1
|
Xue H, Wang Y, Mei C, Han L, Lu M, Li X, Chen T, Wang F, Tang X. Gut microbiome and serum metabolome alterations associated with lactose intolerance (LI): a case‒control study and paired-sample study based on the American Gut Project (AGP). mSystems 2024; 9:e0083924. [PMID: 39320101 PMCID: PMC11494873 DOI: 10.1128/msystems.00839-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 09/26/2024] Open
Abstract
Lactose intolerance (LI) is a prevalent condition characterized by gastrointestinal symptoms that arise following lactose consumption. Recent evidence suggests that the gut microbiome may influence lactose levels in the gut. However, there is limited understanding regarding the alterations in microbiota and metabolism between individuals with LI and non-LI. This study conducted a paired-sample investigation utilizing data from the American Gut Project (AGP) and performed metagenomic and untargeted metabolomic analyses in a Chinese cohort to explore the interaction between the gut microbiome and serum metabolites. In addition, fecal microbiota transplantation (FMT) experiments were conducted to further examine the impact of the LI-associated gut microbiome on inflammatory outcomes. We identified 14 microbial genera that significantly differed between LI and controls from AGP data. Using a machine learning approach, group separation was predicted based on seven species and nine metabolites in the Chinese cohort. Notably, increased levels of Escherichia coli in the LI group were negatively correlated with several metabolites, including PC (22:6/0:0), indole, and Lyso PC, while reduced levels of Faecalibacterium prausnitzii and Eubacterium rectale were positively correlated with indole and furazolidone. FMT-LI rats displayed visceral hypersensitivity and an altered gut microbiota composition compared to FMT-HC rats. Metagenomic and metabolomic analyses revealed an enrichment of MAPK signaling in LI, which was confirmed by FMT-LI rats showing higher expression of ERK and RAS, along with increased concentrations of proinflammatory cytokines. This study provides valuable insights into the disrupted microbial and metabolic traits associated with LI, emphasizing potential microbiome-based approaches for its prevention and treatment. IMPORTANCE Lactose intolerance (LI) is a prevalent condition characterized by gastrointestinal symptoms after lactose consumption due to a deficiency of lactase. There is limited understanding regarding the microbiota and metabolic alterations between individuals with LI and non-LI. This study represents the first exploration to investigate metagenomic and metabolomic signatures among subjects with lactose intolerance as far as our knowledge. We identified 14 microbial genera in the Western cohort and 7 microbial species, along with 9 circulating metabolites in the Chinese cohort, which significantly differed in LI patients. Metagenomic and metabolomic analyses revealed an enrichment of MAPK signaling in LI patients. This finding was confirmed by FMT-LI rats, exhibiting increased expression of ERK and RAS, along with higher concentrations of pro-inflammatory cytokines. Our study provides insights into the disrupted functional and metabolic traits of the gut microbiome in LI, highlighting potential microbiome-based approaches for preventing and treating LI.
Collapse
Affiliation(s)
- Hong Xue
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yitian Wang
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunfeng Mei
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lili Han
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengxiong Lu
- Department of Integrated Traditional Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
- Department of Gastrointestinal Medicine, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
| | - Xuan Li
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Chen
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Digestive Laboratory of Traditional Chinese Medicine, Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Integrated Traditional Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
- Department of Gastrointestinal Medicine, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
| |
Collapse
|
2
|
Norlander AE, Abney M, Cephus JY, Roe CE, Irish JM, Shelburne NJ, Newcomb DC, Hemnes AR, Peebles RS. Prostaglandin I 2 Therapy Promotes Regulatory T Cell Generation in Patients with Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2023; 208:737-739. [PMID: 37413696 PMCID: PMC10515570 DOI: 10.1164/rccm.202304-0716le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Affiliation(s)
- Allison E. Norlander
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
- Department of Cell Biology, Anatomy, and Physiology and
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Masako Abney
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | | | - Caroline E. Roe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan M. Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicholas J. Shelburne
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- United States Department of Veterans Affairs Medical Center, Nashville, Tennessee; and
| |
Collapse
|
3
|
Chen Y, Wei J, Zhang J, Li X. Effect Mechanism of Error Management Climate on Innovation Behavior: An Investigation From Chinese Entrepreneurs. Front Psychol 2021; 12:733741. [PMID: 34950082 PMCID: PMC8688954 DOI: 10.3389/fpsyg.2021.733741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Errors are inevitable in an increasingly risky and dynamic entrepreneurial environment. The error management and the error climate perceived by the members are crucial to the subsequent innovation behaviors. Maintaining and improving the psychological capital of entrepreneurs under errors is not only the psychological activities of entrepreneurs themselves but also a critical management process in which an organization can influence the psychological factors and behaviors of entrepreneurs through error management climate. In the context of Chinese culture, this study explores the influence of error management climate on entrepreneurial self-efficacy and innovation behavior under the boundary condition of Zhongyong thinking. Two hundred ninety samples of Chinese entrepreneurs are empirically analyzed in this study, and results show that: (1) error management climate and entrepreneurial self-efficacy have significant positive effects on entrepreneurs’ innovation behavior; (2) entrepreneurial self-efficacy mediates the relationship between error management climate and innovation behavior; and (3) Zhongyong thinking plays moderating roles in the process of error management climate influencing innovation behavior. This study complements the entrepreneurship literature with its focus on error management climate as an essential antecedent of entrepreneurial self-efficacy, and promotes an understanding of how Chinese practitioners promote innovative behavior from a cultural perspective.
Collapse
Affiliation(s)
- Yuting Chen
- School of Management, Nanjing University, Nanjing, China
| | - Jiangru Wei
- School of Management, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jing Zhang
- School of Management, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xue Li
- School of Management, Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
4
|
Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci (Lond) 2021; 134:2707-2727. [PMID: 33095237 DOI: 10.1042/cs20191209] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Arachidonic acid can be metabolized in blood vessels by three primary enzymatic pathways; cyclooxygenase (COX), lipoxygenase (LO), and cytochrome P450 (CYP). These eicosanoid metabolites can influence endothelial and vascular smooth muscle cell function. COX metabolites can cause endothelium-dependent dilation or constriction. Prostaglandin I2 (PGI2) and thromboxane (TXA2) act on their respective receptors exerting opposing actions with regard to vascular tone and platelet aggregation. LO metabolites also influence vascular tone. The 12-LO metabolite 12S-hydroxyeicosatrienoic acid (12S-HETE) is a vasoconstrictor whereas the 15-LO metabolite 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) is an endothelial-dependent hyperpolarizing factor (EDHF). CYP enzymes produce two types of eicosanoid products: EDHF vasodilator epoxyeicosatrienoic acids (EETs) and the vasoconstrictor 20-HETE. The less-studied cross-metabolites generated from arachidonic acid metabolism by multiple pathways can also impact vascular function. Likewise, COX, LO, and CYP vascular eicosanoids interact with paracrine and hormonal factors such as the renin-angiotensin system and endothelin-1 (ET-1) to maintain vascular homeostasis. Imbalances in endothelial and vascular smooth muscle cell COX, LO, and CYP metabolites in metabolic and cardiovascular diseases result in vascular dysfunction. Restoring the vascular balance of eicosanoids by genetic or pharmacological means can improve vascular function in metabolic and cardiovascular diseases. Nevertheless, future research is necessary to achieve a more complete understanding of how COX, LO, CYP, and cross-metabolites regulate vascular function in physiological and pathological states.
Collapse
|
5
|
The quest for effective pharmacological suppression of neointimal hyperplasia. Curr Probl Surg 2020; 57:100807. [PMID: 32771085 DOI: 10.1016/j.cpsurg.2020.100807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
|
6
|
|
7
|
Cahill PA, Redmond EM. Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis 2016; 248:97-109. [PMID: 26994427 PMCID: PMC6478391 DOI: 10.1016/j.atherosclerosis.2016.03.007] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 02/08/2023]
Abstract
The vascular endothelium is an interface between the blood stream and the vessel wall. Changes in this single cell layer of the artery wall are believed of primary importance in the pathogenesis of vascular disease/atherosclerosis. The endothelium responds to humoral, neural and especially hemodynamic stimuli and regulates platelet function, inflammatory responses, vascular smooth muscle cell growth and migration, in addition to modulating vascular tone by synthesizing and releasing vasoactive substances. Compromised endothelial function contributes to the pathogenesis of cardiovascular disease; endothelial 'dysfunction' is associated with risk factors, correlates with disease progression, and predicts cardiovascular events. Therapies for atherosclerosis have been developed, therefore, that are directed towards improving endothelial function.
Collapse
Affiliation(s)
- Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
8
|
Clapp LH, Gurung R. The mechanistic basis of prostacyclin and its stable analogues in pulmonary arterial hypertension: Role of membrane versus nuclear receptors. Prostaglandins Other Lipid Mediat 2015; 120:56-71. [PMID: 25917921 DOI: 10.1016/j.prostaglandins.2015.04.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of distal pulmonary arteries in which patients suffer from elevated pulmonary arterial pressure, extensive vascular remodelling and right ventricular failure. To date prostacyclin (PGI2) therapy remains the most efficacious treatment for PAH and is the only approved monotherapy to have a positive impact on long-term survival. A key thing to note is that improvement exceeds that predicted from vasodilator testing strongly suggesting that additional mechanisms contribute to the therapeutic benefit of prostacyclins in PAH. Given these agents have potent antiproliferative, anti-inflammatory and endothelial regenerating properties suggests therapeutic benefit might result from a slowing, stabilization or even some reversal of vascular remodelling in vivo. This review discusses evidence that the pharmacology of each prostacyclin (IP) receptor agonist so far developed is distinct, with non-IP receptor targets clearly contributing to the therapeutic and side effect profile of PGI2 (EP3), iloprost (EP1), treprostinil (EP2, DP1) along with a family of nuclear receptors known as peroxisome proliferator-activated receptors (PPARs), to which PGI2 and some analogues directly bind. These targets are functionally expressed to varying degrees in arteries, veins, platelets, fibroblasts and inflammatory cells and are likely to be involved in the biological actions of prostacylins. Recently, a highly selective IP agonist, selexipag has been developed for PAH. This agent should prove useful in distinguishing IP from other prostanoid receptors or PPAR binding effects in human tissue. It remains to be determined whether selectivity for the IP receptor gives rise to a superior or inferior clinical benefit in PAH.
Collapse
Affiliation(s)
- Lucie H Clapp
- Department of Medicine, UCL, Rayne Building, London WC1E 6JF, UK.
| | - Rijan Gurung
- Department of Medicine, UCL, Rayne Building, London WC1E 6JF, UK
| |
Collapse
|
9
|
Chu LY, Liou JY, Wu KK. Prostacyclin protects vascular integrity via PPAR/14-3-3 pathway. Prostaglandins Other Lipid Mediat 2015; 118-119:19-27. [PMID: 25910681 DOI: 10.1016/j.prostaglandins.2015.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/25/2015] [Accepted: 04/13/2015] [Indexed: 12/20/2022]
Abstract
Vascular integrity is protected by the lining endothelial cells (ECs) through structural and molecular protective mechanisms. In response to external stresses, ECs are dynamic in producing protective molecules such as prostacyclin (PGI2). PGI2 is known to inhibit platelet aggregation and controls smooth muscle cell contraction via IP receptors. Recent studies indicate that PGI2 defends endothelial survival and protects vascular smooth muscle cell from apoptosis via peroxisome-proliferator activated receptors (PPAR). PPAR activation results in 14-3-3 upregulation. Increase in cytosolic 14-3-3ɛ or 14-3-3β enhances binding and sequestration of Akt-mediated phosphorylated Bad and reduces Bad-mediated apoptosis via the mitochondrial pathway. Experimental data indicate that administration of PGI2 analogs or augmentation of PGI2 production by gene transfer attenuates endothelial damage and organ infarction caused by ischemia-reperfusion injury. The protective effect of PGI2 is attributed in part to preserving endothelial integrity.
Collapse
Affiliation(s)
- Ling-yun Chu
- Metabolomic Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jun-Yang Liou
- Metabolomic Medicine Research Center, China Medical University, Taichung, Taiwan; Institute of Cell and System Medicine, National Health Research Institute, Chunan, Taiwan
| | - Kenneth K Wu
- Metabolomic Medicine Research Center, China Medical University, Taichung, Taiwan; Institute of Cell and System Medicine, National Health Research Institute, Chunan, Taiwan; Department of Medical Sciences, National Tsing-Hua University, Hsin-chu, Taiwan.
| |
Collapse
|
10
|
Ohnishi H, Saito Y. Eicosapentaenoic acid (EPA) reduces cardiovascular events: relationship with the EPA/arachidonic acid ratio. J Atheroscler Thromb 2013; 20:861-77. [PMID: 24047614 DOI: 10.5551/jat.18002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The clinical efficacy of fish oil and high-purity eicosapentaenoic acid ethyl ester (hp-EPA-E) for treating cardiovascular disease (CVD) has been reported. Fish oil contains saturated and monounsaturated fatty acids that have pharmacological effects opposite to those of ω3 fatty acids (ω3). Moreover, ω3, such as EPA and docosahexaenoic acid (DHA), do not necessarily have the same metabolic and biological actions. This has obscured the clinical efficacy of ω3. Recently, the Japan EPA Lipid Intervention Study (JELIS) of hp-EPA-E established the clinical efficacy of EPA for CVD, and higher levels of blood EPA, not DHA, were found to be associated with a lower incidence of major coronary events. A significant reduction in the risk of coronary events was observed when the ratio of EPA to arachidonic acid (AA) (EPA/AA) was > 0.75. Furthermore, the ratio of prostaglandin (PG) I3 and PGI2 to thromboxane A2 (TXA2) ([PGI2 + PGI3]/TXA2) was determined to have a linear relationship with the EPA/AA ratio as follows: (PGI2 + PGI3)/TXA2 =λ + π* (EPA/AA). Like PGI2, PGI3 not only inhibits platelet aggregation and vasoconstriction, but also is assumed to reduce cardiac ischemic injury and arteriosclerosis and promote angiogenesis. Thus, the effects of EPA in reducing the risk of CVD could be mediated by biological action of PGI3 in addition to hypotriglyceridemic action of EPA. Compared with DHA, EPA administration increases the EPA/AA ratio and the (PGI2 + PGI3)/TXA2 balance to a state that inhibits the onset and/or progression of CVD.
Collapse
|
11
|
6-Shogaol Protects against Oxidized LDL-Induced Endothelial Injruries by Inhibiting Oxidized LDL-Evoked LOX-1 Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:503521. [PMID: 23533490 PMCID: PMC3590502 DOI: 10.1155/2013/503521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/14/2013] [Indexed: 11/20/2022]
Abstract
Endothelial dysfunction and oxLDL are believed to be early and critical events in atherogenesis. 6-Shogaol is the major bioactive compound present in Zingiber officinale and possesses the anti-atherosclerotic effect. However, the mechanisms remain poorly understood. The goal of this study was to investigate the effects of 6-shogaol on oxLDL-induced Human umbilical vein endothelial cells (HUVECs) injuries and its possible molecular mechanisms. Hence, we studied the effects of 6-shogaol on cell apoptosis, cellular reactive oxygen species (ROS), NF-κB activation, Bcl-2 expression, and caspase -3, -8, -9 activities. In addition, E-selectin, MCP-1, and ICAM-1 were determined by ELISA. Our study show that oxLDL increased LOX-1 expression, ROS levels, NF-κB, caspases-9 and -3 activation and decreased Bcl-2 expression in HUVECs. These alterations were attenuated by 6-shogaol. Cotreatment with 6-shogaol and siRNA of LOX-1 synergistically reduced oxLDL-induced caspases -9, -3 activities and cell apoptosis. Overexpression of LOX-1 attenuated the protection by 6-shogaol and suppressed the effects of 6-shogaol on oxLDL-induced oxidative stress. In addition, oxLDL enhanced the activation of NF-κB and expression of adhesion molecules. Pretreatment with 6-shogaol, however, exerted significant cytoprotective effects in all events. Our data indicate that 6-shogaol might be a potential natural antiapoptotic agent for the treatment of atherosclerosis.
Collapse
|
12
|
Liu Q, Xi Y, Terry T, So SP, Mohite A, Zhang J, Wu G, Liu X, Cheng J, Ruan KH, Willerson JT, Dixon RAF. Engineered endothelial progenitor cells that overexpress prostacyclin protect vascular cells. J Cell Physiol 2012; 227:2907-16. [PMID: 21938725 DOI: 10.1002/jcp.23035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostacyclin (PGI2) is a potent vasodilator and important mediator of vascular homeostasis; however, its clinical use is limited because of its short (<2-min) half-life. Thus, we hypothesize that the use of engineered endothelial progenitor cells (EPCs) that constitutively secrete high levels of PGI2 may overcome this limitation of PGI2 therapy. A cDNA encoding COX-1-10aa-PGIS, which links human cyclooxygenase-1 (COX-1) to prostacyclin synthase (PGIS), was delivered via nucleofection into outgrowth EPCs derived from rat bone marrow mononuclear cells. PGI2-secreting strains (PGI2-EPCs) were established by continuous subculturing of transfected cells under G418 selection. Genomic PCR, RT-PCR, and Western blot analyses confirmed the overexpression of COX-1-10aa-PGIS in PGI2-EPCs. PGI2-EPCs secreted significantly higher levels of PGI2 in vitro than native EPCs (P < 0.05) and showed higher intrinsic angiogenic capability; conditioned medium (CM) from PGI2-EPCs promoted better tube formation than CM from native EPCs (P < 0.05). Cell- and paracrine-mediated in vitro angiogenesis was attenuated when COX-1-10aa-PGIS protein expression was knocked down. Whole-cell patch-clamp studies showed that 4-aminopyridine-sensitive K(+) current density was increased significantly in rat smooth muscle cells (rSMCs) cocultured under hypoxia with PGI2-EPCs (7.50 ± 1.59 pA/pF; P < 0.05) compared with rSMCs cocultured with native EPCs (3.99 ± 1.26 pA/pF). In conclusion, we successfully created EPC strains that overexpress an active novel enzyme resulting in consistent secretion of PGI2. PGI2-EPCs showed enhanced intrinsic proangiogenic properties and provided favorable paracrine-mediated cellular protections, including promoting in vitro angiogenesis of native EPCs and hyperpolarization of SMCs under hypoxia.
Collapse
Affiliation(s)
- Qi Liu
- The Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
14
|
Matsushita E, Asai N, Enomoto A, Kawamoto Y, Kato T, Mii S, Maeda K, Shibata R, Hattori S, Hagikura M, Takahashi K, Sokabe M, Murakumo Y, Murohara T, Takahashi M. Protective role of Gipie, a Girdin family protein, in endoplasmic reticulum stress responses in endothelial cells. Mol Biol Cell 2011; 22:736-47. [PMID: 21289099 PMCID: PMC3057699 DOI: 10.1091/mbc.e10-08-0724] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/12/2011] [Accepted: 01/18/2011] [Indexed: 12/18/2022] Open
Abstract
Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells differentially regulate the UPR. Here we show that a novel Girdin family protein, Gipie (78 kDa glucose-regulated protein [GRP78]-interacting protein induced by ER stress), is expressed in endothelial cells, where it interacts with GRP78, a master regulator of the UPR. Gipie stabilizes the interaction between GRP78 and the ER stress sensor inositol-requiring protein 1 (IRE1) at the ER, leading to the attenuation of IRE1-induced c-Jun N-terminal kinase (JNK) activation. Gipie expression is induced upon ER stress and suppresses the IRE1-JNK pathway and ER stress-induced apoptosis. Furthermore we found that Gipie expression is up-regulated in the neointima of carotid arteries after balloon injury in a rat model that is known to result in the induction of the UPR. Thus our data indicate that Gipie/GRP78 interaction controls the IRE1-JNK signaling pathway. That interaction appears to protect endothelial cells against ER stress-induced apoptosis in pathological contexts such as atherosclerosis and vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Etsushi Matsushita
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- Institute for Advanced Research, Nagoya University, Nagoya 464–8601, Japan
| | - Yoshiyuki Kawamoto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487–8501, Japan
| | - Takuya Kato
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Kengo Maeda
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Shun Hattori
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Minako Hagikura
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Ken Takahashi
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- International Cooperative Research Project/Solution Oriented Research for Science and Technology, Cell Mechanosensing, Japan Science and Technology Agency, Nagoya 466–8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- International Cooperative Research Project/Solution Oriented Research for Science and Technology, Cell Mechanosensing, Japan Science and Technology Agency, Nagoya 466–8550, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| |
Collapse
|
15
|
Kubota R, Numaguchi Y, Ishii M, Niwa M, Okumura K, Naruse K, Murohara T. Ischemia-induced angiogenesis is impaired in aminopeptidase A deficient mice via down-regulation of HIF-1α. Biochem Biophys Res Commun 2010; 402:396-401. [PMID: 20946870 DOI: 10.1016/j.bbrc.2010.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/08/2010] [Indexed: 11/27/2022]
Abstract
Aminopeptidase A (APA; EC 3.4.11.7) is a transmembrane metalloprotease with several functions in tumor angiogenesis. To investigate the role of APA in the process of ischemia-induced angiogenesis, we evaluated the cellular angiogenic responses under hypoxic conditions and the process of perfusion recovery in the hindlimb ischemia model of APA-deficient (APA-KO; C57Bl6/J strain) mice. Western blotting of endothelial cells (ECs) isolated from the aorta of APA-KO mice revealed that the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein in response to hypoxic challenge was blunted. Regarding the proteasomal ubiquitination, a proteasome inhibitor MG-132 restored the reduced accumulation of HIF-1α in ECs from APA-KO mice similar to control mice under hypoxic conditions. These were associated with decreased growth factor secretion and capillary formation in APA-KO mice. In the hindlimb ischemia model, perfusion recovery in APA-KO mice was decreased in accordance with a significantly lower capillary density at 2weeks. Regarding vasculogenesis, no differences were observed in cell populations and distribution patterns between wild type and APA-KO mice in relation to endothelial progenitor cells. Our results suggested that Ischemia-induced angiogenesis is impaired in APA-KO mice partly through decreased HIF-1α stability by proteasomal degradation and subsequent suppression of HIF-1α-driven target protein expression such as growth factors. APA is a functional target for ischemia-induced angiogenesis.
Collapse
Affiliation(s)
- Ryuji Kubota
- Department of Cardiology, Nagoya University, Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu S, Shen H, Xu M, Liu O, Zhao L, Liu S, Guo Z, Du J. FRP inhibits ox-LDL-induced endothelial cell apoptosis through an Akt-NF-{kappa}B-Bcl-2 pathway and inhibits endothelial cell apoptosis in an apoE-knockout mouse model. Am J Physiol Endocrinol Metab 2010; 299:E351-63. [PMID: 20530739 DOI: 10.1152/ajpendo.00005.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is the most common cause of cardiovascular diseases in the world. Although the development of atherosclerosis appears to be the result of multiple maladaptive pathways, a particularly important factor in the pathogenesis of atherosclerosis is oxidized low-density lipoprotein (ox-LDL), which contributes to endothelial damage. Data from our laboratory and others show that follistatin-related protein (FRP), which is expressed in the vasculature, has cardioprotective effects, suggesting that loss of FRP protection might play a role in the development of atherosclerosis. In the present study, we determined whether FRP overexpression protects against endothelial cell (EC) damage, an intermediate end point for atherosclerosis. We bred apoE-knockout (apoE(-/-)) mice that were FRP(+) transgenic (they overexpressed FRP). We compared them with control mice (their littermates). Human umbilical vein endothelial cells (HUVECs) were isolated and treated with ox-LDL and recombinant FRP. FRP-induced signal transduction and Bcl-2 mRNA and protein stability were analyzed. After 16 wk, apoE(-/-) FRP(+) mice had significantly fewer apoptotic ECs than controls. In vitro experiments showed that the effect of FRP on EC apoptosis was mediated by upregulation of expression of the antiapoptotic protein Bcl-2. In HUVECs, FRP upregulated Bcl-2 transcription via a PI3K-Akt-NF-kappaB pathway. We conclude that FRP overexpression maintains EC viability by preventing apoptosis via Bcl-2 upregulation. FRP may be a novel therapeutic target for the prevention and treatment of vascular EC injury and of atherosclerosis.
Collapse
Affiliation(s)
- Shu Liu
- Dept. of Vascular Biology, Capital Medical University, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Disease, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Barbato JE, Kibbe MR, Tzeng E. The Emerging Role of Gene Therapy in the Treatment of Cardiovascular Diseases. Crit Rev Clin Lab Sci 2010. [DOI: 10.1080/10408360390250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Kawabe JI, Ushikubi F, Hasebe N. Prostacyclin in Vascular Diseases - Recent Insights and Future Perspectives -. Circ J 2010; 74:836-43. [DOI: 10.1253/circj.cj-10-0195] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun-ichi Kawabe
- Departments of Cardiovascular Regeneration and Innovation, Asahikawa Medical College
| | | | - Naoyuki Hasebe
- Departments of Cardiovascular Regeneration and Innovation, Asahikawa Medical College
- Department of Internal Medicine, Cardiovascular, Respiratory and Neurology Division, Asahikawa Medical College
| |
Collapse
|
19
|
Protease-activated receptors, cyclo-oxygenases and pro-angiogenic signalling in endothelial cells. Biochem Soc Trans 2009; 37:1179-83. [DOI: 10.1042/bst0371179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
COX (cyclo-oxygenase)-2 and members of the PAR (protease-activated receptor) family (PARs 1–4) are highly overexpressed in a number of angiogenesis-dependent pathologies, including advanced atherosclerosis and cancer. An appreciation of the potential role(s) of PARs and COX enzymes in physiological angiogenesis is, however, currently lacking. Exposure of human endothelial cells to serine proteases (e.g. thrombin) or to PAR-selective agonist peptides leads to a wide range of cellular responses, including enhanced expression of COX-2, and we have shown that this induction depends on activation of classic pro-inflammatory signalling elements [e.g. MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)]. Our current studies suggest that COX-2-derived mediators are important autocrine regulators of PAR-stimulated angiogenesis. This mechanism could help us to explain how this novel family of receptors couple vascular inflammation with repair and angiogenesis in health and disease.
Collapse
|
20
|
Ishii M, Numaguchi Y, Okumura K, Kubota R, Ma X, Murakami R, Naruse K, Murohara T. Mesenchymal stem cell-based gene therapy with prostacyclin synthase enhanced neovascularization in hindlimb ischemia. Atherosclerosis 2009; 206:109-18. [DOI: 10.1016/j.atherosclerosis.2009.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 02/21/2009] [Accepted: 02/21/2009] [Indexed: 01/13/2023]
|
21
|
Tsai MC, Chen L, Zhou J, Tang Z, Hsu TF, Wang Y, Shih YT, Peng HH, Wang N, Guan Y, Chien S, Chiu JJ. Shear stress induces synthetic-to-contractile phenotypic modulation in smooth muscle cells via peroxisome proliferator-activated receptor alpha/delta activations by prostacyclin released by sheared endothelial cells. Circ Res 2009; 105:471-80. [PMID: 19628794 DOI: 10.1161/circresaha.109.193656] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RATIONALE Phenotypic modulation of smooth muscle cells (SMCs), which are located in close proximity to endothelial cells (ECs), is critical in regulating vascular function. The role of flow-induced shear stress in the modulation of SMC phenotype has not been well defined. OBJECTIVE The objective was to elucidate the role of shear stress on ECs in modulating SMC phenotype and its underlying mechanism. METHODS AND RESULTS Application of shear stress (12 dyn/cm2) to ECs cocultured with SMCs modulated SMC phenotype from synthetic to contractile state, with upregulation of contractile markers, downregulation of proinflammatory genes, and decreased percentage of cells in the synthetic phase. Treating SMCs with media from sheared ECs induced peroxisome proliferator-activated receptor (PPAR)-alpha, -delta, and -gamma ligand binding activities; transfecting SMCs with specific small interfering (si)RNAs of PPAR-alpha and -delta, but not -gamma, inhibited shear induction of contractile markers. ECs exposed to shear stress released prostacyclin (PGI2). Transfecting ECs with PGI2 synthase-specific siRNA inhibited shear-induced activation of PPAR-alpha/delta, upregulation of contractile markers, downregulation of proinflammatory genes, and decrease in percentage of SMCs in synthetic phase. Mice with PPAR-alpha deficiency (compared with control littermates) showed altered SMC phenotype toward a synthetic state, with increased arterial contractility in response to angiotensin II. CONCLUSIONS These results indicate that laminar shear stress induces synthetic-to-contractile phenotypic modulation in SMCs through the activation of PPAR-alpha/delta by the EC-released PGI2. Our findings provide insights into the mechanisms underlying the EC-SMC interplays and the protective homeostatic function of laminar shear stress in modulating SMC phenotype.
Collapse
Affiliation(s)
- Min-Chien Tsai
- Division of Medical Engineering Research, National Health Research Institutes, Miaoli 350, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sun ZS, Zhou SH, Guan X. Impact of blood circulation on reendothelialization, restenosis and atrovastatin's restenosis prevention effects. Int J Cardiol 2008; 128:261-8. [PMID: 17707100 DOI: 10.1016/j.ijcard.2007.05.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Accepted: 05/26/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND The independent effects of numerous circulating inflammatory cytokines and inflammatory associated blood cells on reendothelialization and restenosis after PCI has been elucidated, whereas the blood circulation's general effect on restenosis is still pending. Thereby, author investigated the impact of blood circulation on reendothelialization, restenosis and atrovastatin's restenosis prevention effects. METHODS AND RESULTS 70 SD rats were divided equally in 7 groups: sham operation group, deendothelialization group, atrovastatin treatment group, occlusion group, occlusion and deendothelialization group, atrovastatin treatment after occlusion and deendothelialization group, and immediate sacrifice (after deendothelialization) group. The carotid model of deendothelialization by balloon and (or) thromboembolism occlusion was established, and 4 weeks after balloon injury, the reendothelialization ratio and restenosis ratio of each subjects were observed. The outcomes revealed that there is a natural self-repair phenomenon, featured as low level reendothelialization and restenosis inhibition, which can be significantly augmented under atrovastatin treatment. Yet when the blood circulation discontinued, not only the self-repair process, but also atrovastatin's beneficial effects on reendothelialization and restenosis disappeared. SPSS analysis revealed that there was inverse correlation between reendothelialization and restenosis. CONCLUSIONS Blood circulation not only per se generally promote reendothelialization and inhibits restenosis, but also serves as a necessary pathway for atrovastatin exerting therapeutic effects on reendothelialization and restenosis; Accelerating reendothelialization is a promising approach of restenosis prevention.
Collapse
|
23
|
Imai H, Numaguchi Y, Ishii M, Kubota R, Yokouchi K, Ogawa Y, Kondo T, Okumura K, Murohara T. Prostacyclin synthase gene transfer inhibits neointimal formation by suppressing PPARδ expression. Atherosclerosis 2007; 195:322-32. [PMID: 17303142 DOI: 10.1016/j.atherosclerosis.2007.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 12/20/2006] [Accepted: 01/09/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Prostacyclin (PGI(2)) is a potent ligand of peroxisome proliferator-activated receptor delta (PPAR delta) that regulates cell growth and differentiation. The aim of this study was to elucidate how endogenous PGI(2) overexpression affects the expressions of PPAR delta and mitogen-activated protein kinases (MAPKs) in the development of neointimal formation in experimental angioplasty with adenovirus-mediated PGI(2) synthase (Ad-PGIS) gene transfer. METHODS AND RESULTS In human aortic smooth muscle cells, protein blotting analysis showed that PGI(2) overproduction decreased the levels of phosphorylated p38 MAPK (P-p38 MAPK) (2.0-fold versus 0.83-fold relative to control). Immunohistochemical analysis in balloon-injured arteries revealed diffuse expression of PPAR delta in the neointima of control vessels, with no expression in uninjured vessels. The level of PPAR delta expression was lower in Ad-PGIS-treated arteries than in control vessels, with the PPAR delta localized in the neointima adjacent to endothelium. Staining of P-p38 MAPK showed a similar pattern to PPAR delta among the three groups. Morphometric analysis at day 14 revealed that Ad-PGIS reduced the intima-to-media ratio by up to 59%. CONCLUSIONS Ad-PGIS gene transfer reduced PPAR delta expression and inhibited neointimal formation after balloon injury in accordance with the reduction in the phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Hajime Imai
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Gene transfer for the therapeutic modulation of cardiovascular diseases is an expanding area of gene therapy. During the last decade several approaches have been designed for the treatment of hyperlipidemias, post-angioplasty restenosis, hypertension, and heart failure, and for protection of vascular by-pass grafts and promotion of therapeutic angiogenesis. Adenoviruses (Ads) and adeno-associated viruses (AAVs) are currently the most efficient vectors for delivering therapeutic genes into the cardiovascular system. Gene transfer using local gene delivery techniques have been shown to be superior to less-targeted intra-arterial or intra-venous applications. To date, no gene therapy drugs have been approved for clinical use in cardiovascular applications. In preclinical studies of therapeutic angiogenesis, various growth factors such as vascular endothelial growth factors (VEGFs) and fibroblast growth factors (FGFs), have shown positive results. Gene therapy also appears to have potential clinical applications in improving the patency of vascular grafts and in treating heart failure. Post-angioplasty restenosis, hypertension, and hyperlipidemias (excluding homozygotic familial hypercholesterolemia) can usually be managed satisfactorily by conventional approaches, and are therefore less favored areas for gene therapy. The development of technologies that can ensure long-term, targeted, and regulated gene transfer, and a careful selection of target patient populations, will be very important for the progress of cardiovascular gene therapy in clinical applications.
Collapse
Affiliation(s)
- Tuomas T Rissanen
- 1Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, Kuopio University, Kuopio, Finland
| | | |
Collapse
|
25
|
|
26
|
Brewster L, Brey E, Greisler H. Cardiovascular gene delivery: The good road is awaiting. Adv Drug Deliv Rev 2006; 58:604-29. [PMID: 16769148 PMCID: PMC3337725 DOI: 10.1016/j.addr.2006.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/24/2006] [Indexed: 01/13/2023]
Abstract
Atherosclerotic cardiovascular disease is a leading cause of death worldwide. Despite recent improvements in medical, operative, and endovascular treatments, the number of interventions performed annually continues to increase. Unfortunately, the durability of these interventions is limited acutely by thrombotic complications and later by myointimal hyperplasia followed by progression of atherosclerotic disease over time. Despite improving medical management of patients with atherosclerotic disease, these complications appear to be persisting. Cardiovascular gene therapy has the potential to make significant clinical inroads to limit these complications. This article will review the technical aspects of cardiovascular gene therapy; its application for promoting a functional endothelium, smooth muscle cell growth inhibition, therapeutic angiogenesis, tissue engineered vascular conduits, and discuss the current status of various applicable clinical trials.
Collapse
Affiliation(s)
- L.P. Brewster
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - E.M. Brey
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
| | - H.P. Greisler
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
- Corresponding author. Loyola University Medical Center, Department of Surgery, 2160 South First Avenue, Maywood, IL, 60153, USA. Tel.: +1 708 216 8541; fax: +1 708 216 6300. (H.P. Greisler)
| |
Collapse
|
27
|
Kasahara T, Tsunekawa K, Seki K, Mori M, Murakami M. Regulation of iodothyronine deiodinase and roles of thyroid hormones in human coronary artery smooth muscle cells. Atherosclerosis 2006; 186:207-14. [PMID: 16140305 DOI: 10.1016/j.atherosclerosis.2005.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 07/04/2005] [Accepted: 07/18/2005] [Indexed: 11/29/2022]
Abstract
Thyroid hormones have been reported to have significant effects on the peripheral vascular system, including relaxation of vascular smooth muscle cells and prevention of atherosclerosis. To exert its biological activity, thyroxine (T4) needs to be converted to 3,5,3'-triiodothyronine (T3) by type 1 and type 2 iodothyronine deiodinases. We have previously identified type 2 iodothyronine deiodinase (D2) expression in cultured human coronary artery smooth muscle cells (hCASMCs). In the present study, we have characterized the regulation of D2 expression in hCASMCs by stable prostacyclin analogue beraprost sodium (BPS) and platelet derived growth factor (PDGF), and the roles of thyroid hormones in the functions of hCASMCs. BPS increased D2 expression, whereas PDGF suppressed BPS stimulated D2 expression without affecting cAMP production in hCASMCs. PDGF increased DNA synthesis, while BPS, T3 or T4 suppressed PDGF stimulated DNA synthesis in hCASMCs. Inhibition of D2 activity by 3,3',5'-triiodothyronine (rT3) partially restored T4 suppression of PDGF stimulated DNA synthesis in hCASMCs. PDGF increased migration activity, whereas BPS, T3 or T4 suppressed PDGF stimulated migration activity of hCASMCs. These results suggest that D2 expression is increased by BPS and suppressed by PDGF in hCASMCs, and that intracellular thyroid hormone activation may be involved in the suppression of DNA synthesis and migration activity of hCASMCs.
Collapse
Affiliation(s)
- Takayuki Kasahara
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan
| | | | | | | | | |
Collapse
|
28
|
Wu KK, Liou JY. Cellular and molecular biology of prostacyclin synthase. Biochem Biophys Res Commun 2005; 338:45-52. [PMID: 16115610 DOI: 10.1016/j.bbrc.2005.08.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/02/2005] [Indexed: 12/19/2022]
Abstract
Prostacyclin synthase (PGIS) cDNA comprises 1500 nucleotides coding for a 500 amino acid protein. It is a heme protein with spectral characteristics of cytochrome p450 (CYP). It does not possess the typical CYP mono-oxygenase activity but catalyzes the rearrangement of prostaglandin H2 to form PGI2. Analysis of its structure-function by molecular modeling and site-directed mutagenesis reveals a long substrate channel lined by hydrophobic residues. Cys-441 has been identified as the proximal axial ligand of heme. Tyr-430 is nitrated by peroxynitrite which results in reduced PGIS catalytic activity, suggesting that Tyr-430 is located close to the heme pocket. PGIS is constitutively expressed and may be upregulated by cytokines, reproductive hormones, and growth factors. It is physically colocalized with cyclooxygenases and phospholipases, and functionally coupled with these enzymes. PGIS coupling with COX-2 has been shown to play an important role in vascular protection, embryo development and implantation, and cancer growth.
Collapse
Affiliation(s)
- Kenneth K Wu
- Vascular Biology Research Center, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | | |
Collapse
|
29
|
Giguère V, Gallant MA, de Brum-Fernandes AJ, Parent JL. Role of extracellular cysteine residues in dimerization/oligomerization of the human prostacyclin receptor. Eur J Pharmacol 2005; 494:11-22. [PMID: 15194446 DOI: 10.1016/j.ejphar.2004.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 04/15/2004] [Accepted: 04/26/2004] [Indexed: 11/20/2022]
Abstract
Prostacyclin activation of prostanoid IP receptors may result in pain sensation, inflammatory responses, inhibition of platelet aggregation, and vasodilation in vascular tissue. The prostanoid IP receptor is a G-protein-coupled receptor. In the present study, we investigated the determinants responsible, at least in part, for the prostacyclin receptor (IP) dimerization/oligomerization. Using co-immunoprecipitation of differentially tagged IP expressed in COS-7 cells, we demonstrate that IP can form dimers and oligomers. Treatment of IP-expressing cells with the stable agonist carbaprostacyclin failed to alter the ratios of oligomeric/dimeric/monomeric forms of the receptor, suggesting that IP dimerization/oligomerization is an agonist-independent process. The reducing agents dithiothreitol and 2-mercaptoethanol were highly efficient in converting the receptor from its oligomeric form to the monomeric state, indicating the involvement of disulfide bonds in IP oligomerization. Immunoblotting of the osteoblastic MG-63 cell line lysates with an anti-IP specific antibody revealed the presence of endogenous IP oligomers which were converted to dimers and monomers upon treatment with dithiothreitol. Individual substitutions of the four extracellular IP Cys residues (Cys(5), Cys(92), Cys(165) and Cys(170)) for Ser resulted in greatly decreased receptor protein expression in COS-7 cells. The C92-170S double mutant showed receptor protein expression level similar to the individual mutants. However, expression of the C92-165S and C165-170S mutants was drastically reduced, suggesting that there was formation of disulfide bonds between Cys(5) and Cys(165), and between Cys(92) and Cys(170). The Cys receptor mutants showed altered oligomer/dimer/monomer ratios. Dimerization/oligomerization likely occurs intracellularly since these Cys receptor mutants could still form dimers/oligomers despite their lack of expression at the cell surface.
Collapse
Affiliation(s)
- Vincent Giguère
- Division of Rheumatology, Faculty of Medecine and Clinical Research Center, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | |
Collapse
|
30
|
Zaidi SHE, Peltekova V, Meyer S, Lindinger A, Paterson AD, Tsui LC, Faiyaz-Ul-Haque M, Teebi AS. A family exhibiting arterial tortuosity syndrome displays homozygosity for markers in the arterial tortuosity locus at chromosome 20q13. Clin Genet 2004; 67:183-8. [PMID: 15679832 DOI: 10.1111/j.1399-0004.2004.00391.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arterial tortuosity associated with hyperextensible skin and hypermobility of joints, features that are characteristics of Ehlers-Danlos syndrome (EDS), has been described in several families. An arterial tortuosity locus has recently been mapped to chromosome 20q13. Here, we report a consanguineous Kurdish family in which an affected child manifested elongation and severe tortuosity of the aorta, carotid, and other arteries. Additional clinical symptoms include loose skin, hypermobile joints, hernias, and facial features that resemble EDS individuals. To examine whether the arterial tortuosity locus was involved in this child, homozygosity analysis was performed using microsatellite markers on 20q13. The affected child was found homozygous, whereas the unaffected parents and three siblings were heterozygous. Additional typing defined the genomic interval to a 37-cm region within which the arterial tortuosity locus is located. Three functional candidate genes (B4GALT5, KCNB1, and PTGIS) were sequenced. No mutations were discovered in the coding regions of these three genes and the promoter regions of B4GALT5 and KCNB1 genes. Moreover, the B4GALT5 mRNA expression was unaltered in patient-derived lymphoblastoid cells. In the PTGIS gene promoter, the affected child was homozygous for eight variable number of tandem repeats, while parents and unaffected siblings carried six repeats.
Collapse
Affiliation(s)
- S H E Zaidi
- Division of Cardiology, Department of Medicine, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wilson SJ, Roche AM, Kostetskaia E, Smyth EM. Dimerization of the human receptors for prostacyclin and thromboxane facilitates thromboxane receptor-mediated cAMP generation. J Biol Chem 2004; 279:53036-47. [PMID: 15471868 DOI: 10.1074/jbc.m405002200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostacyclin (PGI(2)) and thromboxane (TxA(2)) are biological opposites; PGI(2), a vasodilator and inhibitor of platelet aggregation, limits the deleterious actions of TxA(2), a vasoconstrictor and platelet activator. The molecular mechanisms involved in the counterregulation of PGI(2)/TxA(2) signaling are unclear. We examined the interaction of the receptors for PGI(2) (IP) and TxA(2) (TPalpha). IP-induced cAMP and TP-induced inositol phosphate generation were unaltered when the receptors were co-expressed in HEK 293 cells (IP/TPalpha-HEK). TP-cAMP generation, in response to TP agonists or a TP-dependent isoprostane, iPE(2)III, was evident in IP/TPalpha-HEK and in aortic smooth muscle cells, but not in cells expressing either receptor alone, or in IP-deficient aortic smooth muscle cells. Augmentation of TP-induced cAMP generation, with the IP agonist cicaprost, was ablated in IP-deficient cells and was independent of direct IP signaling. IP/TPalpha heterodimers were formed constitutively when the receptors were co-expressed, with no overt changes in ligand binding to the individual receptor sites. However, despite inefficient binding of iPE(2)III to either the IP or TPalpha, expressed alone or in combination, robust cAMP generation was evident in IP/TPalpha-HEK, suggesting the formation of an alternative receptor site. Thus, IP/TPalpha dimerization was coincident with TP-cAMP generation, promoting a "PGI(2)-like" cellular response to TP activation. This represents a previously unknown mechanism by which IP may limit the cellular effects of TP.
Collapse
Affiliation(s)
- Stephen J Wilson
- Center for Experimental Therapeutics, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
32
|
Meyer-Kirchrath J, Debey S, Glandorff C, Kirchrath L, Schrör K. Gene expression profile of the Gs-coupled prostacyclin receptor in human vascular smooth muscle cells. Biochem Pharmacol 2004; 67:757-65. [PMID: 14757176 DOI: 10.1016/j.bcp.2003.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Migration and proliferation of medial smooth muscle cells (SMC) in the arterial intima contributes to the development of atherosclerotic plaques and restenotic processes after coronary angioplasty. Prostacyclin (PGI2)-mediated stimulation of cyclic adenosine 3'5'-monophosphate (cAMP) signaling is believed to be important for maintaining SMC in a quiescent state. In order to identify new cellular targets of PGI2/cAMP action, we have used microarray screening to examine changes in the transcriptional profile in human vascular SMC in response to exposure to the stable PGI2 mimetic iloprost. We have identified 83 genes with significantly altered expression after iloprost (100 nM) exposure for 6 hr. Fifty-one genes were upregulated, among them stanniocalcin precursor (18.8+/-2.7), zinc finger transcription factor (7.8+/-2.0), hyaluronan synthase 2 (6.8+/-1.8), cyclooxygenase 2 (4.7+/-0.8), dual specific phosphatase (3.9+/-0.5) and vascular endothelial growth factor (2.3+/-0.4). Thirty-two genes were reduced, among them cystein-rich angiogenic protein (-14.9+/-1.3), monocyte chemotactic protein 1 (-7.4+/-1.1) and plasminogen activator inhibitor PAI-1 (-4.5+/-0.5). By means of semi-quantitative RT-PCR, time-courses of gene expression were established. The present study identified genes not hitherto recognized to be targets of PGI2 action, providing further insight into its cAMP-mediated effects on SMC growth, migration and matrix secretion.
Collapse
Affiliation(s)
- Jutta Meyer-Kirchrath
- Institut für Pharmakologie und Klinische Pharmakologie, UniversitätsKlinikum, Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- J Vane
- The William Harvey Research Institute, Charterhouse Square, London, UK
| | | |
Collapse
|
34
|
Debey S, Kirchrath L, Schrör K, Meyer-Kirchrath J. Iloprost down-regulates the expression of the growth regulatory gene Cyr61 in human vascular smooth muscle cells. Eur J Pharmacol 2003; 474:161-4. [PMID: 12921857 DOI: 10.1016/s0014-2999(03)02040-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prostacyclin and its mimetics have repeatedly been shown to act antiatherogenic and to inhibit neointima formation in several animal models of vascular injury. Treatment of human vascular smooth muscle cells with the prostacyclin mimetic iloprost (100 nm) drastically reduces expression of Cyr61, encoding the growth-regulatory cystein-rich angiogenic protein, without affecting the degradation rate of Cyr61 mRNA. Thrombin-induced Cyr61 expression was inhibited completely in the presence of iloprost. It is concluded that vasoprotective actions of prostacyclin in vivo may in part be due to inhibition of expression of the growth regulatory gene Cyr61 at sites of vascular lesions.
Collapse
Affiliation(s)
- Svenja Debey
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
35
|
Fischer TH, Brittain J, Trabalzini L, Banes AJ, White GC, Smith CJ, Nichols TC. The ras-binding domain of ral GDS-like protein-2 as a ras inhibitor in smooth muscle cells. Biochem Biophys Res Commun 2003; 305:934-40. [PMID: 12767920 DOI: 10.1016/s0006-291x(03)00878-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study was undertaken to determine whether the response of smooth muscle cells to mitogens can be inhibited by inactivating ras with the ral GDS like protein-2 ras-binding domain (RGL2-RBD). RGL2 is a member of the ral GDS family of proteins that contains a carboxy terminal ras-binding domain which binds the GTP ligated form of ras and rap and a CDC25 homology domain with the structural features of a guanine nucleotide exchange factor. The effect of ras signaling on the smooth muscle cell growth factor response was studied using rat aortic A10 smooth muscle cells transfected with a plasmid that encoded the RGL2-RBD. RGL2-RBD transfection resulted in a 12-fold reduction in the number of clonal colonies that were obtained after selection, and dramatically slowed cell cycle progression. RGBL2-RBD reduced DNA synthesis and inhibited platelet derived growth factor (PDGF)-mediated activation of the MAPK pathway. These findings indicated that interfering with ras signaling inhibits smooth muscle cell proliferation and raise the possibility that ras signaling inhibition might be used therapeutically to control smooth muscle proliferation after vascular injury.
Collapse
Affiliation(s)
- Thomas H Fischer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Agata J, Zhang JJ, Chao J, Chao L. Adrenomedullin gene delivery inhibits neointima formation in rat artery after balloon angioplasty. REGULATORY PEPTIDES 2003; 112:115-20. [PMID: 12667632 DOI: 10.1016/s0167-0115(03)00029-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adrenomedullin (AM) is a potent vasodilator expressed in tissues relevant to cardiovascular function. AM peptide has been shown to inhibit the proliferation and migration of vascular smooth muscle cells in vitro. However, the effect of AM on blood vessels after vascular injury in vivo has not been elucidated. In order to explore the potential roles of AM in vascular biology, we evaluated the effect of AM by local gene delivery on neointima formation in balloon-injured rat artery. Adenovirus carrying the human AM cDNA under the control of cytomegalovirus promoter/enhancer (Ad.CMV-hAM) was generated by homologous recombination. After delivery of Ad.CMV-hAM into rat left carotid artery, we identified the expression of human AM mRNA in the left carotid artery, but not in the right carotid artery, heart or kidney by reverse transcription-polymerase chain reaction (RT-PCR) followed by Southern blot analysis. Following local AM gene delivery, we observed a 51% reduction in intima/media ratio at the injured site as compared with that of control rats injected with the luciferase gene (n=7, P<0.01). AM gene transfer resulted in regeneration of endothelium as compared to the control. AM gene delivery significantly increased cGMP levels in balloon-injured arteries. These results indicate that AM contributes to reduction of neointima formation by promotion of re-endothelialization and inhibition of vascular smooth muscle cell proliferation via cGMP-dependent signaling pathway.
Collapse
Affiliation(s)
- Jun Agata
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, PO Box 250509, Charleston, SC 29425-2211, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Prostacyclin, a member of the eicosanoid family of lipid mediators, is the major product of arachidonic acid metabolism formed in the marcovascular endothelium. It is a potent vasodilator, antithrombotic, and antiplatelet agent that mediates it effects through a membrane-associated receptor termed the IP. Cloning of the cDNA for IP, from human and other species, indicated its membership of the G protein-coupled receptor superfamily and has allowed detailed examination of the signaling and regulatory pathways utilized by this receptor. This article examines the current state of knowledge of the IP, its signaling and regulation, and its biological role in vivo and examines the possible existence of multiple PGI2 receptor sites.
Collapse
Affiliation(s)
- Emer M Smyth
- Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
38
|
Abstract
Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of angiogenesis in the cardiac muscle are discussed in reviews by several investigators (13,26,57,74,83). In another review, Meyerson et al. (43) discuss advances in gene therapy for vascular proliferative disorders and chronic peripheral and cardiac ischemia.
Collapse
Affiliation(s)
- M J McKay
- Department of Medicine, Sarver Heart Center, Cardiology Section 111C, University of Arizona, 3601 South 6th Avenue, Tucson, AZ 85723, USA
| | | |
Collapse
|
39
|
Zachary I. Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol 2001; 280:C1375-86. [PMID: 11350732 DOI: 10.1152/ajpcell.2001.280.6.c1375] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vascular endothelial growth factor (VEGF) is essential for angiogenesis in health and pathophysiology, and it is currently a major focus for drug targeting in the development of treatments for diverse human diseases. Recently, we proposed that VEGF could also play a role as a vascular protective factor in the adult vasculature and in disease. In this model, vascular protection is defined as a VEGF-induced enhancement of endothelial functions that mediate the inhibition of vascular smooth muscle cell proliferation, enhanced endothelial cell survival, suppression of thrombosis, and anti-inflammatory effects. A feature of this model is that protective effects of VEGF are essentially independent of angiogenesis or endothelial cell proliferation. VEGF-dependent cell survival and VEGF-induced synthesis of nitric oxide and prostacyclin are likely to be key mediators of a vascular protective effect. Vascular protection should help to improve insight into the underlying mechanisms of cardiovascular actions of VEGF and prove valuable for developing novel therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- I Zachary
- Department of Medicine, University College London, 5 Univ. St., London WC1E 6JJ, United Kingdom
| |
Collapse
|
40
|
Spisni E, Griffoni C, Santi S, Riccio M, Marulli R, Bartolini G, Toni M, Ullrich V, Tomasi V. Colocalization prostacyclin (PGI2) synthase--caveolin-1 in endothelial cells and new roles for PGI2 in angiogenesis. Exp Cell Res 2001; 266:31-43. [PMID: 11339822 DOI: 10.1006/excr.2001.5198] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In vascular cells, prostacyclin (PGI2) synthase (PGI2s) has been localized in the endoplasmic reticulum of endothelial cells and in the nuclear and plasma membrane of smooth muscle cells. In human umbilical vein endothelial (HUVE) cells, we detected the enzyme in abundant cytoplasmic vesicles apparently originating from the plasma membrane and similar to those stained by gold-albumin, which interacts with a caveolar receptor. This prompted us to try a direct confocal microscopy approach aimed at colocalizing gold-albumin, caveolin-1, and PGI2 synthase. Moreover, the staining of HUVE cells with an anti-BiP7Grp78 antibody (a marker of endoplasmic reticulum) shows a perinuclear localization, sharply separated from PGI2 synthase localization. The results indicate that more than 80% of the enzyme resides in cellular sites costaining with caveolin-1 antibody and gold-albumin. This evidence was confirmed by the demonstration that PGI2 synthase and caveolin-1 coimmunoprecipitate in HUVE cell lysates and that they are associated to detergent-insoluble membrane domains in the same low-density fractions of a sucrose gradient. In addition, depletion of cellular cholesterol by mevalonate and methyl-beta-cyclodextrin leads to the shift of PGI2 synthase and caveolin-1 to higher density fractions of the gradient. Biochemical evidence about colocalization was supported by the use of a fusion protein glutathione S-transferase (GST)/caveolin-1, which retained either PGI2s purified from ram seminal vesicles or PGI2s present in HUVE cell lysates. Binding of PGI2s to caveolin "scaffolding domain" and to C-terminal region was deduced by using full-length GST--Cav-1, GST--Cav 61--101, and GST C- and N-terminal fusion proteins. A double approach based on the usage of filipin as a specific caveolae-disrupting agent and antisense oligonucleotides targeting PGI2 synthase mRNA suggests that the production of PGI2 in caveolae is likely to be connected to the regulation of angiogenesis, at least in vitro.
Collapse
Affiliation(s)
- E Spisni
- Department of Experimental Biology, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Obstructive atherosclerotic vascular disease stands as one of the greatest public health threats in the world. While a number of therapies have been developed to combat vascular disease, endothelial cell delivery has emerged as a distinct therapeutic modality. In this article, we will review the anatomy of the normal blood vessel and the biology of the intact endothelium, focusing upon its centrality in vascular biology and control over the components of the vascular response to injury so as to understand better the motivation for a cell-based form of therapy. Our discussion of cell delivery for cardiovascular therapy will be divided into surgical and interventional approaches. We will briefly recount the development of artificial grafts for surgical vascular bypass before turning our attention towards endothelial cell seeded vascular grafts, in which endothelial cells effectively provide local delivery of endogenous endothelial secretory products to maintain prosthetic integrity after surgical implantation. New techniques in tissue and genetic engineering of vascular grafts and whole blood vessels will be presented. Methods for percutaneous interventions will be examined as well. We will evaluate results of endoluminal endothelial cell seeding for treatment of restenosis and gene therapy approaches to enhance endogenous re-endothelialization. Finally, we will examine some innovations in endothelial cell delivery that may lead to the development of endothelial cell implants as a novel therapy for controlling proliferative vascular arteriopathy.
Collapse
Affiliation(s)
- S A Parikh
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
42
|
Abstract
The quest for an anti-restenotic drug continues to be a major challenge in the field of cardiovascular pharmacology because most therapies with proven efficacy in experimental neointima models have failed to limit restenosis. Some drug classes, including glycoprotein IIb/IIIa antagonists, nitric oxide donors and the antioxidant probucol, have recently demonstrated potential benefits in clinical trials. Progress in the development of local delivery systems for administration of drugs, antisense oligonucleotides or genes, in combination with an improved understanding of the pathogenesis of restenosis holds promise for ultimate pharmacotherapy of this condition.
Collapse
Affiliation(s)
- H Bult
- Division of Pharmacology, Faculty of Medicine and Pharmaceutical Sciences, University of Antwerp - UIA, 2610 Wilrijk, Belgium.
| |
Collapse
|
43
|
Abstract
Vascular gene transfer potentially offers new treatments for cardiovascular diseases. It can be used to overexpress therapeutically important proteins and correct genetic defects, and to test experimentally the effects of various genes in a local vascular compartment. Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) gene transfers have improved blood flow and collateral development in ischaemic limb and myocardium. Promising therapeutic effects have been obtained in animal models of restenosis or vein-graft thickening with the transfer of genes coding for VEGF, nitric-oxide synthase, thymidine kinase, retinoblastoma, growth arrest homoeobox, tissue inhibitor of metalloproteinases, cyclin or cyclin-dependent kinase inhibitors, fas ligand and hirudin, and antisense oligonucleotides against transcription factors or cell-cycle regulatory proteins. First experiences of VEGF gene transfer and decoy oligonucleotides in human beings have been reported. However, further developments in gene-transfer vectors, gene-delivery techniques and identification of effective treatment genes will be required before the full therapeutic potential of gene therapy in cardiovascular disease can be assessed.
Collapse
Affiliation(s)
- S Ylä-Herttuala
- A I Virtanen Institute and Department of Medicine, University of Kuopio, Finland.
| | | |
Collapse
|
44
|
Abstract
Poor long-term patency and a lack of suitable systemic pharmacologic therapy for the prevention of vein graft failure have prompted the search for effective local gene therapy. Vein grafts are particularly well suited for gene transfer in the clinic because direct access to vein is available during surgical preparation for grafting. In this review, the available animal models are discussed and a new mouse model is highlighted. Recent advances in gene transfer technology are reviewed, including the use of adeno-associated virus and modified adenoviruses that can prolong in vivo transgene expression for months. Gene therapy is intended to reduce early thrombosis, reduce neointima formation, and prevent atherosclerosis in vein grafts. Promising antithrombotic targets include tissue plasminogen activator and thrombomodulin. Nitric oxide synthase, prostacyclin synthase, and tissue inhibitors of metalloproteinases have been used to reduce neointima formation, and vein graft atheroma remains a challenge for the future.
Collapse
Affiliation(s)
- A C Newby
- Bristol Heart Institute, University of Bristol, United Kingdom.
| | | |
Collapse
|