1
|
Xu S, Han X, Wang X, Yu Y, Qu C, Liu X, Yang B. The role of oxidative stress in aortic dissection: a potential therapeutic target. Front Cardiovasc Med 2024; 11:1410477. [PMID: 39070552 PMCID: PMC11272543 DOI: 10.3389/fcvm.2024.1410477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The incidence of aortic dissection (AD) is steadily increasing, driven by the rising prevalence of chronic conditions such as hypertension and the global aging of the population. Oxidative stress emerges as a pivotal pathophysiological mechanism contributing to the progression of AD. Oxidative stress triggers apoptosis in vascular smooth muscle cells, reshapes the extracellular matrix (ECM), and governs ECM degradation and remodeling, subsequently impacting aortic compliance. Furthermore, oxidative stress not only facilitates the infiltration of macrophages and mononuclear lymphocytes but also disrupts the integral structure and functionality of endothelial cells, thereby inducing endothelial cell dysfunction and furthering the degeneration of the middle layer of the aortic wall. Investigating antioxidants holds promise as a therapeutic avenue for addressing AD.
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Chen MX, Deng BY, Liu ST, Wang ZB, Wang SZ. Salusins: advance in cardiovascular disease research. J Pharm Pharmacol 2023; 75:363-369. [PMID: 36508340 DOI: 10.1093/jpp/rgac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/13/2022] [Indexed: 12/14/2022]
Abstract
Salusins are discovered in 2003 and divided into salusin-α and salusin-β, which are bioactive peptides with hemodynamic and mitotic activity and mainly distributed in plasma, urine, endocrine glands and kidneys. A large number of studies have shown that salusins can regulate lipid metabolism, inflammatory response and vascular proliferation. Despite the profound and diverse physiological properties of salusins, the exact mechanism of their cardiovascular effects remains to be determined. The potential mechanisms of action of salusins in cardiovascular-related diseases such as atherosclerosis, hypertension, heart failure, myocardial infarction and myocarditis, and their use as biomarkers of cardiovascular disease are discussed. This review aims to provide a new strategy for the diagnosis and prevention of clinical cardiovascular diseases.
Collapse
Affiliation(s)
- Ming-Xin Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Bo-Yan Deng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Shu-Ting Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
3
|
Zeng Y, Du X, Yao X, Qiu Y, Jiang W, Shen J, Li L, Liu X. Mechanism of cell death of endothelial cells regulated by mechanical forces. J Biomech 2021; 131:110917. [PMID: 34952348 DOI: 10.1016/j.jbiomech.2021.110917] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Cell death of endothelial cells (ECs) is a common devastating consequence of various vascular-related diseases. Atherosclerosis, hypertension, sepsis, diabetes, cerebral ischemia and cardiac ischemia/reperfusion injury, and chronic kidney disease remain major causes of morbidity and mortality worldwide, in which ECs are constantly subjected to a great amount of dynamic changed mechanical forces including shear stress, extracellular matrix stiffness, mechanical stretch and microgravity. A thorough understanding of the regulatory mechanisms by which the mechanical forces controlled the cell deaths including apoptosis, autophagy, and pyroptosis is crucial for the development of new therapeutic strategies. In the present review, experimental and clinical data highlight that nutrient depletion, oxidative stress, tumor necrosis factor-α, high glucose, lipopolysaccharide, and homocysteine possess cytotoxic effects in many tissues and induce apoptosis of ECs, and that sphingosine-1-phosphate protects ECs. Nevertheless, EC apoptosis in the context of those artificial microenvironments could be enhanced, reduced or even reversed along with the alteration of patterns of shear stress. An appropriate level of autophagy diminishes EC apoptosis to some extent, in addition to supporting cell survival upon microenvironment challenges. The intervention of pyroptosis showed a profound effect on atherosclerosis. Further cell and animal studies are required to ascertain whether the alterations in the levels of cell deaths and their associated regulatory mechanisms happen at local lesion sites with considerable mechanical force changes, for preventing senescence and cell deaths in the vascular-related diseases.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoqiang Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Al-Harbi LN, Pandurangan SB, Al-Dossari AM, Shamlan G, Salamatullah AM, Alshatwi AA, Alotiby AA. Beta vulgaris rubra L. (Beetroot) Peel Methanol Extract Reduces Oxidative Stress and Stimulates Cell Proliferation via Increasing VEGF Expression in H 2O 2 Induced Oxidative Stressed Human Umbilical Vein Endothelial Cells. Genes (Basel) 2021; 12:genes12091380. [PMID: 34573361 PMCID: PMC8466581 DOI: 10.3390/genes12091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The antioxidant capacity of polyphenols and flavonoids present in dietary agents aids in arresting the development of reactive oxygen species (ROS) and protecting endothelial smooth muscle cells from oxidative stress/induced necrosis. Beetroot (Beta vulgaris var. rubra L.; BVr) is a commonly consumed vegetable representing a rich source of antioxidants. Beetroot peel’s bioactive compounds and their role in human umbilical vein endothelial cells (HUVECs) are still under-researched. In the present study, beetroot peel methanol extract (BPME) was prepared, and its effect on the bio-efficacy, nuclear integrity, mitochondrial membrane potential and vascular cell growth, and immunoregulation-related gene expression levels in HUVECs with induced oxidative stress were analysed. Gas chromatography–mass spectroscopy (GC-MS) results confirmed that BPME contains 5-hydroxymethylfurfural (32.6%), methyl pyruvate (15.13%), furfural (9.98%), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one (12.4%). BPME extract effectively enhanced cell proliferation and was confirmed by MTT assay; the nuclear integrity was confirmed by propidium iodide (PI) staining assay; the mitochondrial membrane potential (Δψm) was confirmed by JC-1 staining assay. Annexin V assay confirmed that BPME-treated HUVECs showed 99% viable cells, but only 39.8% viability was shown in HUVECs treated with H2O2 alone. In addition, BPME treatment of HUVECs for 48 h reduced mRNA expression of lipid peroxide (LPO) and increased NOS-3, Nrf-2, GSK-3β, GPX, endothelial nitric oxide synthase (eNOS) and vascular cell growth factor (VEGF) mRNA expression levels. We found that BPME treatment decreased proinflammatory (nuclear factor-κβ (F-κβ), tissue necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4), interleukin-1β (IL-1β)) and vascular inflammation (intracellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), EDN1, IL-1β)-related mRNA expressions. In conclusion, beetroot peel treatment effectively increased vascular smooth cell growth factors and microtubule development, whereas it decreased vascular inflammatory regulators. BPME may be beneficial for vascular smooth cell regeneration, tissue repair and anti-ageing potential.
Collapse
Affiliation(s)
- Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
- Correspondence:
| | - Subash-Babu Pandurangan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Alhanouf Mohammed Al-Dossari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ali A Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Amna Abdullah Alotiby
- Department of Haematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah 24237, Saudi Arabia;
| |
Collapse
|
5
|
Taguchi T, Kodera Y, Oba K, Saito T, Nakagawa Y, Kawashima Y, Shichiri M. Suprabasin-derived bioactive peptides identified by plasma peptidomics. Sci Rep 2021; 11:1047. [PMID: 33441610 PMCID: PMC7806982 DOI: 10.1038/s41598-020-79353-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/08/2020] [Indexed: 01/29/2023] Open
Abstract
Identification of low-abundance, low-molecular-weight native peptides using non-tryptic plasma has long remained an unmet challenge, leaving potential bioactive/biomarker peptides undiscovered. We have succeeded in efficiently removing high-abundance plasma proteins to enrich and comprehensively identify low-molecular-weight native peptides using mass spectrometry. Native peptide sequences were chemically synthesized and subsequent functional analyses resulted in the discovery of three novel bioactive polypeptides derived from an epidermal differentiation marker protein, suprabasin. SBSN_HUMAN[279-295] potently suppressed food/water intake and induced locomotor activity when injected intraperitoneally, while SBSN_HUMAN[225-237] and SBSN_HUMAN[243-259] stimulated the expression of proinflammatory cytokines via activation of NF-κB signaling in vascular cells. SBSN_HUMAN[225-237] and SBSN_HUMAN[279-295] immunoreactivities were present in almost all human organs analyzed, while immunoreactive SBSN_HUMAN[243-259] was abundant in the liver and pancreas. Human macrophages expressed the three suprabasin-derived peptides. This study illustrates a new approach for discovering unknown bioactive peptides in plasma via the generation of peptide libraries using a novel peptidomic strategy.
Collapse
Affiliation(s)
- Tomomi Taguchi
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Yoshio Kodera
- grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan ,grid.410786.c0000 0000 9206 2938Center for Disease Proteomics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Kazuhito Oba
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Tatsuya Saito
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan ,grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Yuzuru Nakagawa
- grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Yusuke Kawashima
- grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Masayoshi Shichiri
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| |
Collapse
|
6
|
Bryant JL, Guda PR, Ray S, Asemu G, Sagi AR, Mubariz F, Arvas MI, Khalid OS, Shukla V, Nimmagadda VKC, Makar TK. Renal aquaporin-4 associated pathology in TG-26 mice. Exp Mol Pathol 2018; 104:239-249. [PMID: 29608911 DOI: 10.1016/j.yexmp.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus-associated nephropathy (HIVAN) is a leading cause of end-stage renal disease in HIV patients, which is characterized by glomerulosclerosis and renal tubular dysfunction. Aquaporin-4 (AQP-4) is a membrane bound water channel protein that plays a distinct role in water reabsorption from renal tubular fluid. It has been proven that failure of AQP-4 insertion into the renal tubular membrane leads to renal dysfunction. However, the role of AQP-4 in HIVAN is unclear. We hypothesize that impaired water reabsorption leads to renal injury in HIVAN, where AQP-4 plays a crucial role. Renal function is assessed by urinary protein and serum blood urea nitrogen (BUN). Kidneys from HIV Transgenic (TG26) mice (HIVAN animal model) were compared to wild type mice by immunostaining, immunoblotting and quantitative RT-PCR. TG26 mice had increased proteinuria and BUN. We found decreased AQP-4 levels in the renal medulla, increased endothelin-1, endothelin receptor A and reduced Sirtuin1 (SIRT-1) levels in TG26 mice. Also, oxidative and endoplasmic reticulum stress was enhanced in kidneys of TG26 mice. We provide the first evidence that AQP-4 is inhibited due to induction of HIV associated stress in the kidneys of TG26 mice which limits water reabsorption in the kidney which may be one of the cause associated with HIVAN, impairing kidney physiology. AQP-4 dysregulation in TG26 mice suggests that similar changes may occur in HIVAN patients. This work may identify new therapeutic targets to be evaluated in HIVAN.
Collapse
Affiliation(s)
- Joseph L Bryant
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | | | - Sugata Ray
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Girma Asemu
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | - Avinash R Sagi
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Fahad Mubariz
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Muhammed I Arvas
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Omar S Khalid
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Vivek Shukla
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Vamshi K C Nimmagadda
- Department of Neurology, University of Maryland, Baltimore, MD, United States; VA Medical Center, Baltimore, MD, United States
| | - Tapas K Makar
- Department of Neurology, University of Maryland, Baltimore, MD, United States; VA Medical Center, Baltimore, MD, United States.
| |
Collapse
|
7
|
Borska L, Andrys C, Chmelarova M, Kovarikova H, Krejsek J, Hamakova K, Beranek M, Palicka V, Kremlacek J, Borsky P, Fiala Z. Roles of miR-31 and endothelin-1 in psoriasis vulgaris: pathophysiological functions and potential biomarkers. Physiol Res 2017; 66:987-992. [PMID: 28937251 DOI: 10.33549/physiolres.933615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Psoriatic lesions are characterized by hyperproliferation, aberrant differentiation of keratinocytes resistant to apoptosis and inflammation. miR-31 plays pro-proliferative, pro-differentiative and pro-inflammatory roles and modulates apoptosis in psoriatic keratinocytes. Endothelin-1 (ET-1) is produced by psoriatic keratinocytes and suppresses apoptosis. Inflammation increases the production of ET-1, which in turn leads to the chronic stimulation of keratinocyte proliferation. The aim of this study was to identify the putative link between two potential biomarkers (miR-31 and ET-1) in patients with psoriasis. The study design included experimental group (29 patients with psoriasis), and the control group (22 blood donors). The PASI score evaluated the state of the disease (median: 18.6; interquartile range 14.5-20.9). Both, the serum level of ET-1 and the whole blood level of miR-31 were significantly increased (p<0.001 and p<0.05, respectively) in patients compared to the controls. However, a significant negative relationship between ET-1 and miR-31 was observed (Spearman's rho=-037, p=0.05). It is possible that a negative feedback loop will be present between miR-31 and ET-1. Our results indicate that miR-31 and ET-1, potential biomarkers of the disease, play significant roles in the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- L Borska
- Institute of Pathological Physiology, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pourjafar M, Saidijam M, Mansouri K, Malih S, Ranjbar Nejad T, Shabab N, Najafi R. Cytoprotective effects of endothelin-1 on mesenchymal stem cells: an in vitro study. Clin Exp Pharmacol Physiol 2017; 43:769-76. [PMID: 27161651 DOI: 10.1111/1440-1681.12590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
Stem cell-based therapies is a promising approach for regenerative therapy in various diseases. Some obstacles remain to be solved before clinical application of the cell therapy is realized, including increasing the survival of transplanted stem cells, reducing loss of transplanted cells, and maintaining adequate vascular supply. Recently, stem cell preconditioning with chemical and pharmacological agents has been shown to increase therapeutic efficacy. The present study investigated the effect of endothelin-1 (ET-1) on survival, angiogenesis, and migration of mesenchymal stem cells (MSCs), in vitro. MSCs were treated with various concentrations of ET-1 and the expression of cyclooxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-1), C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 2 (CCR2), vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), angiopoietin-4 (Ang-4) and matrix metalloproteinase-2 (MMP-2) were examined. Caspase 3 activity and prostaglandin E2 (PGE2) were determined by ELISA assay. MSCs migration and tube formation potential were assessed using scratch test and three dimensional vessel formation assay. ET-1 enhanced the MSCs viability. In ET-1- treated MSCs, expression of COX-2, HIF-1, CXCR4, CCR2, VEGF, Ang-2, Ang-4 and MMP-2 were increased compared to control groups. Elevation of all these genes were reversed by celecoxib (50 μmol/L), a selective COX-2 inhibitor. PGE2 generation, MSCs migration and tube formation were enhanced by ET-1 conditioning, whereas caspase-3 activity was reduced in these cells, compared to the control group. The results presented here reveal that preconditioning of MSCs with ET-1 has strong cytoprotective effects through activation of survival signalling molecules and trophic factors.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kamran Mansouri
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Malih
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebeh Ranjbar Nejad
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Shabab
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney. Sci Rep 2017; 7:43152. [PMID: 28230089 PMCID: PMC5322462 DOI: 10.1038/srep43152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Endothelin-1 (ET-1) promotes renal damage during cardiovascular disease; yet, the molecular mechanisms involved remain unknown. Endoplasmic reticulum (ER) stress, triggered by unfolded protein accumulation in the ER, contributes to apoptosis and organ injury. These studies aimed to determine whether the ET-1 system promotes renal ER stress development in response to tunicamycin. ETB deficient (ETB def) or transgenic control (TG-con) rats were used in the presence or absence of ETA receptor antagonism. Tunicamycin treatment similarly increased cortical ER stress markers in both rat genotypes; however, only ETB def rats showed a 14-24 fold increase from baseline for medullary GRP78, sXBP-1, and CHOP. Pre-treatment of TG-con rats with the ETA blocker ABT-627 for 1 week prior to tunicamycin injection significantly reduced the ER stress response in cortex and medulla, and also inhibited renal apoptosis. Pre-treatment with ABT-627 failed to decrease renal ER stress and apoptosis in ETB def rats. In conclusion, the ET-1 system is important for the development of tunicamycin-induced renal ER stress and apoptosis. ETA receptor activation induces renal ER stress genes and apoptosis, while functional activation of the ETB receptor has protective effects. These results highlight targeting the ETA receptor as a therapeutic approach against ER stress-induced kidney injury.
Collapse
|
10
|
Kurt A, Tumkaya L, Turut H, Cure MC, Cure E, Kalkan Y, Sehitoglu I, Acipayam A. Protective Effects of Infliximab on Lung Injury Induced by Methotrexate. Arch Bronconeumol 2015. [PMID: 26071367 DOI: 10.1016/j.arbr.2015.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Methotrexate (MTX) is used to treat cancers, several forms of arthritis and other rheumatic conditions, although MTX may cause pulmonary toxicity related to the production of free oxygen radicals, various cytokines. Infliximab (IB) with its potent effect on tumor necrosis factor-alpha (TNF-α) inhibition also inhibits the release of endothelin-1 (ET-1). We aimed to investigate whether IB reduces pulmonary damage induced by an overdose of MTX. METHOD The rats were divided into 3 groups of 8 animals. The control group was given only saline. One dose of 20mg/kg MTX intraperitoneal was administered in the MTX group. IB 7 mg/kg was given to the MTX+IB (MI) group. Three days after IB was administered, 20mg/kg MTX was given. Five days after MTX was administered, all rats were sacrificed. RESULTS The TNF-α, ET-1, malondialdehyde (MDA), myeloperoxidase (MPO) and caspase-3 levels in MTX group were significantly higher than in control groups of TNF-α (P=.001), ET-1 (P=.001), MDA (P=.001), MPO (P=.001) and caspase-3 levels (P=.001) and MI groups of TNF-α (P=.009), ET-1 (P=.001), MDA (P=.047), MPO (P=.007) and caspase-3 levels (P=.003). The MI group had less histopathological damage in lung tissue than the MTX group. CONCLUSION Overdose of MTX leads to cytokine release and the formation of reactive oxygen species in addition to increased ET-1 secretion release that causes lung damage. IB, as a potent proinflammatory agent, TNF-α blocker, can decrease ET-1 release and oxidative stress, it may show significant protective effects in lung tissue against damage caused by MTX overdose.
Collapse
Affiliation(s)
- Aysel Kurt
- Department of Thoracic Surgery, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía.
| | - Levent Tumkaya
- Department of Histology and Embryology, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| | - Hasan Turut
- Department of Thoracic Surgery, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| | - Medine Cumhur Cure
- Department of Biochemistry, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| | - Erkan Cure
- Department of Internal Medicine, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| | - Yildiray Kalkan
- Department of Histology and Embryology, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| | - Ibrahim Sehitoglu
- Department of Pathology, School of Medicine, RecepTayyip Erdogan University, Rize, Turquía
| | - Ahmet Acipayam
- Department of Thoracic Surgery, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| |
Collapse
|
11
|
Kurt A, Tumkaya L, Turut H, Cure MC, Cure E, Kalkan Y, Sehitoglu I, Acipayam A. Protective Effects of Infliximab on Lung Injury Induced by Methotrexate. Arch Bronconeumol 2015; 51:551-7. [PMID: 26071367 DOI: 10.1016/j.arbres.2015.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/26/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Methotrexate (MTX) is used to treat cancers, several forms of arthritis and other rheumatic conditions, although MTX may cause pulmonary toxicity related to the production of free oxygen radicals, various cytokines. Infliximab (IB) with its potent effect on tumor necrosis factor-alpha (TNF-α) inhibition also inhibits the release of endothelin-1 (ET-1). We aimed to investigate whether IB reduces pulmonary damage induced by an overdose of MTX. METHOD The rats were divided into 3 groups of 8 animals. The control group was given only saline. One dose of 20mg/kg MTX intraperitoneal was administered in the MTX group. IB 7 mg/kg was given to the MTX+IB (MI) group. Three days after IB was administered, 20mg/kg MTX was given. Five days after MTX was administered, all rats were sacrificed. RESULTS The TNF-α, ET-1, malondialdehyde (MDA), myeloperoxidase (MPO) and caspase-3 levels in MTX group were significantly higher than in control groups of TNF-α (P=.001), ET-1 (P=.001), MDA (P=.001), MPO (P=.001) and caspase-3 levels (P=.001) and MI groups of TNF-α (P=.009), ET-1 (P=.001), MDA (P=.047), MPO (P=.007) and caspase-3 levels (P=.003). The MI group had less histopathological damage in lung tissue than the MTX group. CONCLUSION Overdose of MTX leads to cytokine release and the formation of reactive oxygen species in addition to increased ET-1 secretion release that causes lung damage. IB, as a potent proinflammatory agent, TNF-α blocker, can decrease ET-1 release and oxidative stress, it may show significant protective effects in lung tissue against damage caused by MTX overdose.
Collapse
Affiliation(s)
- Aysel Kurt
- Department of Thoracic Surgery, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía.
| | - Levent Tumkaya
- Department of Histology and Embryology, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| | - Hasan Turut
- Department of Thoracic Surgery, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| | - Medine Cumhur Cure
- Department of Biochemistry, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| | - Erkan Cure
- Department of Internal Medicine, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| | - Yildiray Kalkan
- Department of Histology and Embryology, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| | - Ibrahim Sehitoglu
- Department of Pathology, School of Medicine, RecepTayyip Erdogan University, Rize, Turquía
| | - Ahmet Acipayam
- Department of Thoracic Surgery, School of Medicine, Recep Tayyip Erdogan University, Rize, Turquía
| |
Collapse
|
12
|
De Miguel C, Pollock DM, Pollock JS. Endothelium-derived ET-1 and the development of renal injury. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1071-3. [PMID: 25994955 DOI: 10.1152/ajpregu.00142.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/04/2015] [Indexed: 01/24/2023]
Abstract
The role of the vasoactive peptide endothelin-1 (ET-1) in renal injury is not fully understood. In this review, we examine the genetic models available to understand the autocrine/paracrine mechanisms by which ET-1 leads to renal injury and propose the working hypothesis that endothelium-derived ET-1 induces renal injury by initiating renal tubular apoptosis in a paracrine manner.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
13
|
Cre recombinase-regulated Endothelin1 transgenic mouse lines: novel tools for analysis of embryonic and adult disorders. Dev Biol 2015; 400:191-201. [PMID: 25725491 DOI: 10.1016/j.ydbio.2015.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/31/2014] [Accepted: 01/25/2015] [Indexed: 01/06/2023]
Abstract
Endothelin-1 (EDN1) influences both craniofacial and cardiovascular development and a number of adult physiological conditions by binding to one or both of the known endothelin receptors, thus initiating multiple signaling cascades. Animal models containing both conventional and conditional loss of the Edn1 gene have been used to dissect EDN1 function in both embryos and adults. However, while transgenic Edn1 over-expression or targeted genomic insertion of Edn1 has been performed to understand how elevated levels of Edn1 result in or exacerbate disease states, an animal model in which Edn1 over-expression can be achieved in a spatiotemporal-specific manner has not been reported. Here we describe the creation of Edn1 conditional over-expression transgenic mouse lines in which the chicken β-actin promoter and an Edn1 cDNA are separated by a strong stop sequence flanked by loxP sites. In the presence of Cre, the stop cassette is removed, leading to Edn1 expression. Using the Wnt1-Cre strain, in which Cre expression is targeted to the Wnt1-expressing domain of the central nervous system (CNS) from which neural crest cells (NCCs) arise, we show that stable chicken β-actin-Edn1 (CBA-Edn1) transgenic lines with varying EDN1 protein levels develop defects in NCC-derived tissues of the face, though the severity differs between lines. We also show that Edn1 expression can be achieved in other embryonic tissues utilizing other Cre strains, with this expression also resulting in developmental defects. CBA-Edn1 transgenic mice will be useful in investigating diverse aspects of EDN1-mediated-development and disease, including understanding how NCCs achieve and maintain a positional and functional identity and how aberrant EDN1 levels can lead to multiple physiological changes and diseases.
Collapse
|
14
|
Waldsee R, Eftekhari S, Ahnstedt H, Johnson LE, Edvinsson L. CaMKII and MEK1/2 inhibition time-dependently modify inflammatory signaling in rat cerebral arteries during organ culture. J Neuroinflammation 2014; 11:90. [PMID: 24886705 PMCID: PMC4039324 DOI: 10.1186/1742-2094-11-90] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cerebral ischemia induces transcriptional upregulation of inflammatory genes in the brain parenchyma and in cerebral arteries, thereby contributing to the infarct development. The present study was designed to evaluate the involvement of calcium-calmodulin-dependent protein kinase (CaMKII) II and extracellular signal-regulated kinase1/2 (ERK1/2) on inflammatory mediators in rat cerebral arteries using organ culture as a method for inducing ischemic-like vascular wall changes. METHODS Rat basilar arteries were cultured in serum-free medium for 0, 3, 6 or 24 hours in the presence or absence of the CaMKII inhibitor KN93 or the MEK1/2 inhibitor U0126. Protein expression of activated CaMKII, ERK1/2, and inflammatory-associated protein kinases and mediators were examined with western blot and immunohistochemistry. Caspase-3 mRNA levels in basilar arteries were studied with real-time PCR. RESULTS Western blot evaluation showed that organ culture induced a significant increase in phosphorylated ERK1/2 at 3, 6 and 24 hours, while CaMKII was found to be already activated in fresh non-incubated arteries and to decrease with incubation time. The addition of U0126 or KN93 decreased levels of phosphorylated c-Jun N-terminal kinase and p-p38, as evaluated by immunohistochemistry. KN93 affected the increase in caspase-3 mRNA expression only when given at the start of incubation, while U0126 had an inhibitory effect when given up to six hours later. Tumor necrosis factor receptor 1 was elevated after organ culture. This inflammatory marker was reduced by both of the two different protein kinase inhibitors. CONCLUSIONS The novel findings of the present study are that the cross-talk between the two protein kinases and the inhibition of CaMKII or MEK1/2 in a time-dependent manner attenuates inflammatory-associated protein kinases and mediators, suggesting that they play a role in cerebrovascular inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Sölvegatan 17, SE-221 84 Lund, Sweden.
| |
Collapse
|
15
|
Yang SK, Xiao L, Li J, Liu F, Sun L. Oxidative stress, a common molecular pathway for kidney disease: Role of the redox enzyme p66Shc. Ren Fail 2013; 36:313-20. [DOI: 10.3109/0886022x.2013.846867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Abstract
Hypoxic pulmonary hypertension of the newborn is characterized by elevated pulmonary vascular resistance and pressure due to vascular remodeling and increased vessel tension secondary to chronic hypoxia during the fetal and newborn period. In comparison to the adult, the pulmonary vasculature of the fetus and the newborn undergoes tremendous developmental changes that increase susceptibility to a hypoxic insult. Substantial evidence indicates that chronic hypoxia alters the production and responsiveness of various vasoactive agents such as endothelium-derived nitric oxide, endothelin-1, prostanoids, platelet-activating factor, and reactive oxygen species, resulting in sustained vasoconstriction and vascular remodeling. These changes occur in most cell types within the vascular wall, particularly endothelial and smooth muscle cells. At the cellular level, suppressed nitric oxide-cGMP signaling and augmented RhoA-Rho kinase signaling appear to be critical to the development of hypoxic pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China
| | | |
Collapse
|
17
|
Salusins: potential use as a biomarker for atherosclerotic cardiovascular diseases. Int J Hypertens 2013; 2013:965140. [PMID: 24251033 PMCID: PMC3819761 DOI: 10.1155/2013/965140] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/04/2013] [Accepted: 09/19/2013] [Indexed: 12/31/2022] Open
Abstract
Human salusin- α and salusin- β are related peptides produced from prosalusin. Bolus injection of salusin- β into rats induces more profound hypotension and bradycardia than salusin- α . Central administration of salusin- β increases blood pressure via release of norepinephrine and arginine-vasopressin. Circulating levels of salusin- α and salusin- β are lower in patients with essential hypertension. Salusin- β exerts more potent mitogenic effects on human vascular smooth muscle cells (VSMCs) and fibroblasts than salusin- α . Salusin- β accelerates inflammatory responses in human endothelial cells and monocyte-endothelial adhesion. Human macrophage foam cell formation is stimulated by salusin- β but suppressed by salusin- α . Chronic salusin- β infusion into apolipoprotein E-deficient mice enhances atherosclerotic lesions; salusin- α infusion reduces lesions. Salusin- β is expressed in proliferative neointimal lesions of porcine coronary arteries after stenting. Salusin- α and salusin- β immunoreactivity have been detected in human coronary atherosclerotic plaques, with dominance of salusin- β in macrophage foam cells, VSMCs, and fibroblasts. Circulating salusin- β levels increase and salusin- α levels decrease in patients with coronary artery disease. These findings suggest that salusin- β and salusin- α may contribute to proatherogenesis and antiatherogenesis, respectively. Increased salusin- β and/or decreased salusin- α levels in circulating blood and vascular tissue are closely linked with atherosclerosis. Salusin- α and salusin- β could be candidate biomarkers and therapeutic targets for atherosclerotic cardiovascular diseases.
Collapse
|
18
|
Cheng YS, Dai DZ, Dai Y. AQP4 KO exacerbating renal dysfunction is mediated by endoplasmic reticulum stress and p66Shc and is attenuated by apocynin and endothelin antagonist CPU0213. Eur J Pharmacol 2013; 721:249-58. [PMID: 24135202 DOI: 10.1016/j.ejphar.2013.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 08/31/2013] [Accepted: 09/11/2013] [Indexed: 01/25/2023]
Abstract
Aquaporin 4 (AQP4) is essential in normal kidney. We hypothesized that AQP4 knockout (KO) may exacerbate pro-inflammatory factors in the stress induced renal insufficiency. Mechanisms underlying are likely due to activating renal oxidative stress adaptor p66Shc and endoplasmic reticulum (ER) stress that could be mediated by endothelin (ET)-NADPH oxidase (NOX) pathway. AQP4 KO and wild type (WT) mice were randomly divided into 4 groups: control, isoproterenol (1mg/kg, s.c., 5d), and interventions in the last 3 days with either apocynin (NADPH oxidase inhibitor, 100mg/kg, p.o.) or CPU0213 (a dual endothelin receptor antagonist 200mg/kg, p.o.). In addition, HK2 cells were cultured in 4 groups: control, isoproterenol (10(-6)M), intervened with apocynin (10(-6)M) or CPU0213 (10(-6)M). In AQP4 KO mice elevated creatinine levels were further increased by isoproterenol compared to AQP4 KO alone. In RT-PCR, western blot and immunohistochemical assay p66Shc and PERK were significantly increased in the kidney of AQP4 KO mice, associated with pro-inflammatory factors CX40, CX43, MMP-9 and ETA compared to the WT mice. Expression of AQP4 was escalated in isoproterenol incubated HK2 cells, and the enhanced protein of PERK and p-PERK/PERK, and p66shc in vivo and in vitro were significantly attenuated by either apocynin or CPU0213. In conclusion, AQP4 KO deteriorates renal dysfunction due to exacerbating ER stress and p66Shc in the kidney. Either endothelin antagonism or NADPH oxidase blockade partly relieves renal dysfunction through suppressing abnormal biomarkers by APQ4 KO and isoproterenol in the kidney.
Collapse
Affiliation(s)
- Yu-Si Cheng
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | | | | |
Collapse
|
19
|
Spitler R, Schwappacher R, Wu T, Kong X, Yokomori K, Pilz RB, Boss GR, Berns MW. Nitrosyl-cobinamide (NO-Cbi), a new nitric oxide donor, improves wound healing through cGMP/cGMP-dependent protein kinase. Cell Signal 2013; 25:2374-82. [PMID: 23920342 DOI: 10.1016/j.cellsig.2013.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 01/11/2023]
Abstract
Nitric oxide (NO) donors have been shown to improve wound healing, but the mechanism is not well defined. Here we show that the novel NO donor nitrosyl-cobinamide (NO-Cbi) improved in vitro wound healing in several cell types, including an established line of lung epithelial cells and primary human lung fibroblasts. On a molar basis, NO-Cbi was more effective than two other NO donors, with the effective NO-Cbi concentration ranging from 3 to 10μM, depending on the cell type. Improved wound healing was secondary to increased cell migration and not cell proliferation. The wound healing effect of NO-Cbi was mediated by cGMP, mainly through cGMP-dependent protein kinase type I (PKGI), as determined using pharmacological inhibitors and activators, and siRNAs targeting PKG type I and II. Moreover, we found that Src and ERK were two downstream mediators of NO-Cbi's effect. We conclude that NO-Cbi is a potent inducer of cell migration and wound closure, acting via cGMP, PKG, Src, and extracellular signal regulated kinase (ERK).
Collapse
Affiliation(s)
- Ryan Spitler
- University of California Irvine, Irvine, CA, United States.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tarallo S, Beltramo E, Berrone E, Porta M. Human pericyte-endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol 2012; 49 Suppl 1:S141-51. [PMID: 22527094 DOI: 10.1007/s00592-012-0390-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/14/2012] [Indexed: 12/31/2022]
Abstract
Pericytes regulate vascular tone, perfusion pressure and endothelial cell (EC) proliferation in capillaries. Thiamine and benfotiamine counteract high glucose-induced damage in vascular cells. We standardized two human retinal pericyte (HRP)/EC co-culture models to mimic the diabetic retinal microvascular environment. We aimed at evaluating the interactions between co-cultured HRP and EC in terms of proliferation/apoptosis and the possible protective role of thiamine and benfotiamine against high glucose-induced damage. EC and HRP were co-cultured in physiological glucose and stable or intermittent high glucose, with or without thiamine/benfotiamine. No-contact model: EC were plated on a porous membrane suspended into the medium and HRP on the bottom of the same well. Cell-to-cell contact model: EC and HRP were plated on the opposite sides of the same membrane. Proliferation (cell counts and DNA synthesis), apoptosis and tubule formation in Matrigel were assessed. In the no-contact model, stable high glucose reduced proliferation of co-cultured EC/HRP and EC alone and increased co-cultured EC/HRP apoptosis. In the contact model, both stable and intermittent high glucose reduced co-cultured EC/HRP proliferation and increased apoptosis. Stable high glucose had no effects on HRP in separate cultures. Both EC and HRP proliferated better when co-cultured. Thiamine and benfotiamine reversed high glucose-induced damage in all cases. HRP are sensitive to soluble factors released by EC when cultured in high glucose conditions, as suggested by conditioned media assays. In the Matrigel models, addition of thiamine and benfotiamine re-established the high glucose-damaged interactions between EC/HRP and stabilized microtubules.
Collapse
Affiliation(s)
- Sonia Tarallo
- Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | | | | | | |
Collapse
|
21
|
Zhang HW, Zhang T, Shen BZ, Liu M, Liu JR. Toxicological insight from AP-1 silencing study on proliferation, migration, and dedifferentiation of rat vascular smooth muscle cell. Cardiovasc Toxicol 2012; 12:25-38. [PMID: 21818553 DOI: 10.1007/s12012-011-9135-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There has an effective way to prevent intimal hyperplasia on vascular smooth muscle cell (VSMC) proliferation in grafted veins. The activator protein-1 (AP-1) transcription factor plays an important role in cardiovascular generation and angioplasty. Once activated, AP-1 binds its specific DNA sequence to promote the proliferation of VSMC, differentiation, and migration. The objectives of this study were to determine toxicological effects of AP-1 silencing study on proliferation, migration, and dedifferentiation of rat vascular smooth muscle cell. To suppress the expression of AP-1 gene, AP-1 siRNA was used to interfere post-transcription in rat primary VSMCs. To observe the expression of SM α-actin and downstream genes of AP-1, the activity of cell matrix metal proteinases and the migration ability of VSMC was examined by a modified Boyden chamber assay. Effects of AP-1 siRNA on proliferation and differentiation in rat VSMCs were evaluated by cell cycle analysis, DNA synthesis, MTT-test, and immunofluorescence. The results showed that the level of SM α-actin protein expression was increased. AP-1 siRNA also significantly decreased the MTT extinction value, DNA synthesis, PCNA expression, and the cell migration velocity when compared to the control group. AP-1 siRNA also clearly arrested cell cycle of VSM at the G0/G1 phase. Zymographic and Western blotting analyses showed that AP-1 siRNA suppressed serum-induced MMP-2 expression. These data suggest that the AP-1 siRNA was able to effectively inhibit the proliferation, migration, and dedifferentiation of smooth muscle cells. Thus, AP-1 siRNA provides a novel method to prevent intimal hyperplasia in blood vessel angioplasty.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- Treatment Center of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, NanGang District, Harbin, The People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Urotensin-II-stimulated expression of pro-angiogenic factors in human vascular endothelial cells. ACTA ACUST UNITED AC 2011; 172:16-22. [PMID: 21871928 DOI: 10.1016/j.regpep.2011.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 08/12/2011] [Indexed: 02/07/2023]
Abstract
Urotensin-II (U-II) is an endogenous peptide recently characterized as a "nonclassic" pro-angiogenic cytokine. In fact, human vascular endothelial cells express the U-II receptor and exhibit a strong in vitro angiogenic response to the peptide, which was specifically triggered by the binding of U-II to its receptor and involved the activation of ERK1/2 and PI3K/Akt signaling pathways. Moreover, available studies, designed to investigate the pro-angiogenic effect quite shortly following U-II stimulation, suggested that the angiogenic action of the peptide was direct and not associated with an increased expression of vascular endothelial growth factor (VEGF) and/or its receptors. In the present study, the expression of three pro-angiogenic factors, namely VEGF, endothelin-1, and adrenomedullin, was studied in human umbilical vein endothelial cells (HUVEC) for longer times of U-II stimulation. RT-PCR and Western blot indicated that in HUVEC, exposed for at least 24h to U-II, the expression of the three angiogenic molecules was significantly increased at both mRNA and protein level, opening the possibility that U-II, not only could exert a direct stimulation of an angiogenic phenotype in endothelial cells quite shortly following exposure to the peptide, but could also further enhance the process indirectly by inducing in the cells a delayed production of other pro-angiogenic factors. Interestingly, a preliminary analysis of the time course of the in vitro capillary-like pattern formation was consistent with this view, suggesting a two phase temporal dynamics of the process.
Collapse
|
23
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Li Y, Lévesque LO, Anand-Srivastava MB. Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHR. Am J Physiol Heart Circ Physiol 2010; 299:H1959-67. [PMID: 20852045 DOI: 10.1152/ajpheart.00526.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We showed previously that vascular smooth muscle cells (VMSC) from spontaneously hypertensive rats (SHR) exhibit increased proliferation. The present study was undertaken to examine whether the enhanced levels of endogenous angiotensin (ANG) II and endothelin (ET)-1 contribute to the enhanced proliferation of VSMC from SHR and to further investigate the underlying mechanisms responsible for this response. The enhanced proliferation of VSMC from SHR compared with Wistar-Kyoto (WKY) rats was attenuated by losartan, BQ-123, BQ-788, and AG-1478, inhibitors of AT(1), ET(A), ET(B) and epidermal growth factor (EGF-R) receptors, respectively. In addition, BQ-123 and BQ-788 also attenuated the enhanced production of superoxide anion (O(2)(-)) and NADPH oxidase activity. Furthermore, diphenyleneiodonium (DPI, inhibitor of NADPH oxidase), N-acetyl-L-cysteine (NAC, O(2)(-) scavenger), and PP2 (inhibitor of c-Src) also inhibited the augmented proliferation of VSMC from SHR to WKY levels. In addition, the enhanced phosphorylation of EGF-R in VSMC from SHR compared with WKY was also attenuated by inhibitors of AT(1), ET(A), ET(B), and EGF-R but not by inhibitors of platelet-derived growth factor receptor or insulin-like growth factor receptor. Furthermore, the enhanced phosphorylation of ERK1/2 in VSMC from SHR was also attenuated by AT(1), ET(A), ET(B), c-Src, and EGF-R inhibitors. The phosphorylation of c-Src was significantly augmented in VSMC from SHR compared with VSMC from WKY and was attenuated by DPI and NAC. These data suggest that endogenous vasoactive peptides, through increased oxidative stress and resultant activation of c-Src, transactivate EGF-R, which through mitogen-activated protein (MAP) kinase signaling may contribute to the hyperproliferation of VSMC from SHR.
Collapse
Affiliation(s)
- Yuan Li
- Department of Physiology, Faculty of Medicine, University of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
25
|
Soulez M, Sirois I, Brassard N, Raymond MA, Nicodème F, Noiseux N, Durocher Y, Pshezhetsky AV, Hébert MJ. Epidermal growth factor and perlecan fragments produced by apoptotic endothelial cells co-ordinately activate ERK1/2-dependent antiapoptotic pathways in mesenchymal stem cells. Stem Cells 2010; 28:810-20. [PMID: 20201065 DOI: 10.1002/stem.403] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mounting evidence indicates that mesenchymal stem cells (MSC) are pivotal to vascular repair and neointima formation in various forms of vascular disease. Yet, the mechanisms that allow MSC to resist apoptosis at sites where other cell types, such as endothelial cells (EC), are dying are not well defined. In the present work, we demonstrate that apoptotic EC actively release paracrine mediators which, in turn, inhibit apoptosis of MSC. Serum-free medium conditioned by apoptotic EC increases extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation and inhibits apoptosis (evaluated by Bcl-xL protein levels and poly (ADP-ribose) polymerase cleavage) of human MSC. A C-terminal fragment of perlecan (LG3) released by apoptotic EC is one of the mediators activating this antiapoptotic response in MSC. LG3 interacts with beta1-integrins, which triggers downstream ERK1/2 activation in MSC, albeit to a lesser degree than medium conditioned by apoptotic EC. Hence, other mediators released by apoptotic EC are probably required for induction of the full antiapoptotic phenotype in MSC. Adopting a comparative proteomic strategy, we identified epidermal growth factor (EGF) as a novel mediator of the paracrine component of the endothelial apoptotic program. LG3 and EGF cooperate in triggering beta1-integrin and EGF receptor-dependent antiapoptotic signals in MSC centering on ERK1/2 activation. The present work, providing novel insights into the mechanisms facilitating the survival of MSC in a hostile environment, identifies EGF and LG3 released by apoptotic EC as central antiapoptotic mediators involved in this paracrine response.
Collapse
Affiliation(s)
- Mathilde Soulez
- Centre de recherche, Centre hospitalier de l'Université de Montréal - Hôpital Notre-Dame, Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rajendran M, Thomes P, Zhang L, Veeramani S, Lin MF. p66Shc--a longevity redox protein in human prostate cancer progression and metastasis : p66Shc in cancer progression and metastasis. Cancer Metastasis Rev 2010; 29:207-22. [PMID: 20111892 DOI: 10.1007/s10555-010-9213-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
p66Shc, a 66 kDa proto-oncogene Src homologous-collagen homologue (Shc) adaptor protein, is classically known in mediating receptor tyrosine kinase signaling and recently identified as a sensor to oxidative stress-induced apoptosis and as a longevity protein in mammals. The expression of p66Shc is decreased in mice and increased in human fibroblasts upon aging and in aging-related diseases, including prostate cancer. p66Shc protein level correlates with the proliferation of several carcinoma cells and can be regulated by steroid hormones. Recent advances point that p66Shc protein plays a role in mediating cross-talk between steroid hormones and redox signals by serving as a common convergence point in signaling pathways on cell proliferation and apoptosis. This article first reviews the unique function of p66Shc protein in regulating oxidative stress-induced apoptosis. Subsequently, we discuss its novel role in androgen-regulated prostate cancer cell proliferation and metastasis and the mechanism by which it mediates androgen action via the redox signaling pathway. The data together indicate that p66Shc might be a useful biomarker for the prognosis of prostate cancer and serve as an effective target for its cancer treatment.
Collapse
Affiliation(s)
- Mythilypriya Rajendran
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | | | | | | | | |
Collapse
|
27
|
Shichiri M, Fukai N, Kono Y, Tanaka Y. Rifampicin as an Oral Angiogenesis Inhibitor Targeting Hepatic Cancers. Cancer Res 2009; 69:4760-8. [DOI: 10.1158/0008-5472.can-08-3417] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Left ventricular unloading before reperfusion reduces endothelin-1 release and calcium overload in porcine myocardial infarction. J Thorac Cardiovasc Surg 2008; 136:343-51. [DOI: 10.1016/j.jtcvs.2008.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 01/04/2008] [Accepted: 01/29/2008] [Indexed: 11/22/2022]
|
29
|
Orth SR, Schiele G, Banas B, Ritz E, Amann K. Effect of a selective endothelin receptor A blocker on cardiovascular remodeling in uninephrectomized spontaneously hypertensive rats of the stroke-prone strain. Kidney Blood Press Res 2007; 30:400-7. [PMID: 17890870 DOI: 10.1159/000108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/25/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The role of endothelin (ET) in cardiovascular remodeling was investigated by treating uninephrectomized spontaneously hypertensive rats of the stroke-prone strain (UNX-SHRsp) on normal- or high (3%)-salt diet with the selective ET(A) receptor blocker LU 135252. METHODS SHRsp on normal or high salt were sham-operated (n = 10/11) or UNX; UNX received no treatment (n = 10/15) or 100 mg/kg body weight LU 135252 (n = 10/10). Systolic blood pressure (BP) was measured weekly. After perfusion fixation the heart and the aorta were analyzed using quantitative morphological and stereological techniques. RESULTS No effect was seen in normal-salt groups. In high-salt animals UNX caused left ventricular (LV) hypertrophy which was prevented by LU 135252 (p < 0.001). LU 135252 only lowered BP during the last 2 weeks of the 12-week experiment. UNX showed hypertrophic remodeling of intramyocardial arterioles. Treatment with LU 135252 caused lower wall:lumen ratio and wall thickness of LV intramyocardial arterioles (p < 0.01). In the descending thoracic aorta UNX caused thickening of the media. The media area and the wall:lumen ratio were lower in UNX + LU 135252 as compared to untreated UNX (p < 0.01 and p < 0.05, respectively). CONCLUSION In SHRsp UNX causes hypertrophic cardiovascular remodeling only in the presence of salt loading. These effects are largely BP-independent and prevented by ET(A) receptor blockade.
Collapse
Affiliation(s)
- Stephan R Orth
- Department of Internal Medicine II, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
30
|
Hoosein MM, Dashwood MR, Dawas K, Ali HMMDA, Grant K, Savage F, Taylor I, Loizidou M. Altered endothelin receptor subtypes in colorectal cancer. Eur J Gastroenterol Hepatol 2007; 19:775-82. [PMID: 17700263 DOI: 10.1097/meg.0b013e3282c563de] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND The vasoactive peptide endothelin-1 (ET-1) acts via two endothelin receptor subtypes, ETA (ETAR) and ETB (ETBR). ET-1 and ETAR are overexpressed in colorectal cancer tissues. In vitro, ET-1 acting via ETAR, is a mitogen for colorectal cancer cells. To identify other potential stimulatory loops, we investigated the distribution and cell-specific localization of both ETAR and ETBR in tissue sections from patients with colorectal cancer. METHODS Frozen sections from specimens of colorectal cancer (n=9) and normal colon (n=9) were cut and subjected to either (i) autoradiography or (ii) a combination of cell type-specific immunohistochemistry, using antibodies against fibroblasts (AS02), endothelial cells (CD31) or nerve fibres (NF200) and in-vitro receptor microautoradiography, using ETAR-specific and ETBR-specific radioligands. RESULTS ETARs were upregulated in all cell types, apart from nerve, in cancer compared with normal colon (1:1.59 normal to cancer). Specifically, ETAR binding was highest in cancer-associated blood vessels and fibroblasts and to a lesser extent in epithelial cancer cells. In contrast, ETBRs were the predominant receptors in normal colon (1:0.59 normal to cancer) and were markedly down-regulated in cancer-associated blood vessels, fibroblasts and to a lesser extent in epithelial cells. Nerve colocalization was demonstrated, but remained unchanged for all tissues. CONCLUSION The shift in ET receptor binding observed in epithelial cancer cells and cancer-associated fibroblasts and endothelial cells may favour ET-1 signals contributing to colorectal cancer growth and neovascularization via ETAR. This may provide the basis for therapeutic use of specific ETAR antagonists as adjuvant treatment of colorectal cancer.
Collapse
Affiliation(s)
- Moinuddin M Hoosein
- Department of Surgery, Royal Free and University College Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ghoul A, Serova M, Le Tourneau C, Aïssat N, Hammel P, Raymond E, Faivre S. Role of the endothelins and endothelin receptors in cancer cell signaling and angiogenesis. Target Oncol 2007. [DOI: 10.1007/s11523-007-0056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Ribatti D, Conconi MT, Nussdorfer GG. Nonclassic Endogenous Novel Regulators of Angiogenesis. Pharmacol Rev 2007; 59:185-205. [PMID: 17540906 DOI: 10.1124/pr.59.2.3] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Angiogenesis, the process through which new blood vessels arise from preexisting ones, is regulated by several "classic" factors, among which the most studied are vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). In recent years, investigations showed that, in addition to the classic factors, numerous endogenous peptides play a relevant regulatory role in angiogenesis. Such regulatory peptides, each of which exerts well-known specific biological activities, are present, along with their receptors, in the blood vessels and may take part in the control of the "angiogenic switch." An in vivo and in vitro proangiogenic effect has been demonstrated for erythropoietin, angiotensin II (ANG-II), endothelins (ETs), adrenomedullin (AM), proadrenomedullin N-terminal 20 peptide (PAMP), urotensin-II, leptin, adiponectin, resistin, neuropeptide-Y, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), and substance P. There is evidence that the angiogenic action of some of these peptides is at least partly mediated by their stimulating effect on VEGF (ANG-II, ETs, PAMP, resistin, VIP and PACAP) and/or FGF-2 systems (PAMP and leptin). AM raises the expression of VEGF in endothelial cells, but VEGF blockade does not affect the proangiogenic action of AM. Other endogenous peptides have been reported to exert an in vivo and in vitro antiangiogenic action. These include somatostatin and natriuretic peptides, which suppress the VEGF system, and ghrelin, that antagonizes FGF-2 effects. Investigations on "nonclassic" regulators of angiogenesis could open new perspectives in the therapy of diseases coupled to dysregulation of angiogenesis.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, School of Medicine, University of Bari, Bari, Italy.
| | | | | |
Collapse
|
33
|
Podlovni H, Ovadia O, Kisliouk T, Klipper E, Zhou QY, Friedman A, Alfaidy N, Meidan R. Differential expression of prokineticin receptors by endothelial cells derived from different vascular beds: a physiological basis for distinct endothelial function. Cell Physiol Biochem 2007; 18:315-26. [PMID: 17170518 DOI: 10.1159/000097609] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2006] [Indexed: 12/28/2022] Open
Abstract
Prokineticins (PKs), multifunctional secreted proteins, activate two endogenous G protein-coupled receptors (R) termed PK-R1 and PK-R2. It was suggested that PK1 acts selectively on the endothelium of endocrine glands, yet PK-Rs were also found in endothelial cells (EC) derived from other tissues. Therefore we examined here the characteristics of PK - system in EC derived from different vascular beds. Corpus luteum (CL)-derived EC (LEC) expressed both PK-R1 and PK-R2. In contrast, EC from the aorta (BAEC) only expressed PK-R1. Interestingly, also EC from brain capillaries (BCEC) expressed only PK-R1. The distinct pattern of PK-R expression may define EC phenotypic heterogeneity. Regulation of receptor expression also differed in BAEC and LEC: TNFalpha markedly reduced PK-R1 only in BAEC, but serum removal decreased PK-R1 in both cell types. Therefore, if cells were initially serum-starved, the anti-apoptotic effect of PKs was retained only in LEC. Yet, addition of PKs concomitant with serum removal enhanced the proliferation and survival of both BAEC and LEC. Immunohistochemical staining showed that in CL and aorta PK1 was expressed in smooth muscle cells in vessel walls, suggesting a paracrine mode of action. PK1 enhanced the net paracellular transport (measured by electrical resistance and Mannitol transport) in LEC but not in BAEC or BCEC. Collectively, these findings indicate that PKs serve as mitogens and survival factors for microvascular (LEC) and macrovascular (BAEC) EC. However, the distinct expression and function of PK receptors suggest different physiological roles for these receptors in various EC types.
Collapse
MESH Headings
- Animals
- Aorta/chemistry
- Aorta/cytology
- Aorta/metabolism
- Brain/blood supply
- Brain/cytology
- Brain/metabolism
- Capillaries/cytology
- Capillaries/metabolism
- Cattle
- Cells, Cultured
- Corpus Luteum/blood supply
- Corpus Luteum/cytology
- Corpus Luteum/metabolism
- Endothelial Cells/metabolism
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Female
- Immunohistochemistry
- Permeability
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/metabolism
Collapse
Affiliation(s)
- Helena Podlovni
- Section of Reproductive Endocrinology, Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Raymond MN, Bole-Feysot C, Banno Y, Tanfin Z, Robin P. Endothelin-1 inhibits apoptosis through a sphingosine kinase 1-dependent mechanism in uterine leiomyoma ELT3 cells. Endocrinology 2006; 147:5873-82. [PMID: 16959847 DOI: 10.1210/en.2006-0291] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Uterine leiomyomas, or fibroids, are the most common tumors of the myometrium. The ELT3 cell line, derived from Eker rat leiomyoma, has been successfully used as a model for the study of leiomyomas. We have demonstrated previously the potent mitogenic properties of the peptidic hormone endothelin (ET)-1 in this cell line. Here we investigated the antiapoptotic effect of ET-1 in ELT3 cells. We found that 1) serum starvation of ELT3 cells induced an apoptotic process characterized by cytochrome c release from mitochondria, caspase-3/7 activation, nuclei condensation and DNA fragmentation; 2) ET-1 prevented the apoptotic process; and 3) this effect of ET-1 was fully reproduced by ETB agonists. In contrast, no antiapoptotic effect of ET-1 was observed in normal myometrial cells. A pharmacological approach showed that the effect of ET-1 on caspase-3/7 activation in ELT3 cells was not dependent on phosphatidylinositol 3-kinase, ERK1/2, or phospholipase D activities. However, inhibitors of sphingosine kinase-1 (SphK1), dimethylsphingosine and threo-dihydrosphingosine, reduced the effect of ET-1 by about 50%. Identical results were obtained when SphK1 expression was down-regulated in ELT3 cells transfected with SphK1 small interfering RNA. Furthermore, serum starvation induced a decrease in SphK1 activity that was prevented by ET-1 without affecting the level of SphK1 protein expression. Finally, sphingosine 1-phosphate, the product of SphK activity, was as efficient as ET-1 in inhibiting serum starvation-induced caspase-3/7 activation. Together, these results demonstrate that ET-1 possesses a potent antiapoptotic effect in ELT3 cells that involves sphingolipid metabolism through the activation of SphK1.
Collapse
Affiliation(s)
- Marie-Noëlle Raymond
- Signalisation et Régulations Cellulaires, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8619, Bâtiment 430, Université Paris Sud, 91 S/R/C 405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
35
|
Koda M, Bauer M, Krebs A, Hahn EG, Schuppan D, Murawaki Y. Endothelin-1 enhances fibrogenic gene expression, but does not promote DNA synthesis or apoptosis in hepatic stellate cells. COMPARATIVE HEPATOLOGY 2006; 5:5. [PMID: 17062135 PMCID: PMC1635728 DOI: 10.1186/1476-5926-5-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 10/24/2006] [Indexed: 12/16/2022]
Abstract
Background In liver injury, the pool of hepatic stellate cell (HSC) increases and produces extracellular matrix proteins, decreasing during the resolution of fibrosis. The profibrogenic role of endothelin-1 (ET-1) in liver fibrosis remains disputed. We therefore studied the effect of ET-1 on proliferation, apoptosis and profibrogenic gene expression of HSCs. Results First passage HSC predominantly expressed endothelin A receptor (ETAR) mRNA and 4th passage HSC predominantly expressed the endothelin B receptor (ETBR) mRNA. ET-1 had no effect on DNA synthesis in 1st passage HSC, but reduced DNA synthesis in 4th passage HSC by more than 50%. Inhibition of proliferation by endothelin-1 was abrogated by ETBR specific antagonist BQ788, indicating a prominent role of ETBR in growth inhibition. ET-1 did not prevent apoptosis induced by serum deprivation or Fas ligand in 1st or 4th passage HSC. However, ET-1 increased procollagen α1(I), transforming growth factor β-1 and matrix metalloproteinase (MMP)-2 mRNA transcripts in a concentration-dependent manner in 1st, but not in 4th passage HSC. Profibrogenic gene expression was abrogated by ETAR antagonist BQ123. Both BQ123 and BQ788 attenuated the increase of MMP-2 expression by ET-1. Conclusion We show that ET-1 stimulates fibrogenic gene expression for 1st passage HSC and it inhibits HSC proliferation for 4th passage HSC. These data indicate the profibrogenic and antifibrogenic action of ET-1 for HSC are involved in the process of liver fibrosis.
Collapse
Affiliation(s)
- Masahiko Koda
- First Department of Medicine, University of Erlangen-Nuernberg, Erlangen, Germany
- Second Department of Internal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Michael Bauer
- First Department of Medicine, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Anja Krebs
- First Department of Medicine, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Eckhart G Hahn
- First Department of Medicine, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Detlef Schuppan
- First Department of Medicine, University of Erlangen-Nuernberg, Erlangen, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yoshikazu Murawaki
- Second Department of Internal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
36
|
Jankov RP, Kantores C, Belcastro R, Yi M, Tanswell AK. Endothelin-1 inhibits apoptosis of pulmonary arterial smooth muscle in the neonatal rat. Pediatr Res 2006; 60:245-51. [PMID: 16857764 DOI: 10.1203/01.pdr.0000233056.37254.0b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vascular wall remodeling in pulmonary hypertension is contributed to by an aberration in the normal balance between proliferation and apoptosis of smooth muscle. We observed that endothelin (ET)-1 is a critical mediator of vascular remodeling in neonatal rats chronically exposed to 60% O(2), but has no direct proliferative effects on cultured neonatal rat pulmonary artery smooth muscle cells (PASMCs). These findings led us to hypothesize that ET-1 may modulate remodeling by inhibiting apoptosis of smooth muscle. ET-1 (0.1 microM) was found to significantly attenuate both Paclitaxel- and serum deprivation-induced PASMC apoptosis, likely through stimulation of the ET(A) receptor (ET(A)R). ET-1 also prevented Paclitaxel-induced up-regulation of pro-apoptotic Bax and cleaved (activated) caspase-3. In rat pups exposed from birth to 60% O(2) for 7 d, arterial wall expression of Bax was decreased and expression of both ET(A)R and anti-apoptotic Bcl-xL were increased. Furthermore, increased numbers of TUNEL-positive cells were evident in the walls of pulmonary arteries from 60% O(2)-exposed animals treated with a combined ET receptor antagonist, SB217242, relative to air-exposed and vehicle-treated groups. Together, these findings suggest that ET-1 mediates remodeling of neonatal rat pulmonary arteries by inhibiting smooth muscle apoptosis.
Collapse
Affiliation(s)
- Robert P Jankov
- Clinical Integrative Biology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | | | |
Collapse
|
37
|
McWhinnie R, Pechkovsky DV, Zhou D, Lane D, Halayko AJ, Knight DA, Bai TR. Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006; 292:L278-86. [PMID: 16920889 DOI: 10.1152/ajplung.00111.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin-1 (ET-1), a G protein-coupled receptor-activating peptide, is increased in airway epithelium, plasma, and bronchoalveolar lavage fluid of asthmatic patients. We hypothesized that ET-1 may contribute to the increased airway smooth muscle mass found in severe asthma by inducing hypertrophy and inhibiting apoptosis of smooth muscle cells. To investigate this hypothesis, we determined that treatment of primary human bronchial smooth muscle cells with ET-1 dose dependently [10(-11)-10(-7) M] inhibited the apoptosis induced by serum withdrawal. ET-1 treatment also resulted in a significant increase in total protein synthesis, mediated through both ET(A) and ET(B) receptors, cell size, as well as increased expression of myosin heavy chain, alpha-smooth muscle actin, and calponin. ET-1-induced hypertrophy was accompanied by activation of JAK1/STAT-3 and MAPK1/2 (ERK1/2) cell signaling pathways. Inhibition of JAK1/STAT-3 pathways by piceatannol or ERK1/2 by the MAPK/ERK kinase 1/2 inhibitor U0126 blunted the increase in total protein synthesis. The hypertrophic effect of ET-1 was equivalent to that of the gp130 cytokine oncostatin M and greater than that induced by cardiotrophin-1. ET-1 induced release of IL-6 but not IL-11, leukemia inhibitory factor, oncostatin M, or cardiotrophin-1, although treatment of cells with IL-6 alone did not induce hypertrophy. These results suggest that ET-1 is a candidate mediator for the induction of increased smooth muscle mass in asthma and identify signaling pathways activated by this mediator.
Collapse
Affiliation(s)
- Ralph McWhinnie
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, St. Paul's Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC, Canada V6Z 1Y6
| | | | | | | | | | | | | |
Collapse
|
38
|
Nelson JB, Udan MS, Guruli G, Pflug BR. Endothelin-1 inhibits apoptosis in prostate cancer. Neoplasia 2005; 7:631-7. [PMID: 16026642 PMCID: PMC1501426 DOI: 10.1593/neo.04787] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 02/08/2005] [Accepted: 02/09/2005] [Indexed: 01/01/2023] Open
Abstract
Endothelin-1 (ET-1), produced by the prostate epithelia, likely plays an important role in the progression of prostate cancer. ET-1 can bind two receptor subtypes; generally, binding of the endothelin receptor A (ET(A)) induces a survival pathway, whereas binding of the endothelin receptor B (ET(B)) mediates clearance of circulating ET-1 as well as promotes apoptosis. In prostate carcinoma, hypermethylation of the ET(B) promoter results in repression of ET(B) expression, thereby eliminating the negative growth response that ET-1 binding elicits through this receptor. Therefore, activation of ET(A) exclusively provides a pathway for survival advantage. Our current studies examine the mechanisms by which activation of the ET(A) may allow growth/survival. ET-1 treatment of prostate tumor cells significantly decreased paclitaxel-induced apoptosis through activation of the ET(A) subtype. The anti-apoptotic effects of ET-1 are mediated, at least in part, through the Bcl-2 family. Although no significant changes in Bcl-2 expression occurred with ET-1 treatment, the pro-apoptotic family members Bad, Bax, and Bak all decreased significantly. Further analysis of the survival pathway demonstrated that phosphorylation of Akt occurs with ET-1 treatment in a time- and dose-dependent manner through phosphatidyinositol 3-kinase activation. These data support the combination of ET(A) antagonists and apoptosis-inducing therapies for prostate cancer treatment.
Collapse
Affiliation(s)
- Joel B Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | | | | | | |
Collapse
|
39
|
Sugiyama T, Yoshimoto T, Tsuchiya K, Gochou N, Hirono Y, Tateno T, Fukai N, Shichiri M, Hirata Y. Aldosterone induces angiotensin converting enzyme gene expression via a JAK2-dependent pathway in rat endothelial cells. Endocrinology 2005; 146:3900-6. [PMID: 15932931 DOI: 10.1210/en.2004-1674] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aldosterone is currently recognized as a risk hormone for cardiovascular disease. However, the cellular mechanism by which aldosterone acts on vasculature has not been well understood. In the present study, we investigated whether aldosterone affects angiotensin-converting enzyme (ACE) gene expression in rat endothelial cells. Cultured rat aortic endothelial cells (RAECs) from Sprague-Dawley rats were used in the study. ACE mRNA levels and its enzyme activities in RAECs were examined by real-time RT-PCR and enzyme assay using hippuryl-His-Leu as substrates, respectively. Aldosterone significantly increased steady-state ACE mRNA levels and its enzymatic activities. This effect was dose dependent and time dependent and abolished by mineralocorticoid receptor antagonist spironolactone or transcription inhibitor actinomycin D. Dexamethasone also increased steady-state ACE mRNA levels, whose effect was completely blocked by glucocorticoid receptor antagonist RU486, but not by spironolactone. By contrast, the aldosterone-induced ACE mRNA expression was only partially blocked by RU486. The stimulatory effect of aldosterone on ACE mRNA expression was completely blocked by a protein tyrosine kinase inhibitor (genistein) and JAK2 inhibitor (AG490), partially by Src kinase inhibitor (PP2) and epidermal growth factor receptor kinase inhibitor (AG1478), but not by platelet-derived growth factor receptor kinase inhibitor (AG1296). Transfection of dominant-negative JAK2 construct, but not wild-type construct, significantly blocked the aldosterone-induced ACE mRNA up-regulation. Furthermore, aldosterone induced phosphorylation of JAK2, whose effect was blocked by spironolactone and actinomycin D. In conclusion, the present study demonstrates for the first time that aldosterone induces ACE gene expression and its enzyme activity mainly via a mineralocorticoid receptor-mediated and JAK2-dependent pathway in rat endothelial cells. This may constitute a positive feedback loop for a local renin-angiotensin system, possibly involved in the development of aldosterone-induced endothelial dysfunction and vascular injury.
Collapse
MESH Headings
- Aldosterone/pharmacology
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Janus Kinase 2
- Male
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Mineralocorticoid/metabolism
Collapse
Affiliation(s)
- Toru Sugiyama
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8513, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dong F, Zhang X, Wold LE, Ren Q, Zhang Z, Ren J. Endothelin-1 enhances oxidative stress, cell proliferation and reduces apoptosis in human umbilical vein endothelial cells: role of ETB receptor, NADPH oxidase and caveolin-1. Br J Pharmacol 2005; 145:323-33. [PMID: 15765100 PMCID: PMC1576147 DOI: 10.1038/sj.bjp.0706193] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 12/17/2004] [Accepted: 02/03/2005] [Indexed: 11/08/2022] Open
Abstract
1 Endothelin-1 (ET-1), an endothelium-derived vasoactive peptide, participates in the regulation of endothelial function through mechanisms that are not fully elucidated. This study examined the impact of ET-1 on oxidative stress, apoptosis and cell proliferation in human umbilical vein endothelial cells (HUVEC). HUVECs were challenged for 24 h with ET-1 (10 pM-10 nM) in the absence or presence of the ET(B) receptor antagonist BQ788 (1 microM) or the NADPH oxidase inhibitor apocynin (1 microM). Reactive oxygen species (ROS) were detected using chloromethyl-2',7'-dichlorodihydrofluorescein diacetate. Apoptosis was evaluated with 4',6'-diamidino-2'-phenylindoladihydrochloride staining and by the caspase-3 assay. Cell proliferation was measured by a colorimetric assay. Expression of NADPH oxidase, Akt, pAkt, Bcl-2, Bax, IkappaB, caveolin-1 and eNOS was evaluated by Western blot analysis. 2 ET-1 significantly enhanced ROS generation and cell proliferation following 24-h incubation, both of which were prevented by BQ788 or apocynin, consistent with the ability of ET-1 to directly upregulate NADPH oxidase. ET-1 itself did not affect apoptosis but attenuated homocysteine-induced apoptosis through an ET(B) receptor-mediated mechanism. Western blot analysis indicated that ET-1 alleviated homocysteine (Hcy)-induced apoptosis, likely acting by antagonizing the Hcy-induced decreases in Akt, pAkt, pAkt-to-Akt, Bcl-2-to-Bax ratios and increases in Bax and caveolin-1 expression. Furthermore, ET-1 downregulated expression of caveolin-1 and eNOS, which was attenuated by BQ788 or apocynin. 3 In summary, our results suggest that ET-1 affects oxidative stress, proliferation and apoptosis possibly through ET(B), NADPH oxidase, Akt, Bax and caveolin-1-mediated mechanisms.
Collapse
Affiliation(s)
- Feng Dong
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071-3375, U.S.A
| | - Xiaochun Zhang
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071-3375, U.S.A
| | - Loren E Wold
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, ND 58203, U.S.A
| | - Qun Ren
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071-3375, U.S.A
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071-3375, U.S.A
| | - Jun Ren
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071-3375, U.S.A
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, ND 58203, U.S.A
| |
Collapse
|
41
|
Stoneman VEA, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond) 2004; 107:343-54. [PMID: 15230690 DOI: 10.1042/cs20040086] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 06/07/2004] [Accepted: 07/01/2004] [Indexed: 01/28/2023]
Abstract
Atherosclerotic plaques develop as a consequence of the accumulation of circulating lipid and the subsequent migration of inflammatory cells (macrophages and T-lymphocytes) and VSMCs (vascular smooth muscle cells). Advanced plaques consist of a lipid-rich core, separated from the lumen by a fibrous cap composed of VSMCs, collagen and extracellular matrix. Plaque enlargement ultimately narrows the lumen (stenosis) causing angina. However, recent studies have emphasized that acute coronary syndromes (unstable angina/myocardial infarction) are caused by lesion erosion/rupture with superimposed thrombus formation on often small non-stenotic plaques. Thus current therapies work predominantly on stabilization of plaques rather than plaque regression. Apoptosis (programmed cell death) is increasingly observed as plaques develop, although the exact mechanisms and consequences of apoptosis in the development and progression of atherosclerosis are still controversial. Increased endothelial cell apoptosis may initiate atherosclerosis, whereas apoptosis of VSMCs and macrophages localizes in ‘vulnerable’ lesions, i.e. those most likely to rupture, and at sites of rupture. This review will focus on the regulation of apoptosis of cells within the vasculature, concentrating on the relevance of apoptosis to plaque progression and clinical consequences of vascular cell apoptosis.
Collapse
Affiliation(s)
- Victoria E A Stoneman
- Unit of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, Level 6, Box 110, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| | | |
Collapse
|
42
|
Shimizu H, Takahashi M, Takeda SI, Inoue S, Fujishiro J, Hakamata Y, Kaneko T, Murakami T, Takeuchi K, Takeyoshi I, Morishita Y, Kobayashi E. MYCOPHENOLATE MOFETIL PREVENTS TRANSPLANT ARTERIOSCLEROSIS BY DIRECT INHIBITION OF VASCULAR SMOOTH MUSCLE CELL PROLIFERATION1. Transplantation 2004; 77:1661-7. [PMID: 15201664 DOI: 10.1097/01.tp.0000127592.13707.b6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED BACKGROUND.: Transplant arteriosclerosis is one of the main features of chronic graft failure in organ transplantation. In this article, the authors investigate mechanisms of mycophenolate mofetil (MMF) on prevention of transplant arteriosclerosis in a rat aortic allograft model. METHODS Orthotopic rat abdominal aortic transplantation was performed from Brown Norway (RT1) to Lewis (RT1) rats. The recipients were divided into three oral treatment groups: (1). vehicle; (2). MMF40 (40 mg/kg); and (3). MMF20 (20 mg/kg). The authors histologically and immunohistochemically evaluated neointima formation; infiltration of macrophages and T cells; and expression of endothelin (ET)-1, platelet-derived growth factor (PDGF)-B, PDGF receptor-beta (Rbeta), transforming growth factor (TGF) beta 1, and osteopontin (OPN). Using cultured rat vascular smooth muscle cells (VSMC), effects of mycophenolic acid (MPA) on ET-1-induced proliferation and ERK1/2 activation were also examined in vitro. RESULTS In the vehicle group, marked neointima formation was observed, with massive macrophages and T-cell infiltration in neointima, media, and adventitia. Marked expression of ET-1, PDGF-B, PDGFR-beta, TGFbeta1, and OPN were also observed in neointima. In the MMF40 and MMF20 groups, neointima formation was halted, but macrophages and T cells were infiltrated in the adventitia and adhered to the endothelium. In the MMF40 group, medial infiltration by macrophages and T cells and intimal expression of ET-1, PDGF-B, PDGFR-beta, TGFbeta1, and OPN was inhibited compared with the vehicle and MMF20 groups. Furthermore, MPA inhibited ET-1-induced VSMC proliferation but failed to inhibit its ERK1/2 activation. CONCLUSIONS MMF treatment might have preventive potential in transplant patients with chronic vasculopathy through inhibition of VSMC proliferation.
Collapse
Affiliation(s)
- Hisashi Shimizu
- Division of Organ Replacement Research, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Suzuki YJ, Evans T. Regulation of cardiac myocyte apoptosis by the GATA-4 transcription factor. Life Sci 2004; 74:1829-38. [PMID: 14761664 DOI: 10.1016/j.lfs.2003.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 10/08/2003] [Indexed: 10/26/2022]
Abstract
Apoptosis of cardiac muscle cells plays important roles in the development of various heart diseases including myocardial infarction and anthracycline-induced cardiomyopathy. Understanding the regulatory mechanisms of cardiac myocyte apoptosis and survival is important for establishing therapeutic strategies against heart disease. Our recent experiments demonstrate that the GATA-4 transcription factor not only mediates cardiac hypertrophy, but also regulates apoptosis and survival of adult cardiac muscle cells. Apoptosis induced by anthracyclines is associated with decreased expression of GATA-4, while the restoration of GATA-4 levels via ectopic expression attenuated the apoptosis. Survival factors of cardiac myocytes such as hepatocyte growth factor and endothelin-1 activate GATA-4, and this signal transduction mechanism at least in part serves to protect the heart against oxidative stress.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Cell & Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Jean Mayer USDA Human Nutrition Research Center on Aging, Department of Medicine, Tufts University, Boston, MA 02111, USA.
| | | |
Collapse
|
44
|
Raymond MA, Désormeaux A, Laplante P, Vigneault N, Filep JG, Landry K, Pshezhetsky AV, Hébert MJ. Apoptosis of endothelial cells triggers a caspase‐dependent anti‐apoptotic paracrine loop active on vascular smooth muscle cells. FASEB J 2004; 18:705-7. [PMID: 14977881 DOI: 10.1096/fj.03-0573fje] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Increased endothelial apoptosis and decreased apoptosis of vascular smooth muscle cells (VSMC) are central to initiation of myo-intimal thickening. We hypothesized that apoptosis of endothelial cells (EC) induces the release of anti-apoptotic mediator(s) active on VSMC. We found that serum-free medium conditioned by apoptotic EC decreases apoptosis of VSMC compared with fresh serum-free medium. Inhibition of endothelial apoptosis during conditioning with a pan-caspase inhibitor ZVAD-FMK blocked the release of the anti-apoptotic factor(s) active on VSMC. VSMC exposed to serum-free medium conditioned by apoptotic EC showed increased ERK 1/2 phosphorylation, enhanced Bcl-xl expression, and inhibition of p53 expression. Fractionation of the conditioned medium followed by mass spectral analysis identified one bioactive component as a C-terminal fragment of the domain V of perlecan. Serum-free medium supplemented with either a synthetic peptide containing the EGF motif of the domain V of perlecan or chondroitin 4-sulfate, a glycosaminoglycan anchored on the domain V of perlecan, increased ERK 1/2 phosphorylation and Bcl-xl protein levels while inhibiting apoptosis of VSMC. These results suggest that a proteolytic activity developing downstream of activated caspases in apoptotic EC initiates degradation of pericellular proteoglycans and liberation of bioactive fragments with a robust impact on inhibition of VSMC apoptosis.
Collapse
|
45
|
Hirasawa Y, Kato Y, Fukuyama S, Ohno M, Nishino S, Kato M, Kita Y. FR146801, a novel nitric oxide donating agent, prevents neointimal formation after balloon injury in rats. Drug Dev Res 2004. [DOI: 10.1002/ddr.10335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Ozawa N, Shichiri M, Iwashina M, Fukai N, Yoshimoto T, Hirata Y. Laminar Shear Stress Up-Regulates Inducible Nitric Oxide Synthase in the Endothelium. Hypertens Res 2004; 27:93-9. [PMID: 15005272 DOI: 10.1291/hypres.27.93] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Shear stress caused by blood flow is a potent physiological stimulus for the generation of nitric oxide (NO) in endothelial cells, which is believed to derive from the up-regulation and post-transcriptional activation of endothelial constitutive NO synthase (ecNOS). However, it has yet to be demonstrated that inducible NO synthase (iNOS) plays a significant role in shear stress-induced NO production from endothelial cells. We used parallel plate-type flow chambers that detect fluid shear stress to determine that shear stress, as quantified by a real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR), increased iNOS gene transcripts in cultured endothelial cells, which resulted in increased NO production. Shear stress-induced iNOS expression was inhibited by pyrrolidine dithiocarbamate (PDTC), an antioxidant and nuclear factor kappaB (NF-kappaB) blocker, and by MG132, an aldehyde peptide proteasome inhibitor that antagonizes I kappaB-kinase. Laminar shear stress increased the transcriptional activity of NF-kappaB, whereas over-expression of an I kappaB-alpha mutant that inhibits the activation of NF-KB in a dominant-negative fashion was found to attenuate the induction of endothelial iNOS by shear stress. The present results demonstrate that shear stress induces iNOS in the endothelium, mainly via the activation of NF-kappaB.
Collapse
Affiliation(s)
- Naoko Ozawa
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Shichiri M, Ishimaru S, Ota T, Nishikawa T, Isogai T, Hirata Y. Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat Med 2003; 9:1166-72. [PMID: 12910263 DOI: 10.1038/nm913] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Accepted: 07/02/2003] [Indexed: 12/21/2022]
Abstract
The discovery of endogenous bioactive peptides has typically required a lengthy identification process. Computer-assisted analysis of cDNA and genomic DNA sequence information can markedly shorten the process. A bioinformatic analysis of full-length, enriched human cDNA libraries searching for previously unidentified bioactive peptides resulted in the identification and characterization of two related peptides of 28 and 20 amino acids, which we designated salusin-alpha and salusin-beta. Salusins are translated from an alternatively spliced mRNA of TOR2A, a gene encoding a protein of the torsion dystonia family. Intravenous administration of salusin-alpha or salusin-beta to rats causes rapid, profound hypotension and bradycardia. Salusins increase intracellular Ca2+, upregulate a variety of genes and induce cell mitogenesis. Salusin-beta stimulates the release of arginine-vasopressin from rat pituitary. Expression of TOR2A mRNA and its splicing into preprosalusin are ubiquitous, and immunoreactive salusin-alpha and salusin-beta are detected in many human tissues, plasma and urine, suggesting that salusins are endocrine and/or paracrine factors.
Collapse
Affiliation(s)
- Masayoshi Shichiri
- Tokyo Medical and Dental University Medical Hospital, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Han B, Fixler R, Beeri R, Wang Y, Bachrach U, Hasin Y. The opposing effects of endothelin-1 and C-type natriuretic peptide on apoptosis of neonatal rat cardiac myocytes. Eur J Pharmacol 2003; 474:15-20. [PMID: 12909191 DOI: 10.1016/s0014-2999(03)01995-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
C-type natriuretic peptide (CNP) and endothelin-1 are paracrine peptides with opposing effects on cardiac myocyte contraction and intracellular cGMP production. Elevated levels of both endothelin-1 and CNP are found in patients with congestive heart failure. These factors may be related to positive and negative regulation of cell apoptosis in the failing heart. To evaluate the effect of CNP and endothelin-1 on apoptosis of cardiac myocytes and the possible mechanisms involved, primary cardiac myocytes were prepared from neonatal Sabra rats. Cardiomyocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and Annexin V in situ staining. The TUNEL method was used to measure the apoptotic index. CNP and the cGMP derivative, 8-br-cGMP, induced apoptosis of cardiac myocytes. CNP-induced apoptosis could be blocked by HS 142-1 (a mixture of 20-30 kinds of linear beta-1, 6-glucan esterified by capronic acid, an antagonist of type A and B natriuretic peptide receptors), and KT 5823 (C29H25N3O5), the inhibitor of cGMP-dependent protein kinase). Alpha-difluoromethylornithine (DFMO), the irreversible inhibitor of ornithine decarboxylase, also induced apoptosis to a similar extent. CNP and 8-br-cGMP caused a marked reduction of intracellular ornithine decarboxylase expression, as determined by Western blot analysis and immunohistochemical assay. Preincubation with endothelin-1 attenuated CNP- and 8-br-cGMP-induced cardiomyocyte apoptosis. Endothelin-1 also antagonized the CNP- and 8-br-cGMP-induced reduction of intracellular ornithine decarboxylase expression. These results suggest that CNP has a proapoptotic effect on neonatal rat cardiac myocytes. The effect is mediated via natriuretic peptide receptors and is due to an elevation of intracellular cGMP, which reduces the expression of intracellular ornithine decarboxylase and probably the production of polyamines. Endothelin-1 protects cardiac myocytes against CNP-induced apoptosis by influencing the cGMP-dependent pathway, and this effect is probably mediated through both a reduction of cGMP and antagonism of the CNP-induced reduction of intracellular ornithine decarboxylase expression.
Collapse
Affiliation(s)
- Bo Han
- Cardiology Department, Poriyya Medical Center, Tiberias, POB 15208, Israel
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The biology of aging has been mysterious for centuries. Removal of the p66(Shc) gene, which encodes an adaptor protein for cell signaling, extends lifespan by approximately 30% in mice and confers resistance to oxidative stress. The absence of p66(Shc) correlates with reduced levels of apoptosis. Oxidants induce phosphorylation of serine36 on p66(Shc), contributing to inactivation of members of the Forkhead transcription factor family, some of which appear to regulate the expression of antioxidant genes. The expression of p66(Shc) is regulated by the methylation status of its promoter. This leads us to hypothesize that increased methylation of the p66(Shc) promoter might contribute to the absence of its expression and therefore extended longevity in particular individuals.
Collapse
Affiliation(s)
- Sally Purdom
- Interdisciplinary Graduate Program for Genetics and Genomics, University of Arizona, 1501 N. Campbell, Tucson, AZ 85724, USA
| | | |
Collapse
|
50
|
Shichiri M, Fukai N, Ozawa N, Iwasaki H, Hirata Y. Adrenomedullin is an autocrine/paracrine growth factor for rat vascular smooth muscle cells. REGULATORY PEPTIDES 2003; 112:167-73. [PMID: 12667639 DOI: 10.1016/s0167-0115(03)00036-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adrenomedullin is a potent vasodilator peptide secreted by vascular endothelial and smooth muscle cells. Adrenomedullin stimulates the proliferation of quiescent rat vascular smooth muscle cells (VSMCs) via p42/p44 ERK/MAP kinase activation. Recently, receptor-activity-modifying proteins (RAMPs) have been shown to transport calcitonin-receptor-like-receptor (CRLR) to the cell surface to present either as CGRP receptor or adrenomedullin receptor. We investigated whether adrenomedullin acts as an autocrine/paracrine growth factor for cultured rat VSMCs and whether coexpressions of RAMP isoform and CRLR may mediate p42/p44 ERK/MAP kinase activation by adrenomedullin. Adrenomedullin dose-dependently stimulated the proliferation of quiescent rat VSMCs, and this effect was inhibited by an adrenomedullin receptor antagonist, a MAP kinase kinase inhibitor and phosphatidylinositol 3-kinase inhibitors. Addition of either CGRP(8-37) or anti-adrenomedullin antibody to exponentially growing rat VSMCs inhibited the serum-induced cell proliferation, suggesting its role as an autocrine/paracrine growth factor. Cotransfection of RAMP2 or RAMP3 with CRLR into rat VSMCs potentiated activation of cAMP activity, but not of p42/p44 ERK/MAP kinase activity in response to adrenomedullin. Our results suggest that adrenomedullin is an autocrine/paracrine growth factor for rat VSMCs via p42/p44 ERK/MAP kinase and phosphatidylinositol 3-kinase pathways and that it is not mediated by human RAMP-CRLR receptors.
Collapse
Affiliation(s)
- Masayoshi Shichiri
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Tokyo 113-8519, Bunkyo, Japan
| | | | | | | | | |
Collapse
|