1
|
Cignarella A, Bolego C, Barton M. Sex and sex steroids as determinants of cardiovascular risk. Steroids 2024; 206:109423. [PMID: 38631602 DOI: 10.1016/j.steroids.2024.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
There are considerable sex differences regarding the risk of cardiovascular disease (CVD), including arterial hypertension, coronary artery disease (CAD) and stroke, as well as chronic renal disease. Women are largely protected from these conditions prior to menopause, and the risk increases following cessation of endogenous estrogen production or after surgical menopause. Cardiovascular diseases in women generally begin to occur at a later age than in men (on average with a delay of 10 years). Cessation of estrogen production also impacts metabolism, increasing the risk of developing obesity and diabetes. In middle-aged individuals, hypertension develops earlier and faster in women than in men, and smoking increases cardiovascular risk to a greater degree in women than it does in men. It is not only estrogen that affects female cardiovascular health and plays a protective role until menopause: other sex hormones such as progesterone and androgen hormones generate a complex balance that differentiates heart and blood vessel function in women compared to men. Estrogens improve vasodilation of epicardial coronary arteries and the coronary microvasculature by augmenting the release of vasodilating factors such as nitric oxide and prostacyclin, which are mechanisms of coronary vasodilatation that are more pronounced in women compared to men. Estrogens are also powerful inhibitors of inflammation, which in part explains their protective effects on CVD and chronic renal disease. Emerging evidence suggests that sex chromosomes also play a significant role in shaping cardiovascular risk. The cardiovascular protection conferred by endogenous estrogens may be extended by hormone therapy, especially using bioidentical hormones and starting treatment early after menopause.
Collapse
Affiliation(s)
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
2
|
Masand VH, Al-Hussain SA, Alzahrani AY, Al-Mutairi AA, Hussien RA, Samad A, Zaki MEA. Estrogen Receptor Alpha Binders for Hormone-Dependent Forms of Breast Cancer: e-QSAR and Molecular Docking Supported by X-ray Resolved Structures. ACS OMEGA 2024; 9:16759-16774. [PMID: 38617692 PMCID: PMC11007693 DOI: 10.1021/acsomega.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Cancer, a life-disturbing and lethal disease with a high global impact, causes significant economic, social, and health challenges. Breast cancer refers to the abnormal growth of cells originating from breast tissues. Hormone-dependent forms of breast cancer, such as those influenced by estrogen, prompt the exploration of estrogen receptors as targets for potential therapeutic interventions. In this study, we conducted e-QSAR molecular docking and molecular dynamics analyses on a diverse set of inhibitors targeting estrogen receptor alpha (ER-α). The e-QSAR model is based on a genetic algorithm combined with multilinear regression analysis. The newly developed model possesses a balance between predictive accuracy and mechanistic insights adhering to the OECD guidelines. The e-QSAR model pointed out that sp2-hybridized carbon and nitrogen atoms are important atoms governing binding profiles. In addition, a specific combination of H-bond donors and acceptors with carbon, nitrogen, and ring sulfur atoms also plays a crucial role. The results are supported by molecular docking, MD simulations, and X-ray-resolved structures. The novel results could be useful for future drug development for ER-α.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati 444 602, Maharashtra, India
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail 61421, Saudi Arabia
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Rania A Hussien
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha 65799, Kingdom of Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| |
Collapse
|
3
|
Chinetti G, Neels JG. Roles of Nuclear Receptors in Vascular Calcification. Int J Mol Sci 2021; 22:6491. [PMID: 34204304 PMCID: PMC8235358 DOI: 10.3390/ijms22126491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is defined as an inappropriate accumulation of calcium depots occurring in soft tissues, including the vascular wall. Growing evidence suggests that vascular calcification is an actively regulated process, sharing similar mechanisms with bone formation, implicating both inhibitory and inducible factors, mediated by osteoclast-like and osteoblast-like cells, respectively. This process, which occurs in nearly all the arterial beds and in both the medial and intimal layers, mainly involves vascular smooth muscle cells. In the vascular wall, calcification can have different clinical consequences, depending on the pattern, localization and nature of calcium deposition. Nuclear receptors are transcription factors widely expressed, activated by specific ligands that control the expression of target genes involved in a multitude of pathophysiological processes, including metabolism, cancer, inflammation and cell differentiation. Some of them act as drug targets. In this review we describe and discuss the role of different nuclear receptors in the control of vascular calcification.
Collapse
Affiliation(s)
- Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06204 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
| |
Collapse
|
4
|
Dama A, Baggio C, Boscaro C, Albiero M, Cignarella A. Estrogen Receptor Functions and Pathways at the Vascular Immune Interface. Int J Mol Sci 2021; 22:4254. [PMID: 33923905 PMCID: PMC8073008 DOI: 10.3390/ijms22084254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor (ER) activity mediates multiple physiological processes in the cardiovascular system. ERα and ERβ are ligand-activated transcription factors of the nuclear hormone receptor superfamily, while the G protein-coupled estrogen receptor (GPER) mediates estrogenic signals by modulating non-nuclear second messengers, including activation of the MAP kinase signaling cascade. Membrane localizations of ERs are generally associated with rapid, non-genomic effects while nuclear localizations are associated with nuclear activities/transcriptional modulation of target genes. Gender dependence of endothelial biology, either through the action of sex hormones or sex chromosome-related factors, is becoming increasingly evident. Accordingly, cardiometabolic risk increases as women transition to menopause. Estrogen pathways control angiogenesis progression through complex mechanisms. The classic ERs have been acknowledged to function in mediating estrogen effects on glucose metabolism, but 17β-estradiol also rapidly promotes endothelial glycolysis by increasing glucose transporter 1 (GLUT1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) levels through GPER-dependent mechanisms. Estrogens alter monocyte and macrophage phenotype(s), and induce effects on other estrogen-responsive cell lineages (e.g., secretion of cytokines/chemokines/growth factors) that impact macrophage function. The pharmacological modulation of ERs for therapeutic purposes, however, is particularly challenging due to the lack of ER subtype selectivity of currently used agents. Identifying the determinants of biological responses to estrogenic agents at the vascular immune interface and developing targeted pharmacological interventions may result in novel improved therapeutic solutions.
Collapse
Affiliation(s)
- Aida Dama
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Mattia Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| |
Collapse
|
5
|
Boscaro C, Trenti A, Baggio C, Scapin C, Trevisi L, Cignarella A, Bolego C. Sex Differences in the Pro-Angiogenic Response of Human Endothelial Cells: Focus on PFKFB3 and FAK Activation. Front Pharmacol 2020; 11:587221. [PMID: 33390959 PMCID: PMC7773665 DOI: 10.3389/fphar.2020.587221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023] Open
Abstract
Female hormones and sex-specific factors are established determinants of endothelial function, yet their relative contribution to human endothelium phenotypes has not been defined. Using human umbilical vein endothelial cells (HUVECs) genotyped by donor's sex, we investigated the influence of sex and estrogenic agents on the main steps of the angiogenic process and on key proteins governing HUVEC metabolism and migratory properties. HUVECs from female donors (fHUVECs) showed increased viability (p < 0.01) and growth rate (p < 0.01) compared with those from males (mHUVECs). Despite higher levels of G-protein coupled estrogen receptor (GPER) in fHUVECs (p < 0.001), treatment with 17β-estradiol (E2) and the selective GPER agonist G1 (both 1-100 nM) did not affect HUVEC viability. Migration and tubularization in vitro under physiological conditions were higher in fHUVECs than in mHUVECs (p < 0.05). E2 treatment (1-100 nM) upregulated the glycolytic activator PFKFB3 with higher potency in fHUVECs than in mHUVECs, despite comparable baseline levels. Moreover, Y576/577 phosphorylation of focal adhesion kinase (FAK) was markedly enhanced in fHUVECs (p < 0.001), despite comparable Src activation levels. While the PI3K inhibitor LY294002 (25 µM) inhibited HUVEC migration (p < 0.05), Akt phosphorylation levels in fHUVECs and mHUVECs were comparable. Finally, digitoxin treatment, which inhibits Y576/577 FAK phosphorylation, abolished sexual dimorphism in HUVEC migration. These findings unravel complementary modulation of HUVEC functional phenotypes and signaling molecules involved in angiogenesis by hormone microenvironment and sex-specific factors, and highlight the need for sex-oriented pharmacological targeting of endothelial function.
Collapse
Affiliation(s)
- Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Chiara Scapin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Boscaro C, Carotti M, Albiero M, Trenti A, Fadini GP, Trevisi L, Sandonà D, Cignarella A, Bolego C. Non-genomic mechanisms in the estrogen regulation of glycolytic protein levels in endothelial cells. FASEB J 2020; 34:12768-12784. [PMID: 32757462 DOI: 10.1096/fj.202001130r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
Few studies have explored the mechanisms coupling estrogen signals to metabolic demand in endothelial cells. We recently showed that 17β-estradiol (E2) triggers angiogenesis via the membrane G-protein coupled estrogen receptor (GPER) and the key glycolytic protein PFKFB3 as a downstream effector. We herein investigated whether estrogenic agents regulate the stability and/or degradation of glycolytic proteins in human umbilical vein endothelial cells (HUVECs). Similarly to E2, the GPER selective agonist G1 rapidly increased PFKFB3 protein amounts, without affecting mRNA levels. In the presence of cycloheximide, E2 and G1 treatment counteracted PFKFB3 degradation over time, whereas E2-induced PFKFB3 stabilization was abolished by the GPER antagonist G15. Inhibitors of selective SCF E3 ubiquitin ligase (SMER-3) and proteasome (MG132) rapidly increased PFKFB3 protein levels. Accordingly, ubiquitin-bound PFKFB3 was lower in E2- or G1-treated HUVECs. Both agents increased deubiquitinase USP19 levels through GPER signaling. Notably, USP 19 siRNA decreased PFKFB3 levels and abolished E2- and G1-mediated HUVEC tubularization. Finally, E2 and G1 treatments rapidly enhanced glucose transporter GLUT1 levels via GPER independent of transcriptional activation. These findings provide new evidence on mechanisms coupling estrogen signals with the glycolytic program in endothelium and unravel the role of USP19 as a target of the pro-angiogenic effect of estrogenic agents.
Collapse
Affiliation(s)
- Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Trenti A, Tedesco S, Boscaro C, Trevisi L, Bolego C, Cignarella A. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle. Int J Mol Sci 2018; 19:ijms19030859. [PMID: 29543707 PMCID: PMC5877720 DOI: 10.3390/ijms19030859] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.
Collapse
Affiliation(s)
- Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Serena Tedesco
- Venetian Institute of Molecular Medicine, 35129 Padua, Italy.
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | | |
Collapse
|
8
|
Rayabarapu N, Patel BM. Beneficial role of tamoxifen in isoproterenol-induced myocardial infarction. Can J Physiol Pharmacol 2014; 92:849-57. [DOI: 10.1139/cjpp-2013-0348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ER-α and ER-β agonist 17β-estradiol is reported to attenuate cardiac hypertrophy. Tamoxifen is a selective estrogen receptor modulator. Hence, the objective of this study was to investigate the effects of tamoxifen in myocardial infarction. For this, tamoxifen was administered to Sprague–Dawley rats for 1–14 days, and isoproterenol (ISO) (100 mg·(kg body mass)−1·day−1) was administered subcutaneously on the 13th and 14th days of the study in order to induce myocardial infarction, after which, various biochemical, cardiac, and morphometric parameters were evaluated. ISO produced significant dyslipidemia, hypertension, bradycardia, oxidative stress, and an increase in serum cardiac markers. Treatment with tamoxifen significantly controlled dyslipidemia, hypertension, bradycardia, oxidative stress, and reduced serum cardiac markers. The ISO control rats exhibited significant increases in the infarct size of the left ventricle (LV), LV cavity area, cardiac and LV hypertrophic indices, LV-wall thickness, cardiomyocyte diameter, and area. Treatment with tamoxifen significantly reduced infarction as well as hypertrophic and morphometric parameters. ISO also produced significant increases in the LV collagen level, decreases in Na+K+ATPase activity, and a reduction in the rate of pressure development and decay, which were prevented by tamoxifen treatment. The protective effect of tamoxifen on myocardial infarct was further confirmed by histopathological examination. Our data thus suggest that tamoxifen exerts beneficial effects in ISO-induced myocardial infarction.
Collapse
Affiliation(s)
- Nihar Rayabarapu
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India
| | - Bhoomika M. Patel
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India
| |
Collapse
|
9
|
Koledova VV, Khalil RA. Sex hormone replacement therapy and modulation of vascular function in cardiovascular disease. Expert Rev Cardiovasc Ther 2014; 5:777-89. [PMID: 17605655 DOI: 10.1586/14779072.5.4.777] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological and experimental studies suggest vascular protective effects of estrogen. Cardiovascular disease (CVD) is less common in premenopausal women than in men and postmenopausal women. Cytosolic/nuclear estrogen receptors (ERs) have been shown to mediate genomic effects that stimulate endothelial cell growth but inhibit vascular smooth muscle proliferation. However, the Heart and Estrogen/Progestin Replacement Study (HERS), HERS-II and Women's Health Initiative clinical trials demonstrated that hormone replacement therapy (HRT) may not provide vascular benefits in postmenopausal women and may instead trigger adverse cardiovascular events. HRT may not provide vascular benefits because of the type of hormone used. Oral estrogens are biologically transformed by first-pass metabolism in the liver. By contrast, transdermal preparations avoid first pass metabolism. Also, natural estrogens and phytoestrogens may provide alternatives to synthetic estrogens. Furthermore, specific ER modulators could minimize the adverse effects of HRT, including breast cancer. HRT failure in CVD could also be related to changes in vascular ERs. Genetic polymorphism and postmenopausal decrease in vascular ERs or the downstream signaling mechanisms may reduce the effects of HRT. HRT in the late postmenopausal period may not be as effective as during menopausal transition. Additionally, while HRT may aggravate pre-existing CVD, it may thwart its development if used in a timely fashion. Lastly, the vascular effects of progesterone and testosterone, as well as modulators of their receptors, may modify the effects of estrogen and thereby provide alternative HRT strategies. Thus, the beneficial effects of HRT in postmenopausal CVD can be enhanced by customizing the HRT type, dose, route of administration and timing depending on the subject's age and cardiovascular condition.
Collapse
Affiliation(s)
- Vera V Koledova
- Brigham and Women's Hospital, Division of Vascular Surgery, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
10
|
Chakrabarti S, Morton JS, Davidge ST. Mechanisms of estrogen effects on the endothelium: an overview. Can J Cardiol 2013; 30:705-12. [PMID: 24252499 DOI: 10.1016/j.cjca.2013.08.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 07/31/2013] [Accepted: 08/08/2013] [Indexed: 01/13/2023] Open
Abstract
In this review, we aim to provide an overview of the recent advances in understanding estrogen effects on the vascular endothelium. Epidemiological studies suggest the female sex hormone estrogen mediates the relative protection of premenopausal women against cardiovascular disease, compared with age-matched men. However, results from clinical trials of exogenous estrogen supplementation in postmenopausal women have been disappointing, generating much controversy about the role of estrogen and demonstrating the need for further research in this field. Here we have discussed the roles of different estrogen receptors (ERs) such as ERα, ERβ, and G-protein coupled receptor 30; the complex genomic and nongenomic signalling pathways downstream to ER activation and the factors such as age, menopause, pregnancy, and diabetes that might alter estrogen responses. The common themes of this discussion are the complexity and diversity of endothelial estrogen responses and their modulation by 1 or more coexisting factors. Finally, we summarize the emerging therapeutic options including improved targeting of individual ERs and signalling pathways that might maximize the therapeutic potential of estrogenic compounds while minimizing their harmful side effects.
Collapse
Affiliation(s)
- Subhadeep Chakrabarti
- Department of Obstetrics and Gynecology, Women and Children's Health Research Institute (WCHRI), Cardiovascular Research Centre and Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jude S Morton
- Department of Obstetrics and Gynecology, Women and Children's Health Research Institute (WCHRI), Cardiovascular Research Centre and Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, Women and Children's Health Research Institute (WCHRI), Cardiovascular Research Centre and Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, Women and Children's Health Research Institute (WCHRI), Cardiovascular Research Centre and Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
11
|
Bolego C, Cignarella A, Staels B, Chinetti-Gbaguidi G. Macrophage function and polarization in cardiovascular disease: a role of estrogen signaling? Arterioscler Thromb Vasc Biol 2013; 33:1127-34. [PMID: 23640494 DOI: 10.1161/atvbaha.113.301328] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are plastic and versatile cells adapting their function/phenotype to the microenvironment. Distinct macrophage subpopulations with different functions, including classically (M1) and (M2) activated macrophages, have been described. Reciprocal skewing of macrophage polarization between the M1 and M2 state is a process modulated by transcription factors, such as the nuclear peroxisome proliferator-activated receptors. However, whether the estrogen/estrogen receptor pathways control the balance between M1/M2 macrophages is only partially understood. Estrogen-dependent effects on the macrophage system may be regarded as potential targets of pharmacological approaches to protect postmenopausal women from the elevated risk of cardiovascular disease.
Collapse
Affiliation(s)
- Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | | | | |
Collapse
|
12
|
Bolego C. Does 17β-estradiol play a role in SLE-associated atherosclerosis? Atherosclerosis 2013; 227:222-3. [DOI: 10.1016/j.atherosclerosis.2012.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
|
13
|
Oliva P, Roncoroni C, Radaelli E, Brunialti E, Rizzi N, De Maglie M, Scanziani E, Piaggio G, Ciana P, Komm B, Maggi A. Global Profiling of TSEC Proliferative Potential by the Use of a Reporter Mouse for Proliferation. Reprod Sci 2012; 20:119-28. [DOI: 10.1177/1933719111431002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Paolo Oliva
- TOP srl, Transgenic Operative Products, Lodi, Italy
| | | | - Enrico Radaelli
- DIPAV, Faculty of Veterinary Medicine, University of Milan, Milan, Italy
| | | | | | - Marcella De Maglie
- TOP srl, Transgenic Operative Products, Lodi, Italy
- DIPAV, Faculty of Veterinary Medicine, University of Milan, Milan, Italy
| | | | - Giulia Piaggio
- Experimental Oncology Department, Istituto Regina Elena, IRCCS, Rome, Italy
| | - Paolo Ciana
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Barry Komm
- Pfizer Inc. (B.K.), Collegeville, Pennsylvania 19426, USA
| | - Adriana Maggi
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Wang S, Zhu X, Cong B, You X, Wang Y, Wang W, Ni X. Estrogenic action on arterial smooth muscle: permissive for maintenance of CRHR2 expression. Endocrinology 2012; 153:1915-24. [PMID: 22315451 DOI: 10.1210/en.2011-1939] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Urocortin (Ucn), a member of CRH family, has been implicated to be one of the endogenous regulators in the cardiovascular system and exerts its effects locally via an autocrine/paracrine fashion. Previous studies have shown the gender difference in CRH-induced vasodilation in human skin, which is related to the concentration of estrogens during the menstrual cycle. The aim of this study was to investigate whether estrogens modulate Ucn/CRH receptor type 2 (CRHR2) expression in vascular smooth muscle, thereby leading to vasodilation. We performed sham operation or bilateral ovariectomy (OVX) on female Sprague Dawley rats. OVX rats were sc administered 17β-estradiol (E₂) at a dose of 30 μg/kg·d or with placebo for 12 wk. Primary smooth muscle cells of aorta were used for the in vitro study. It was found that the Ucn-induced vasodilation and CRHR2 expression were decreased in OVX rats and restored by E₂ replacement treatment for 12 wk. E₂ increased the expression of CRHR2 in cultured smooth muscle cells, which was blocked by estrogen receptor-β antagonist. Ucn significantly suppressed the phenylephrine-induced phospholipase Cβ3 activation, inositol 1,4,5-trisphosphate (IP₃) production, and intracellular Ca²⁺ elevation. Ucn stimulated the expression of active GTP-bound Gαs protein and cAMP production. The suppressive effects of Ucn on phenylephrine-induced IP₃ production and intracellular Ca²⁺ elevation were blocked by the inhibitors of adenylate cyclase and protein kinase A. Our results demonstrate that estrogen maintains the expression of CRHR2 in aorta smooth muscle, thereby enhancing vasodilator actions of Ucn. Ucn exerts its vasorelaxant effects via Gαs-cAMP-protein kinase A signaling, leading to down-regulation of the phospholipase Cβ-IP₃-Ca²⁺ signaling pathway.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Calcium Signaling/physiology
- Cells, Cultured
- Estradiol/pharmacology
- Estrogen Receptor beta/antagonists & inhibitors
- Estrogens/pharmacology
- Female
- In Vitro Techniques
- Models, Animal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Ovariectomy
- Rats
- Rats, Sprague-Dawley
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Signal Transduction/physiology
- Urocortins/metabolism
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Shan Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Hutter R, Badimon JJ, Fuster V, Narula J. Coronary artery disease in aging women: a menopause of endothelial progenitor cells? Med Clin North Am 2012; 96:93-102. [PMID: 22391254 DOI: 10.1016/j.mcna.2012.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cardiovascular protection provided to women during the reproductive age and the unique angiogenic properties of the female reproductive system provide insights into the complex regulatory network of female sex hormones, angiogenic growth factors, and stem cell regulatory molecules. The intricate and interwoven endometrial physiology of the female menstrual cycle shows that in order to harness the physiologic cardioprotection provided by nature to women of reproductive age, for better cardiovascular therapies in postmenopausal women and the population in general, a coherent and systematic approach is needed.
Collapse
Affiliation(s)
- Randolph Hutter
- Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | | | | | |
Collapse
|
16
|
Restrepo B, García M, López C, Martín M, San Román L, Morán A. The Cyclooxygenase and Nitric Oxide Synthesis/Pathways Mediate the Inhibitory Serotonergic Response to the Pressor Effect Elicited by Sympathetic Stimulation in Long-Term Diabetic Pithed Rats. Pharmacology 2012; 90:169-76. [DOI: 10.1159/000341911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022]
|
17
|
Protein restriction during pregnancy induces hypertension in adult female rat offspring--influence of oestradiol. Br J Nutr 2011; 107:665-73. [PMID: 21787449 DOI: 10.1017/s0007114511003448] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We previously reported that gestational dietary protein restriction in rats causes sex-related differences in development of blood pressure (BP) in the offspring, which is more pronounced in males than in females. As such effects may depend on sex hormones, we investigated the role of oestradiol in the development of hypertension in female offspring of protein-restricted dams. Female offspring of pregnant rats fed normal (20 %) or protein-restricted (6 %) casein diets throughout pregnancy were kept either intact, ovariectomised or ovariectomised with oestradiol supplementation. BP, Plasma oestradiol and testosterone levels, and vascular oestrogen receptor (ER) were examined. BP was significantly higher and plasma oestradiol levels were significantly lower ( - 34 %) in intact protein-restricted female offspring compared to corresponding controls. Further decrease in oestradiol levels by ovariectomy exacerbated hypertension in the protein-restricted females, with an earlier onset and more prominent elevation in BP compared to controls. Oestradiol supplementation in ovariectomised protein-restricted females significantly reversed ovariectomy-induced hypertension but did not normalise BP to control levels. The hypertensive protein-restricted females have reduced vascular ERα expression that was unaffected by ovariectomy or oestradiol replacement. In addition, testosterone levels were significantly higher by 2·4-, 3·4- and 2·8-fold in intact, ovariectomised and oestradiol-replaced protein-restricted females compared to corresponding controls. The present data show that: (1) hypertension in protein-restricted adult female offspring is associated with reduced plasma oestradiol levels; (2) oestradiol protects and limits the severity of hypertension in protein-restricted females and contributes to sexual dimorphism; (3) oestradiol replacement fails to completely reverse hypertension, which may be related to limited availability of vascular ERα receptors and/or increased circulating testosterone levels.
Collapse
|
18
|
Ross RL, Serock MR, Khalil RA. Experimental benefits of sex hormones on vascular function and the outcome of hormone therapy in cardiovascular disease. Curr Cardiol Rev 2011; 4:309-22. [PMID: 20066139 PMCID: PMC2801863 DOI: 10.2174/157340308786349462] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular disease (CVD) is more common in men and postmenopausal women than premenopausal women, suggesting vascular benefits of female sex hormones. Experimental data have shown beneficial vascular effects of estrogen including stimulation of endothelium-dependent nitric oxide, prostacyclin and hyperpolarizing factor-mediated vascular relaxation. However, the experimental evidence did not translate into vascular benefits of hormone replacement therapy (HRT) in postmenopausal women, and HERS, HERS-II and WHI clinical trials demonstrated adverse cardiovascular events with HRT. The lack of vascular benefits of HRT could be related to the hormone used, the vascular estrogen receptor (ER), and the subject’s age and preexisting cardiovascular condition. Natural and phytoestrogens in small doses may be more beneficial than synthetic estrogen. Specific estrogen receptor modulators (SERMs) could maximize the vascular benefits, with little side effects on breast cancer. Transdermal estrogens avoid the first-pass liver metabolism associated with the oral route. Postmenopausal decrease and genetic polymorphism in vascular ER and post-receptor signaling mechanisms could also modify the effects of HRT. Variants of cytosolic/nuclear ER mediate transcriptional genomic effects that stimulate endothelial cell growth, but inhibit vascular smooth muscle (VSM) proliferation. Also, plasma membrane ERs trigger not only non-genomic stimulation of endothelium-dependent vascular relaxation, but also inhibition of [Ca2+]i, protein kinase C and Rho kinase-dependent VSM contraction. HRT could also be more effective in the perimenopausal period than in older postmenopausal women, and may prevent the development, while worsening preexisting CVD. Lastly, progesterone may modify the vascular effects of estrogen, and modulators of estrogen/testosterone ratio could provide alternative HRT combinations. Thus, the type, dose, route of administration and the timing/duration of HRT should be customized depending on the subject’s age and preexisting cardiovascular condition, and thereby make it possible to translate the beneficial vascular effects of sex hormones to the outcome of HRT in postmenopausal CVD.
Collapse
Affiliation(s)
- Reagan L Ross
- Division of Vascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
19
|
Della Torre S, Biserni A, Rando G, Monteleone G, Ciana P, Komm B, Maggi A. The conundrum of estrogen receptor oscillatory activity in the search for an appropriate hormone replacement therapy. Endocrinology 2011; 152:2256-65. [PMID: 21505049 PMCID: PMC3100626 DOI: 10.1210/en.2011-0173] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By the use of in vivo imaging, we investigated the dynamics of estrogen receptor (ER) activity in intact, ovariectomized, and hormone-replaced estrogen response element-luciferase reporter mice. The study revealed the existence of a long-paced, noncircadian oscillation of ER transcriptional activity. Among the ER-expressing organs, this oscillation was asynchronous and its amplitude and period were tissue dependent. Ovariectomy affected the amplitude but did not suppress ER oscillations, suggesting the presence of tissue endogenous oscillators. Long-term administration of raloxifene, bazedoxifene, combined estrogens alone or with basedoxifene to ovariectomized estrogen response element-luciferase mice showed that each treatment induced a distinct spatiotemporal profile of ER activity, demonstrating that the phasing of ER activity among tissues may be regulated by the chemical nature and the concentration of circulating estrogen. This points to the possibility of a hierarchical organization of the tissue-specific pacemakers. Conceivably, the rhythm of ER transcriptional activity translates locally into the activation of specific gene networks enabling ER to significantly change its physiological activity according to circulating estrogens. In reproductive and nonreproductive organs this hierarchical regulation may provide ER with the signaling plasticity necessary to drive the complex metabolic changes occurring at each female reproductive status. We propose that the tissue-specific oscillatory activity here described is an important component of ER signaling necessary for the full hormone action including the beneficial effects reported for nonreproductive organs. Thus, this mechanism needs to be taken in due consideration to develop novel, more efficacious, and safer hormone replacement therapies.
Collapse
Affiliation(s)
- Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Ortmann J, Veit M, Zingg S, Di Santo S, Traupe T, Yang Z, Völzmann J, Dubey RK, Christen S, Baumgartner I. Estrogen receptor-α but not -β or GPER inhibits high glucose-induced human VSMC proliferation: potential role of ROS and ERK. J Clin Endocrinol Metab 2011; 96:220-8. [PMID: 20962025 PMCID: PMC3038487 DOI: 10.1210/jc.2010-0943] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The decreased incidence of cardiovascular disease in premenopausal women has been attributed, at least partially, to protective effects of estrogens. However, premenopausal women with diabetes mellitus are no longer selectively protected. High-glucose (HG) conditions have previously been shown to abolish the antimitogenic effects of 17β-estradiol (E(2)) in vascular smooth muscle cells (VSMCs). OBJECTIVE Because E(2) mediates its action via different estrogen receptor (ER) subtypes, we hypothesized that different subtypes may have different, if not opposing, effects on HG-induced VSMC proliferation. METHODS AND RESULTS Treatment of human aortic VSMCs isolated from premenopausal women with the selective ERα agonist, 4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol, but not with E(2), the selective ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile, or the selective G protein-coupled ER agonist G-1 completely prevented increased HG-induced VSMC proliferation. Under these conditions, ERα activation selectively prevented increased hydrogen peroxide (H(2)O(2)) and total intracellular reactive oxygen species (ROS) production, caused up-regulation of manganese superoxide dismutase protein and activity, and inhibited prolonged ERK phosphorylation. The latter was mediated by ROS, and ROS inhibition reversed HG-induced ERK-dependent VSMC proliferation. The selective coactivation of ERβ reversed the antimitogenic and antioxidative effects of ERα as well as the up-regulation of manganese superoxide dismutase protein expression. CONCLUSION Selective activation of ERα is required for reducing oxidative stress and the consequent hyperproliferation of VSMCs under HG. Our results may further suggest that ERα activation inhibits HG-induced proliferation by down-regulating ROS-mediated ERK activation and may explain why antimitogenic effects of E(2) are abolished under HG. Pharmacological activation of ERα may thus have therapeutic potential for treating cardiovascular dysregulation associated with diabetes.
Collapse
MESH Headings
- Analysis of Variance
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Glucose/metabolism
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nitriles/pharmacology
- Phenols/pharmacology
- Phosphorylation/drug effects
- Pyrazoles/pharmacology
- Reactive Oxygen Species/metabolism
- Statistics, Nonparametric
- Superoxide Dismutase/metabolism
Collapse
Affiliation(s)
- Jana Ortmann
- Division of Clinical and Interventional Angiology, University Hospital Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Diabetes mellitus increases cardiovascular risk through its negative impact on vascular endothelium. Although glucotoxicity and lipotoxicity account for endothelial cell damage, endothelial repair is also affected by diabetes. Endothelial progenitor cells (EPCs) are involved in the maintenance of endothelial homoeostasis and in the process of new vessel formation. For these reasons, EPCs are thought to have a protective impact within the cardiovascular system. In addition, EPCs appear to modulate the functioning of other organs, providing neurotropic signals and promoting repair of the glomerular endothelium. The exact mechanisms by which EPCs provide cardiovascular protection are unknown and the definition of EPCs is not standardized. Notwithstanding these limitations, the literature consistently indicates that EPCs are altered in type 1 and type 2 diabetes and in virtually all diabetic complications. Moreover, experimental models suggest that EPC-based therapies might help prevent or reverse the features of end-organ complications. This identifies EPCs as having a novel pathogenic role in diabetes and being a potential therapeutic target. Several ways of favourably modulating EPCs have been identified, including lifestyle intervention, commonly used medications and cell-based approaches. Herein, we provide a comprehensive overview of EPC pathophysiology and the potential for EPC modulation in diabetes.
Collapse
Affiliation(s)
- G P Fadini
- Department of Clinical and Experimental Medicine, Division of Metabolic Diseases, University of Padova, Medical School, Padova, Italy.
| | | |
Collapse
|
22
|
Poutiainen PK, Venäläinen TA, Peräkylä M, Matilainen JM, Väisänen S, Honkakoski P, Laatikainen R, Pulkkinen JT. Synthesis and biological evaluation of phenolic 4,5-dihydroisoxazoles and 3-hydroxy ketones as estrogen receptor α and β agonists. Bioorg Med Chem 2010; 18:3437-47. [DOI: 10.1016/j.bmc.2010.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/29/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
23
|
Bolego C, Rossoni G, Fadini GP, Vegeto E, Pinna C, Albiero M, Boscaro E, Agostini C, Avogaro A, Gaion RM, Cignarella A. Selective estrogen receptor-alpha agonist provides widespread heart and vascular protection with enhanced endothelial progenitor cell mobilization in the absence of uterotrophic action. FASEB J 2010; 24:2262-72. [PMID: 20203089 DOI: 10.1096/fj.09-139220] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The beneficial effects of estrogens on the cardiovascular system are associated with adverse effects on reproductive tissues. On the basis of previous work indicating a major role for estrogen receptor (ER)-alpha in maintaining cardiovascular health, we evaluated the tissue selectivity of the ER alpha-selective agonist propyl pyrazole triol (PPT) compared with 17beta-estradiol (E2) in vivo. Four weeks postovariectomy, equimolar doses of PPT and E2 were administered to rats in subcutaneous implants for 5 d. Both treatments restored rapid vasorelaxation of aortic tissue to estrogenic agents and prevented coronary hyperresponsiveness to angiotensin II in isolated heart preparations. Accordingly, multiple endpoints of myocardial ischemia-reperfusion injury exacerbated by ovariectomy returned to baseline following treatment. These protective effects were linked to increased in vivo levels of endothelial progenitor cells (EPCs). Human EPC function was enhanced in vitro after PPT treatment. In sharp contrast to E2, PPT treatment had no effect on uterine weight and histomorphology except for vessel density, and failed to up-regulate classic estrogen target genes. Dissection of the effects on vascular reactivity and uterine morphology was also observed following increased exposure to PPT at a higher dose for longer time. These data provide the first in vivo evidence for tissue-specific ER alpha activation. By conferring cardiovascular protection dissected from unwanted uterotrophic effects, ER alpha-selective agonists may represent a potential safer alternative to natural hormones.
Collapse
Affiliation(s)
- Chiara Bolego
- Department of Pharmacology and Anesthesiology, University of Padua, Largo Meneghetti 2, 35131 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rando G, Horner D, Biserni A, Ramachandran B, Caruso D, Ciana P, Komm B, Maggi A. An innovative method to classify SERMs based on the dynamics of estrogen receptor transcriptional activity in living animals. Mol Endocrinol 2010; 24:735-44. [PMID: 20197311 DOI: 10.1210/me.2009-0514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using a mouse model engineered to measure estrogen receptor (ER) transcriptional activity in living organisms, we investigated the effect of long-term (21 d) hormone replacement on ER signaling by whole-body in vivo imaging. Estrogens and selective ER modulators were administered daily at doses equivalent to those used in humans as calculated by the allometric approach. As controls, ER activity was measured also in cycling and ovariectomized mice. The study demonstrated that ER-dependent transcriptional activity oscillated in time, and the frequency and amplitude of the transcription pulses was strictly associated with the target tissue and the estrogenic compound administered. Our results indicate that the spatiotemporal activity of selective ER modulators is predictive of their structure, demonstrating that the analysis of the effect of estrogenic compounds on a single surrogate marker of ER transcriptional activity is sufficient to classify families of compounds structurally and functionally related. For more than one century, the measure of drug structure-activity relationships has been based on mathematical equations describing the interaction of the drug with its biological receptor. The understanding of the multiplicity of biological responses induced by the drug-receptor interaction demonstrated the limits of current approach and the necessity to develop novel concepts for the quantitative analysis of drug action. Here, a systematic study of spatiotemporal effects is proposed as a measure of drug efficacy for the classification of pharmacologically active compounds. The application of this methodology is expected to simplify the identification of families of molecules functionally correlated and to speed up the process of drug discovery.
Collapse
Affiliation(s)
- Gianpaolo Rando
- Department of Pharmacological Sciences, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Emerging role of estrogen in the control of cardiometabolic disease. Trends Pharmacol Sci 2010; 31:183-9. [PMID: 20138672 DOI: 10.1016/j.tips.2010.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 01/04/2010] [Accepted: 01/15/2010] [Indexed: 01/24/2023]
Abstract
Menopause is associated with an increased risk of cardiovascular and metabolic disease that is partly independent of aging. This increased risk is largely due to postmenopausal estrogen loss. Estrogen improves insulin sensitivity and ss-cell function. This is consistent with the increased risk of diabetes after menopause and the finding that menopausal hormone therapy (MHT) lowers the incidence of diabetes. Experimental data suggest that estrogen has anti-atherosclerotic and pro-thrombotic properties. This is consistent with observational and interventional studies suggesting that MHT reduces the risk of cardiovascular disease if initiated early in women with a low-risk profile, but might increase risk in older women and/or those with other risk factors (e.g. dyslipidemia). Future research focusing on improving prevention of cardiometabolic disease through MHT may help to identify agents with higher tissue- and estrogen receptor-isoform specificity than currently used hormones.
Collapse
|
26
|
Alda JO, Valero MS, Pereboom D, Gros P, Garay RP. Endothelium-independent vasorelaxation by the selective alpha estrogen receptor agonist propyl pyrazole triol in rat aortic smooth muscle. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.05.0013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
This study investigated the signalling mechanism of the relaxant responses to the estrogen receptor alpha (ERα) agonist PPT (propyl pyrazole triol) in endothelium-denuded rat aortic rings.
Methods
Several compounds, including protein kinase G (PKG) inhibitors and potassium channel inhibitors, were tested against PPT-dependent rat aortic relaxation. Cyclic GMP and cytosolic calcium responses to PPT in isolated aortic smooth muscle were investigated in parallel.
Key findings
PPT vasorelaxation was largely reduced by the selective ERα antagonist methyl-piperidinopyrazole (MPP; −91.6 ± 2.5%), by the selective PKG inhibitor Rp-8-Br-cGMP (−78.6 ± 4.9%), by the specific soluble guanylyl cyclase inhibitor ODQ (1H-(1,2,4)-oxadiazolo[4,3-a]quinoxalin-1-one; −85.3 ± 5.2%) and to a lesser extent by the selective BKCa (large-conductance calcium- and voltage-activated potassium channel) inhibitor iberiotoxin (−59.3%), the selective IKCa (intermediate-conductance calcium-activated potassium channel) inhibitor TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole; −50.7%) and the voltage-gated potassium channel inhibitor 4-aminopyridine (−40.8%). In isolated aortic smooth muscle, PPT strongly enhanced the cyclic GMP content (+144%) and Rp-8-Br-cGMP largely reduced the PPT-dependent calcium signal (−80.8%).
Conclusions
ERα receptor stimulation in rat aortic smooth muscle evokes a PKG-signalling pathway, likely triggering relaxation by BKCa and IKCa channel opening.
Collapse
Affiliation(s)
- José O Alda
- Department of Pharmacology and Physiology, School of Medicine, Zaragoza, Spain
| | - Marta S Valero
- Department of Pharmacology and Physiology, School of Medicine, Zaragoza, Spain
| | - Desiree Pereboom
- Department of Pharmacology and Physiology, School of Medicine, Zaragoza, Spain
| | - Pilar Gros
- Department of Pharmacology and Physiology, School of Medicine, Zaragoza, Spain
| | | |
Collapse
|
27
|
|
28
|
Cignarella A, Bolego C, Pelosi V, Meda C, Krust A, Pinna C, Gaion RM, Vegeto E, Maggi A. Distinct roles of estrogen receptor-alpha and beta in the modulation of vascular inducible nitric-oxide synthase in diabetes. J Pharmacol Exp Ther 2008; 328:174-82. [PMID: 18832649 DOI: 10.1124/jpet.108.143511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Estrogen is known to affect vascular function and diabetes development, but the relative contribution of estrogen receptor (ER) isoforms is unclear. The aim of this study was to determine how individual ER isoforms modulate inflammatory enzymes in the vascular wall of control and streptozotocin (STZ)-injected rodents. Primary cultures of rat aortic smooth muscle cells (SMCs) were stimulated with inflammatory agents in the presence or absence of increasing concentrations of the ER alpha and ER beta-selective agonists 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) and diarylpropionitrile (DPN), respectively. The production of inducible nitric-oxide synthase (iNOS), a classical indicator of vascular inflammation, was significantly reduced by PPT in control but not diabetic SMCs, whereas it was further enhanced by DPN treatment in both groups. This distinct action profile was not related to changes in ER transcriptional activity. However, extracellular signal-regulated kinase 1/2 signaling was activated by DPN but not by PPT in cytokine-treated SMCs. In cultured aortic rings from both normoglycemic and STZ-diabetic mice, pharmacological activation of ER alpha attenuated cytokine-driven iNOS induction by 30 to 50%. Vascular iNOS levels were decreased consistently when adding 1 nM 17beta-estradiol to aortic tissues from ER beta- but not ER alpha-knockout mice. These findings suggest a possible role for ER alpha-selective ligands in reducing vascular inflammatory responses under normo- and hyperglycemic conditions.
Collapse
Affiliation(s)
- Andrea Cignarella
- Department of Pharmacology and Anaesthesiology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Qiao X, McConnell KR, Khalil RA. Sex steroids and vascular responses in hypertension and aging. ACTA ACUST UNITED AC 2008; 5 Suppl A:S46-64. [PMID: 18395683 DOI: 10.1016/j.genm.2008.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2007] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sex hormones play a significant role in human physiology. Estrogen may have protective effects in the cardiovascular system, as evidenced by the decreased incidence of cardiovascular disease (CVD) in premenopausal compared with postmenopausal women. OBJECTIVE This review highlights the acute and long-term effects of sex hormones on the vascular endothelium and vascular smooth muscle (VSM) in adults. Changes in the sex hormone mix, their receptors, and their effects on vascular function in hypertension and aging are also discussed. METHODS Literature collected from the National Centers for Biotechnology Information as identified by a PubMed database search, as well as our experimental work, was used to highlight current knowledge regarding vascular responses to sex hormones in hypertension and in aging. RESULTS Experiments in adult female animals have shown that estrogen induces endothelium-dependent vascular relaxation via the nitric oxide (NO), prostacyclin, and hyperpolarization pathways. Also, surface membrane estrogen receptors (ERs) decrease intracellular free Ca2+ concentration and perhaps protein kinase C-dependent VSM contraction. However, clinical trials such as the Heart and Estrogen/progestin Replacement Study (HERS), HERS-II, and the Women's Health Initiative did not support the experimental findings and demonstrated adverse cardiovascular events of hormone therapy (HT) in aging women. The lack of vascular benefits of HT may be related to the hormone used, the ER, or the patient's cardiovascular condition or age. Experiments on vascular strips from aging (16-month-old) female spontaneously hypertensive rats have shown reduced ER-mediated NO production from endothelial cells and decreased inhibitory effects of estrogen on Ca2+ entry mechanisms of VSM contraction. The age-related decrease in ER-mediated vascular relaxation may explain the decreased effectiveness of HT on CVD in aging women. CONCLUSIONS New HT strategies should further examine the benefits of natural estrogens and phytoestrogens. Transdermal estrogen may be more effective than the oral form, and specific ER modulators may maximize the vascular benefits and reduce the risk of invasive breast cancer. Variants of vascular ERs should be screened for genetic polymorphisms and postmenopausal decrease in the amount of downstream signaling mechanisms. HT may be more effective during the menopausal transition than in late menopause. Progesterone, testosterone, or their specific modulators may be combined with estrogen to provide alternative HT strategies. Thus, HT type, dose, route of administration, and timing should be customized, depending on the patient's cardiovascular condition and age, thereby enhancing the vascular benefits of HT in aging women.
Collapse
Affiliation(s)
- Xiaoying Qiao
- Division of Vascular Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
30
|
Abstract
The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, the goal of this review is to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared with men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis, and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine, and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. Although consensus opinions are emphasized, controversial views are presented to stimulate future research.
Collapse
Affiliation(s)
- Virginia M. Miller
- Professor, Surgery and Physiology, Mayo Clinic College of Medicine, , Phone: 507-284-2290, Fax: 507-266-2233
| | - Sue P. Duckles
- Professor, Pharmacology, University of California, Irvine, School of Medicine, , Phone: 949-824-4265, Fax: 949-824-4855
| |
Collapse
|
31
|
Rodriguez-Hernandez A, Rubio-Gayosso I, Ramirez I, Ita-Islas I, Meaney E, Gaxiola S, Meaney A, Asbun J, Figueroa-Valverde L, Ceballos G. Intraluminal-restricted 17 beta-estradiol exerts the same myocardial protection against ischemia/reperfusion injury in vivo as free 17 beta-estradiol. Steroids 2008; 73:528-38. [PMID: 18314151 DOI: 10.1016/j.steroids.2008.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 11/21/2007] [Accepted: 01/04/2008] [Indexed: 11/18/2022]
Abstract
Several in vitro studies show that in animals and isolated cells, 17 beta-estradiol induces cardiovascular protective effects and it has also been observed that it reduces coronary heart disease risk. However, the use of estrogens to improve or protect cardiovascular function in humans has been controversial, this might be explained by the wide variety of effects, because estrogen receptors (ER) are expressed ubiquitously. Therefore, a cell-specific targeting therapeutic approach might be necessary. 17 beta-Estradiol was coupled to a large modified dextran through an aminocaproic spacer. For this study we used intact and gonadectomized male Wistar rats, 15 days after surgical procedure. Intravascular administration of 17 beta-estradiol-macromolecular conjugate, prior to coronary reperfusion diminishes the area of damage induced by coronary ischemia reperfusion (I/R) injury on an in vivo model. This effect was observed at 17 beta-estradiol sub-physiological concentrations [0.01 nmol/L], it is mediated by luminal endothelial ER alpha activation. 17 beta-Estradiol-macromolecular conjugate decreases phosphorylation level of PKC alpha and Akt, as part of the process to induce myocardial protection against coronary I/R. We proved that the hormone-macromolecular conjugate labeled with [3H]estradiol remained confined in the intravascular space the conjugate was not internalized into organs like heart, lung or liver. It is noteworthy that the 17 beta-estradiol-macromolecular conjugate has a slow renal elimination, which might increase its pharmacological advantage. We concluded that the stimulus of endothelial estrogen receptors is enough to decrease the myocardial damage induced by coronary reperfusion.
Collapse
Affiliation(s)
- Arturo Rodriguez-Hernandez
- Seccion de Graduados, Escuela Superior de Medicina, Instituto Politecnico Nacional, 11340 Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pinna C, Cignarella A, Sanvito P, Pelosi V, Bolego C. Prolonged Ovarian Hormone Deprivation Impairs the Protective Vascular Actions of Estrogen Receptor αAgonists. Hypertension 2008; 51:1210-7. [DOI: 10.1161/hypertensionaha.107.106807] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The vascular consequences of estrogen treatment may be driven by its initiation timing. We tested the hypothesis that the duration of ovarian hormone deprivation before estrogen reintroduction affects the role of estrogen as mediator of endothelial function and vascular relaxation in nondiseased vessels. Rats were ovariectomized and implanted with 17β-estradiol (E
2
) or oil capsules 1, 4, and 8 months after surgery. After the longest hypoestrogenicity period, acetylcholine-mediated aortic relaxation was attenuated and insensitive to E
2
administration despite endothelial integrity. Whereas no rapid vasorelaxant responses were elicited by an estrogen receptor (ER) β–selective agonist, responses to E
2
and an ERα selective agonist waned postovariectomy at any given time and were restored by E
2
treatment after 1 and 4 months but not 8 months postovariectomy. Accordingly, endothelial ERα mRNA and protein expression declined ≈6-fold after prolonged hypoestrogenicity and was restored by estrogen replacement starting 1 month but not 8 months postovariectomy. Furthermore, the amount of active phosphorylated endothelial NO synthase rose significantly after E
2
replacement after 1 and 4 months but not 8 months postovariectomy. The present findings document that the functional impairment of the ERα/endothelial NO synthase signaling network after an extended period of hypoestrogenicity was not restored by E
2
administration, providing experimental support to early initiation of estrogen replacement with preferential ERα targeting to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Christian Pinna
- From the Department of Pharmacological Sciences (C.P., A.C., P.S., V.P., C.B.), University of Milan, Milan, Italy; and the Department of Pharmacology and Anaesthesiology (A.C., P.S., V.P., C.B.), University of Padova, Padova, Italy
| | - Andrea Cignarella
- From the Department of Pharmacological Sciences (C.P., A.C., P.S., V.P., C.B.), University of Milan, Milan, Italy; and the Department of Pharmacology and Anaesthesiology (A.C., P.S., V.P., C.B.), University of Padova, Padova, Italy
| | - Paola Sanvito
- From the Department of Pharmacological Sciences (C.P., A.C., P.S., V.P., C.B.), University of Milan, Milan, Italy; and the Department of Pharmacology and Anaesthesiology (A.C., P.S., V.P., C.B.), University of Padova, Padova, Italy
| | - Valeria Pelosi
- From the Department of Pharmacological Sciences (C.P., A.C., P.S., V.P., C.B.), University of Milan, Milan, Italy; and the Department of Pharmacology and Anaesthesiology (A.C., P.S., V.P., C.B.), University of Padova, Padova, Italy
| | - Chiara Bolego
- From the Department of Pharmacological Sciences (C.P., A.C., P.S., V.P., C.B.), University of Milan, Milan, Italy; and the Department of Pharmacology and Anaesthesiology (A.C., P.S., V.P., C.B.), University of Padova, Padova, Italy
| |
Collapse
|
33
|
Fadini GP, de Kreutzenberg S, Albiero M, Coracina A, Pagnin E, Baesso I, Cignarella A, Bolego C, Plebani M, Nardelli GB, Sartore S, Agostini C, Avogaro A. Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens. Arterioscler Thromb Vasc Biol 2008; 28:997-1004. [PMID: 18276910 DOI: 10.1161/atvbaha.107.159558] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Endothelial progenitor cells (EPCs) participate in vascular homeostasis and angiogenesis. The aim of the present study was to explore EPC number and function in relation to cardiovascular risk, gender, and reproductive state. METHODS AND RESULTS As measured by flow-cytometry in 210 healthy subjects, CD34(+)KDR(+) EPCs were higher in fertile women than in men, but were not different between postmenopausal women and age-matched men. These gender gradients mirrored differences in cardiovascular profile, carotid intima-media thickness, and brachial artery flow-mediated dilation. Moreover, EPCs and soluble c-kit ligand varied in phase with menstrual cycle in ovulatory women, suggesting cyclic bone marrow mobilization. Experimentally, hysterectomy in rats was followed by an increase in circulating EPCs. EPCs cultured from female healthy donors were more clonogenic and adherent than male EPCs. Treatment with 17beta-estradiol stimulated EPC proliferation and adhesion, via estrogen receptors. Finally, we show that the proangiogenic potential of female EPCs was higher than that of male EPCs in vivo. CONCLUSIONS EPCs are mobilized cyclically in fertile women, likely to provide a pool of cells for endometrial homeostasis. The resulting higher EPC levels in women than in men reflect the cardiovascular profile and could represent one mechanism of protection in the fertile female population.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Clinical and Experimental Medicine, University of Padova Medical School, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pico-Alfonso MA, Mastorci F, Ceresini G, Ceda GP, Manghi M, Pino O, Troisi A, Sgoifo A. Acute psychosocial challenge and cardiac autonomic response in women: the role of estrogens, corticosteroids, and behavioral coping styles. Psychoneuroendocrinology 2007; 32:451-63. [PMID: 17425957 DOI: 10.1016/j.psyneuen.2007.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/20/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
Theoretical statements, as well as clinical and experimental data, suggest that the amplitude of cardiovascular reactivity to acute stressors can be a good predictor of preclinical and clinical cardiovascular states. The aim of the present study is to investigate the role of estrogens, the hypothalamic-pituitary-adrenocortical activity, and the behavioral profile in individual cardiac autonomic reactivity to brief laboratory stressors in women. Thirty-six adult, healthy women were exposed to a stress interview and a mental task test, each lasting 5 min. They were assigned to two experimental groups: D4, i.e. 4 days after menses beginning (follicular phase, n=18), and D14, i.e. 14 days after menses beginning (ovulatory phase, n=18). The cardiac measurements in the baseline, stress and recovery periods consisted in heart rate (average R-R interval) and parasympathetic tone (r-MSSD) quantification, while the HPA axis activity and stress reactivity were assessed via plasma cortisol and dehydroepiandrosterone concentrations. The ethological profile during the interview was drawn by means of non-verbal behavior analysis. The cardiac, adrenocortical and behavioral responses to the two stressors were similar in groups D4 and D14, despite significantly higher estradiol levels in the latter. Subjects with higher pre-stress cortisol levels had higher heart rate and lower vagal activity in the baseline, stress and recovery phases. Women showing higher level of submission were characterized by higher heart rate acceleration and vagal withdrawal during both the interview and the recovery phase. In addition, the subjects that exhibited greater displacement during the interview were also characterized by lower heart rate increments and less pronounced vagal suppression during post-stress recovery. In conclusion, the present results do not support a clear buffering role of estrogens in cardiovascular response to acute stressors. However, they confirm that baseline HPA axis activity can be predictive of cardiac autonomic activity and stress responsiveness. They also highlight the modulating role of the individual style of behavioral coping in cardiac sympathovagal stress reactivity. Therefore, the objective assessment of the individual behavioral profile via the analysis of non-verbal communication patterns might represent a powerful tool for identifying subjects with higher risk of cardiac events.
Collapse
Affiliation(s)
- M Angeles Pico-Alfonso
- Department of Evolutionary and Functional Biology, Stress Physiology Laboratory, University of Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Xing D, Feng W, Miller AP, Weathington NM, Chen YF, Novak L, Blalock JE, Oparil S. Estrogen modulates TNF-α-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-β activation. Am J Physiol Heart Circ Physiol 2007; 292:H2607-12. [PMID: 17237237 DOI: 10.1152/ajpheart.01107.2006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have previously shown that 17β-estradiol (E2) attenuates responses to endoluminal injury of the rat carotid artery, at least in part, by decreasing inflammatory mediator expression and neutrophil infiltration into the injured vessel, with a major effect on the neutrophil-specific chemokine cytokine-induced neutrophil chemoattractant (CINC)-2β. Current studies tested the hypothesis that activated rat aortic smooth muscle cells (RASMCs) express these same inflammatory mediators and induce neutrophil migration in vitro and that E2 inhibits these processes by an estrogen receptor (ER)-dependent mechanism. Quiescent RASMCs treated with E2, the ERα-selective agonist propyl pyrazole triol (PPT), the ERβ-selective agonist diarylpropiolnitrile (DPN), or vehicle for 24 h were stimulated with tumor necrosis factor (TNF)-α and processed for real-time RT-PCR, ELISA, or chemotaxis assays 6 h later. TNF-α stimulated and E2 attenuated mRNA expression of inflammatory mediators, including P-selectin, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, monocyte chemoattractant protein (MCP)-1, and CINC-2β. DPN dose dependently attenuated TNF-α-induced mRNA expression of CINC-2β, whereas PPT had no effect. The anti-inflammatory effects of DPN and E2 were blocked by the nonselective ER-inhibitor ICI-182,780. ELISA confirmed the TNF-α-induced increase and E2-induced inhibition of CINC-2β protein secretion. TNF-α treatment of RASMCs produced a twofold increase in neutrophil chemotactic activity of conditioned media; E2 and DPN treatment markedly inhibited this effect. E2 inhibits activated RASMC proinflammatory mediator expression and neutrophil chemotactic activity through an ERβ-dependent mechanism.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/pharmacology
- Aorta/cytology
- Aorta/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Chemotaxis, Leukocyte/drug effects
- Dose-Response Relationship, Drug
- Estradiol/analogs & derivatives
- Estradiol/metabolism
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Estrogen Receptor beta/agonists
- Estrogen Receptor beta/metabolism
- Estrogens/metabolism
- Estrogens/pharmacology
- Female
- Fulvestrant
- Gene Expression/drug effects
- HL-60 Cells
- Humans
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/prevention & control
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neutrophils/drug effects
- Neutrophils/metabolism
- Nitriles/pharmacology
- RNA, Messenger/metabolism
- Rats
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Dongqi Xing
- Department of Medicine, University of Alabama at Birmingham, UAB Station, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Khalil RA. Sex hormones, vascular function and the outcome of hormone replacement therapy in cardiovascular disease. Future Cardiol 2007; 3:283-300. [DOI: 10.2217/14796678.3.3.283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular disease is more common in men and post-menopausal women than premenopausal women, suggesting that female sex hormones have vascular benefits. Cytosolic/nuclear estrogen and progesterone receptors mediate genomic transcriptional effects that stimulate endothelial cell growth and inhibit smooth muscle proliferation. Sex hormone receptors on the plasma membrane trigger nongenomic stimulation of endothelium-dependent nitric oxide–cyclic (c)GMP, prostacyclin–cAMP and hyperpolarizing vascular relaxation pathways, as well as inhibition of [Ca2+]i, protein kinase C and Rho-kinase-dependent mechanisms of smooth muscle contraction. Despite the vasodilator effects of sex hormones, the Heart and Estrogen/progestin Replacement Study (HERS), HERS-II and Women’s Health Initiative clinical trials have shown minimal benefits of hormone replacement therapy (HRT) in post-menopausal cardiovascular disease. The prospect of HRT relies on further mechanistic analysis of the vascular effects of natural sex hormones and phytoestrogens, and the identification of specific estrogen receptor modulators. Androgens have vascular effects, and modulators of the estrogen/testosterone ratio could provide better HRT combinations. The timing/duration and the type, dose and route of administration of HRT should be customized according to the subject’s age and pre-existing cardiovascular condition, thereby enhancing the outcome of HRT in cardiovascular disease.
Collapse
Affiliation(s)
- Raouf A Khalil
- Harvard Medical School, Brigham and Women's Hospital, Division of Vascular Surgery, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
37
|
Traupe T, Stettler CD, Li H, Haas E, Bhattacharya I, Minotti R, Barton M. Distinct roles of estrogen receptors alpha and beta mediating acute vasodilation of epicardial coronary arteries. Hypertension 2007; 49:1364-70. [PMID: 17470727 DOI: 10.1161/hypertensionaha.106.081554] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study investigated the contribution of estrogen receptors (ERs) alpha and beta for epicardial coronary artery function, vascular NO bioactivity, and superoxide (O(2)(-)) formation. Porcine coronary rings were suspended in organ chambers and precontracted with prostaglandin F(2alpha) to determine direct effects of the selective ER agonists 4,4',4''-(4-propyl-[(1)H]pyrazole-1,3,5-triyl)tris-phenol (PPT) or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) or the nonselective ER agonist 17beta-estradiol. Indirect effects on contractility to U46619 and relaxation to bradykinin were assessed and effects on NO, nitrite, and O(2)(-) formation were measured in cultured cells. Within 5 minutes, selective ERalpha activation by PPT, but not 17beta-estradiol or the ERbeta agonist DPN, caused rapid, NO-dependent, and endothelium-dependent relaxation (49+/-5%; P<0.001 versus ethanol). PPT also caused sustained endothelium- and NO-independent vasodilation similar to 17beta-estradiol after 60 minutes (72+/-3%; P<0.001 versus ethanol). DPN induced endothelium-dependent NO-independent relaxation via endothelium-dependent hyperpolarization (40+/-4%; P<0.01 versus ethanol). 17beta-Estradiol and PPT, but not DPN, attenuated the responses to U46619 and bradykinin. All of the ER agonists increased NO and nitrite formation in vascular endothelial but not smooth muscle cells and attenuated vascular smooth muscle cell O(2)(-) formation (P<0.001). ERalpha activation had the most potent effects on both nitrite formation and inhibiting O(2)(-) (P<0.05). These data demonstrate novel and differential mechanisms by which ERalpha and ERbeta activation control coronary artery vasoreactivity in males and females and regulate vascular NO and O(2)(-) formation. The findings indicate that coronary vascular effects of sex hormones differ with regard to affinity to ERalpha and ERbeta, which will contribute to beneficial and adverse effects of hormone replacement therapy.
Collapse
Affiliation(s)
- Tobias Traupe
- University Hospital Zürich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
38
|
Wu-Wong JR. The potential for vitamin D receptor activation in cardiovascular research. Expert Opin Investig Drugs 2007; 16:407-11. [PMID: 17371189 DOI: 10.1517/13543784.16.4.407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vitamin D(3) needs to be activated into 1,25-dihydroxyvitamin D(3) in order to bind to vitamin D receptor (VDR) for functional responses. Studies in the past have focussed on the role of VDR in mineral homeostasis, with VDR activators used mainly to treat hyperparathyroidism secondary to chronic kidney disease. Chronic kidney disease patients encounter a higher risk of cardiovascular disease than the general public and experience an extremely high cardiovascular-related mortality rate. Recent clinical observations show that VDR therapy reduces mortality and morbidity in chronic kidney disease. Preclinical studies demonstrate that VDR is likely to be involved in the cardiovascular pathophysiology.
Collapse
|
39
|
Pinna C, Bolego C, Sanvito P, Pelosi V, Baetta R, Corsini A, Gaion RM, Cignarella A. Raloxifene elicits combined rapid vasorelaxation and long-term anti-inflammatory actions in rat aorta. J Pharmacol Exp Ther 2006; 319:1444-51. [PMID: 16943257 DOI: 10.1124/jpet.106.106062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies reported the ability of raloxifene to acutely relax arterial and venous vessels, but the underlying mechanisms are controversial. Anti-inflammatory effects of the drug have been reported in nonvascular tissues. Therefore, the aim of this study was to investigate the nature of short- and long-term effects of raloxifene on selected aspects of vascular function in rat aorta. Isometric tension changes in response to raloxifene were recorded in aortic rings from ovariectomized female rats that underwent estrogen replacement, whereas long-term experiments were performed in isolated aortic smooth muscle cells (SMCs). Raloxifene (0.1 pM-0.1 microM) induced acute vasorelaxation through endothelium- and nitric oxide (NO)-dependent, prostanoid-independent mechanisms. The relaxant response to raloxifene was significantly weaker than that to 17beta-estradiol and was sensitive to neither the nonselective estrogen receptor antagonist ICI 182,780 [7,17-[9[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol] nor a selective estrogen receptor (ER) alpha antagonist. This rapid vasorelaxant effect was retained in aortic rings from rats treated with 0.1 mg/kg, but not 1 mg/kg, lipopolysaccharide, 4 h before sacrifice. In cultured aortic SMCs, raloxifene treatment (1 nM-1 microM) for 24 h reduced inducible NO synthase activation in response to cytokines. This effect was prevented by the selective ERalpha antagonist and was associated with up-regulation of ERalpha protein levels, which dropped markedly upon cytokine stimulation. These findings illustrate the relevance of classic ER-dependent pathways to the vascular anti-inflammatory effects rather than to the nongenomic vasorelaxation induced by raloxifene and may assist in the design of novel ER isoform-selective estrogen-receptor modulators targeted to the vascular system.
Collapse
Affiliation(s)
- Christian Pinna
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|