1
|
Cheng CK, Ye L, Zuo Y, Wang Y, Wang L, Li F, Chen S, Huang Y. Aged Gut Microbiome Induces Metabolic Impairment and Hallmarks of Vascular and Intestinal Aging in Young Mice. Antioxidants (Basel) 2024; 13:1250. [PMID: 39456503 PMCID: PMC11505429 DOI: 10.3390/antiox13101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Aging, an independent risk factor for cardiometabolic diseases, refers to a progressive deterioration in physiological function, characterized by 12 established hallmarks. Vascular aging is driven by endothelial dysfunction, telomere dysfunction, oxidative stress, and vascular inflammation. This study investigated whether aged gut microbiome promotes vascular aging and metabolic impairment. Fecal microbiome transfer (FMT) was conducted from aged (>75 weeks old) to young C57BL/6 mice (8 weeks old) for 6 weeks. Wire myography was used to evaluate endothelial function in aortas and mesenteric arteries. ROS levels were measured by dihydroethidium (DHE) staining and lucigenin-enhanced chemiluminescence. Vascular and intestinal telomere function, in terms of relative telomere length, telomerase reverse transcriptase expression and telomerase activity, were measured. Systemic inflammation, endotoxemia and intestinal integrity of mice were assessed. Gut microbiome profiles were studied by 16S rRNA sequencing. Some middle-aged mice (40-42 weeks old) were subjected to chronic metformin treatment and exercise training for 4 weeks to evaluate their anti-aging benefits. Six-week FMT impaired glucose homeostasis and caused vascular dysfunction in aortas and mesenteric arteries in young mice. FMT triggered vascular inflammation and oxidative stress, along with declined telomerase activity and shorter telomere length in aortas. Additionally, FMT impaired intestinal integrity, and triggered AMPK inactivation and telomere dysfunction in intestines, potentially attributed to the altered gut microbial profiles. Metformin treatment and moderate exercise improved integrity, AMPK activation and telomere function in mouse intestines. Our data highlight aged microbiome as a mechanism that accelerates intestinal and vascular aging, suggesting the gut-vascular connection as a potential intervention target against cardiovascular aging and complications.
Collapse
Affiliation(s)
- Chak-Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China; (L.Y.); (F.L.)
| | - Yuanyuan Zuo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Yaling Wang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China; (Y.W.); (S.C.)
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| | - Fuyong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China; (L.Y.); (F.L.)
| | - Sheng Chen
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China; (Y.W.); (S.C.)
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
2
|
Moise K, Arun KM, Pillai M, Salvador J, Mehta AS, Goyal Y, Iruela-Arispe ML. Endothelial cell elongation and alignment in response to shear stress requires acetylation of microtubules. Front Physiol 2024; 15:1425620. [PMID: 39318362 PMCID: PMC11420013 DOI: 10.3389/fphys.2024.1425620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
The innermost layer of the vessel wall is constantly subjected to recurring and relenting mechanical forces by virtue of their direct contact with blood flow. Endothelial cells of the vessel are exposed to distension, pressure, and shear stress; adaptation to these hemodynamic forces requires significant remodeling of the cytoskeleton which includes changes in actin, intermediate filaments, and microtubules. While much is known about the effect of shear stress on the endothelial actin cytoskeleton; the impact of hemodynamic forces on the microtubule network has not been investigated in depth. Here we used imaging techniques and protein expression analysis to characterize how pharmacological and genetic perturbations of microtubule properties alter endothelial responses to laminar shear stress. Our findings revealed that pharmacological suppression of microtubule dynamics blocked two typical responses to laminar shear stress: endothelial elongation and alignment. The findings demonstrate the essential contribution of the microtubule network to changes in cell shape driven by mechanical forces. Furthermore, we observed a flow-dependent increase in microtubule acetylation that occurred early in the process of cell elongation. Pharmacological manipulation of microtubule acetylation showed a direct and causal relationship between acetylation and endothelial elongation. Finally, genetic inactivation of aTAT1, a microtubule acetylase, led to significant loss of acetylation as well as inhibition of cell elongation in response to flow. In contrast, loss of HDAC6, a microtubule deacetylase, resulted in robust microtubule acetylation with cells displaying faster kinetics of elongation and alignment. Taken together, our findings uncovered the critical contributions of HDAC6 and aTAT1, that through their roles in the regulation of microtubule acetylation, are key mediators of endothelial mechanotransduction.
Collapse
Affiliation(s)
- Katiannah Moise
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Keerthana M. Arun
- Center for Synthetic Biology, Northwestern University, Chicago, IL, United States
| | - Maalavika Pillai
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Center for Synthetic Biology, Northwestern University, Chicago, IL, United States
| | - Jocelynda Salvador
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Aarya S. Mehta
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Yogesh Goyal
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Center for Synthetic Biology, Northwestern University, Chicago, IL, United States
| | - M. Luisa Iruela-Arispe
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
3
|
Hauger PC, Hordijk PL. Shear Stress-Induced AMP-Activated Protein Kinase Modulation in Endothelial Cells: Its Role in Metabolic Adaptions and Cardiovascular Disease. Int J Mol Sci 2024; 25:6047. [PMID: 38892235 PMCID: PMC11173107 DOI: 10.3390/ijms25116047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Endothelial cells (ECs) line the inner surface of all blood vessels and form a barrier that facilitates the controlled transfer of nutrients and oxygen from the circulatory system to surrounding tissues. Exposed to both laminar and turbulent blood flow, ECs are continuously subject to differential mechanical stimulation. It has been well established that the shear stress associated with laminar flow (LF) is atheroprotective, while shear stress in areas with turbulent flow (TF) correlates with EC dysfunction. Moreover, ECs show metabolic adaptions to physiological changes, such as metabolic shifts from quiescence to a proliferative state during angiogenesis. The AMP-activated protein kinase (AMPK) is at the center of these phenomena. AMPK has a central role as a metabolic sensor in several cell types. Moreover, in ECs, AMPK is mechanosensitive, linking mechanosensation with metabolic adaptions. Finally, recent studies indicate that AMPK dysregulation is at the center of cardiovascular disease (CVD) and that pharmacological targeting of AMPK is a promising and novel strategy to treat CVDs such as atherosclerosis or ischemic injury. In this review, we summarize the current knowledge relevant to this topic, with a focus on shear stress-induced AMPK modulation and its consequences for vascular health and disease.
Collapse
Affiliation(s)
| | - Peter L. Hordijk
- Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
4
|
Chen WH, Chen CH, Hsu MC, Chang RW, Wang CH, Lee TS. Advances in the molecular mechanisms of statins in regulating endothelial nitric oxide bioavailability: Interlocking biology between eNOS activity and L-arginine metabolism. Biomed Pharmacother 2024; 171:116192. [PMID: 38262153 DOI: 10.1016/j.biopha.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A, are widely used to treat hypercholesterolemia. In addition, statins have been suggested to reduce the risk of cardiovascular events owing to their pleiotropic effects on the vascular system, including vasodilation, anti-inflammation, anti-coagulation, anti-oxidation, and inhibition of vascular smooth muscle cell proliferation. The major beneficial effect of statins in maintaining vascular homeostasis is the induction of nitric oxide (NO) bioavailability by activating endothelial NO synthase (eNOS) in endothelial cells. The mechanisms underlying the increased NO bioavailability and eNOS activation by statins have been well-established in various fields, including transcriptional and post-transcriptional regulation, kinase-dependent phosphorylation and protein-protein interactions. However, the mechanism by which statins affect the metabolism of L-arginine, a precursor of NO biosynthesis, has rarely been discussed. Autophagy, which is crucial for energy homeostasis, regulates endothelial functions, including NO production and angiogenesis, and is a potential therapeutic target for cardiovascular diseases. In this review, in addition to summarizing the molecular mechanisms underlying increased NO bioavailability and eNOS activation by statins, we also discuss the effects of statins on the metabolism of L-arginine.
Collapse
Affiliation(s)
- Wen-Hua Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Man-Chen Hsu
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ru-Wen Chang
- Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chih-Hsien Wang
- Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Miao L, Zhou C, Zhang H, Cheong MS, Tan Y, Wang Y, Zhang X, Yu H, Cheang WS. Portulaca Oleracea L. (Purslane) Extract Protects Endothelial Function by Reducing Endoplasmic Reticulum Stress and Oxidative Stress through AMPK Activation in Diabetic Obese Mice. Antioxidants (Basel) 2023; 12:2132. [PMID: 38136251 PMCID: PMC10741183 DOI: 10.3390/antiox12122132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Portulaca oleracea L. (purslane) is a food and a traditional drug worldwide. It exhibits anti-inflammatory, anti-oxidative, anti-tumor, and anti-diabetic bioactivities; but its activity on diabetic-associated endothelial dysfunction is unknown. This study aimed to investigate the effect of purslane on endothelial function and the underlying mechanisms. Male C57BL/6 mice had 14-week ad libitum access to a high-fat rodent diet containing 60% kcal% fat to induce obesity and diabetes whereas purslane extract (200 mg/kg/day) was administered during the last 4 weeks via intragastric gavage. Primary rat aortic endothelial cells and isolated mouse aortas were cultured with a risk factor, high glucose or tunicamycin, together with purslane extract. By ESI-QTOF-MS/MS, flavonoids and their glycoside products were identified in the purslane extract. Exposure to high glucose or tunicamycin impaired acetylcholine-induced endothelium-dependent relaxations in aortas and induced endoplasmic reticulum (ER) stress and oxidative stress with the downregulation of 5' AMP-activated protein kinase (AMPK)/ endothelial nitric oxide synthase (eNOS) signaling. Co-incubation with purslane significantly ameliorated these impairments. The effects of purslane were abolished by Compound C (AMPK inhibitor). Four-week purslane treatment ameliorated aortic relaxations, ER stress, and oxidative stress in diabetic obese mice. This study supported that purslane protected endothelial function, and inhibited ER stress and oxidative stress in vasculature through AMPK/eNOS activation, revealing its therapeutic potential against vascular complications in diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wai San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
6
|
Chalkias A. Shear Stress and Endothelial Mechanotransduction in Trauma Patients with Hemorrhagic Shock: Hidden Coagulopathy Pathways and Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:17522. [PMID: 38139351 PMCID: PMC10743945 DOI: 10.3390/ijms242417522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Massive trauma remains a leading cause of death and a global public health burden. Post-traumatic coagulopathy may be present even before the onset of resuscitation, and correlates with severity of trauma. Several mechanisms have been proposed to explain the development of abnormal coagulation processes, but the heterogeneity in injuries and patient profiles makes it difficult to define a dominant mechanism. Regardless of the pattern of death, a significant role in the pathophysiology and pathogenesis of coagulopathy may be attributed to the exposure of endothelial cells to abnormal physical forces and mechanical stimuli in their local environment. In these conditions, the cellular responses are translated into biochemical signals that induce/aggravate oxidative stress, inflammation, and coagulopathy. Microvascular shear stress-induced alterations could be treated or prevented by the development and use of innovative pharmacologic strategies that effectively target shear-mediated endothelial dysfunction, including shear-responsive drug delivery systems and novel antioxidants, and by targeting the venous side of the circulation to exploit the beneficial antithrombogenic profile of venous endothelial cells.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA;
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Dawson LW, Cronin NM, DeMali KA. Mechanotransduction: Forcing a change in metabolism. Curr Opin Cell Biol 2023; 84:102219. [PMID: 37651955 PMCID: PMC10523412 DOI: 10.1016/j.ceb.2023.102219] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Epithelial and endothelial cells experience numerous mechanical cues throughout their lifetimes. Cells resist these forces by fortifying their cytoskeletal networks and adhesions. This reinforcement is energetically costly. Here we describe how these energetic demands are met. We focus on the response of epithelial and endothelial cells to mechanical cues, describe the energetic needs of epithelia and endothelia, and identify the mechanisms these cells employ to increase glycolysis, oxidative phosphorylation, and fatty acid metabolism. We discuss the similarities and differences in the responses of the two cell types.
Collapse
Affiliation(s)
- Logan W Dawson
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas M Cronin
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
9
|
Remchak ME, Heiston EM, Ballantyne A, Dotson B, Malin SK. Aortic waveform responses to insulin in late versus early chronotype with metabolic syndrome. Physiol Rep 2022; 10:e15473. [PMID: 36301720 PMCID: PMC9612142 DOI: 10.14814/phy2.15473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Late chronotype (LC) correlates with reduced metabolic insulin sensitivity and cardiovascular disease. It is unclear if insulin action on aortic waveforms and inflammation is altered in LC versus early chronotype (EC). Adults with metabolic syndrome (n = 39, MetS) were classified as either EC (Morning-Eveningness Questionnaire [MEQ] = 63.5 ± 1.2) or LC (MEQ = 45.5 ± 1.3). A 120 min euglycemic clamp (40 mU/m<sup>2</sup> /min, 90 mg/dL) with indirect calorimetry was used to determine metabolic insulin sensitivity (glucose infusion rate [GIR]) and nonoxidative glucose disposal (NOGD). Aortic waveforms via applanation tonometry and inflammation by blood biochemistries were assessed at 0 and 120 min of the clamp. LC had higher fat-free mass and lower VO<sub>2</sub> max, GIR, and NOGD (between groups, all p ≤ 0.05) than EC. Despite no difference in 0 min waveforms, both groups had insulin-stimulated elevations in pulse pressure amplification with reduced AIx75 and augmentation pressure (AP; time effect, p ≤ 0.05). However, EC had decreased forward pressure (Pf; interaction effect, p = 0.007) with insulin versus rises in LC. Although LC had higher tumor necrosis factor-α (TNF-α; group effect, p ≤ 0.01) than EC, both LC and EC had insulin-stimulated increases in TNF-α and decreases in hs-CRP (time effect, both p ≤ 0.01). Higher MEQ scores related to greater insulin-stimulated reductions in AP (r = -0.42, p = 0.016) and Pf (r = -0.41, p = 0.02). VO<sub>2</sub> max correlated with insulin-mediated reductions in AIx75 (r = -0.56, p < 0.01) and AP (r = -0.49, p < 0.01). NOGD related to decreased AP (r = -0.44, p = 0.03) and Pf (r = -0.43, p = 0.04) during insulin infusion. LC was depicted by blunted forward pressure waveform responses to insulin and higher TNF-α in MetS. More work is needed to assess endothelial function across chronotypes.
Collapse
Affiliation(s)
| | - Emily M. Heiston
- University of VirginiaCharlottesvilleVirginiaUSA,Virginia Commonwealth UniversityRichmondVirginiaUSA
| | | | | | - Steven K. Malin
- Rutgers UniversityNew BrunswickNew JerseyUSA,University of VirginiaCharlottesvilleVirginiaUSA,Division of Endocrinology, Metabolism & NutritionRutgers UniversityNew BrunswickNew JerseyUSA,New Jersey Institute for Food, Nutrition and HealthRutgers UniversityNew BrunswickNew JerseyUSA,Institute of Translational Medicine and ScienceRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
10
|
Jiang M, Ding H, Huang Y, Wang L. Shear Stress and Metabolic Disorders-Two Sides of the Same Plaque. Antioxid Redox Signal 2022; 37:820-841. [PMID: 34148374 DOI: 10.1089/ars.2021.0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Shear stress and metabolic disorder are the two sides of the same atherosclerotic coin. Atherosclerotic lesions are prone to develop at branches and curvatures of arteries, which are exposed to oscillatory and low shear stress exerted by blood flow. Meanwhile, metabolic disorders are pivotal contributors to the formation and advancement of atherosclerotic plaques. Recent Advances: Accumulated evidence has provided insight into the impact and mechanisms of biomechanical forces and metabolic disorder on atherogenesis, in association with mechanotransduction, epigenetic regulation, and so on. Moreover, recent studies have shed light on the cross talk between the two drivers of atherosclerosis. Critical Issues: There are extensive cross talk and interactions between shear stress and metabolic disorder during the pathogenesis of atherosclerosis. The communications may amplify the proatherogenic effects through increasing oxidative stress and inflammation. Nonetheless, the precise mechanisms underlying such interactions remain to be fully elucidated as the cross talk network is considerably complex. Future Directions: A better understanding of the cross talk network may confer benefits for a more comprehensive clinical management of atherosclerosis. Critical mediators of the cross talk may serve as promising therapeutic targets for atherosclerotic vascular diseases, as they can inhibit effects from both sides of the plaque. Hence, further in-depth investigations with advanced omics approaches are required to develop novel and effective therapeutic strategies against atherosclerosis. Antioxid. Redox Signal. 37, 820-841.
Collapse
Affiliation(s)
- Minchun Jiang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huanyu Ding
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Wang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Richter RP, Ashtekar AR, Zheng L, Pretorius D, Kaushlendra T, Sanderson RD, Gaggar A, Richter JR. Glycocalyx heparan sulfate cleavage promotes endothelial cell angiopoietin-2 expression by impairing shear stress-related AMPK/FoxO1 signaling. JCI Insight 2022; 7:155010. [PMID: 35763350 PMCID: PMC9462499 DOI: 10.1172/jci.insight.155010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Angiopoietin-2 (Ang-2) is a key mediator of vascular disease during sepsis, and elevated plasma levels of Ang-2 are associated with organ injury scores and poor clinical outcomes. We have previously observed that biomarkers of endothelial glycocalyx (EG) damage correlate with plasma Ang-2 levels, suggesting a potential mechanistic linkage between EG injury and Ang-2 expression during states of systemic inflammation. However, the cell signaling mechanisms regulating Ang-2 expression following EG damage are unknown. In the current study, we determined the temporal associations between plasma heparan sulfate (HS) levels as a marker of EG erosion and plasma Ang-2 levels in children with sepsis and in mouse models of sepsis. Secondly, we evaluated the role of shear stress-mediated 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling in Ang-2 expression following enzymatic HS cleavage from the surface of human primary lung microvascular endothelial cells (HLMVEC). We found that plasma HS levels peak prior to plasma Ang-2 levels in children and mice with sepsis. Further, we discovered that impaired AMPK signaling contributes to increased Ang-2 expression following HS cleavage from flow conditioned HLMVECs, establishing a novel paradigm by which Ang-2 may be upregulated during sepsis.
Collapse
Affiliation(s)
- Robert P Richter
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Amit R Ashtekar
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Lei Zheng
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Danielle Pretorius
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States of America
| | - Tripathi Kaushlendra
- Department of Pathology, University of Alabama at Birmingham, Birmingham, United States of America
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, United States of America
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, United States of America
| | - Jillian R Richter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States of America
| |
Collapse
|
12
|
Choi YK, Kim YM. Beneficial and Detrimental Roles of Heme Oxygenase-1 in the Neurovascular System. Int J Mol Sci 2022; 23:ijms23137041. [PMID: 35806040 PMCID: PMC9266949 DOI: 10.3390/ijms23137041] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heme oxygenase (HO) has both beneficial and detrimental effects via its metabolites, including carbon monoxide (CO), biliverdin or bilirubin, and ferrous iron. HO-1 is an inducible form of HO that is upregulated by oxidative stress, nitric oxide, CO, and hypoxia, whereas HO-2 is a constitutive form that regulates vascular tone and homeostasis. In brains injured by trauma, ischemia-reperfusion, or Alzheimer’s disease (AD), the long-term expression of HO-1 can be detected, which can lead to cytotoxic ferroptosis via iron accumulation. In contrast, the transient induction of HO-1 in the peri-injured region may have regenerative potential (e.g., angiogenesis, neurogenesis, and mitochondrial biogenesis) and neurovascular protective effects through the CO-mediated signaling pathway, the antioxidant properties of bilirubin, and the iron-mediated ferritin synthesis. In this review, we discuss the dual roles of HO-1 and its metabolites in various neurovascular diseases, including age-related macular degeneration, ischemia-reperfusion injury, traumatic brain injury, Gilbert’s syndrome, and AD.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| |
Collapse
|
13
|
Cheng CK, Shang W, Liu J, Cheang WS, Wang Y, Xiang L, Lau CW, Luo JY, Ng CF, Huang Y, Wang L. Activation of AMPK/miR-181b Axis Alleviates Endothelial Dysfunction and Vascular Inflammation in Diabetic Mice. Antioxidants (Basel) 2022; 11:1137. [PMID: 35740034 PMCID: PMC9220246 DOI: 10.3390/antiox11061137] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Hyperglycemia in diabetes mellitus impairs endothelial function and disrupts microRNA (miRNA) profiles in vasculature, increasing the risk of diabetes-associated complications, including coronary artery disease, diabetic retinopathy, and diabetic nephropathy. miR-181b was previously reported to be an anti-inflammatory mediator in vasculature against atherosclerosis. The current study aimed to investigate whether miR-181b ameliorates diabetes-associated endothelial dysfunction, and to identify potential molecular mechanisms and upstream inducer of miR-181b. We found that miR-181b level was decreased in renal arteries of diabetic patients and in advanced glycation end products (AGEs)-treated renal arteries of non-diabetic patients. Transfection of miR-181b mimics improved endothelium-dependent vasodilation in aortas of high fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice, accompanied by suppression of superoxide overproduction and vascular inflammation markers. AMPK activator-induced AMPK activation upregulated miR-181b level in human umbilical vein endothelial cells (HUVECs). Chronic exercise, potentially through increased blood flow, activated AMPK/miR-181b axis in aortas of diabetic mice. Exposure to laminar shear stress upregulated miR-181b expression in HUVECs. Overall, our findings highlight a critical role of AMPK/miR-181b axis and extend the benefits of chronic exercise in counteracting diabetes-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Chak-Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China;
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Wenbin Shang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100871, China;
| | - Wai-San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai 519000, China;
| | - Yu Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Li Xiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Chi-Wai Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Jiang-Yun Luo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Chi-Fai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China;
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China;
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| |
Collapse
|
14
|
Flores K, Siques P, Brito J, Arribas SM. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms23116205. [PMID: 35682884 PMCID: PMC9181235 DOI: 10.3390/ijms23116205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic targets for cardiovascular pathophysiology has extended in many directions. However, studies focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK activation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH development. This review describes the main findings related to AMPK participation in HPH and its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the less-studied HAPH context.
Collapse
Affiliation(s)
- Karen Flores
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
- Correspondence: ; Tel.: +56-572526392
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Silvia M. Arribas
- Department of Physiology, University Autonoma of Madrid, 28049 Madrid, Spain;
| |
Collapse
|
15
|
Richter RP, Payne GA, Ambalavanan N, Gaggar A, Richter JR. The endothelial glycocalyx in critical illness: A pediatric perspective. Matrix Biol Plus 2022; 14:100106. [PMID: 35392182 PMCID: PMC8981764 DOI: 10.1016/j.mbplus.2022.100106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium is the interface between circulating blood and end organs and thus has a critical role in preserving organ function. The endothelium is lined by a glycan-rich glycocalyx that uniquely contributes to endothelial function through its regulation of leukocyte and platelet interactions with the vessel wall, vascular permeability, coagulation, and vasoreactivity. Degradation of the endothelial glycocalyx can thus promote vascular dysfunction, inflammation propagation, and organ injury. The endothelial glycocalyx and its role in vascular pathophysiology has gained increasing attention over the last decade. While studies characterizing vascular glycocalyx injury and its downstream consequences in a host of adult human diseases and in animal models has burgeoned, studies evaluating glycocalyx damage in pediatric diseases are relatively few. As children have unique physiology that differs from adults, significant knowledge gaps remain in our understanding of the causes and effects of endothelial glycocalyx disintegrity in pediatric critical illness. In this narrative literature overview, we offer a unique perspective on the role of the endothelial glycocalyx in pediatric critical illness, drawing from adult and preclinical data in addition to pediatric clinical experience to elucidate how marked derangement of the endothelial surface layer may contribute to aberrant vascular biology in children. By calling attention to this nascent field, we hope to increase research efforts to address important knowledge gaps in pediatric vascular biology that may inform the development of novel therapeutic strategies.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- CD, cell differentiation marker
- COVID-19, coronavirus disease 2019
- CPB, cardiopulmonary bypass
- CT, component therapy
- Children
- Critical illness
- DENV NS1, dengue virus nonstructural protein 1
- DM, diabetes mellitus
- ECLS, extracorporeal life support
- ECMO, extracorporeal membrane oxygenation
- EG, endothelial glycocalyx
- Endothelial glycocalyx
- FFP, fresh frozen plasma
- GAG, glycosaminoglycan
- GPC, glypican
- HPSE, heparanase
- HSV, herpes simplex virus
- IV, intravenous
- MIS-C, multisystem inflammatory syndrome in children
- MMP, matrix metalloproteinase
- Pragmatic, Randomized Optimal Platelet and Plasma Ratios
- RHAMM, receptor for hyaluronan-mediated motility
- S protein, spike protein
- SAFE, Saline versus Albumin Fluid Evaluation
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC, syndecan
- SDF, sidestream darkfield
- SIRT1, sirtuin 1
- TBI, traumatic brain injury
- TBSA, total body surface area
- TMPRSS2, transmembrane protease serine 2
- Th2, type 2 helper T cell
- VSMC, vascular smooth muscle cell
- Vascular biology
- WB+CT, whole blood and component therapy
- eNOS, endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Robert P. Richter
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A. Payne
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Translational Research in Normal and Disordered Development Program, University of Alabama, Birmingham, AL, USA
| | - Amit Gaggar
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jillian R. Richter
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
The Effects of Acidosis on eNOS in the Systemic Vasculature: A Focus on Early Postnatal Ontogenesis. Int J Mol Sci 2022; 23:ijms23115987. [PMID: 35682667 PMCID: PMC9180972 DOI: 10.3390/ijms23115987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
The activity of many vasomotor signaling pathways strongly depends on extracellular/intracellular pH. Nitric oxide (NO) is one of the most important vasodilators produced by the endothelium. In this review, we present evidence that in most vascular beds of mature mammalian organisms metabolic or respiratory acidosis increases functional endothelial NO-synthase (eNOS) activity, despite the observation that direct effects of low pH on eNOS enzymatic activity are inhibitory. This can be explained by the fact that acidosis increases the activity of signaling pathways that positively regulate eNOS activity. The role of NO in the regulation of vascular tone is greater in early postnatal ontogenesis compared to adulthood. Importantly, in early postnatal ontogenesis acidosis also augments functional eNOS activity and its contribution to the regulation of arterial contractility. Therefore, the effect of acidosis on total peripheral resistance in neonates may be stronger than in adults and can be one of the reasons for an undesirable decrease in blood pressure during neonatal asphyxia. The latter, however, should be proven in future studies.
Collapse
|
17
|
DiNicolantonio JJ, McCarty MF, Assanga SI, Lujan LL, O'Keefe JH. Ferulic acid and berberine, via Sirt1 and AMPK, may act as cell cleansing promoters of healthy longevity. Open Heart 2022; 9:openhrt-2021-001801. [PMID: 35301252 PMCID: PMC8932268 DOI: 10.1136/openhrt-2021-001801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Ferulic acid, a bacterial metabolite of anthocyanins, seems likely to be a primary mediator of the health benefits associated with anthocyanin-rich diets, and has long been employed in Chinese cardiovascular medicine. In rodent studies, it has exerted wide-ranging antioxidant and anti-inflammatory effects, the molecular basis of which remains rather obscure. However, recent studies indicate that physiologically relevant concentrations of ferulic acid can boost expression of Sirt1 at mRNA and protein levels in a range of tissues. Sirt1, a class III deacetylase, functions to detect a paucity of oxidisable substrate, and in response works in various ways to promote cellular survival and healthful longevity. Sirt1 promotes ‘cell cleansing’ and cell survival by boosting autophagy, mitophagy, mitochondrial biogenesis, phase 2 induction of antioxidant enzymes via Nrf2, and DNA repair—while inhibiting NF-kB-driven inflammation, apoptosis, and cellular senescence, and boosting endothelial expression of the protective transcription factor kruppel-like factor 2. A deficit of the latter appears to mediate the endothelial toxicity of the SARS-CoV-2 spike protein. Ferulic acid also enhances the activation of AMP-activated kinase (AMPK) by increasing expression and activity of its activating kinase LKB1—whereas AMPK in turn amplifies Sirt1 activity by promoting induction of nicotinamide phosphoribosyltranferase, rate-limiting for generation of Sirt1’s obligate substrate NAD+. Curiously, AMPK acts by independent mechanisms to potentiate many of the effects mediated by Sirt1. Hence, it is proposed that ferulic acid may exert complementary or synergistic health-promoting effects when used in conjunction with clinically useful AMPK activators, such as the nutraceutical berberine. Additional nutraceuticals which might have potential for amplifying certain protective effects of ferulic acid/berberine are also discussed.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | - Simon Iloki Assanga
- Department of Research and Postgraduate in Food Science, University of Sonora, Hermosillo, Mexico
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, University of Sonora, Hermosillo, Mexico
| | - James H O'Keefe
- Charles and Barbara Duboc Cardio Health & Wellness Center, St Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
18
|
Abstract
Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.
Collapse
|
19
|
Kiyooka T, Ohanyan V, Yin L, Pung YF, Chen YR, Chen CL, Kang PT, Hardwick JP, Yun J, Janota D, Peng J, Kolz C, Guarini G, Wilson G, Shokolenko I, Stevens DA, Chilian WM. Mitochondrial DNA integrity and function are critical for endothelium-dependent vasodilation in rats with metabolic syndrome. Basic Res Cardiol 2022; 117:3. [PMID: 35039940 PMCID: PMC9030679 DOI: 10.1007/s00395-021-00908-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/31/2023]
Abstract
Endothelial dysfunction in diabetes is generally attributed to oxidative stress, but this view is challenged by observations showing antioxidants do not eliminate diabetic vasculopathy. As an alternative to oxidative stress-induced dysfunction, we interrogated if impaired mitochondrial function in endothelial cells is central to endothelial dysfunction in the metabolic syndrome. We observed reduced coronary arteriolar vasodilation to the endothelium-dependent dilator, acetylcholine (Ach), in Zucker Obese Fatty rats (ZOF, 34 ± 15% [mean ± standard deviation] 10-3 M) compared to Zucker Lean rats (ZLN, 98 ± 11%). This reduction in dilation occurred concomitantly with mitochondrial DNA (mtDNA) strand lesions and reduced mitochondrial complex activities in the endothelium of ZOF versus ZLN. To demonstrate endothelial dysfunction is linked to impaired mitochondrial function, administration of a cell-permeable, mitochondria-directed endonuclease (mt-tat-EndoIII), to repair oxidatively modified DNA in ZOF, restored mitochondrial function and vasodilation to Ach (94 ± 13%). Conversely, administration of a cell-permeable, mitochondria-directed exonuclease (mt-tat-ExoIII) produced mtDNA strand breaks in ZLN, reduced mitochondrial complex activities and vasodilation to Ach in ZLN (42 ± 16%). To demonstrate that mitochondrial function is central to endothelium-dependent vasodilation, we introduced (via electroporation) liver mitochondria (from ZLN) into the endothelium of a mesenteric vessel from ZOF and restored endothelium-dependent dilation to vasoactive intestinal peptide (VIP at 10-5 M, 4 ± 3% vasodilation before mitochondrial transfer and 48 ± 36% after transfer). Finally, to demonstrate mitochondrial function is key to endothelium-dependent dilation, we administered oligomycin (mitochondrial ATP synthase inhibitor) and observed a reduction in endothelium-dependent dilation. We conclude that mitochondrial function is critical for endothelium-dependent vasodilation.
Collapse
Affiliation(s)
- Takahiko Kiyooka
- Division of Cardiology, Tokai University Oiso Hospital, Oiso, Kanagawa, Japan
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Yuh Fen Pung
- Division of Biomedical Sciences, University of Nottingham, Malaysia Campus, Selangor, Malaysia
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Chwen-Lih Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Patrick T Kang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - June Yun
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Danielle Janota
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Joanna Peng
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA
| | - Giacinta Guarini
- Cardiovascular Unit, Spedali Riuniti Santa Maria Maddalena, Volterra, Italy
| | - Glenn Wilson
- Department of Biomedical Science, University of South Alabama, Mobile, USA
| | - Inna Shokolenko
- Department of Biomedical Science, University of South Alabama, Mobile, USA
| | - Donte A Stevens
- Division of Biological Sciences, University of California-San Diego, San Diego, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44274, USA.
| |
Collapse
|
20
|
Samsonov MV, Podkuychenko NV, Khapchaev AY, Efremov EE, Yanushevskaya EV, Vlasik TN, Lankin VZ, Stafeev IS, Skulachev MV, Shestakova MV, Vorotnikov AV, Shirinsky VP. AICAR Protects Vascular Endothelial Cells from Oxidative Injury Induced by the Long-Term Palmitate Excess. Int J Mol Sci 2021; 23:ijms23010211. [PMID: 35008640 PMCID: PMC8745318 DOI: 10.3390/ijms23010211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Hyperlipidemia manifested by high blood levels of free fatty acids (FFA) and lipoprotein triglycerides is critical for the progression of type 2 diabetes (T2D) and its cardiovascular complications via vascular endothelial dysfunction. However, attempts to assess high FFA effects in endothelial culture often result in early cell apoptosis that poorly recapitulates a much slower pace of vascular deterioration in vivo and does not provide for the longer-term studies of endothelial lipotoxicity in vitro. Here, we report that palmitate (PA), a typical FFA, does not impair, by itself, endothelial barrier and insulin signaling in human umbilical vein endothelial cells (HUVEC), but increases NO release, reactive oxygen species (ROS) generation, and protein labeling by malondialdehyde (MDA) hallmarking oxidative stress and increased lipid peroxidation. This PA-induced stress eventually resulted in the loss of cell viability coincident with loss of insulin signaling. Supplementation with 5-aminoimidazole-4-carboxamide-riboside (AICAR) increased endothelial AMP-activated protein kinase (AMPK) activity, supported insulin signaling, and prevented the PA-induced increases in NO, ROS, and MDA, thus allowing to maintain HUVEC viability and barrier, and providing the means to study the long-term effects of high FFA levels in endothelial cultures. An upgraded cell-based model reproduces FFA-induced insulin resistance by demonstrating decreased NO production by vascular endothelium.
Collapse
Affiliation(s)
- Mikhail V. Samsonov
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Nikita V. Podkuychenko
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Asker Y. Khapchaev
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Eugene E. Efremov
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Elena V. Yanushevskaya
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Tatiana N. Vlasik
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Vadim Z. Lankin
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Iurii S. Stafeev
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
| | - Maxim V. Skulachev
- Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, 119234 Moscow, Russia;
| | | | - Alexander V. Vorotnikov
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
- Correspondence: (A.V.V.); (V.P.S.)
| | - Vladimir P. Shirinsky
- National Medical Research Center for Cardiology, 121552 Moscow, Russia; (M.V.S.); (N.V.P.); (A.Y.K.); (E.E.E.); (E.V.Y.); (T.N.V.); (V.Z.L.); (I.S.S.)
- Correspondence: (A.V.V.); (V.P.S.)
| |
Collapse
|
21
|
Sen S, Hallee L, Lam CK. The Potential of Gamma Secretase as a Therapeutic Target for Cardiac Diseases. J Pers Med 2021; 11:jpm11121294. [PMID: 34945766 PMCID: PMC8703931 DOI: 10.3390/jpm11121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Heart diseases are some of the most common and pressing threats to human health worldwide. The American Heart Association and the National Institute of Health jointly work to annually update data on cardiac diseases. In 2018, 126.9 million Americans were reported as having some form of cardiac disorder, with an estimated direct and indirect total cost of USD 363.4 billion. This necessitates developing therapeutic interventions for heart diseases to improve human life expectancy and economic relief. In this review, we look into gamma-secretase as a potential therapeutic target for cardiac diseases. Gamma-secretase, an aspartyl protease enzyme, is responsible for the cleavage and activation of a number of substrates that are relevant to normal cardiac development and function as found in mutation studies. Some of these substrates are involved in downstream signaling processes and crosstalk with pathways relevant to heart diseases. Most of the substrates and signaling events we explored were found to be potentially beneficial to maintain cardiac function in diseased conditions. This review presents an updated overview of the current knowledge on gamma-secretase processing of cardiac-relevant substrates and seeks to understand if the modulation of gamma-secretase activity would be beneficial to combat cardiac diseases.
Collapse
Affiliation(s)
- Sujoita Sen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Logan Hallee
- Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Chi Keung Lam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Correspondence: ; Tel.: +1-302-831-3165
| |
Collapse
|
22
|
Jin YJ, Chennupati R, Li R, Liang G, Wang S, Iring A, Graumann J, Wettschureck N, Offermanns S. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J Clin Invest 2021; 131:e145734. [PMID: 34499618 DOI: 10.1172/jci145734] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 09/01/2021] [Indexed: 01/31/2023] Open
Abstract
Formation of NO by endothelial NOS (eNOS) is a central process in the homeostatic regulation of vascular functions including blood pressure regulation, and fluid shear stress exerted by the flowing blood is a main stimulus of eNOS activity. Previous work has identified several mechanosensing and -transducing processes in endothelial cells, which mediate this process and induce the stimulation of eNOS activity through phosphorylation of the enzyme via various kinases including AKT. How the initial mechanosensing and signaling processes are linked to eNOS phosphorylation is unclear. In human endothelial cells, we demonstrated that protein kinase N2 (PKN2), which is activated by flow through the mechanosensitive cation channel Piezo1 and Gq/G11-mediated signaling, as well as by Ca2+ and phosphoinositide-dependent protein kinase 1 (PDK1), plays a pivotal role in this process. Active PKN2 promoted the phosphorylation of human eNOS at serine 1177 and at a newly identified site, serine 1179. These phosphorylation events additively led to increased eNOS activity. PKN2-mediated eNOS phosphorylation at serine 1177 involved the phosphorylation of AKT synergistically with mTORC2-mediated AKT phosphorylation, whereas active PKN2 directly phosphorylated human eNOS at serine 1179. Mice with induced endothelium-specific deficiency of PKN2 showed strongly reduced flow-induced vasodilation and developed arterial hypertension accompanied by reduced eNOS activation. These results uncover a central mechanism that couples upstream mechanosignaling processes in endothelial cells to the regulation of eNOS-mediated NO formation, vascular tone, and blood pressure.
Collapse
Affiliation(s)
- Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ramesh Chennupati
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an, China
| | - András Iring
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Laboratory of Molecular Medicine, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,Cardiopulmonary Institute (CPI), Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Frankfurt and Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,Cardiopulmonary Institute (CPI), Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Frankfurt and Bad Nauheim, Germany
| |
Collapse
|
23
|
Mutchler SM, Hasan M, Kohan DE, Kleyman TR, Tan RJ. Deletion of the Gamma Subunit of ENaC in Endothelial Cells Does Not Protect against Renal Ischemia Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222010914. [PMID: 34681576 PMCID: PMC8535410 DOI: 10.3390/ijms222010914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury due to renal ischemia-reperfusion injury (IRI) may lead to chronic or end stage kidney disease. A greater understanding of the cellular mechanisms underlying IRI are required to develop therapeutic options aimed at limiting or reversing damage from IRI. Prior work has shown that deletion of the α subunit of the epithelial Na+ channel (ENaC) in endothelial cells protects from IRI by increasing the availability of nitric oxide. While canonical ENaCs consist of an α, β, and γ subunit, there is evidence of non-canonical ENaC expression in endothelial cells involving the α subunit. We therefore tested whether the deletion of the γ subunit of ENaC also protects mice from IRI to differentiate between these channel configurations. Mice with endothelial-specific deletion of the γ subunit and control littermates were subjected to unilateral renal artery occlusion followed by 48 h of reperfusion. No significant difference was noted in injury between the two groups as assessed by serum creatinine and blood urea nitrogen, levels of specific kidney injury markers, and histological examination. While deletion of the γ subunit did not alter infiltration of immune cells or cytokine message, it was associated with an increase in levels of total and phosphorylated endothelial nitric oxide synthase (eNOS) in the injured kidneys. Our studies demonstrate that even though deletion of the γ subunit of ENaC may allow for greater activation of eNOS, this is not sufficient to prevent IRI, suggesting the protective effects of α subunit deletion may be due, in part, to other mechanisms.
Collapse
Affiliation(s)
- Stephanie M. Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.M.); (R.J.T.)
| | - Mahpara Hasan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Donald E. Kohan
- Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence:
| | - Roderick J. Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.M.); (R.J.T.)
| |
Collapse
|
24
|
Chen ZB, Liu X, Chen AT. "Enhancing" mechanosensing: Enhancers and enhancer-derived long non-coding RNAs in endothelial response to flow. CURRENT TOPICS IN MEMBRANES 2021; 87:153-169. [PMID: 34696884 DOI: 10.1016/bs.ctm.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Endothelial cells (ECs), uniquely localized and strategically forming the inner lining of vascular wall, constitute the largest cell surface by area in the human body. The dynamic sensing and response of ECs to mechanical cues, especially shear stress, is crucial for maintenance of vascular homeostasis. It is well recognized that different flow patterns associated with atheroprotective vs atheroprone regions in the arterial tree, result in distinct EC functional phenotypes with differential transcriptome profiles. Mounting evidence has demonstrated an integrative and essential regulatory role of non-coding genome in EC biology. In particular, recent studies have begun to reveal the importance of enhancers and enhancer-derived transcripts in flow-regulated EC gene expression and function. In this minireview, we summarize studies in this area and discuss examples in support of the emerging importance of enhancers and enhancer(-derived) long non-coding RNAs (elncRNAs) in EC mechanosensing, with a focus on flow-responsive EC transcription. Finally, we will provide perspective and discuss standing questions to elucidate the role of these novel regulators in EC mechanobiology.
Collapse
Affiliation(s)
- Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Duarte, CA, United States; Irell and Manella Graduate School of Biological Sciences, Duarte, CA, United States.
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Duarte, CA, United States
| | - Aleysha T Chen
- Department of Bioengineering, University of California, Berkeley, CA, United States
| |
Collapse
|
25
|
Filice M, Imbrogno S, Gattuso A, Cerra MC. Hypoxic and Thermal Stress: Many Ways Leading to the NOS/NO System in the Fish Heart. Antioxidants (Basel) 2021; 10:1401. [PMID: 34573033 PMCID: PMC8471457 DOI: 10.3390/antiox10091401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Teleost fish are often regarded with interest for the remarkable ability of several species to tolerate even dramatic stresses, either internal or external, as in the case of fluctuations in O2 availability and temperature regimes. These events are naturally experienced by many fish species under different time scales, but they are now exacerbated by growing environmental changes. This further challenges the intrinsic ability of animals to cope with stress. The heart is crucial for the stress response, since a proper modulation of the cardiac function allows blood perfusion to the whole organism, particularly to respiratory organs and the brain. In cardiac cells, key signalling pathways are activated for maintaining molecular equilibrium, thus improving stress tolerance. In fish, the nitric oxide synthase (NOS)/nitric oxide (NO) system is fundamental for modulating the basal cardiac performance and is involved in the control of many adaptive responses to stress, including those related to variations in O2 and thermal regimes. In this review, we aim to illustrate, by integrating the classic and novel literature, the current knowledge on the NOS/NO system as a crucial component of the cardiac molecular mechanisms that sustain stress tolerance and adaptation, thus providing some species, such as tolerant cyprinids, with a high resistance to stress.
Collapse
Affiliation(s)
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | - Alfonsina Gattuso
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.F.); (M.C.C.)
| | | |
Collapse
|
26
|
Moon S, Chang MS, Koh SH, Choi YK. Repair Mechanisms of the Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int J Mol Sci 2021; 22:ijms22168543. [PMID: 34445248 PMCID: PMC8395233 DOI: 10.3390/ijms22168543] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.
Collapse
Affiliation(s)
- Sunhong Moon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Mi-Sook Chang
- Department of Oral Anatomy, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-0558; Fax: +82-2-444-3490
| |
Collapse
|
27
|
Clayton ZS, Hutton DA, Mahoney SA, Seals DR. Anthracycline chemotherapy-mediated vascular dysfunction as a model of accelerated vascular aging. ACTA ACUST UNITED AC 2021; 2:45-69. [PMID: 34212156 DOI: 10.1002/aac2.12033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and age is by far the greatest risk factor for developing CVD. Vascular dysfunction, including endothelial dysfunction and arterial stiffening, is responsible for much of the increase in CVD risk with aging. A key mechanism involved in vascular dysfunction with aging is oxidative stress, which reduces the bioavailability of nitric oxide (NO) and induces adverse changes to the extracellular matrix of the arterial wall (e.g., elastin fragmentation/degradation, collagen deposition) and an increase in advanced glycation end products, which form crosslinks in arterial wall structural proteins. Although vascular dysfunction and CVD are most prevalent in older adults, several conditions can "accelerate" these events at any age. One such factor is chemotherapy with anthracyclines, such as doxorubicin (DOXO), to combat common forms of cancer. Children, adolescents and young adults treated with these chemotherapeutic agents demonstrate impaired vascular function and an increased risk of future CVD development compared with healthy age-matched controls. Anthracycline treatment also worsens vascular dysfunction in mid-life (50-64 years of age) and older (65 and older) adults such that endothelial dysfunction and arterial stiffness are greater compared to age-matched controls. Collectively, these observations indicate that use of anthracycline chemotherapeutic agents induce a vascular aging-like phenotype and that the latter contributes to premature CVD in cancer survivors exposed to these agents. Here, we review the existing literature supporting these ideas, discuss potential mechanisms as well as interventions that may protect arteries from these adverse effects, identify research gaps and make recommendations for future research.
Collapse
|
28
|
Huang G, Deng X, Xu Y, Wang P, Li T, Hu P. Endothelial nitric oxide synthase polymorphism and venous thromboembolism: A meta-analysis of 9 studies involving 3993 subjects. Phlebology 2021; 36:797-808. [PMID: 34102908 DOI: 10.1177/02683555211016626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Endothelial nitric oxide synthase (eNOS) polymorphism may influence the risk of venous thromboembolism (VTE). However, data from published studies with low statistical power are inconclusive. The present meta-analysis aimed to assess the relationship between eNOS polymorphism and the risk of VTE. METHOD Case-control studies evaluating the association between the eNOS polymorphism and VTE were searched in PubMed, Embase, Web of Science, Google Scholar, Wanfang, Chinese National Knowledge Infrastructure (CNKI), the Chongqing VIP Chinese Science and Technology Periodical Database (VIP), and Chinese Biomedical Literature Database (CBM). RESULTS A total of 1588 cases and 2405 controls from 9 studies were included in the analysis. The results showed that eNOS G894T polymorphism was related to VTE susceptibility and the difference was statistically significant [T vs G: OR = 1.41, 95% CI (1.13, 1.75), P = 0.002; TT + GG vs TG: OR = 0.71, 95% CI (0.60, 0.84), P = 0.000; TT + TG vs GG: OR = 1.45, 95% CI (1.23, 1.70), P = 0.000]. Additionally, eNOS Intron 4 VNTR polymorphism was related to VTE susceptibility and the difference was statistically significant [4b4b vs 4a4a + 4a4b: OR = 2.77, 95% CI (1.01, 7.61), P = 0.048]. CONCLUSION ENOS G894T and eNOS Intron 4 VNTR polymorphisms were associated with VTE susceptibility, especially in Asian populations. However, multicenter studies with larger samples should be conducted to further clarify this association and verify our findings.
Collapse
Affiliation(s)
- Guangbin Huang
- Department of Trauma Surgery, Emergency Medical Cental of Chongqing, The Affiliated Central Hospital of Chongqin University, Chongqing, China
| | - Xuejun Deng
- Department of Cardiology, Suining Central Hospital, Suining, China
| | - Yanan Xu
- Department of Trauma Surgery, Emergency Medical Cental of Chongqing, The Affiliated Central Hospital of Chongqin University, Chongqing, China
| | - Pan Wang
- Department of Trauma Surgery, Emergency Medical Cental of Chongqing, The Affiliated Central Hospital of Chongqin University, Chongqing, China
| | - Tao Li
- Department of Trauma Surgery, Emergency Medical Cental of Chongqing, The Affiliated Central Hospital of Chongqin University, Chongqing, China
| | - Ping Hu
- Department of Trauma Surgery, Emergency Medical Cental of Chongqing, The Affiliated Central Hospital of Chongqin University, Chongqing, China
| |
Collapse
|
29
|
Zhao Q, Song P, Zou MH. AMPK and Pulmonary Hypertension: Crossroads Between Vasoconstriction and Vascular Remodeling. Front Cell Dev Biol 2021; 9:691585. [PMID: 34169079 PMCID: PMC8217619 DOI: 10.3389/fcell.2021.691585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Pulmonary hypertension (PH) is a debilitating and life-threatening disease characterized by increased blood pressure within the pulmonary arteries. Adenosine monophosphate-activated protein kinase (AMPK) is a heterotrimeric serine-threonine kinase that contributes to the regulation of metabolic and redox signaling pathways. It has key roles in the regulation of cell survival and proliferation. The role of AMPK in PH is controversial because both inhibition and activation of AMPK are preventive against PH development. Some clinical studies found that metformin, the first-line antidiabetic drug and the canonical AMPK activator, has therapeutic efficacy during treatment of early-stage PH. Other study findings suggest the use of metformin is preferentially beneficial for treatment of PH associated with heart failure with preserved ejection fraction (PH-HFpEF). In this review, we discuss the "AMPK paradox" and highlight the differential effects of AMPK on pulmonary vasoconstriction and pulmonary vascular remodeling. We also review the effects of AMPK activators and inhibitors on rescue of preexisting PH in animals and include a discussion of gender differences in the response to metformin in PH.
Collapse
Affiliation(s)
| | | | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
30
|
Lu Y, Yuan T, Min X, Yuan Z, Cai Z. AMPK: Potential Therapeutic Target for Vascular Calcification. Front Cardiovasc Med 2021; 8:670222. [PMID: 34046440 PMCID: PMC8144331 DOI: 10.3389/fcvm.2021.670222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is an urgent worldwide health issue with no available medical treatment. It is an active cell-driven process by osteogenic differentiation of vascular cells with complex mechanisms. The AMP-activated protein kinase (AMPK) serves as the master sensor of cellular energy status. Accumulating evidence reveals the vital role of AMPK in VC progression. AMPK is involved in VC in various ways, including inhibiting runt-related transcription factor 2 signaling pathways, triggering autophagy, attenuating endoplasmic reticulum stress and dynamic-related protein 1-mediated mitochondrial fission, and activating endothelial nitric oxide synthase. AMPK activators, like metformin, are associated with reduced calcification deposits in certain groups of patients, indicating that AMPK is a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yi Lu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tan Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinjia Min
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Jiaxing Key Laboratory of Cardiac Rehabilitation, Jiaxing, China
| |
Collapse
|
31
|
Rodríguez C, Muñoz M, Contreras C, Prieto D. AMPK, metabolism, and vascular function. FEBS J 2021; 288:3746-3771. [PMID: 33825330 DOI: 10.1111/febs.15863] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress that plays a key role in maintaining energy homeostasis. This ubiquitous signaling pathway has been implicated in multiple functions including mitochondrial biogenesis, redox regulation, cell growth and proliferation, cell autophagy and inflammation. The protective role of AMPK in cardiovascular function and the involvement of dysfunctional AMPK in the pathogenesis of cardiovascular disease have been highlighted in recent years. In this review, we summarize and discuss the role of AMPK in the regulation of blood flow in response to metabolic demand and the basis of the AMPK physiological anticontractile, antioxidant, anti-inflammatory, and antiatherogenic actions in the vascular system. Investigations by others and us have demonstrated the key role of vascular AMPK in the regulation of endothelial function, redox homeostasis, and inflammation, in addition to its protective role in the hypoxia and ischemia/reperfusion injury. The pathophysiological implications of AMPK involvement in vascular function with regard to the vascular complications of metabolic disease and the therapeutic potential of AMPK activators are also discussed.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
32
|
Lee GH, Park JS, Jin SW, Pham TH, Thai TN, Kim JY, Kim CY, Choi JH, Han EH, Jeong HG. Betulinic Acid Induces eNOS Expression via the AMPK-Dependent KLF2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14523-14530. [PMID: 33232606 DOI: 10.1021/acs.jafc.0c06250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Betulinic acid (BA) is a natural pentacyclic triterpenoid with protective effects against inflammation, metabolic diseases, and cardiovascular diseases. We have previously shown that BA prevents endothelial dysfunction by increasing nitric oxide (NO) synthesis through activating endothelial nitric oxide synthase (eNOS) in human endothelial cells. However, the effect of BA on eNOS expression remains unclear. Thus, the aim of our study was to investigate the intracellular pathways associated with the effect of BA to regulate eNOS expression in human endothelial cells. BA significantly increased eNOS expression in a time- and concentration-dependent manner. Additionally, BA upregulated the expression of the transcription factor KLF2, which is known to regulate eNOS expression. KLF2 silencing in human endothelial cells attenuated the ability of BA to upregulate eNOS. BA also increased levels of intracellular Ca2+, activating CaMKKβ, CaMKIIα, and AMPK. Inhibition of the TRPC calcium channel abolished BA-mediated effects on intracellular Ca2+ levels. Moreover, BA increased the phosphorylation levels of ERK5, HDAC5, and MEF2C. Pretreatment of cells with compound C (AMPK inhibitor), LMK235 (HDAC5 inhibitor), and XMD8-92 (ERK5 inhibitor) attenuated the BA-induced eNOS expression. Collectively, these findings suggest that BA induces eNOS expression by activating the HDAC5/ERK5/KLF2 pathway in endothelial cells. The data presented here provide strong evidence supporting the use of BA to prevent endothelial dysfunction and treat vascular diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Song Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tuyet Ngan Thai
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chae Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
33
|
Wang WL, Ge TY, Chen X, Mao Y, Zhu YZ. Advances in the Protective Mechanism of NO, H 2S, and H 2 in Myocardial Ischemic Injury. Front Cardiovasc Med 2020; 7:588206. [PMID: 33195476 PMCID: PMC7661694 DOI: 10.3389/fcvm.2020.588206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Myocardial ischemic injury is among the top 10 leading causes of death from cardiovascular diseases worldwide. Myocardial ischemia is caused mainly by coronary artery occlusion or obstruction. It usually occurs when the heart is insufficiently perfused, oxygen supply to the myocardium is reduced, and energy metabolism in the myocardium is abnormal. Pathologically, myocardial ischemic injury generates a large number of inflammatory cells, thus inducing a state of oxidative stress. This sharp reduction in the number of normal cells as a result of apoptosis leads to organ and tissue damage, which can be life-threatening. Therefore, effective methods for the treatment of myocardial ischemic injury and clarification of the underlying mechanisms are urgently required. Gaseous signaling molecules, such as NO, H2S, H2, and combined gas donors, have gradually become a focus of research. Gaseous signaling molecules have shown anti-apoptotic, anti-oxidative and anti-inflammatory effects as potential therapeutic agents for myocardial ischemic injury in a large number of studies. In this review, we summarize and discuss the mechanism underlying the protective effect of gaseous signaling molecules on myocardial ischemic injury.
Collapse
Affiliation(s)
| | | | - Xu Chen
- Guilin Medical College, Guilin, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi-Zhun Zhu
- Guilin Medical College, Guilin, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
34
|
Park JH, Cho DH, Hwang YJ, Lee JY, Lee HJ, Jo I. Activation of ATM/Akt/CREB/eNOS Signaling Axis by Aphidicolin Increases NO Production and Vessel Relaxation in Endothelial Cells and Rat Aortas. Biomol Ther (Seoul) 2020; 28:549-560. [PMID: 32394671 PMCID: PMC7585642 DOI: 10.4062/biomolther.2020.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 11/28/2022] Open
Abstract
Although DNA damage responses (DDRs) are reported to be involved in nitric oxide (NO) production in response to genotoxic stresses, the precise mechanism of DDR-mediated NO production has not been fully understood. Using a genotoxic agent aphidicolin, we investigated how DDRs regulate NO production in bovine aortic endothelial cells. Prolonged (over 24 h) treatment with aphidicolin increased NO production and endothelial NO synthase (eNOS) protein expression, which was accompanied by increased eNOS dimer/monomer ratio, tetrahydrobiopterin levels, and eNOS mRNA expression. A promoter assay using 5'-serially deleted eNOS promoters revealed that Tax-responsive element site, located at -962 to -873 of the eNOS promoter, was responsible for aphidicolin-stimulated eNOS gene expression. Aphidicolin increased CREB activity and ectopic expression of dominantnegative inhibitor of CREB, A-CREB, repressed the stimulatory effects of aphidicolin on eNOS gene expression and its promoter activity. Co-treatment with LY294002 decreased the aphidicolin-stimulated increase in p-CREB-Ser133 level, eNOS expression, and NO production. Furthermore, ectopic expression of dominant-negative Akt construct attenuated aphidicolin-stimulated NO production. Aphidicolin increased p-ATM-Ser1981 and the knockdown of ATM using siRNA attenuated all stimulatory effects of aphidicolin on p-Akt-Ser473, p-CREB-Ser133, eNOS expression, and NO production. Additionally, these stimulatory effects of aphidicolin were similarly observed in human umbilical vein endothelial cells. Lastly, aphidicolin increased acetylcholine-induced vessel relaxation in rat aortas, which was accompanied by increased p-ATM-Ser1981, p-Akt-Ser473, p-CREB-Ser133, and eNOS expression. In conclusion, our results demonstrate that in response to aphidicolin, activation of ATM/Akt/CREB/eNOS signaling cascade mediates increase of NO production and vessel relaxation in endothelial cells and rat aortas.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Du-Hyong Cho
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Yun-Jin Hwang
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Jee Young Lee
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Hyeon-Ju Lee
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
35
|
Ushijima M, Kunimura K, Suzuki JI. S -1-Propenylcysteine, a sulfur compound in aged garlic extract, alleviates cold-induced reduction in peripheral blood flow in rat via activation of the AMPK/eNOS/NO pathway. Exp Ther Med 2020; 20:2815-2821. [PMID: 32765777 PMCID: PMC7401927 DOI: 10.3892/etm.2020.8969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Aged garlic extract (AGE) has been shown to improve peripheral circulatory disturbances in both clinical trials and experimental animal models. To investigate the effect of S-1-propenylcysteine (S1PC), a characteristic sulfur compound in AGE, on cold-induced reduction in tail blood flow of rat, Wistar rats were individually placed in a restraint cage and given the treatment with cold water (15˚C) after the oral administration of AGE or its constituents S1PC, S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC). After the cold-treatment the tail blood flow of rats was measured at the indicated times. The pretreatment with AGE (2 g/kg BW) and S1PC (6.5 mg/kg BW) significantly alleviated the reduction of rat tail blood flow induced by cold treatment. The effect of S1PC was dose-dependent and maximal at the dose of 6.5 mg/kg BW, whereas SAC and SAMC were ineffective. To gain insight into the mechanism of S1PC action, the concentration of nitrogen oxide metabolites (NOx) in the plasma and the levels of phosphorylated endothelial nitric oxide synthase (eNOS) and 5'-AMP-activated protein kinase (AMPK) in the aorta were measured. The pretreatment with S1PC significantly increased the plasma concentration of NOx as well as the level of phosphorylated form of AMPK and eNOS in the aorta after cold-treatment. The present findings suggest that S1PC is a major constituent responsible for the effect of AGE to alleviate the cold-induced reduction of peripheral blood flow in rat by acting on the AMPK/eNOS/NO pathway in the aorta.
Collapse
Affiliation(s)
- Mitsuyasu Ushijima
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Kayo Kunimura
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Jun-Ichiro Suzuki
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| |
Collapse
|
36
|
AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21144987. [PMID: 32679729 PMCID: PMC7404275 DOI: 10.3390/ijms21144987] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
Collapse
|
37
|
de Hoyos-Vega JM, Gonzalez-Suarez AM, Garcia-Cordero JL. A versatile microfluidic device for multiple ex vivo/in vitro tissue assays unrestrained from tissue topography. MICROSYSTEMS & NANOENGINEERING 2020; 6:40. [PMID: 34567653 PMCID: PMC8433291 DOI: 10.1038/s41378-020-0156-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 05/28/2023]
Abstract
Precision-cut tissue slices are an important in vitro system to study organ function because they preserve most of the native cellular microenvironments of organs, including complex intercellular connections. However, during sample manipulation or slicing, some of the natural surface topology and structure of these tissues is lost or damaged. Here, we introduce a microfluidic platform to perform multiple assays on the surface of a tissue section, unhindered by surface topography. The device consists of a valve on one side and eight open microchannels located on the opposite side, with the tissue section sandwiched between these two structures. When the valve is actuated, eight independent microfluidic channels are formed over a tissue section. This strategy prevents cross-contamination when performing assays and enables parallelization. Using irregular tissues such as an aorta, we conducted multiple in vitro and ex vivo assays on tissue sections, including short-term culturing, a drug toxicity assay, a fluorescence immunohistochemistry staining assay, and an immune cell assay, in which we observed the interaction of neutrophils with lipopolysaccharide (LPS)-stimulated endothelium. Our microfluidic platform can be employed in other disciplines, such as tissue physiology and pathophysiology, morphogenesis, drug toxicity and efficiency, metabolism studies, and diagnostics, enabling the conduction of several assays with a single biopsy sample.
Collapse
Affiliation(s)
- Jose M. de Hoyos-Vega
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Via del conocimiento 201, Parque PIIT, Apodaca, NL 66628 Mexico
| | - Alan M. Gonzalez-Suarez
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Via del conocimiento 201, Parque PIIT, Apodaca, NL 66628 Mexico
| | - Jose L. Garcia-Cordero
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Via del conocimiento 201, Parque PIIT, Apodaca, NL 66628 Mexico
| |
Collapse
|
38
|
Rodríguez C, Contreras C, Sáenz-Medina J, Muñoz M, Corbacho C, Carballido J, García-Sacristán A, Hernandez M, López M, Rivera L, Prieto D. Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biol 2020. [PMID: 32470915 DOI: 10.1016/j.redox.2020.101575.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress to stimulate ATP production pathways and restore homeostasis. AMPK is widely expressed in the kidney and involved in mitochondrial protection and biogenesis upon acute renal ischemia, AMPK activity being blunted in metabolic disease-associated kidney disease. Since little is known about AMPK in the regulation of renal blood flow, the present study aimed to assess the role of AMPK in renal vascular function. Functional responses to the selective AMPK activator A769662 were assessed in intrarenal small arteries isolated from the kidney of renal tumour patients and Wistar rats and mounted in microvascular myographs to perform simultaneous measurements of intracellular calcium [Ca2+]i and tension. Superoxide (O2.-) and hydrogen peroxide (H2O2) production were measured by chemiluminescence and fluorescence and protein expression by Western blot. Activation of AMPK with A769662 increased AMPKα phosphorylation at Thr-172 and induced potent relaxations compared to AICAR in isolated human and rat intrarenal arteries, through both endothelium-dependent mechanisms involving nitric oxide (NO) and intermediate-conductance calcium-activated potassium (IKCa) channels, as well as activation of ATP-sensitive (KATP) channels and sarcoplasmic reticulum Ca2+-ATPase (SERCA) in vascular smooth muscle (VSM). Furthermore, AMPK activator reduced NADPH oxidase 4 (Nox4) and Nox2-derived reactive oxygen species (ROS) production. These results demonstrate that A769662 has potent vasodilator and antioxidant effects in intrarenal arteries. The benefits of AMPK activation in rat kidney are reproduced in human arteries and therefore vascular AMPK activation might be a therapeutic target in the treatment of metabolic disease-associated kidney injury.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - César Corbacho
- Departamento de Anatomía Patológica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Joaquín Carballido
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | - Medardo Hernandez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, Universidad de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
39
|
Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biol 2020; 34:101575. [PMID: 32470915 PMCID: PMC7256643 DOI: 10.1016/j.redox.2020.101575] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress to stimulate ATP production pathways and restore homeostasis. AMPK is widely expressed in the kidney and involved in mitochondrial protection and biogenesis upon acute renal ischemia, AMPK activity being blunted in metabolic disease-associated kidney disease. Since little is known about AMPK in the regulation of renal blood flow, the present study aimed to assess the role of AMPK in renal vascular function. Functional responses to the selective AMPK activator A769662 were assessed in intrarenal small arteries isolated from the kidney of renal tumour patients and Wistar rats and mounted in microvascular myographs to perform simultaneous measurements of intracellular calcium [Ca2+]i and tension. Superoxide (O2.-) and hydrogen peroxide (H2O2) production were measured by chemiluminescence and fluorescence and protein expression by Western blot. Activation of AMPK with A769662 increased AMPKα phosphorylation at Thr-172 and induced potent relaxations compared to AICAR in isolated human and rat intrarenal arteries, through both endothelium-dependent mechanisms involving nitric oxide (NO) and intermediate-conductance calcium-activated potassium (IKCa) channels, as well as activation of ATP-sensitive (KATP) channels and sarcoplasmic reticulum Ca2+-ATPase (SERCA) in vascular smooth muscle (VSM). Furthermore, AMPK activator reduced NADPH oxidase 4 (Nox4) and Nox2-derived reactive oxygen species (ROS) production. These results demonstrate that A769662 has potent vasodilator and antioxidant effects in intrarenal arteries. The benefits of AMPK activation in rat kidney are reproduced in human arteries and therefore vascular AMPK activation might be a therapeutic target in the treatment of metabolic disease-associated kidney injury.
Collapse
|
40
|
Pham TH, Jin SW, Lee GH, Park JS, Kim JY, Thai TN, Han EH, Jeong HG. Sesamin Induces Endothelial Nitric Oxide Synthase Activation via Transient Receptor Potential Vanilloid Type 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3474-3484. [PMID: 32077699 DOI: 10.1021/acs.jafc.9b07909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sesamin, the most abundant lignan in sesame seed oil, has many biological activities. However, the underlying molecular mechanisms behind the regulatory effects of sesamin on endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) generation in endothelial cells (ECs) remain unclear. Sesamin induced the intracellular level of NO and eNOS phosphorylation in ECs in a concentration- and time-dependent manner. Additionally, sesamin induced levels of intracellular calcium, leading to the phosphorylation of calmodulin-dependent protein kinase II (CaMKII) at Thr286, calcium/calmodulin-dependent protein kinase kinase beta (CaMKKβ) at Ser511, protein kinase A (PKA) at Thr197, Akt at Ser473, and AMP-activated protein kinase (AMPK) at Thr172. In particular, blocking of the transient receptor potential vanilloid type 1 (TRPV1) channel by capsazepine (TRPV1 antagonist), as well as TRPV1 knockdown via TRPV1 silencing RNA, abrogated sesamin-induced PKA, Akt, AMPK, CaMKII, CaMKKβ, and eNOS phosphorylation and NO level in ECs. Furthermore, sesamin inhibited TNF-α-induced NF-κB translocation, intercellular adhesion molecule-1 expression, and monocyte adhesion. Sesamin triggered eNOS activity and NO production via activation of TRPV1-calcium signaling, which involved the phosphorylation of PKA, CaMKII, CaMKKβ, Akt, and AMPK. Sesamin may be useful for treating or preventing the endothelial dysfunction correlated with cardiovascular diseases.
Collapse
Affiliation(s)
- Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
- Molecular Microbiology Lab, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Song Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tuyet Ngan Thai
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
41
|
Yu GZ, Istvanic F, Chen X, Nouraie M, Shiva S, Straub AC, Pacella JJ. Ultrasound-Targeted Microbubble Cavitation with Sodium Nitrite Synergistically Enhances Nitric Oxide Production and Microvascular Perfusion. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:667-678. [PMID: 31810801 PMCID: PMC7010556 DOI: 10.1016/j.ultrasmedbio.2019.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Microvascular obstruction is a common repercussion of percutaneous coronary intervention for distal microembolization, ischemia-reperfusion injury and inflammation, which increases post-myocardial infarction heart failure and mortality. Ultrasound-targeted microbubble cavitation (UTMC) may resolve microvascular obstruction while activating endothelial nitric oxide synthase (eNOS) and increasing endothelium-derived nitric oxide (NO) bioavailability. Nitrite, a cardioprotective agent, offers an additional source of NO and potential synergy with UTMC. UTMC and nitrite co-therapy increased microvascular perfusion and NO concentration in a rat hindlimb model. Using N-nitro-L-arginine methyl ester for eNOS blockade, we found a three-way interaction effect between nitrite, UTMC and eNOS on microvascular perfusion and NO production. Modulating ultrasound peak negative acoustic pressure (0.33-1.5 MPa) significantly affected outcomes, while microbubble dosage (2 × 108 bubbles/mL, 1.5 mL/h to 1 × 109 bubbles/mL, 3 mL/h) did not. Nitrite co-therapy also protected against oxidative stress. Comparison of nitrite to sodium nitroprusside with UTMC revealed synergistic effects were specific to nitrite. Synergy between UTMC and nitrite holds therapeutic potential for cardiovascular disease.
Collapse
Affiliation(s)
- Gary Z Yu
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Filip Istvanic
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sruti Shiva
- Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C Straub
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
42
|
Hu R, Wang MQ, Ni SH, Wang M, Liu LY, You HY, Wu XH, Wang YJ, Lu L, Wei LB. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur J Pharmacol 2020; 867:172797. [DOI: 10.1016/j.ejphar.2019.172797] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 01/22/2023]
|
43
|
Akalu Y, Molla MD, Dessie G, Ayelign B. Physiological Effect of Ghrelin on Body Systems. Int J Endocrinol 2020; 2020:1385138. [PMID: 32565790 PMCID: PMC7267865 DOI: 10.1155/2020/1385138] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a relatively novel multifaceted hormone that has been found to exert a plethora of physiological effects. In this review, we found/confirmed that ghrelin has effect on all body systems. It induces appetite; promotes the use of carbohydrates as a source of fuel while sparing fat; inhibits lipid oxidation and promotes lipogenesis; stimulates the gastric acid secretion and motility; improves cardiac performance; decreases blood pressure; and protects the kidneys, heart, and brain. Ghrelin is important for learning, memory, cognition, reward, sleep, taste sensation, olfaction, and sniffing. It has sympatholytic, analgesic, antimicrobial, antifibrotic, and osteogenic effects. Moreover, ghrelin makes the skeletal muscle more excitable and stimulates its regeneration following injury; delays puberty; promotes fetal lung development; decreases thyroid hormone and testosterone; stimulates release of growth hormone, prolactin, glucagon, adrenocorticotropic hormone, cortisol, vasopressin, and oxytocin; inhibits insulin release; and promotes wound healing. Ghrelin protects the body by different mechanisms including inhibition of unwanted inflammation and induction of autophagy. Having a clear understanding of the ghrelin effect in each system has therapeutic implications. Future studies are necessary to elucidate the molecular mechanisms of ghrelin actions as well as its application as a GHSR agonist to treat most common diseases in each system without any paradoxical outcomes on the other systems.
Collapse
Affiliation(s)
- Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
44
|
Dehnavi S, Sadeghi M, Penson PE, Banach M, Jamialahmadi T, Sahebkar A. The Role of Protein SUMOylation in the Pathogenesis of Atherosclerosis. J Clin Med 2019; 8:E1856. [PMID: 31684100 PMCID: PMC6912227 DOI: 10.3390/jcm8111856] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a progressive, inflammatory cardiovascular disorder characterized by the development of lipid-filled plaques within arteries. Endothelial cell dysfunction in the walls of blood vessels results in an increase in vascular permeability, alteration of the components of the extracellular matrix, and retention of LDL in the sub-endothelial space, thereby accelerating plaque formation. Epigenetic modification by SUMOylation can influence the surface interactions of target proteins and affect cellular functionality, thereby regulating multiple cellular processes. Small ubiquitin-like modifier (SUMO) can modulate NFκB and other proteins such as p53, KLF, and ERK5, which have critical roles in atherogenesis. Furthermore, SUMO regulates leukocyte recruitment and cytokine release and the expression of adherence molecules. In this review, we discuss the regulation by SUMO and SUMOylation modifications of proteins and pathways involved in atherosclerosis.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran.
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz 93-338, Poland.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz 93-338, Poland.
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9188617871, Iran.
| |
Collapse
|
45
|
Gongol B, Marin T, Zhang J, Wang SC, Sun W, He M, Chen S, Chen L, Li J, Liu JH, Martin M, Han Y, Kang J, Johnson DA, Lytle C, Li YS, Huang PH, Chien S, Shyy JYJ. Shear stress regulation of miR-93 and miR-484 maturation through nucleolin. Proc Natl Acad Sci U S A 2019; 116:12974-12979. [PMID: 31182601 PMCID: PMC6600934 DOI: 10.1073/pnas.1902844116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pulsatile shear (PS) and oscillatory shear (OS) elicit distinct mechanotransduction signals that maintain endothelial homeostasis or induce endothelial dysfunction, respectively. A subset of microRNAs (miRs) in vascular endothelial cells (ECs) are differentially regulated by PS and OS, but the regulation of the miR processing and its implications in EC biology by shear stress are poorly understood. From a systematic in silico analysis for RNA binding proteins that regulate miR processing, we found that nucleolin (NCL) is a major regulator of miR processing in response to OS and essential for the maturation of miR-93 and miR-484 that target mRNAs encoding Krüppel-like factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS). Additionally, anti-miR-93 and anti-miR-484 restore KLF2 and eNOS expression and NO bioavailability in ECs under OS. Analysis of posttranslational modifications of NCL identified that serine 328 (S328) phosphorylation by AMP-activated protein kinase (AMPK) was a major PS-activated event. AMPK phosphorylation of NCL sequesters it in the nucleus, thereby inhibiting miR-93 and miR-484 processing and their subsequent targeting of KLF2 and eNOS mRNA. Elevated levels of miR-93 and miR-484 were found in sera collected from individuals afflicted with coronary artery disease in two cohorts. These findings provide translational relevance of the AMPK-NCL-miR-93/miR-484 axis in miRNA processing in EC health and coronary artery disease.
Collapse
Affiliation(s)
- Brendan Gongol
- Department of Medicine, University of California, San Diego, CA 92093
| | - Traci Marin
- Department of Health Sciences, Victor Valley College, Victorville, CA 92395
| | - Jiao Zhang
- Department of Medicine, University of California, San Diego, CA 92093
| | - Shen-Chih Wang
- Department of Anesthesiology, Taipei Veterans General Hospital, 115 Taipei, Taiwan
| | - Wei Sun
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| | - Ming He
- Department of Medicine, University of California, San Diego, CA 92093
| | - Shanshan Chen
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China Xi'an, 710029 Xi'an, China
| | - Lili Chen
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China Xi'an, 710029 Xi'an, China
| | - Jie Li
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China Xi'an, 710029 Xi'an, China
| | - Jun-Hui Liu
- Department of Clinical Laboratory, First Affiliated Hospital of the Medical School, Xi'an Jiaotong University, 710029 Xi'an, China
| | - Marcy Martin
- Department of Medicine, University of California, San Diego, CA 92093
| | - Yue Han
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jian Kang
- Department of Medicine, University of California, San Diego, CA 92093
| | - David A Johnson
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| | - Christian Lytle
- Division of Biomedical Sciences, University of California, Riverside, CA 92521
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Po-Hsun Huang
- Cardiovascular Research Center, National Yang-Ming University, 112 Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, 115 Taipei, Taiwan
| | - Shu Chien
- Department of Medicine, University of California, San Diego, CA 92093;
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093
| | - John Y-J Shyy
- Department of Medicine, University of California, San Diego, CA 92093;
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China Xi'an, 710029 Xi'an, China
| |
Collapse
|
46
|
Wang JC, Chien WC, Chung CH, Lin CY, Chen YH, Liao MT, Liao WI, Hsu CC, Tsai SH. Association between surgical repair of aortic aneurysms and the diagnosis of intracranial aneurysms. J Vasc Surg 2019; 71:481-489. [PMID: 31204216 DOI: 10.1016/j.jvs.2019.04.466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Aortic aneurysms (AAs) and intracranial aneurysms (IAs) share several clinical risk factors, a genetic predisposition, and molecular signaling pathways. Nonetheless, associations between IAs and AAs remain to be thoroughly validated in large-scale studies. In addition, no effective medical therapies exist for unruptured IAs or AAs. METHODS Data for this nationwide, population-based, retrospective, cohort study described herein were obtained from the National Health Insurance Research Database in Taiwan. The study outcomes assessed were (1) the cumulative incidence of IAs, which was compared between AA and patients without an AA and (2) the cumulative incidence of IAs in patients with AAs during the 13-year follow-up period, which was further compared among those who underwent open surgical repair (OSR), endovascular aneurysm repair or nonsurgical treatment (NST). RESULTS Our analyses included 20,280 patients with an AA and 20,280 propensity score-matched patients without an AA. Compared with the patients without an AA, patients with AA exhibited a significantly increased risk of an IA diagnosis (adjusted hazard ratio [HR], 3.395; P < .001). Furthermore, 6308 patients with AAs were treated with surgical intervention and another 6308 propensity score-matched patients with AAs were not. Patients with an AA who underwent OSR had a significantly lower risk of being diagnosed with an IA than patients with an AA who underwent endovascular aneurysm repair or NST (adjusted HR, 0.491 [P < .001] and adjusted HR, 0.473 [P < .001], respectively). CONCLUSIONS We demonstrated an association between IAs and AAs, even after adjusting for several comorbidities. We also found that OSR was associated with fewer recognized IAs than NST.
Collapse
Affiliation(s)
- Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan; Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan; Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Hao Chen
- Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Ching Hsu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
47
|
Eichner NZM, Gaitán JM, Gilbertson NM, Khurshid M, Weltman A, Malin SK. Postprandial augmentation index is reduced in adults with prediabetes following continuous and interval exercise training. Exp Physiol 2019; 104:264-271. [PMID: 30537411 DOI: 10.1113/ep087305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We compared high-intensity interval versus continuous training on fasting and postprandial arterial stiffness in people with prediabetes. What is the main finding and its importance? We show, for the first time, that exercise improves the augmentation index during the postprandial state, but not the fasted state, in adults with prediabetes. However, the fasted augmentation index improved in relationship to exercise dose, as assessed by kilocalories per session. Collectively, these findings suggest that short-term exercise can improve arterial compliance in adults with prediabetes. Therefore, lifestyle interventions designed to reduce arterial stiffness could have considerable clinical impact. ABSTRACT People with prediabetes have elevated risk for cardiovascular disease, in part, owing to arterial stiffness mediated by low insulin sensitivity. However, the effect the intensity and/or amount (i.e. kilocalories per session) of short-term exercise training on fasting and postprandial arterial stiffness is unknown. We tested the hypothesis that increased intensity and dose (i.e. amount) of exercise would be correlated with reduced fasting and postprandial arterial stiffness in obese adults with prediabetes. After randomization, 31 adults (age 61.4 ± 8.3 years, body mass index 32.1 ± 5.4 kg m-2 ) with prediabetes performed supervised continuous (CONT; n = 17; 70% of peak heart rate) or interval (INT; n = 14; 3 min at 50% of peak heart rate and 3 min at 90% of peak heart rate) cycling training for 60 min day-1 over 2 weeks. The amount of exercise was calculated using regression equations derived from oxygen uptake (V ̇ O 2 ) and heart rate. Arterial stiffness [augmentation index (AI) and cartoid-femoral pulse wave velocity], insulin and glucose were determined during a 180 min 75 g oral glucose tolerance test (OGTT) and analysed by the total area under the curve (tAUC) pre- versus post-training. The simple index of insulin sensitivity, (SIIS )OGTT, was calculated; aerobic fitness (peakV ̇ O 2 ) and body mass were also assessed. Short-term training had no effect on weight but did improve peakV ̇ O 2 (P = 0.003), glucose tAUC180min (P = 0.01) and insulin sensitivity (P = 0.002), independent of intensity. The CONT and INT exercise significantly reduced AI 2 h postprandial (P = 0.008) and tAUC180min (P = 0.03). Reductions in fasted AI were related to exercise dose (trend: r = -0.37, P = 0.055). Increased peakV ̇ O 2 was linked to reduced fasted (r = -0.47, P = 0.01) and tAUC180min AI (r = -0.39, P = 0.05). Decreased AI tAUC180min was correlated with increased insulin sensitivity (r = -0.50, P = 0.009). Short-term CONT and INT training reduced postprandial arterial stiffness comparably in adults with prediabetes.
Collapse
Affiliation(s)
| | - Julian M Gaitán
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | | | - Mahnoor Khurshid
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - Arthur Weltman
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - Steven K Malin
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
48
|
Dymkowska D, Drabarek B, Michalik A, Nowak N, Zabłocki K. TNFα stimulates NO release in EA.hy926 cells by activating the CaMKKβ-AMPK-eNOS pathway. Int J Biochem Cell Biol 2019; 106:57-67. [DOI: 10.1016/j.biocel.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
|
49
|
Yang Q, Xu J, Ma Q, Liu Z, Sudhahar V, Cao Y, Wang L, Zeng X, Zhou Y, Zhang M, Xu Y, Wang Y, Weintraub NL, Zhang C, Fukai T, Wu C, Huang L, Han Z, Wang T, Fulton DJ, Hong M, Huo Y. PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nat Commun 2018; 9:4667. [PMID: 30405100 PMCID: PMC6220207 DOI: 10.1038/s41467-018-07132-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
Increased aerobic glycolysis in endothelial cells of atheroprone areas of blood vessels has been hypothesized to drive increased inflammation and lesion burden but direct links remain to be established. Here we show that endothelial cells exposed to disturbed flow in vivo and in vitro exhibit increased levels of protein kinase AMP-activated (PRKA)/AMP-activated protein kinases (AMPKs). Selective deletion of endothelial Prkaa1, coding for protein kinase AMP-activated catalytic subunit alpha1, reduces glycolysis, compromises endothelial cell proliferation, and accelerates the formation of atherosclerotic lesions in hyperlipidemic mice. Rescue of the impaired glycolysis in Prkaa1-deficient endothelial cells through Slc2a1 overexpression enhances endothelial cell viability and integrity of the endothelial cell barrier, and reverses susceptibility to atherosclerosis. In human endothelial cells, PRKAA1 is upregulated by disturbed flow, and silencing PRKAA1 reduces glycolysis and endothelial viability. Collectively, these results suggest that increased glycolysis in the endothelium of atheroprone arteries is a protective mechanism.
Collapse
Affiliation(s)
- Qiuhua Yang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jiean Xu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Qian Ma
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Zhiping Liu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Varadarajan Sudhahar
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yapeng Cao
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Lina Wang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xianqiu Zeng
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yaqi Zhou
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Min Zhang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yiming Xu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Yong Wang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Neal L Weintraub
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Chunxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Tohru Fukai
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, 77840, USA
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Tao Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - David J Fulton
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mei Hong
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
50
|
Lai B, Li Z, He M, Wang Y, Chen L, Zhang J, Yang Y, Shyy JYJ. Atheroprone flow enhances the endothelial-to-mesenchymal transition. Am J Physiol Heart Circ Physiol 2018; 315:H1293-H1303. [PMID: 30052471 PMCID: PMC6297807 DOI: 10.1152/ajpheart.00213.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/06/2018] [Accepted: 07/19/2018] [Indexed: 01/02/2023]
Abstract
The endothelial-to-mesenchymal transition (EndoMT) is a cellular process featuring decreased expression of endothelial marker genes but increased expression of mesenchymal marker genes. The EndoMT is involved in endothelial dysfunction and the pathogenesis of atherosclerosis. To investigate the dynamic expression of EndoMT genes in vascular endothelial cells under atheroprotective pulsatile shear stress (PS) and atheroprone oscillatory shear stress (OS), we analyzed RNA sequencing data from multitimepoint shear-stress experiments. This unbiased analysis involving next-generation sequencing confirmed that PS and OS had an opposite effect in regulating EndoMT genes. Further experimental validations with H2O2 and gain- and loss-of-function approaches indicated that reactive oxygen species are involved in OS-induced EndoMT, whereas AMP-activated protein kinase and sirtuin-1 could inhibit OS-induced EndoMT. Furthermore, compared with PS, OS increased the DNA methylation of the promoter regions of von Willebrand factor, CD31, and cadherin 5 genes but decreased that of cadherin 2, fibroblast-specific protein 1, and vimentin. The translational implication of the present study builds on the ability of the antidiabetic drug metformin and cholesterol-lowering drug atorvastatin to suppress the EndoMT in cultured endothelial cells and in mouse aortas. NEW & NOTEWORTHY Our RNA sequencing data provided a genome-wide and unbiased view of the shear stress regulation of the endothelial-to-mesenchymal transition (EndoMT) in the endothelium. Furthermore, epigenetic regulation (e.g., DNA methylation) is a key mechanism involved in shear stress-regulated EndoMT. The translational implication of this study is that cardiovascular medications such as statins and metformin have similar beneficial effects as that of atheroprotective flow by mitigating EndoMT.
Collapse
Affiliation(s)
- Baochang Lai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi China
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi , China
- Institute for Cancer Research, School of Basic Medical Science, Xi'an Jiaotong University , Xi'an, Shaanxi China
| | - Zhao Li
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi , China
| | - Ming He
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Yili Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi China
- Institute for Cancer Research, School of Basic Medical Science, Xi'an Jiaotong University , Xi'an, Shaanxi China
| | - Lili Chen
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi , China
| | - Jiao Zhang
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Yan Yang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi China
| | - John Y-J Shyy
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi , China
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|