1
|
Koutsos A, Griffin BA, Antoni R, Ozen E, Sellem L, Wong G, Ayyad H, Fielding BA, Robertson MD, Swann J, Jackson KG, Lovegrove JA. Variation of LDL cholesterol in response to the replacement of saturated with unsaturated fatty acids: a nonrandomized, sequential dietary intervention; the Reading, Imperial, Surrey, Saturated fat Cholesterol Intervention ("RISSCI"-1) study. Am J Clin Nutr 2024; 120:854-863. [PMID: 39111551 PMCID: PMC11473524 DOI: 10.1016/j.ajcnut.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Serum low density lipoprotein (LDL) cholesterol shows marked interindividual variation in response to the replacement of saturated fatty acids (SFAs) with unsaturated fatty acids (UFAs). OBJECTIVES To demonstrate the efficacy of United Kingdom guidelines for exchanging dietary SFAs for UFAs, to reduce serum LDL cholesterol and other cardiovascular disease (CVD) risk factors, and to identify determinants of the variability in LDL cholesterol response. METHODS Healthy males (n = 109, mean ± SD age 48 ± 11 y; BMI 25.1 ± 3.3 kg/m2), consumed a higher-SFA/lower-UFA diet for 4 wk, followed by an isoenergetic, lower-SFA/higher-UFA diet for 4 wk (achieved intakes SFA:UFA as % total energy 19.1:14.8 and 8.9:24.5, respectively). Serum LDL cholesterol, CVD risk markers, peripheral blood mononuclear cell (PBMC) gene expression, and dietary intakes were assessed at baseline and the end of each diet. RESULTS Transition from a higher-SFA/lower-UFA to a lower-SFA/higher-UFA diet significantly reduced fasting blood lipids: LDL cholesterol (-0.50 mmol/L; 95% confidence interval [CI]: -0.58, -0.42), high-density lipoprotein (HDL) cholesterol (-0.11 mmol/L; 95% CI: -0.14, -0.08), and total cholesterol (TC) (-0.65 mmol/L; 95% CI:-0.75, -0.55). The dietary exchange also reduced apolipoprotein (apo)B, TC:HDL cholesterol ratio, non-HDL cholesterol, E-selectin (P < 0.0001), and LDL subfraction composition (cholesterol [LDL-I and LDL-II], apoB100 [LDL-I and LDL-II], and TAG [LDL-II]) (P < 0.01). There was also an increase in plasma biomarkers of cholesterol intestinal absorption (β-sitosterol, campesterol, cholestanol), and synthesis (desmosterol) (P < 0.0001) and fold change in PBMC LDL-receptor mRNA expression relative to the higher-SFA/lower-UFA diet (P = 0.035). Marked interindividual variation in the change in serum LDL cholesterol response (-1.39 to +0.77 mmol/L) to this dietary exchange was observed, with 33.7% of this variation explained by serum LDL cholesterol before the lower-SFA/higher-UFA diet and reduction in dietary SFA intake (adjusted R2 27% and 6.7%, respectively). APOE genotype was unrelated to serum LDL cholesterol response to SFA. CONCLUSIONS These findings support the efficacy of United Kingdom SFA dietary guidelines for the overall lowering of serum LDL cholesterol but showed marked variation in LDL cholesterol response. Further identification of the determinants of this variation will facilitate targeting and increasing the efficacy of these guidelines. The RISSCI-1 study was registered with ClinicalTrials.Gov (No. NCT03270527).
Collapse
Affiliation(s)
- Athanasios Koutsos
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Bruce A Griffin
- Department of Nutrition, Food and Exercise Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Rona Antoni
- Department of Nutrition, Food and Exercise Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ezgi Ozen
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Laury Sellem
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Gloria Wong
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Hasnaa Ayyad
- Department of Nutrition, Food and Exercise Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Barbara A Fielding
- Department of Nutrition, Food and Exercise Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - M D Robertson
- Department of Nutrition, Food and Exercise Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jonathan Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, Institute for Food, Nutrition and Health, and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom.
| |
Collapse
|
2
|
Zubirán R, Cruz-Bautista I, Aguilar-Salinas CA. Interaction Between Primary Hyperlipidemias and Type 2 Diabetes: Therapeutic Implications. Diabetes Ther 2024; 15:1979-2000. [PMID: 39080218 PMCID: PMC11330433 DOI: 10.1007/s13300-024-01626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/18/2024] Open
Abstract
There is a gap of knowledge about the clinical and pathophysiological implications resulting from the interaction between primary hyperlipidemias and type 2 diabetes (T2D). Most of the existing evidence comes from sub-analyses of cohorts; scant information derives from randomized clinical trials. The expected clinical implications of T2D in patients with primary hyperlipidemias is an escalation of their already high cardiovascular risk. There is a need to accurately identify patients with this dual burden and to adequately prescribe lipid-lowering therapies, with the current advancements in newer therapeutic options. This review provides an update on the interactions of primary hyperlipidemias, such as familial combined hyperlipidemia, familial hypercholesterolemia, multifactorial chylomicronemia, lipoprotein (a), and type 2 diabetes.
Collapse
Affiliation(s)
- Rafael Zubirán
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivette Cruz-Bautista
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico.
- Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico.
| |
Collapse
|
3
|
Kim M, Zheng Z. Walking the VLDL tightrope in cardiometabolic diseases. Trends Endocrinol Metab 2024:S1043-2760(24)00201-7. [PMID: 39191606 DOI: 10.1016/j.tem.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mindy Kim
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | - Ze Zheng
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, USA; Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, 53226, USA.
| |
Collapse
|
4
|
Zheng C, Andraski AB, Khoo C, Furtado JD, Sacks FM. Food Intake Suppresses ApoB Secretion and Fractional Catabolic Rates in Humans. Arterioscler Thromb Vasc Biol 2024; 44:435-451. [PMID: 38126174 DOI: 10.1161/atvbaha.123.319769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Humans spend much of the day in the postprandial state. However, most research and clinical guidelines on plasma lipids pertain to blood drawn after a 12-hour fast. We aimed to study the metabolic differences of apoB lipoproteins between the fasting and postprandial states. METHODS We investigated plasma apoB metabolism using stable isotope tracers in 12 adult volunteers under fasting and continuous postprandial conditions in a randomized crossover study. We determined the metabolism of apoB in multiple lipoprotein subfractions, including light and dense VLDLs (very-low-density lipoproteins), IDLs (intermediate-density lipoproteins), and light and dense LDLs (low-density lipoproteins) that do or do not contain apoE or apoC3. RESULTS A major feature of the postprandial state is 50% lower secretion rate of triglyceride-rich lipoproteins and concurrent slowdown of their catabolism in circulation, as shown by 34% to 55% lower rate constants for the metabolic pathways of conversion by lipolysis from larger to smaller lipoproteins and direct clearance of lipoproteins from the circulation. In addition, the secretion pattern of apoB lipoprotein phenotypes was shifted from particles containing apoE and apoC3 in the fasting state to those without either protein in the postprandial state. CONCLUSIONS Overall, during the fasting state, hepatic apoB lipoprotein metabolism is activated, characterized by increased production, transport, and clearance. After food intake, endogenous apoB lipoprotein metabolism is globally reduced as appropriate to balance dietary input to maintain the supply of energy to peripheral tissues.
Collapse
Affiliation(s)
- Chunyu Zheng
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (C.Z., A.B.A., C.K., J.D.F., F.M.S.)
- National Resilience, Inc, La Jolla, CA (C.Z.)
| | - Allison B Andraski
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (C.Z., A.B.A., C.K., J.D.F., F.M.S.)
| | - Christina Khoo
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (C.Z., A.B.A., C.K., J.D.F., F.M.S.)
- Ocean Spray Cranberries, Inc, Middleboro-Lakeville, MA (C.K.)
| | - Jeremy D Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (C.Z., A.B.A., C.K., J.D.F., F.M.S.)
- Biogen, Cambridge, MA (J.D.F.)
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (C.Z., A.B.A., C.K., J.D.F., F.M.S.)
| |
Collapse
|
5
|
Griffin BA, Lovegrove JA. Saturated fat and CVD: importance of inter-individual variation in the response of serum low-density lipoprotein cholesterol. Proc Nutr Soc 2024:1-11. [PMID: 38282001 DOI: 10.1017/s0029665124000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The aim of this review is to provide an overview of the history in support of the role of dietary saturated fatty acids (SFA) in the development of cardiovascular disease (CVD), and the controversy and consensus for the evidence in support of guidelines to remove and replace SFA with unsaturated fatty acids. The review will also examine the existence, origins, and implications for CVD risk of variability in serum LDL-cholesterol in response to these guidelines. While the quality of supporting evidence for the efficacy of restricting SFA on CVD risk has attracted controversy, this has helped to increase understanding of the inter-relationships between SFA, LDL-cholesterol and CVD, and reinforce confidence in this dietary recommendation. Nevertheless, there is significant inter-individual variation in serum LDL-C in response to this dietary change. The origins of this variation are multi-factorial and involve both dietary and metabolic traits. If serum biomarkers of more complex metabolic traits underlying LDL-responsiveness can be identified, this would have major implications for the targeting of these dietary guidelines to LDL-responders, to maximise the benefit to their cardiovascular health.
Collapse
Affiliation(s)
- Bruce A Griffin
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, GuildfordGU2 7XH, UK
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular & Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, ReadingRG6 6DZ, UK
| |
Collapse
|
6
|
Hepprich M, Ebrahimi F, Christ E. Dyslipidaemia and growth hormone deficiency - A comprehensive review. Best Pract Res Clin Endocrinol Metab 2023; 37:101821. [PMID: 37821339 DOI: 10.1016/j.beem.2023.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Growth hormone deficiency (GHD) is a common complication of several pituitary and hypothalamic disorders and dependent on the onset of disease. It may have severe clinical implications ranging from growth retardation in childhood-onset, to impaired lipid metabolism and increased cardiovascular risk and mortality in adults. GH effectively modulates lipid metabolism at multiple levels and GHD has been associated with an atherogenic lipid profile, that can be reversed by GH replacement therapy. Despite increasing knowledge on the effects of GH on several key enzymes regulating lipid metabolism and recent breakthroughs in the development and wider availability of recombinant GH preparations, several questions remain regarding the replacement therapy in adults with GHD. This review aims to comprehensively summarize the current knowledge on (i) lipid profile abnormalities in individuals with GHD, (ii) proposed mechanisms of action of GH on lipid and lipoprotein metabolism, and (iii) clinical implications of GH replacement therapy in individuals diagnosed with GHD.
Collapse
Affiliation(s)
- Matthias Hepprich
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland; Metabolic Centre, Cantonal Hospital Olten, Olten, Switzerland
| | - Fahim Ebrahimi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emanuel Christ
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Kashkanova AD, Blessing M, Reischke M, Baur J, Baur AS, Sandoghdar V, Van Deun J. Label-free discrimination of extracellular vesicles from large lipoproteins. J Extracell Vesicles 2023; 12:e12348. [PMID: 37489102 PMCID: PMC10366660 DOI: 10.1002/jev2.12348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 07/26/2023] Open
Abstract
Extracellular vesicles (EVs) are increasingly gaining interest as biomarkers and therapeutics. Accurate sizing and quantification of EVs remain problematic, given their nanometre size range and small scattering cross-sections. This is compounded by the fact that common EV isolation methods result in co-isolation of particles with comparable features. Especially in blood plasma, similarly-sized lipoproteins outnumber EVs to a great extent. Recently, interferometric nanoparticle tracking analysis (iNTA) was introduced as a particle analysis method that enables determining the size and refractive index of nanoparticles with high sensitivity and precision. In this work, we apply iNTA to differentiate between EVs and lipoproteins, and compare its performance to conventional nanoparticle tracking analysis (NTA). We show that iNTA can accurately quantify EVs in artificial EV-lipoprotein mixtures and in plasma-derived EV samples of varying complexity. Conventional NTA could not report on EV numbers, as it was not able to distinguish EVs from lipoproteins. iNTA has the potential to become a new standard for label-free EV characterization in suspension.
Collapse
Affiliation(s)
- Anna D. Kashkanova
- Max Planck Institute for the Science of LightErlangenGermany
- Max‐Planck‐Zentrum für Physik und MedizinErlangenGermany
| | - Martin Blessing
- Max Planck Institute for the Science of LightErlangenGermany
- Max‐Planck‐Zentrum für Physik und MedizinErlangenGermany
- Department of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Marie Reischke
- Max Planck Institute for the Science of LightErlangenGermany
| | - Jan‐Ole Baur
- Department of DermatologyUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Andreas S. Baur
- Department of DermatologyUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of LightErlangenGermany
- Max‐Planck‐Zentrum für Physik und MedizinErlangenGermany
- Department of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Jan Van Deun
- Department of DermatologyUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
8
|
Li X, Shao X, Xue Q, Kou M, Champagne CM, Koseva BS, Heianza Y, Grundberg E, Bazzano LA, Bray GA, Sacks FM, Qi L. DNA Methylation Near CPT1A and Changes in Triglyceride-rich Lipoproteins in Response to Weight-loss Diet Interventions. J Clin Endocrinol Metab 2023; 108:e542-e549. [PMID: 36800272 PMCID: PMC10348458 DOI: 10.1210/clinem/dgad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
CONTEXT Carnitine palmitoyltransferase-1A, encoded by the CPT1A gene, plays a key role in the oxidation of long-chain fatty acids in the mitochondria and may be important in triglyceride metabolism. Previous work has shown that high fat intake was negatively associated with CPT1A methylation and positively associated with CPT1A expression. OBJECTIVE We aim to investigate the association of DNA methylation (DNAm) at the CPT1A gene with reductions in triglycerides and triglyceride-rich lipoproteins (TRLs) in response to weight-loss diet interventions. METHODS The current study included 538 White participants, who were randomly assigned to 1 of 4 diets varying in macronutrient components. We defined the regional DNAm at CPT1A as the average methylation level over CpGs within 500 bp of the 3 triglyceride-related DNAm sites. RESULTS Dietary fat intake significantly modified the association between baseline DNAm at CPT1A and 2-year changes in total plasma triglycerides, independent of concurrent weight loss. Among participants assigned to a low-fat diet, a higher regional DNAm level at CPT1A was associated with a greater reduction in total plasma triglycerides at 2 years (P = .01), compared with those assigned to a high-fat diet (P = .64) (P interaction = .018). Further investigation on lipids and apolipoproteins in very low-density lipoprotein (VLDL) revealed similar interaction patterns for 2-year changes in VLDL-triglycerides, VLDL-cholesterol, and VLDL-apolipoprotein B (P interaction = .009, .002, and .016, respectively), but not for VLDL-apoC-III (P interaction = .36). CONCLUSION Participants with a higher regional DNAm level at CPT1A benefit more in long-term improvement in triglycerides, particularly in the TRLs and related apolipoproteins when consuming a low-fat weight-loss diet.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Xiaojian Shao
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario K1C 0R6, Canada
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Minghao Kou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Catherine M Champagne
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Boryana S Koseva
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Elin Grundberg
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Lydia A Bazzano
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
9
|
Gianazza E, Zoanni B, Mallia A, Brioschi M, Colombo GI, Banfi C. Proteomic studies on apoB-containing lipoprotein in cardiovascular research: A comprehensive review. MASS SPECTROMETRY REVIEWS 2023; 42:1397-1423. [PMID: 34747518 DOI: 10.1002/mas.21747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 06/07/2023]
Abstract
The complexity of cardiovascular diseases (CVDs), which remains the leading cause of death worldwide, makes the current clinical pathway for cardiovascular risk assessment unsatisfactory, as there remains a substantial unexplained residual risk. Simultaneous assessment of a large number of plasma proteins may be a promising tool to further refine risk assessment, and lipoprotein-associated proteins have the potential to fill this gap. Technical advances now allow for high-throughput proteomic analysis in a reproducible and cost-effective manner. Proteomics has great potential to identify and quantify hundreds of candidate marker proteins in a sample and allows the translation from isolated lipoproteins to whole plasma, thus providing an individual multiplexed proteomic fingerprint. This narrative review describes the pathophysiological roles of atherogenic apoB-containing lipoproteins and the recent advances in their mass spectrometry-based proteomic characterization and quantitation for better refinement of CVD risk assessment.
Collapse
Affiliation(s)
| | | | - Alice Mallia
- Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | | | | | | |
Collapse
|
10
|
Klobučar I, Klobučar L, Lechleitner M, Trbušić M, Pregartner G, Berghold A, Habisch H, Madl T, Frank S, Degoricija V. Associations between Endothelial Lipase and Apolipoprotein B-Containing Lipoproteins Differ in Healthy Volunteers and Metabolic Syndrome Patients. Int J Mol Sci 2023; 24:10681. [PMID: 37445857 PMCID: PMC10341652 DOI: 10.3390/ijms241310681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
The association between serum levels of endothelial lipase (EL) and the serum levels and composition of apolipoprotein B (apoB)-containing lipoproteins in healthy subjects and patients with metabolic syndrome (MS) remained unexplored. Therefore, in the present study, we determined the serum levels and lipid content of apoB-containing lipoproteins using nuclear magnetic resonance (NMR) spectroscopy and examined their association with EL serum levels in healthy volunteers (HVs) and MS patients. EL was significantly negatively correlated with the serum levels of cholesterol in large very low-density lipoprotein (VLDL) particles, as well as with total-cholesterol-, free-cholesterol-, triglyceride-, and phospholipid-contents of VLDL and intermediate-density lipoprotein particles in MS patients but not in HVs. In contrast, EL serum levels were significantly positively correlated with the serum levels of apoB, triglycerides, and phospholipids in large low-density lipoprotein particles in HVs but not in MS patients. EL serum levels as well as the serum levels and lipid content of the majority of apoB-containing lipoprotein subclasses were markedly different in MS patients compared with HVs. We conclude that EL serum levels are associated with the serum levels and lipid content of apoB-containing lipoproteins and that these associations are markedly affected by MS.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
| | - Lucija Klobučar
- Department of Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia;
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
| | - Tobias Madl
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Laupsa-Borge J, Grytten E, Bohov P, Bjørndal B, Strand E, Skorve J, Nordrehaug JE, Berge RK, Rostrup E, Mellgren G, Dankel SN, Nygård OK. Sex-specific responses in glucose-insulin homeostasis and lipoprotein-lipid components after high-dose supplementation with marine n-3 PUFAs in abdominal obesity: a randomized double-blind crossover study. Front Nutr 2023; 10:1020678. [PMID: 37404855 PMCID: PMC10315503 DOI: 10.3389/fnut.2023.1020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Background Clinical studies on effects of marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) on lipoprotein-lipid components and glucose-insulin homeostasis have shown conflicting results, which may partly be explained by differential responses in females and males. However, we have lacked data on sexual dimorphism in the response of cardiometabolic risk markers following increased consumption of n-3 or n-6 PUFAs. Objective To explore sex-specific responses after n-3 (EPA + DHA) or n-6 (LA) PUFA supplementation on circulating lipoprotein subfractions, standard lipids, apolipoproteins, fatty acids in red blood cell membranes, and markers of glycemic control/insulin sensitivity among people with abdominal obesity. Methods This was a randomized double-blind crossover study with two 7-week intervention periods separated by a 9-week washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we measured lipoprotein particle subclasses, standard lipids, apolipoproteins, fatty acid profiles, and markers of glycemic control/insulin sensitivity. Results The between-sex difference in relative change scores was significant after n-3 for total high-density lipoproteins (females/males: -11%*/-3.3%, p = 0.036; *: significant within-sex change), high-density lipoprotein particle size (+2.1%*/-0.1%, p = 0.045), and arachidonic acid (-8.3%*/-12%*, p = 0.012), and after n-6 for total (+37%*/+2.1%, p = 0.041) and small very-low-density lipoproteins (+97%*/+14%, p = 0.021), and lipoprotein (a) (-16%*/+0.1%, p = 0.028). Circulating markers of glucose-insulin homeostasis differed significantly after n-3 for glucose (females/males: -2.1%/+3.9%*, p = 0.029), insulin (-31%*/+16%, p < 0.001), insulin C-peptide (-12%*/+13%*, p = 0.001), homeostasis model assessment of insulin resistance index 2 (-12%*/+14%*, p = 0.001) and insulin sensitivity index 2 (+14%*/-12%*, p = 0.001), and quantitative insulin sensitivity check index (+4.9%*/-3.4%*, p < 0.001). Conclusion We found sex-specific responses after high-dose n-3 (but not n-6) supplementation in circulating markers of glycemic control/insulin sensitivity, which improved in females but worsened in males. This may partly be related to the sex differences we observed in several components of the lipoprotein-lipid profile following the n-3 intervention. Clinical trial registration https://clinicaltrials.gov/, identifier [NCT02647333].
Collapse
Affiliation(s)
- Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rolf K. Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon N. Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar K. Nygård
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
12
|
Lahelma M, Qadri S, Ahlholm N, Porthan K, Ruuth M, Juuti A, Orešič M, Hyötyläinen T, Öörni K, Yki-Järvinen H. The human liver lipidome is significantly related to the lipid composition and aggregation susceptibility of low-density lipoprotein (LDL) particles. Atherosclerosis 2022; 363:22-29. [PMID: 36455305 DOI: 10.1016/j.atherosclerosis.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The susceptibility of low-density lipoprotein (LDL) to aggregation predicts atherosclerotic cardiovascular disease. However, causes of interindividual variation in LDL lipid composition and aggregation susceptibility remain unclear. We examined whether the lipid composition and aggregation susceptibility of LDL reflect the lipid composition of the human liver. METHODS Liver biopsies and blood samples for isolation of LDL particles were obtained from 40 obese subjects (BMI 45.9 ± 6.1 kg/m2, age 43 ± 8 years). LDL was isolated using sequential ultracentrifugation and lipidomic analyses of liver and LDL samples were determined using ultra-high performance liquid chromatography-mass spectrometry. LDL aggregation susceptibility ex vivo was analyzed by inducing aggregation by human recombinant secretory sphingomyelinase and following aggregate formation. RESULTS The composition (acyl carbon number and double bond count) of hepatic triglycerides, phosphatidylcholines, and sphingomyelins (SMs) was closely associated with that of LDL particles. Hepatic dihydroceramides and ceramides were positively correlated with concentrations of the corresponding SM species in LDL as well with LDL aggregation. These relationships remained statistically significant after adjustment for age, sex, and body mass index. CONCLUSIONS Lipid composition of LDL reflects that of the human liver in obese patients. Changes in hepatic sphingolipid metabolism may contribute to interindividual variation of LDL lipid composition and susceptibility to aggregation.
Collapse
Affiliation(s)
- Mari Lahelma
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Sami Qadri
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Noora Ahlholm
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Porthan
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
13
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Atherogenic Lipoproteins for the Statin Residual Cardiovascular Disease Risk. Int J Mol Sci 2022; 23:ijms232113499. [PMID: 36362288 PMCID: PMC9657259 DOI: 10.3390/ijms232113499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Randomized controlled trials (RCTs) show that decreases in low-density lipoprotein cholesterol (LDL-C) by the use of statins cause a significant reduction in the development of cardiovascular disease (CVD). However, one of our previous studies showed that, among eight RCTs that investigated the effect of statins vs. a placebo on CVD development, 56–79% of patients had residual CVD risk after the trials. In three RCTs that investigated the effect of a high dose vs. a usual dose of statins on CVD development, 78–87% of patients in the high-dose statin arms still had residual CVD risk. The risk of CVD development remains even when statins are used to strongly reduce LDL-C, and this type of risk is now regarded as statin residual CVD risk. Our study shows that elevated triglyceride (TG) levels, reduced high-density lipoprotein cholesterol (HDL-C), and the existence of obesity/insulin resistance and diabetes may be important metabolic factors that determine statin residual CVD risk. Here, we discuss atherogenic lipoproteins that were not investigated in such RCTs, such as lipoprotein (a) (Lp(a)), remnant lipoproteins, malondialdehyde-modified LDL (MDA-LDL), and small-dense LDL (Sd-LDL). Lp(a) is under strong genetic control by apolipoprotein (a), which is an LPA gene locus. Variations in the LPA gene account for 91% of the variability in the plasma concentration of Lp(a). A meta-analysis showed that genetic variations at the LPA locus are associated with CVD events during statin therapy, independent of the extent of LDL lowering, providing support for exploring strategies targeting circulating concentrations of Lp(a) to reduce CVD events in patients receiving statins. Remnant lipoproteins and small-dense LDL are highly associated with high TG levels, low HDL-C, and obesity/insulin resistance. MDA-LDL is a representative form of oxidized LDL and plays important roles in the formation and development of the primary lesions of atherosclerosis. MDA-LDL levels were higher in CVD patients and diabetic patients than in the control subjects. Furthermore, we demonstrated the atherogenic properties of such lipoproteins and their association with CVD as well as therapeutic approaches.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Correspondence: ; Tel.: +81-473-72-3501; Fax: +81-473-72-1858
| | | | | | | |
Collapse
|
14
|
Degoricija V, Klobučar I, Potočnjak I, Dokoza Terešak S, Vidović L, Pregartner G, Berghold A, Habisch H, Madl T, Frank S. Cholesterol Content of Very-Low-Density Lipoproteins Is Associated with 1-Year Mortality in Acute Heart Failure Patients. Biomolecules 2022; 12:biom12101542. [PMID: 36291751 PMCID: PMC9599569 DOI: 10.3390/biom12101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the relationship between the extent of metabolic derangement and the disease severity in heart failure, we hypothesized that the lipid content of very-low-density lipoprotein (VLDL) may have prognostic value for 1 year mortality in acute heart failure (AHF). Baseline serum levels of VLDL cholesterol (VLDL-C), VLDL triglycerides (VLDL-TG), VLDL phospholipids (VLDL-PL), and VLDL apolipoprotein B (VLDL-apoB) were measured using NMR spectroscopy. We calculated the ratios of the respective VLDL lipids and VLDL apoB (VLDL-C/VLDL-apoB, VLDL-TG/VLDL-apoB, and VLDL-PL/VLDL-apoB), as estimators of the cholesterol, triglyceride, and phospholipid content of VLDL particles and tested their association with mortality. Out of 315 AHF patients, 118 (37.5%) patients died within 1 year after hospitalization for AHF. Univariable Cox regression analyses revealed a significant inverse association of VLDL-C/VLDL-apoB (hazard ratio (HR) 0.43, 95% confidence interval (CI) 0.29−0.64, p < 0.001), VLDL-TG/VLDL-apoB (HR 0.79, 95% CI 0.71−0.88, p < 0.001), and VLDL-PL/VLDL-apoB (HR 0.37, 95% CI 0.25−0.56, p < 0.001) with 1 year mortality. Of the tested parameters, only VLDL-C/VLDL-apoB remained significant after adjustment for age and sex, as well as other clinical and laboratory parameters that showed a significant association with 1 year mortality in the univariable analyses. We conclude that cholesterol content of circulating VLDL (VLDL-C/VLDL-apoB) might be of prognostic value in AHF.
Collapse
Affiliation(s)
- Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Ines Potočnjak
- Institute for Clinical Medical Research and Education, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Sanda Dokoza Terešak
- Department of Emergency Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Luka Vidović
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Correspondence:
| |
Collapse
|
15
|
Molecular Biological and Clinical Understanding of the Statin Residual Cardiovascular Disease Risk and Peroxisome Proliferator-Activated Receptor Alpha Agonists and Ezetimibe for Its Treatment. Int J Mol Sci 2022; 23:ijms23073418. [PMID: 35408799 PMCID: PMC8998547 DOI: 10.3390/ijms23073418] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022] Open
Abstract
Several randomized, double blind, placebo-controlled trials (RCTs) have demonstrated that low-density lipoprotein cholesterol (LDL-C) lowering by using statins, including high-doses of strong statins, reduced the development of cardiovascular disease (CVD). However, among the eight RCTs which investigated the effect of statins vs. placebos on the development of CVD, 56-79% of patients had the residual CVD risk after the trials. In three RCTs which investigated the effect of a high dose vs. a usual dose of statins on the development of CVD, 78-87% of patients in the high-dose statin arms still had the CVD residual risk after the trials. An analysis of the characteristics of patients in the RCTs suggests that elevated triglyceride (TG) and reduced high-density lipoprotein cholesterol (HDL-C), the existence of obesity/insulin resistance, and diabetes may be important metabolic factors which determine the statin residual CVD risk. To understand the association between lipid abnormalities and the development of atherosclerosis, we show the profile of lipoproteins and their normal metabolism, and the molecular and biological mechanisms for the development of atherosclerosis by high TG and/or low HDL-C in insulin resistance. The molecular biological mechanisms for the statin residual CVD risk include an increase of atherogenic lipoproteins such as small dense LDL and remnants, vascular injury and remodeling by inflammatory cytokines, and disturbed reverse cholesterol transport. Peroxisome proliferator-activated receptor alpha (PPARα) agonists improve atherogenic lipoproteins, reverse the cholesterol transport system, and also have vascular protective effects, such as an anti-inflammatory effect and the reduction of the oxidative state. Ezetimibe, an inhibitor of intestinal cholesterol absorption, also improves TG and HDL-C, and reduces intestinal cholesterol absorption and serum plant sterols, which are increased by statins and are atherogenic, possibly contributing to reduce the statin residual CVD risk.
Collapse
|
16
|
Bonilha I, Hajduch E, Luchiari B, Nadruz W, Le Goff W, Sposito AC. The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites 2021; 11:metabo11120807. [PMID: 34940565 PMCID: PMC8708656 DOI: 10.3390/metabo11120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus and insulin resistance feature substantial modifications of the lipoprotein profile, including a higher proportion of smaller and denser low-density lipoprotein (LDL) particles. In addition, qualitative changes occur in the composition and structure of LDL, including changes in electrophoretic mobility, enrichment of LDL with triglycerides and ceramides, prolonged retention of modified LDL in plasma, increased uptake by macrophages, and the formation of foam cells. These modifications affect LDL functions and favor an increased risk of cardiovascular disease in diabetic individuals. In this review, we discuss the main findings regarding the structural and functional changes in LDL particles in diabetes pathophysiology and therapeutic strategies targeting LDL in patients with diabetes.
Collapse
Affiliation(s)
- Isabella Bonilha
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France;
| | - Beatriz Luchiari
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
| | - Wilson Nadruz
- Cardiology Division, Cardiovascular Pathophysiology Laboratory, State University of Campinas (Unicamp), Campinas 13083-887, Brazil;
| | - Wilfried Le Goff
- Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, ICAN, Inserm, Sorbonne Université, F-75013 Paris, France;
| | - Andrei C. Sposito
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
- Correspondence: ; Tel.: +55-19-3521-7098; Fax: +55-19-3289-410
| |
Collapse
|
17
|
Syed T, Siddiqui MS. Atherogenic Dyslipidemia After Liver Transplantation: Mechanisms and Clinical Implications. Liver Transpl 2021; 27:1326-1333. [PMID: 33837670 DOI: 10.1002/lt.26069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD), particularly atherosclerosis-associated CVD, is a major cause of long-term mortality after liver transplantation (LT). The liver is central in lipid homeostasis, and changes associated with insulin resistance, weight gain, adipose tissue inflammation, and development of nonalcoholic fatty liver disease (NAFLD) after LT promote atherogenesis. These factors synergistically alter lipid homeostasis, thereby leading to the production of proatherogenic lipoproteins, which contribute to the heighted risk of CVD-associated events observed in LT recipients. Although the exact mechanism promoting this shift of a proatherogenic lipoprotein profile is currently not known, the choice of immunosuppression and preexisting metabolic risk factors (ie, NAFLD) are likely contributors. This shift in proatherogenic lipoprotein subparticles presents clinical challenges as the traditional lipid profile employed in clinical practice may not fully capture this atherogenic risk. This review focuses on lipoprotein metabolism and atherogenesis in LT recipients.
Collapse
Affiliation(s)
- Taseen Syed
- Department of Gastroenterology, Nutrition and Transplant Hepatology, Virginia Commonwealth University, Richmond, VA.,Department of Gastroenterology, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Mohammad S Siddiqui
- Department of Gastroenterology, Nutrition and Transplant Hepatology, Virginia Commonwealth University, Richmond, VA.,Hume-Lee Transplant Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
18
|
Duran EK, Pradhan AD. Triglyceride-Rich Lipoprotein Remnants and Cardiovascular Disease. Clin Chem 2021; 67:183-196. [PMID: 33409533 DOI: 10.1093/clinchem/hvaa296] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Triglycerides, cholesterol, and their metabolism are linked due to shared packaging and transport within circulating lipoprotein particles. While a case for a causal role of cholesterol-carrying low-density lipoproteins (LDLs) in atherosclerosis is well made, the body of scientific evidence for a causal role of triglyceride-rich lipoproteins (TRLs) is rapidly growing, with multiple lines of evidence (old and new) providing robust support. CONTENT This review will discuss current perspectives and accumulated evidence that an overabundance of remnant lipoproteins stemming from intravascular remodeling of nascent TRLs-chylomicrons and very low-density lipoproteins (VLDL)-results in a proatherogenic milieu that augments cardiovascular risk. Basic mechanisms of TRL metabolism and clearance will be summarized, assay methods reviewed, and pivotal clinical studies highlighted. SUMMARY Remnant lipoproteins are rendered highly atherogenic by their high cholesterol content, altered apolipoprotein composition, and physicochemical properties. The aggregate findings from multiple lines of evidence suggest that TRL remnants play a central role in residual cardiovascular risk.
Collapse
Affiliation(s)
- Edward K Duran
- Cardiovascular Division, University of Minnesota Medical Center, Minneapolis, MN
| | - Aruna D Pradhan
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Division of Cardiovascular Medicine, VA Boston Medical Center, Boston, MA
| |
Collapse
|
19
|
Khalil YA, Rabès JP, Boileau C, Varret M. APOE gene variants in primary dyslipidemia. Atherosclerosis 2021; 328:11-22. [PMID: 34058468 DOI: 10.1016/j.atherosclerosis.2021.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023]
Abstract
Apolipoprotein E (apoE) is a major apolipoprotein involved in lipoprotein metabolism. It is a polymorphic protein and different isoforms are associated with variations in lipid and lipoprotein levels and thus cardiovascular risk. The isoform apoE4 is associated with an increase in LDL-cholesterol levels and thus a higher cardiovascular risk compared to apoE3. Whereas, apoE2 is associated with a mild decrease in LDL-cholesterol levels. In the presence of other risk factors, apoE2 homozygotes could develop type III hyperlipoproteinemia (familial dysbetalipoproteinemia or FD), an atherogenic disorder characterized by an accumulation of remnants of triglyceride-rich lipoproteins. Several rare APOE gene variants were reported in different types of dyslipidemias including FD, familial combined hyperlipidemia (FCH), lipoprotein glomerulopathy and bona fide autosomal dominant hypercholesterolemia (ADH). ADH is characterized by elevated LDL-cholesterol levels leading to coronary heart disease, and due to molecular alterations in three main genes: LDLR, APOB and PCSK9. The identification of the APOE-p.Leu167del variant as the causative molecular element in two different ADH families, paved the way to considering APOE as a candidate gene for ADH. Due to non mendelian interacting factors, common genetic and environmental factors and perhaps epigenetics, clinical presentation of lipid disorders associated with APOE variants often strongly overlap. More studies are needed to determine the spectrum of APOE implication in each of the diseases, notably ADH, in order to improve clinical and genetic diagnosis, prognosis and patient management. The purpose of this review is to comment on these APOE variants and on the molecular and clinical overlaps between dyslipidemias.
Collapse
Affiliation(s)
- Yara Abou Khalil
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France; Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé (PTS), Saint-Joseph University, Beirut, Lebanon
| | - Jean-Pierre Rabès
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Laboratory of Biochemistry and Molecular Genetics, Centre Hospitalo-Universitaire Ambroise Paré, HUPIFO, AP-HP. Paris-Saclay, Boulogne-Billancourt, France; UFR Simone Veil-Santé, UVSQ, Montigny-Le-Bretonneux, France
| | - Catherine Boileau
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France; Genetics Department, AP-HP, CHU Xavier Bichat, Paris, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France.
| |
Collapse
|
20
|
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, Nordestgaard BG, Watts GF, Bruckert E, Fazio S, Ference BA, Graham I, Horton JD, Landmesser U, Laufs U, Masana L, Pasterkamp G, Raal FJ, Ray KK, Schunkert H, Taskinen MR, van de Sluis B, Wiklund O, Tokgozoglu L, Catapano AL, Ginsberg HN. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2021; 41:2313-2330. [PMID: 32052833 PMCID: PMC7308544 DOI: 10.1093/eurheartj/ehz962] [Citation(s) in RCA: 749] [Impact Index Per Article: 249.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/10/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.,National Institute for Health and Medical Research (INSERM), Paris, France
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute and UCSF, Oakland, CA 94609, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mat J Daemen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Denmark
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hopital de la Pitie, Paris, France
| | - Sergio Fazio
- Departments of Medicine, Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK.,Institute for Advanced Studies, University of Bristol, Bristol, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, IISPV, CIBERDEM, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Faculty of Medicine, Technische Universität München, Lazarettstr, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| | - Henry N Ginsberg
- Department of Medicine, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
Grytten E, Laupsa-Borge J, Bohov P, Bjørndal B, Strand E, Skorve J, Nordrehaug JE, Berge RK, Rostrup E, Mellgren G, Dankel SN, Nygård OK. Changes in lipoprotein particle subclasses, standard lipids, and apolipoproteins after supplementation with n-3 or n-6 PUFAs in abdominal obesity: A randomized double-blind crossover study. Clin Nutr 2021; 40:2556-2575. [PMID: 33933722 DOI: 10.1016/j.clnu.2021.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower circulating levels of triacylglycerols (TAGs), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) may reduce cholesterol levels. Clinical studies on effects of these dietary or supplemental PUFAs on other blood fat fractions are few and have shown conflicting results. This study aimed to determine effects of high-dose supplemental n-3 (EPA + DHA) and n-6 (LA) PUFAs from high-quality oils on circulating lipoprotein subfractions and standard lipids (primary outcomes), as well as apolipoproteins, fatty acids, and glycemic control (secondary outcomes), in females and males with abdominal obesity. METHODS This was a randomized double-blind crossover study with two 7-wk intervention periods separated by a 9-wk washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (TAG fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we investigated lipoprotein particle subclasses by nuclear magnetic resonance spectroscopy, as well as standard lipids, apolipoproteins, fatty acid profiles, and glucose and insulin. Data were analyzed by linear mixed-effects modeling with 'subjects' as the random factor. RESULTS The difference between interventions in relative change scores was among the lipoprotein subfractions significant for total very-low-density lipoproteins (VLDLs) (n-3 vs. n-6: -38%∗ vs. +16%, p < 0.001; ∗: significant within-treatment change score), large VLDLs (-58%∗ vs. -0.91%, p < 0.001), small VLDLs (-57%∗ vs. +41%∗, p < 0.001), total low-density lipoproteins (LDLs) (+5.8%∗ vs. -4.3%∗, p = 0.002), large LDLs (+23%∗ vs. -2.1%, p = 0.004), total high-density lipoproteins (HDLs) (-6.0%∗ vs. +3.7%, p < 0.001), large HDLs (+11%∗ vs. -5.3%, p = 0.001), medium HDLs (-24%∗ vs. +6.2%, p = 0.030), and small HDLs (-9.9%∗ vs. +9.6%∗, p = 0.002), and among standard lipids for TAGs (-16%∗ vs. -2.6%, p = 0.014), non-esterified fatty acids (-19%∗ vs. +5.5%, p = 0.033), and total cholesterol (-0.28% vs. -4.4%∗, p = 0.042). A differential response in relative change scores was also found for apolipoprotein (apo)B (+0.40% vs. -6.0%∗, p = 0.008), apoA-II (-6.0%∗ vs. +1.5%, p = 0.001), apoC-II (-11%∗ vs. -1.7%, p = 0.025), and apoE (+3.3% vs. -3.8%, p = 0.028). CONCLUSIONS High-dose supplementation of high-quality oils with n-3 (EPA + DHA) or n-6 (LA) PUFAs was followed by reductions in primarily TAG- or cholesterol-related markers, respectively. The responses after both interventions point to changes in the lipoprotein-lipid-apolipoprotein profile that have been associated with reduced cardiometabolic risk, also among people with TAG or LDL-C levels within the normal range. REGISTRATION Registered under ClinicalTrials.gov Identifier: NCT02647333. CLINICAL TRIAL REGISTRATION Registered at https://clinicaltrials.gov/ct2/show/NCT02647333.
Collapse
Affiliation(s)
- Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elin Strand
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Jan Erik Nordrehaug
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Simon N Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Ottar K Nygård
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
22
|
Nie G, Hou S, Zhang M, Peng W. High TG/HDL ratio suggests a higher risk of metabolic syndrome among an elderly Chinese population: a cross-sectional study. BMJ Open 2021; 11:e041519. [PMID: 33753431 PMCID: PMC7986938 DOI: 10.1136/bmjopen-2020-041519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES To investigate the relationship between triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio and metabolic syndrome in the elderly population of China, and to determine the best critical value of TG/HDL-C in higher risk of metabolic syndrome in this population. DESIGN Cross-sectional study. SETTING Our study was conducted in a community physical examination centre in Wuhan, China between 1 January 2016 and 31 December 2016. PARTICIPANTS The physical examination data from 1267 elderly people (aged over 65 years) in the community were analysed in this study. The average age of the study participants was 71.64±5.605 years. PRIMARY OUTCOME MEASURES Correlation between the TG/HDL-C ratio and metabolic syndrome; the optimum cut-off of the TG/HDL-C ratio for the prediction of metabolic syndrome. RESULTS The TG/HDL-C ratio showed a significant positive correlation with metabolic syndrome (r=0.420, p<0.001) in the elderly Chinese population. Binary logistic regression analysis showed that the TG/HDL-C ratio was an independent risk factor for metabolic syndrome (OR=3.07 (95% CI: 2.402 to 3.924), p<0.001) after adjusting for blood pressure, blood glucose, age, sex and body mass index. The receiver operating characteristic curves of TG/HDL-C ratio and metabolic syndrome showed that in the elderly population, a TG/HDL-C ratio of 1.49 can be used as the critical value for a higher risk of metabolic syndrome. At this value, the specificity and sensitivity of the measure were optimal (80.8% and 72.4%, respectively). CONCLUSION In this study, we found a significant correlation between TG/HDL-C ratio and metabolic syndrome. And high TG/HDL ratio suggests a higher risk of metabolic syndrome among an elderly Chinese population.
Collapse
Affiliation(s)
- Guqiao Nie
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, China
| | - Shukai Hou
- Community health service center, Gutian street, Qiaokou District, WuHan, HuBei, China
| | - Meng Zhang
- Department of General practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, HuBei, China
| | - Wen Peng
- Department of General Practice, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, Hubei, China
| |
Collapse
|
23
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
24
|
Janovsky CCPS, Bittencourt MS, Goulart AC, Santos RD, Blaha MJ, Jones S, Toth PP, Lotufo PA, Benseñor IM. Unfavorable Triglyceride-rich Particle Profile in Subclinical Thyroid Disease: A Cross-sectional Analysis of ELSA-Brasil. Endocrinology 2021; 162:5962089. [PMID: 33165533 DOI: 10.1210/endocr/bqaa205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 12/13/2022]
Abstract
Subclinical thyroid disorders have been associated with atherosclerosis and increased cardiovascular risk. As triglyceride-rich lipoprotein particles (TRLPs) have recently emerged as a casual factor for atherogenesis, the aim of this study was to evaluate the relationship between subclinical hypo- and hyperthyroidism and TRLP subfractions. We selected 5066 participants from the ELSA-Brasil cohort with available data of thyroid function and lipid profile measured by nuclear magnetic resonance (NMR) spectroscopy. Individuals were divided into 3 groups by baseline thyroid function (subclinical hypothyroidism, euthyroidism, and subclinical hyperthyroidism). Triglyceride-rich lipoprotein particle subfractions were analyzed through NMR spectroscopy. To examine the association between TRLP subfractions and thyroid function, we conducted univariate and multivariate linear regression models adjusted for demographic characteristics, body mass index, diabetes, smoking status, and alcohol use. Of 3304 individuals, 54% were women, with a mean age of 50.6 ± 8.7 years, 51% white, and 53% with at least a college education. Of these individuals, 92% were euthyroid, whereas 6.8% had subclinical hypothyroidism and 1.2% had subclinical hyperthyroidism. The univariate linear regression showed that very small TRLPs (P = 0.026) and very large TRLPs (P = 0.008) were statistically increased in subclinical hypothyroidism when compared with euthyroidism. In subclinical hyperthyroidism, there was a reduction in total TRLPs (P = 0.003), seemingly driven by reduced very small TRLPs (P = 0.067). The findings were confirmed when adjusted for demographic characteristics, as well as comorbidities. This study suggests that subclinical hypothyroidism is associated with very small and very large TRLPs, which are related to an unfavorable atherogenic profile. Subclinical hyperthyroidism is associated to lower very small TRLPs.
Collapse
Affiliation(s)
| | - Marcio Sommer Bittencourt
- Center for Clinical and Epidemiological Research, Hospital Universitário, Universidade de Sao Paulo, São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein & School of Medicine, Faculdade Israelita de Ciência da Saúde Albert Einstein, São Paulo, Brazil
| | - Alessandra C Goulart
- Center for Clinical and Epidemiological Research, Hospital Universitário, Universidade de Sao Paulo, São Paulo, São Paulo, Brazil
| | - Raul D Santos
- Lipid Clinic Heart Institute (InCor) University of Sao Paulo, Medical School Hospital, São Paulo, Brazil
| | - Michael J Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, Maryland, USA
| | - Steven Jones
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, Maryland, USA
| | - Peter P Toth
- Department of Preventive Cardiology, CGH Medical Center, Sterling, Illinois,, USA
| | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research, Hospital Universitário, Universidade de Sao Paulo, São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, São Paulo, Brazil
| | - Isabela M Benseñor
- Center for Clinical and Epidemiological Research, Hospital Universitário, Universidade de Sao Paulo, São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Molina-Pintor IB, Rojas-García AE, Bernal-Hernández YY, Medina-Díaz IM, González-Arias CA, Barrón-Vivanco BS. Relationship between butyrylcholinesterase activity and lipid parameters in workers occupationally exposed to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39365-39374. [PMID: 32648216 DOI: 10.1007/s11356-020-08197-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Exposure to organophosphate pesticides (OP) has been associated with the inhibition of cholinesterase enzymatic activity, such as butyrylcholinesterase (BuChE). Changes in BuChE activity have been associated with obesity, diabetes, hyperthyroidism, and metabolic syndrome. However, few studies have evaluated the effects of pesticides on both BuChE and lipid parameters. The aim of this study was to evaluate lipid parameters in urban sprayers and their association with BuChE activity. An analytical cross-sectional study was conducted in workers exposed to pesticides. The pesticide exposures were evaluated by the measurement of urinary dialkylphosphates. BuChE activity was determined spectrophotometrically in serum, and biochemical parameters were determined at a certified laboratory. Information regarding general characteristics, lifestyle, and other aspects was obtained from a structured questionnaire. The results showed variations in glucose, cholesterol, albumin, atherogenic index, creatinine, LDL, VLDL, triglycerides, and total lipids according to the level of exposure to pesticides in individuals with overweight and obesity. Furthermore, positive correlations between BuChE activity and lipid parameters were observed; these effects were associated with the body mass index. More studies are needed in human population to better elucidate the role of BuChE in lipid metabolism.
Collapse
Affiliation(s)
- Iris Betzaida Molina-Pintor
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Los Fresnos, 63190, Tepic, Nayarit, Mexico.
| |
Collapse
|
26
|
Shinohata R, Shiga Y, Miura SI, Hirohata S, Shibakura M, Ueno-Iio T, Watanabe S, Arao Y, Usui S. Low plasma apolipoprotein E-rich high-density lipoprotein levels in patients with metabolic syndrome. Clin Chim Acta 2020; 510:531-536. [DOI: 10.1016/j.cca.2020.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022]
|
27
|
Relative effect of hypertriglyceridemia on non-HDLC and apolipoprotein B as cardiovascular disease risk markers. J Clin Lipidol 2020; 14:825-836. [PMID: 33032940 DOI: 10.1016/j.jacl.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Non-high density lipoprotein cholesterol (non-HDLC) represents the cholesterol in triglyceride-rich lipoproteins (TRL) and low-density lipoproteins (LDL). Apolipoprotein B (apoB) reflects the number of TRL and LDL particles. In hypertriglyceridemia (HTG), there is triglyceride (TG) enrichment of TRLs, and also a substantial increase of cholesterol in larger TRLs that considerably augments the non-HDLC value. Therefore, in HTG, non-HDLC could increase disproportionately with respect to apoB. OBJECTIVE We aimed to compare the relative effect of the full range of mild, moderate, and severe HTG on the status of non-HDLC and apoB as cardiovascular disease (CVD) risk markers. METHODS Analysis of lipid profile data from 4347 patients in a Lipid Clinic cohort with baseline fasting lipid profiles documented prior to starting lipid-lowering medications. The correlation between non-HDLC and apoB was assessed in intervals of increasing TG. Non-HDLC and apoB were analyzed at each TG level using comparative CVD risk equivalent categories and assessed for divergence and discordance. RESULTS With increasing TG levels: (1) the correlation between non-HDLC and apoB diminished progressively, (2) non-HDLC levels increased continuously, whereas apoB levels plateaued after an initial increase up to TG of ~ 4.0-5.0 mmol/L (~354-443 mg/dL), (3) there was divergence in the stratification of non-HDLC and apoB into CVD risk equivalent categories. CONCLUSIONS Non-HDLC and apoB should not be viewed as interchangeable CVD risk markers in the presence of severe HTG. This has never been tested. With increasing HTG severity, discordance between non-HDLC and apoB can cause clinically important divergence in CVD risk categorization.
Collapse
|
28
|
Galal H, Samir A, Shehata M. Assessment of apolipoprotein B/apolipoprotein A-I ratio in non-ST segment elevation acute coronary syndrome patients. Egypt Heart J 2020; 72:27. [PMID: 32449038 PMCID: PMC7246270 DOI: 10.1186/s43044-020-00057-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Background The apolipoprotein B/apolipoprotein A-I ratio was shown to be strongly related to the risk of myocardial infarction in several large-scale studies. The current study aimed at exploring the diagnostic and short-term prognostic values of apolipoprotein B/apolipoprotein A-I ratio in patients presenting with non-ST segment elevation acute coronary syndrome. One hundred patients with non-ST segment elevation acute coronary syndrome were prospectively enrolled, in addition to a matched group of 100 patients with chronic stable angina. Serum levels of total cholesterol, low-density lipoprotein, high-density lipoprotein, triglycerides, and apolipoproteins B and A-I were quantified in both groups. Patients with non-ST segment elevation acute coronary syndrome underwent coronary angiography. Results The mean age of the study population was 57 ± 6 years, 65% being males. The non-ST segment elevation acute coronary syndrome group showed significantly unfavorable lipid profile parameters, including apolipoprotein B/apolipoprotein A-I ratio. Higher apolipoprotein B/apolipoprotein A-I ratio was associated with more coronaries showing significant stenosis and more complex lesion morphology. Receiver operating characteristic curve analysis reached an optimal cut-off value of 0.93 for diagnosis of non-ST segment elevation acute coronary syndrome (sensitivity 70% and specificity 88%) and 0.82 for predicting the presence of multi-vessel disease (sensitivity 90% and specificity 97%). Conclusion Apolipoprotein B/apolipoprotein A-I ratio is a useful tool of risk assessment in patients presenting with non-ST segment elevation acute coronary syndrome including prediction of coronary multivessel affection. Apolipoprotein B/apolipoprotein A-I ratio was shown to be strongly related to risk of myocardial infarction. Higher ratios of apolipoprotein B/apolipoprotein A-I were recorded in NSTE-ACS patients (versus stable angina patients). Higher apolipoprotein B/apolipoprotein A-I ratios were associated with more diseased coronaries and complex lesions. Apolipoprotein B/apolipoprotein A-I ratio is a useful tool for acute risk assessment in cardiac ischemic patients.
Collapse
Affiliation(s)
- Haitham Galal
- Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ayman Samir
- Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Shehata
- Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
29
|
Packard CJ, Boren J, Taskinen MR. Causes and Consequences of Hypertriglyceridemia. Front Endocrinol (Lausanne) 2020; 11:252. [PMID: 32477261 PMCID: PMC7239992 DOI: 10.3389/fendo.2020.00252] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Elevations in plasma triglyceride are the result of overproduction and impaired clearance of triglyceride-rich lipoproteins-very low-density lipoproteins (VLDL) and chylomicrons. Hypertriglyceridemia is characterized by an accumulation in the circulation of large VLDL-VLDL1-and its lipolytic products, and throughout the VLDL-LDL delipidation cascade perturbations occur that give rise to increased concentrations of remnant lipoproteins and small, dense low-density lipoprotein (LDL). The elevated risk of atherosclerotic cardiovascular disease in hypertriglyceridemia is believed to result from the exposure of the artery wall to these aberrant lipoprotein species. Key regulators of the metabolism of triglyceride-rich lipoproteins have been identified and a number of these are targets for pharmacological intervention. However, a clear picture is yet to emerge as to how to relate triglyceride lowering to reduced risk of atherosclerosis.
Collapse
Affiliation(s)
- Chris J. Packard
- Institute of Cardiovascular and Medical Sciences, Glasgow University, Glasgow, United Kingdom
- *Correspondence: Chris J. Packard
| | - Jan Boren
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
A low-carbohydrate ketogenic diet induces the expression of very-low-density lipoprotein receptor in liver and affects its associated metabolic abnormalities. NPJ Sci Food 2019; 3:25. [PMID: 31815184 PMCID: PMC6889268 DOI: 10.1038/s41538-019-0058-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
A low-carbohydrate ketogenic diet (LCKD) promotes the progression of hepatic steatosis in C57BL/6 wild-type mice, but improves the condition in leptin-deficient obese (ob/ob) mice. Here, we show a novel effect of LCKD associated with the conflicting effects on these mice. Gene expression microarray analyses showed that expression of the Vldlr gene, which encodes the very-low-density lipoprotein receptor (VLDLR), was induced in LCKD-fed ob/ob mice. Although the VLDLR is not normally expressed in the liver, the LCKD led to VLDLR expression in both ob/ob and wild-type mice. To clarify this effect on VLDL dynamics, we analyzed the lipid content of serum lipoproteins and found a marked decrease in VLDL-triglycerides only in LCKD-fed wild-type mice. Further analyses suggested that transport of triglycerides via VLDL from the liver to extrahepatic tissues was inhibited by LCKD-induced hepatic VLDLR expression, but rescued under conditions of leptin deficiency.
Collapse
|
31
|
Packard CJ. Triglyceride lowering 2.0: back to the future? Eur Heart J 2019; 41:95-98. [DOI: 10.1093/eurheartj/ehz810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
32
|
Sun CJ, McCudden C, Brisson D, Shaw J, Gaudet D, Ooi TC. Calculated Non-HDL Cholesterol Includes Cholesterol in Larger Triglyceride-Rich Lipoproteins in Hypertriglyceridemia. J Endocr Soc 2019; 4:bvz010. [PMID: 32010872 PMCID: PMC6986683 DOI: 10.1210/jendso/bvz010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Context Calculated non–high-density lipoprotein (HDL) cholesterol (non-HDLC) should selectively include cholesterol from atherogenic lipoproteins to be a reliable risk marker of cardiovascular disease. In hypertriglyceridemia (HTG), there is increased abundance of larger and less atherogenic triglyceride-rich lipoproteins (TRL), namely, larger very-low-density lipoproteins (VLDL), and chylomicrons. Objective We aim to demonstrate that serum triglyceride (TG) level has a substantial impact on non-HDLC’s ability to represent cholesterol from atherogenic lipoproteins, even though TG is not part of the calculation for non-HDLC. Design Analysis of lipid profile data Settings Lipid Clinic patient cohort, and Biochemistry Laboratory patient cohort Patients or Other Participants 7,492 patients in the Lipid Clinic cohort with baseline lipid profiles documented prior to starting lipid-lowering medications and 156,311 lipid profiles from The Ottawa Hospital Biochemistry Laboratory cohort. Intervention None Main Outcome Measure Our modeling process includes derivation of TG-interval–specific lipoprotein composition factor (LCF) for TRL, which represents the mass ratio of cholesterol to TG in TRL. A high LCF indicates that the TRLs are mainly the cholesterol-rich atherogenic remnant lipoproteins. A low LCF indicates that the TRLs are mainly the TG-rich larger VLDL and chylomicrons. Results As serum TG increases, there is progressive decline in the LCF for TRL, which indicates that the calculated non-HDLC level reflects progressive inclusion of cholesterol from larger TRL. This is shown in both cohorts. Conclusions Calculated non-HDLC is influenced by TG level. As TG increases, non-HDLC gradually includes more cholesterol from larger TRL, which are less atherogenic than LDL and remnant lipoproteins.
Collapse
Affiliation(s)
- Cathy J Sun
- Division of Endocrinology and Metabolism, Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christopher McCudden
- Division of Biochemistry, Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Diane Brisson
- Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, Quebec, Canada
| | - Julie Shaw
- Division of Biochemistry, Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Lipid Clinic Chicoutimi Hospital and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, Quebec, Canada
| | - Teik C Ooi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Wessel H, Saeed A, Heegsma J, Connelly MA, Faber KN, Dullaart RPF. Plasma Levels of Retinol Binding Protein 4 Relate to Large VLDL and Small LDL Particles in Subjects with and without Type 2 Diabetes. J Clin Med 2019; 8:jcm8111792. [PMID: 31717719 PMCID: PMC6912784 DOI: 10.3390/jcm8111792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Retinol binding protein 4 (RBP4) carries retinol in plasma, but is also considered an adipokine, as it is implicated in insulin resistance in mice. Plasma RBP4 correlates with total cholesterol, low density lipoprotein (LDL)-cholesterol and triglycerides, and may confer increased cardiovascular risk. However, controversy exists about circulating RPB4 levels in type 2 diabetes mellitus (T2DM) and obesity. Here, we analyzed the relationships of RBP4 and retinol with lipoprotein subfractions in subjects with and without T2DM. Methods: Fasting plasma RBP4 (enzyme-linked immunosorbent assay) and retinol (high performance liquid chromatography) were assayed in 41 T2DM subjects and 37 non-diabetic subjects. Lipoprotein subfractions (NMR spectroscopy) were measured in 36 T2DM subjects and 27 non-diabetic subjects. Physical interaction of RBP4 with lipoproteins was assessed by fast protein liquid chromatography (FPLC). Results: Plasma RBP4 and retinol were strongly correlated (r = 0.881, p < 0.001). RBP4, retinol and the RBP4/retinol ratio were not different between T2DM and non-diabetic subjects (all p > 0.12), and were unrelated to body mass index. Notably, RBP4 and retinol were elevated in subjects with metabolic syndrome (p < 0.05), which was attributable to an association with elevated triglycerides (p = 0.013). Large VLDL, total LDL and small LDL were increased in T2DM subjects (p = 0.035 to 0.003). Taking all subjects together, RBP4 correlated with total cholesterol, non-HDL cholesterol, LDL cholesterol, triglycerides and apolipoprotein B in univariate analysis (p < 0.001 for each). Age-, sex- and diabetes status-adjusted multivariable linear regression analysis revealed that RBP4 was independently associated with large VLDL (β = 0.444, p = 0.005) and small LDL particles (β = 0.539, p < 0.001). Its relationship with large VLDL remained after further adjustment for retinol. RBP4 did not co-elute with VLDL nor LDL particles in FPLC analyses. Conclusions: Plasma RBP4 levels are related to but do not physically interact with large VLDL and small LDL particles. Elevated RBP4 may contribute to a proatherogenic plasma lipoprotein profile.
Collapse
Affiliation(s)
- Hanna Wessel
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands;
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (A.S.); (J.H.); (K.N.F.)
| | - Ali Saeed
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (A.S.); (J.H.); (K.N.F.)
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan 66000, Pakistan
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (A.S.); (J.H.); (K.N.F.)
- Department of Laboratory Medicine, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Margery A. Connelly
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC 27560, USA;
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (A.S.); (J.H.); (K.N.F.)
- Department of Laboratory Medicine, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Robin P. F. Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
34
|
Taghizadeh E, Esfehani RJ, Sahebkar A, Parizadeh SM, Rostami D, Mirinezhad M, Poursheikhani A, Mobarhan MG, Pasdar A. Familial combined hyperlipidemia: An overview of the underlying molecular mechanisms and therapeutic strategies. IUBMB Life 2019; 71:1221-1229. [PMID: 31271707 DOI: 10.1002/iub.2073] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Among different types of dyslipidemia, familial combined hyperlipidemia (FCHL) is the most common genetic disorder, which is characterized by at least two different forms of lipid abnormalities: hypercholesterolemia and hypertriglyceridemia. FCHL is an important cause of cardiovascular diseases. FCHL is a heterogeneous condition linked with some metabolic defects that are closely associated with FCHL. These metabolic features include dysfunctional adipose tissue, delayed clearance of triglyceride-rich lipoproteins, overproduction of very low-density lipoprotein and hepatic lipids, and defect in the clearance of low-density lipoprotein particles. There are also some genes associated with FCHL such as those affecting the metabolism and clearance of plasma lipoprotein particles. Due to the high prevalence of FCHL especially in cardiovascular patients, targeted treatment is ideal but this necessitates identification of the genetic background of patients. This review describes the metabolic pathways and associated genes that are implicated in FCHL pathogenesis. We also review existing and novel treatment options for FCHL. © 2019 IUBMB Life, 71(9):1221-1229, 2019.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Jafarzadeh Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mostafa Parizadeh
- Metabolic Syndrome Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammadreza Mirinezhad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Poursheikhani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
35
|
Siddiqui MB, Arshad T, Patel S, Lee E, Albhaisi S, Sanyal AJ, Stravitz RT, Driscoll C, Sterling RK, Reichman T, Bhati C, Siddiqui MS. Small Dense Low-Density Lipoprotein Cholesterol Predicts Cardiovascular Events in Liver Transplant Recipients. Hepatology 2019; 70:98-107. [PMID: 30672598 PMCID: PMC7018439 DOI: 10.1002/hep.30518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is an important cause of morbidity and mortality after liver transplantation (LT). Although LT is associated with dyslipidemia, particularly atherogenic lipoprotein subparticles, the impact of these subparticles on CVD-related events is unknown. Therefore, the aim of the current study was to evaluate the impact of small dense (sdLDL-C) low-density lipoprotein (LDL) cholesterol (LDL-C) on CVD events. Prospectively enrolled patients (N = 130) had detailed lipid profile consisting of traditional lipid parameters and sdLDL-C and were followed for CVD events. The primary endpoint was a CVD composite consisting of myocardial infarction (MI), angina, need for coronary revascularization, and cardiac death. Mean age of the cohort was 58 ± 11 years, and the most common etiology of liver disease (LD) was hepatitis C virus (N = 48) and nonalcoholic steatohepatitis (N = 23). A total of 20 CVD events were noted after median follow-up of 45 months. The baseline traditional profile was similar in patients with and without CVD events. A serum LDL-C cutoff of 100 mg/dL was unable to identify individuals at risk of a CVD event (P = 0.86). In contrast, serum concentration of atherogenic sdLDL-C >25 mg/dL was predictive of CVD events with a hazard ratio of 6.376 (95% confidence interval, 2.65, 15.34; P < 0.001). This relationship was independent of diabetes, hypertension, sex, ethnicity, LD, obesity, and statin use. Conclusion: sdLDL-C independently predicted CVD events whereas LDL-C did not. Thus, sdLDL-C may provide a useful clinical tool in risk stratifying and managing patients after LT.
Collapse
Affiliation(s)
- Mohammad Bilal Siddiqui
- Divisions of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, VA
| | - Tamoore Arshad
- Department of Medicine and Center for Liver Disease, Inova Fairfax Hospital, Falls Church, VA
| | - Samarth Patel
- Divisions of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, VA
| | - Emily Lee
- Divisions of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, VA
| | | | - Arun J. Sanyal
- Divisions of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, VA
| | - R. Todd Stravitz
- Divisions of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, VA
| | - Carolyn Driscoll
- Divisions of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, VA
| | - Richard K. Sterling
- Divisions of Gastroenterology and Hepatology, Virginia Commonwealth University, Richmond, VA
| | - Trevor Reichman
- Division of Transplant Surgery, Virginia Commonwealth University, Richmond, VA
| | - Chandra Bhati
- Division of Transplant Surgery, Virginia Commonwealth University, Richmond, VA
| | | |
Collapse
|
36
|
Effects of a diet naturally rich in polyphenols on lipid composition of postprandial lipoproteins in high cardiometabolic risk individuals: an ancillary analysis of a randomized controlled trial. Eur J Clin Nutr 2019; 74:183-192. [PMID: 31249395 DOI: 10.1038/s41430-019-0459-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND/OBJECTIVES Plasma lipoprotein composition, especially in the postprandial state, could be relevant for cardiovascular risk and could be influenced by eating habits. This study evaluated the effects of a polyphenol-rich diet on postprandial lipoprotein composition in individuals at high cardiometabolic risk. SUBJECTS/METHODS Seventy-eight individuals with high waist circumference and at least another component of the metabolic syndrome were randomized to either a high-polyphenol (HighP) or low-polyphenol (LowP) diet. Before and after the 8-week intervention, chylomicrons, VLDL1, VLDL2, IDL, LDL, HDL particles, and their lipid concentrations were determined over a 6-h high-fat test meal with high or low-polyphenol content, according to the diet assigned. RESULTS VLDL1 postprandial areas under the curve (AUCs) were lower for cholesterol (Chol) (1.48 ± 0.98 vs. 1.91 ± 1.13 mmol/L × 6 h, M ± SD, p = 0.014) and triglycerides (Tg) (4.70 ± 2.70 vs. 6.02 ± 3.07 mmol/L × 6 h, p = 0.005) after the HighP than after the LowP diet, with no changes in Chol/Tg ratio. IDL Chol AUCs were higher after the HighP than after the LowP diet (1.29 ± 0.77 vs. 1.01 ± 0.51 mmol/L × 6 h, p = 0.037). LDL Tg AUCs were higher after the HighP than after the LowP diet (1.15 ± 0.33 vs. 1.02 ± 0.35 mmol/L × 6 h, p < 0.001), with a lower Chol/Tg ratio (14.6 ± 4.0 vs. 16.0 ± 3.8, p = 0.007). HDL Tg AUCs were lower after the HighP than after the LowP diet (1.20 ± 0.41 vs. 1.34 ± 0.37 mmol/L × 6 h, p = 0.013). CONCLUSIONS A high-polyphenol diet reduces the postprandial lipid content of large VLDL and increases IDL cholesterol; it modifies the composition of LDL particles-which become richer in triglycerides, and of HDL-which become instead triglyceride poor. The overall changes in atherogenicity by these effects warrant further investigation on clinical cardiovascular outcomes.
Collapse
|
37
|
Generoso G, Janovsky CCPS, Bittencourt MS. Triglycerides and triglyceride-rich lipoproteins in the development and progression of atherosclerosis. Curr Opin Endocrinol Diabetes Obes 2019; 26:109-116. [PMID: 30694827 DOI: 10.1097/med.0000000000000468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW In this review, we intend to show the heterogenicity of the triglyceride group, including the triglyceride-rich lipoproteins and its subparticles, apolipoproteins, and its role in atherogenesis through epidemiological and genetic studies, observing the association of these various components and subclasses with subclinical atherosclerosis and cardiovascular events. Also, we reevaluated the moment of blood collection for the triglyceride measurement and its repercussion in atherosclerosis. Finally, we present the current scenario and new insights about the pharmacologic treatment of hypertriglyceridemia. RECENT FINDINGS Recent studies have been observed, a correlation between cardiovascular disease and triglyceride components (as apolipoproteins A-V, C-I, C-III) as well as proteins involved in the metabolism pathway, such as the angiopoietin-like proteins. Also, the triglyceride-rich lipoproteins, also known as remnants, were recently associated with atherogenesis. Another important topic addressed is about nonfasting triglyceride level, which has been postulated as a better predictor of cardiovascular events than fasting collection. SUMMARY Regarding hypertriglyceridemia treatment, the drug therapy was updated, as the omega-3 polyunsaturated fatty acids were tested in primary prevention as eicosapentaenoic acid and docosahexaenoic acid combination resulted in no benefit, whereas the administration of icosapent ethyl in secondary prevention and high-risk patients showed a robust decrease of the cardiovascular outcomes.
Collapse
Affiliation(s)
- Giuliano Generoso
- Center for Clinical and Epidemiological Research, University Hospital, University of Sao Paulo
| | - Carolina C P S Janovsky
- Center for Clinical and Epidemiological Research, University Hospital, University of Sao Paulo
| | - Marcio S Bittencourt
- Center for Clinical and Epidemiological Research, University Hospital, University of Sao Paulo
- Hospital Israelita Albert Einstein & School of Medicine, Faculdade Israelita de Ciência da Saúde Albert Einstein, São Paulo, Brazil
| |
Collapse
|
38
|
Upadya H, Prabhu S, Prasad A, Subramanian D, Gupta S, Goel A. A randomized, double blind, placebo controlled, multicenter clinical trial to assess the efficacy and safety of Emblica officinalis extract in patients with dyslipidemia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:27. [PMID: 30670010 PMCID: PMC6341673 DOI: 10.1186/s12906-019-2430-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dyslipidemia is one of the most frequently implicated risk factors for development of atherosclerosis. This study evaluated the efficacy of amla (Emblica officinalis) extract (composed of polyphenols, triterpenoids, oils etc. as found in the fresh wild amla fruit) in patients with dyslipidemia. METHODS A total of 98 dyslipidemic patients were enrolled and divided into amla and placebo groups. Amla extract (500 mg) or a matching placebo capsule was administered twice daily for 12 weeks to the respective group of patients. The patients were followed up for 12 weeks and efficacy of study medication was assessed by analyzing lipid profile. Other parameters evaluated were apolipoprotein B (Apo B), apolipoprotein A1 (Apo A1), Coenzyme Q10 (CoQ10), high-sensitive C-reactive protein (hsCRP), fasting blood sugar (FBS), homocysteine and thyroid stimulating hormone (TSH). RESULTS In 12 weeks, the major lipids such as total cholesterol (TC) (p = 0.0003), triglyceride (TG) (p = 0.0003), low density lipoprotein cholesterol (LDL-C) (p = 0.0064) and very low density lipoprotein cholesterol (VLDL-C) (p = 0.0001) were significantly lower in amla group as compared to placebo group. Additionally, a 39% reduction in atherogenic index of the plasma (AIP) (p = 0.0177) was also noted in amla group. The ratio of Apo B to Apo A1 was reduced more (p = 0.0866) in the amla group as compared to the placebo. There was no significant change in CoQ10 level of amla (p = 0.2942) or placebo groups (p = 0.6744). Although there was a general trend of FBS reduction, the numbers of participants who may be classified as pre-diabetes and diabetes groups (FBS > 100 mg/dl) in the amla group were only 8. These results show that the amla extract used in the study is potentially a hypoglycaemic as well. However, this needs reconfirmation in a larger study. CONCLUSIONS The Amla extract has shown significant potential in reducing TC and TG levels as well as lipid ratios, AIP and apoB/apo A-I in dyslipidemic persons and thus has scope to treat general as well as diabetic dyslipidemia. A single agent to reduce cholesterol as well as TG is rare. Cholesterol reduction is achieved without concomitant reduction of Co Q10, in contrast to what is observed with statins. TRIAL REGISTRATION Registered with Clinical Trials Registry- India at www.ctri.nic.in (Registration number: CTRI/2015/04/005682 ) on 8 April 2015 (retrospectively registered).
Collapse
|
39
|
Zhang X, Rimbert A, Balder W, Zwinderman AH, Kuivenhoven JA, Dallinga-Thie GM, Groen AK. Use of plasma metabolomics to analyze phenotype-genotype relationships in young hypercholesterolemic females. J Lipid Res 2018; 59:2174-2180. [PMID: 30266833 PMCID: PMC6210900 DOI: 10.1194/jlr.m088930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/08/2018] [Indexed: 11/20/2022] Open
Abstract
Hypercholesterolemia is characterized by high plasma LDL cholesterol and often caused by genetic mutations in LDL receptor (LDLR), APOB, or proprotein convertase subtilisin/kexin type 9 (PCSK9). However, a substantial proportion of hypercholesterolemic subjects do not have any mutations in these canonical genes, leaving the underlying pathobiology to be determined. In this study, we investigated to determine whether combining plasma metabolomics with genetic information increases insight in the biology of hypercholesterolemia. For this proof of concept study, we combined plasma metabolites from 119 hypercholesterolemic females with genetic information on the LDL canonical genes. Using hierarchical clustering, we identified four subtypes of hypercholesterolemia, which could be distinguished along two axes represented by triglyceride and large LDL particle concentration. Subjects with mutations in LDLR or APOB preferentially clustered together, suggesting that patients with defects in the LDLR pathway show a distinctive metabolomics profile. In conclusion, we show the potential of using metabolomics to segregate hypercholesterolemic subjects into different clusters, which may help in targeting genetic analysis.
Collapse
Affiliation(s)
- Xiang Zhang
- Departments of Experimental Vascular Medicine University of Amsterdam, Amsterdam, The Netherlands
| | - Antoine Rimbert
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Willem Balder
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, Groningen, The Netherlands
- Department of Cardiology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Aeilko Having Zwinderman
- Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | | | - Albert Kornelis Groen
- Departments of Experimental Vascular Medicine University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Kwon YJ, Lee HS, Lee JW. Direct bilirubin is associated with low-density lipoprotein subfractions and particle size in overweight and centrally obese women. Nutr Metab Cardiovasc Dis 2018; 28:1021-1028. [PMID: 29983222 DOI: 10.1016/j.numecd.2018.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Bilirubin has antioxidant and anti-inflammatory properties; serum bilirubin levels have been known to be inversely associated with cardiovascular disease. However, the effects of different bilirubin subtypes on cardiometabolic traits are unknown. In this study, we aimed to determine whether direct bilirubin is more strongly correlated with small, dense low-density lipoprotein (sdLDL) compared to other bilirubin subtypes. We also investigated which LDL subfractions exhibited the highest correlation with direct bilirubin. METHODS AND RESULTS A total of 288 overweight and centrally obese women were included in this study. The Pearson correlation and Steiger's Z test were used to compare the correlation coefficients between bilirubin subtypes and lipoproteins. Multiple linear regression analyses were used to evaluate the independent association between direct bilirubin and mean LDL particle size. Only direct bilirubin levels were significantly associated with the sdLDL subfraction and mean LDL particle size. Mean LDL particle size exhibited a significantly stronger correlation with direct bilirubin than sdLDL, percent sdLDL, and the sdLDL:large LDL ratio. Regression analysis showed that direct bilirubin was significantly associated with mean LDL particle size, according to both the stepwise method (β = 11.445, P value = 0.002) and the enter method (β = 11.655, P value = 0.002). CONCLUSIONS Direct bilirubin is more strongly correlated with the sdLDL subfraction compared with total and indirect bilirubin, and is independently associated with mean LDL particle size in overweight and centrally obese women.
Collapse
Affiliation(s)
- Y-J Kwon
- Department of Family Medicine, Yong-in Severance Hospital, Yonsei University College of Medicine, Yong-in, Republic of Korea; Department of Medicine, Graduate School of Yonsei University College of Medicine, Seoul, Republic of Korea
| | - H-S Lee
- Biostatistics Collaboration Units, Department of Research Affairs, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - J-W Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Packard CJ. Determinants of Achieved LDL Cholesterol and "Non-HDL" Cholesterol in the Management of Dyslipidemias. Curr Cardiol Rep 2018; 20:60. [PMID: 29904807 DOI: 10.1007/s11886-018-1003-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The advent of combination therapy to provide LDL lowering beyond that achieved with statins necessitates the development of greater understanding of how drugs work together, what changes occur in key lipoprotein fractions, and what residual risk remains. RECENT FINDINGS Clinical trials of agents that, when added to statins, generate profound LDL lowering have been successful in reducing further the risk of cardiovascular disease. LDL cholesterol can be now decreased to unprecedented levels, so the focus of attention then shifts to other apolipoprotein B-containing, atherogenic lipoprotein classes such as lipoprotein(a) and remnants of the metabolism of triglyceride-rich particles. "Non-HDL cholesterol" is used increasingly (especially if measured in the non-fasting state) as a more comprehensive index of risk. Metabolic studies reveal how current drugs act in combination to achieve profound lipid lowering. However, care is needed in interpreting achieved LDLc and non-HDLc levels in the emerging treatment paradigm.
Collapse
Affiliation(s)
- Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Ground Floor, Room G31, McGregor Building, University Avenue, Glasgow, G12 8QQ, UK.
| |
Collapse
|
42
|
Stahel P, Xiao C, Hegele RA, Lewis GF. The Atherogenic Dyslipidemia Complex and Novel Approaches to Cardiovascular Disease Prevention in Diabetes. Can J Cardiol 2018; 34:595-604. [DOI: 10.1016/j.cjca.2017.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022] Open
|
43
|
Impact of the triglyceride level on coronary plaque components in female patients with coronary artery disease treated with statins. Heart Vessels 2018; 33:1175-1184. [PMID: 29696358 DOI: 10.1007/s00380-018-1173-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/20/2018] [Indexed: 01/13/2023]
Abstract
Several studies have reported that elevated triglyceride (TG) levels may be more strongly associated with an increased risk of coronary artery disease (CAD) in females than in males. We examined gender differences in the relationship between TG levels and coronary atherosclerosis using integrated backscatter intravascular ultrasound (IB IVUS) in CAD patients treated with statins. Three hundred seventy-eight CAD patients (105 females and 273 males) who underwent percutaneous coronary intervention using IB IVUS, and who were already receiving statin treatment, were included. Gray-scale and IB IVUS examinations were performed for the non-culprit segment of a coronary artery and fasting serum TG concentrations were measured. We found that TG levels were significantly correlated with increased lipid (r = 0.40, p < 0.001) and decreased fibrous (r = - 0.37, p < 0.001) plaque components in females, but not in males. Low-density lipoprotein cholesterol and high-density lipoprotein cholesterol levels were not related to either the gray-scale or IB IVUS parameters in both genders. After adjustment for conventional coronary risk factors by a multivariate stepwise regression analysis, higher TG levels in females were independently associated with increased lipid (β = 0.31, p< 0.001) contents in coronary plaques. In conclusion, among CAD patients treated with statins, TG levels were associated with lipid-rich coronary plaques in females, but not in males. TG levels may be more important indicators of residual risk after statin treatment in females than in males.
Collapse
|
44
|
|
45
|
Jun JE, Choi YJ, Lee YH, Kim DJ, Park SW, Huh BW, Lee EJ, Jee SH, Hur KY, Choi SH, Huh KB. ApoB/ApoA-I ratio is independently associated with carotid atherosclerosis in type 2 diabetes mellitus with well-controlled LDL cholesterol levels. Korean J Intern Med 2018; 33:138-147. [PMID: 29334727 PMCID: PMC5768554 DOI: 10.3904/kjim.2017.396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIMS This study aimed to investigate whether the apolipoprotein (Apo) B/ApoA-I ratio is associated with carotid intima-media thickness (CIMT) in type 2 diabetes mellitus (T2DM) subjects with low density lipoprotein cholesterol (LDL-C) levels less than 100 mg/dL. METHODS This cross-sectional study included 845 subjects aged with T2DM 40 to 75 years who had visited Huh's Diabetes Center in Seoul, Republic of Korea for CIMT measurement. Traditional fasting lipid profiles, ApoB and ApoA-I levels were examined. CIMT was measured at three points on the far wall of 1 cm long section of the common carotid artery in the proximity of the carotid bulb. The mean value of six measurements from right and left carotid arteries were used as the mean CIMT. In this study, carotid atherosclerosis was defined as having a focal plaque or diffuse thickening of the carotid wall (mean CIMT ≥ 1.0 mm). RESULTS The prevalence of carotid atherosclerosis increased with ApoB/ApoA-I ratio. The ApoB/ApoA-I ratio, expressed as both quartiles (odds ratio [OR], 2.14; 95% confidence interval [CI], 1.21 to 3.79; p for trend = 0.014) and continuous values (OR, 10.05; 95% CI, 3.26 to 30.97; p < 0.001), was significantly associated with a higher risk for carotid atherosclerosis, regardless of conventional cardiovascular disease risk factors. The optimal ApoB/ApoA-I ratio cutoff value for detecting carotid atherosclerosis was 0.57, based on receiver operating characteristic curve analysis with a sensitivity of 58.0% and a specificity of 55.1%. CONCLUSIONS A high ApoB/ApoA-I ratio was significantly associated with carotid atherosclerosis in T2DM patients with LDL-C levels less than 100 mg/dL.
Collapse
Affiliation(s)
- Ji Eun Jun
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Ju Choi
- Huh’s Diabetes Center and 21st Century Diabetes and Vascular Research Institute, Seoul, Korea
| | - Yong-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| | - Seok Won Park
- Department of Internal Medicine, CHA University, Seongnam, Korea
| | - Byung Wook Huh
- Huh’s Diabetes Center and 21st Century Diabetes and Vascular Research Institute, Seoul, Korea
| | - Eun Jig Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sun-Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Yonsei University Graduate School of Public Health, Seoul, Korea
| | - Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Correspondence to Kyu Yeon Hur, M.D. Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea Tel: +82-2-3410-1232 Fax: +82-2-3410-3849 E-mail:
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kap Bum Huh
- Huh’s Diabetes Center and 21st Century Diabetes and Vascular Research Institute, Seoul, Korea
| |
Collapse
|
46
|
Correlation between Cholesterol, Triglycerides, Calculated, and Measured Lipoproteins: Whether Calculated Small Density Lipoprotein Fraction Predicts Cardiovascular Risks. J Lipids 2017; 2017:7967380. [PMID: 29318047 PMCID: PMC5727838 DOI: 10.1155/2017/7967380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/11/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
Background Recent literature in lipidology has identified LDL-fractions to be more atherogenic. In this regard, small density LDL-cholesterol (sdLDLc) has been considered to possess more atherogenicity than other LDL-fractions like large buoyant LDL-cholesterol (lbLDLc). Recently, Srisawasdi et al. have developed a method for calculating sdLDLc and lbLDLc based upon a regression equation. Using that in developing world may provide us with a valuable tool for ASCVD risk prediction. Objective (1) To correlate directly measured and calculated lipid indices with insulin resistance, UACR, glycated hemoglobin, anthropometric indices, and blood pressure. (2) To evaluate these lipid parameters in subjects with or without metabolic syndrome, nephropathy, and hypertension and among various groups based upon glycated hemoglobin results. Design Cross-sectional study. Place and Duration of Study. From Jan 2016 to 15 April 2017. Subjects and Methods Finally enrolled subjects (male: 110, female: 122) were evaluated for differences in various lipid parameters, including measured LDL-cholesterol (mLDLc), HDLc and calculated LDL-cholesterol (cLDLc), non-HDLc, sdLDLC, lbLDLC, and their ratio among subjects with or without metabolic syndrome, nephropathy, glycation index, anthropometric indices, and hypertension. Results Significant but weak correlation was mainly observed between anthropometric indices, insulin resistance, blood pressure, and nephropathy for non-HDLc, sdLDLc, and sdLDLc/lbLDLc. Generally lipid indices were higher among subjects with metabolic syndrome [{sdLDLc: 0.92 + 0.33 versus 0.70 + 0.29 (p < 0.001)}, {sdLDLc/lbLDLc: 0.55 + 0.51 versus 0.40 + 0.38 (p = 0.010)}, {non-HDLc: 3,63 + 0.60 versus 3.36 + 0.65 (p = 0.002)}]. The fact that the sdLDLc levels provided were insignificant in Kruskall Wallis Test indicated a sharp increase in subjects with HbA1c > 7.0%. Subjects having nephropathy (UACR > 2.4 mg/g) had higher concentration of non-HDLc levels in comparison to sdLDLc [{non-HDLc: 3.68 + 0.59 versus 3.36 + 0.43} (p = 0.007), {sdLDLc: 0.83 + 0.27 versus 0.75 + 0.35 (p = NS)}]. Conclusion Lipid markers including cLDLc and mLDLc are less associated with traditional ASCVD markers than non-HDLc, sdLDLc, and sdLDLc/lbLDLc in predicting metabolic syndrome, nephropathy, glycation status, and hypertension.
Collapse
|
47
|
Ito Y, Ohta M, Ikezaki H, Hirao Y, Machida A, Schaefer EJ, Furusyo N. Development and Population Results of a Fully Automated Homogeneous Assay for LDL Triglyceride. J Appl Lab Med 2017; 2:746-756. [PMID: 33636868 DOI: 10.1373/jalm.2017.024554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/13/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Low-density lipoprotein (LDL) is measured by its cholesterol content (LDL-C), but it has been suggested that LDL triglyceride (LDL-TG) may also be related to coronary artery disease risk. LDL-TG can be measured after ultracentrifugation or electrophoresis, but these are labor intensive methods, indicating the need for an automated homogeneous assay. METHODS TG-rich lipoproteins (TRLs), LDL, and HDL were isolated by ultracentrifugation and used to determine optimal characteristics of surfactants and various enzymes for assay development. We analyzed assay precision and linearity, and compared results with those obtained after ultracentrifugation. Serum samples from a large population study (n = 12284 subjects) were used to generate reference intervals for LDL-TG and to determine levels in various types of hyperlipidemia. RESULTS An assay for LDL-TG has been developed by use of surfactants 1 and 2, and enzymes to measure LDL-TG directly on an automated analyzer. There was an excellent correlation between results obtained with this assay and after isolation of LDL by ultracentrifugation. When the assay was applied to serum samples from normal and hyperlipidemic subjects, median normal values were 0.09 mmol/L, with significant median elevations observed in subjects with increased LDL-C, hypertriglyceridemia, combined hyperlipidemia, and hyperchylomicronemia of 0.19, 0.18, 0.28, and 0.43 mmol/L, respectively, as compared with mean LDL-C values in these subjects of 2.25, 4.01, 2.66, 3.96, and 2.43 mmol/L, respectively. CONCLUSIONS We have developed an automated homogeneous assay for LDL-TG for potential use in research and clinical laboratories, and documented that the TG molar content of LDL is about 5% of its cholesterol content.
Collapse
Affiliation(s)
- Yasuki Ito
- R&D Center, Denka Seiken Co., Ltd., Tokyo, Japan
| | - Motoko Ohta
- R&D Center, Denka Seiken Co., Ltd., Tokyo, Japan
| | - Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan.,Cardiovascular Nutrition Laboratory, Human Nutrition Research on Aging at Tufts University School, Boston, MA
| | - Yuhko Hirao
- R&D Center, Denka Seiken Co., Ltd., Tokyo, Japan
| | | | - Ernst J Schaefer
- Cardiovascular Nutrition Laboratory, Human Nutrition Research on Aging at Tufts University School, Boston, MA
| | - Norihiro Furusyo
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
48
|
Nass KJ, van den Berg EH, Faber KN, Schreuder TCMA, Blokzijl H, Dullaart RPF. High prevalence of apolipoprotein B dyslipoproteinemias in non-alcoholic fatty liver disease: The lifelines cohort study. Metabolism 2017. [PMID: 28641782 DOI: 10.1016/j.metabol.2017.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Cardiovascular disease (CVD) is a major adverse consequence of non-alcoholic fatty liver disease (NAFLD). The association of NAFLD with various apolipoprotein B (apoB) dyslipoproteinemias is unclear. We determined the prevalence of specific apoB dyslipoproteinemias in subjects with suspected NAFLD. METHODS This study was conducted among 22,865 fasting adults living in the northern part of the Netherlands (Lifelines Cohort Study). Six apoB dyslipoproteinemias were defined using an algorithm derived from apoB, total cholesterol and triglycerides. NAFLD was defined as Fatty Liver Index (FLI) ≥60. Advanced hepatic fibrosis was defined as NAFLD fibrosis score (NFS) ≥0.676. RESULTS 4790 participants (20.9%) had an FLI≥60. NAFLD subjects were older, more likely to be men, more obese and more often had diabetes and metabolic syndrome (P<0.001 for each). Among NAFLD subjects, any apoB dyslipoproteinemia was present in 61.5% vs. 16.5% in subjects without NAFLD (P<0.001). Elevated chylomicrons were not observed in NAFLD. In univariate analysis, NAFLD was associated with a higher prevalence of each apoB dyslipoproteinemia vs. subjects with an FLI<60 (P<0.001), except for low density lipoprotein (LDL) dyslipoproteinemia. Additionally, each apoB dyslipoproteinemia was independently associated with NAFLD in age- and sex-adjusted logistic regression analysis, including the apoB dyslipoproteinemias together (P<0.001). The prevalence of apoB dyslipoproteinemias was not altered in subjects with NFS ≥0.676. CONCLUSIONS NAFLD rather than advanced hepatic fibrosis is independently associated with increased prevalence of chylomicrons+very low-density lipoproteins (VLDL) remnants, VLDL, LDL and VLDL+LDL dyslipoproteinemias. ApoB dyslipoproteinemias may contribute to increased CVD risk associated with NAFLD.
Collapse
Affiliation(s)
- Karlijn J Nass
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands; Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Eline H van den Berg
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Tim C M A Schreuder
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
49
|
Thongtang N, Diffenderfer MR, Ooi EMM, Barrett PHR, Turner SM, Le NA, Brown WV, Schaefer EJ. Metabolism and proteomics of large and small dense LDL in combined hyperlipidemia: effects of rosuvastatin. J Lipid Res 2017; 58:1315-1324. [PMID: 28392500 DOI: 10.1194/jlr.m073882] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/17/2017] [Indexed: 11/20/2022] Open
Abstract
Small dense LDL (sdLDL) has been reported to be more atherogenic than large buoyant LDL (lbLDL). We examined the metabolism and protein composition of sdLDL and lbLDL in six subjects with combined hyperlipidemia on placebo and rosuvastatin 40 mg/day. ApoB-100 kinetics in triglyceride-rich lipoproteins (TRLs), lbLDL (density [d] = 1.019-1.044 g/ml), and sdLDL (d = 1.044-1.063 g/ml) were determined in the fed state by using stable isotope tracers, mass spectrometry, and compartmental modeling. Compared with placebo, rosuvastatin decreased LDL cholesterol and apoB-100 levels in TRL, lbLDL, and sdLDL by significantly increasing the fractional catabolic rate of apoB-100 (TRL, +45%; lbLDL, +131%; and sdLDL, +97%), without a change in production. On placebo, 25% of TRL apoB-100 was catabolized directly, 37% was converted to lbLDL, and 38% went directly to sdLDL; rosuvastatin did not alter these distributions. During both phases, sdLDL apoB-100 was catabolized more slowly than lbLDL apoB-100 (P < 0.01). Proteomic analysis indicated that rosuvastatin decreased apoC-III and apoM content within the density range of lbLDL (P < 0.05). In our view, sdLDL is more atherogenic than lbLDL because of its longer plasma residence time, potentially resulting in more particle oxidation, modification, and reduction in size, with increased arterial wall uptake. Rosuvastatin enhances the catabolism of apoB-100 in both lbLDL and sdLDL.
Collapse
Affiliation(s)
- Nuntakorn Thongtang
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Margaret R Diffenderfer
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Esther M M Ooi
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - P Hugh R Barrett
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | | - Ngoc-Anh Le
- Atlanta Veterans Affairs Medical Center, Decatur, GA; and; Emory University School of Medicine, Atlanta, GA
| | - W Virgil Brown
- Atlanta Veterans Affairs Medical Center, Decatur, GA; and; Emory University School of Medicine, Atlanta, GA
| | - Ernst J Schaefer
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA;.
| |
Collapse
|
50
|
Autosomal dominant familial dysbetalipoproteinemia: A pathophysiological framework and practical approach to diagnosis and therapy. J Clin Lipidol 2017; 11:12-23.e1. [DOI: 10.1016/j.jacl.2016.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/26/2016] [Accepted: 10/02/2016] [Indexed: 11/18/2022]
|