disease. Therefore, other therapeutic strategies to reduce cholesterol accumulation in peripheral organs, such as the kidney, warrant further investigation. Recent advances in the understanding of the biology of high-density lipoprotein (HDL) have revealed that functional HDL, rather than total HDL per se, may protect from both cardiovascular and kidney diseases, strongly supporting a role for altered cholesterol efflux in the pathogenesis of kidney disease. Although the underlying pathophysiological mechanisms responsible for lipid-induced renal damage have yet to be uncovered, several studies suggest novel mechanisms by which cholesterol, free fatty acids, and sphingolipids may affect glomerular and tubular cell function. This review will focus on the clinical and experimental evidence supporting a causative role of lipids in the pathogenesis of proteinuria and kidney disease, with a primary focus on podocytes.
Collapse
Affiliation(s)
- Patricia Wahl
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Gloria Michelle Ducasa
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
50
|
Ossoli A, Neufeld EB, Thacker SG, Vaisman B, Pryor M, Freeman LA, Brantner CA, Baranova I, Francone NO, Demosky SJ, Vitali C, Locatelli M, Abbate M, Zoja C, Franceschini G, Calabresi L, Remaley AT. Lipoprotein X Causes Renal Disease in LCAT Deficiency. PLoS One 2016; 11:e0150083. [PMID: 26919698 PMCID: PMC4769176 DOI: 10.1371/journal.pone.0150083] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/09/2016] [Indexed: 12/31/2022] Open
Abstract
Human familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX) in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, chemical and biologic characteristics, to wild-type and Lcat-/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat-/- mice, which have low HDL, but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat-/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat-/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of Lcat induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Edward B. Neufeld
- Lipoprotein Metabolism Section, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Seth G. Thacker
- Lipoprotein Metabolism Section, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Boris Vaisman
- Lipoprotein Metabolism Section, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Milton Pryor
- Lipoprotein Metabolism Section, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lita A. Freeman
- Lipoprotein Metabolism Section, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine A. Brantner
- NHLBI Electron Microscopy Core Facility, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Irina Baranova
- Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicolás O. Francone
- Lipoprotein Metabolism Section, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen J. Demosky
- Lipoprotein Metabolism Section, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cecilia Vitali
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Monica Locatelli
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Mauro Abbate
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Guido Franceschini
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|