1
|
Reijnders E, van der Laarse A, Ruhaak LR, Cobbaert CM. Closing the gaps in patient management of dyslipidemia: stepping into cardiovascular precision diagnostics with apolipoprotein profiling. Clin Proteomics 2024; 21:19. [PMID: 38429638 PMCID: PMC10908091 DOI: 10.1186/s12014-024-09465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
In persons with dyslipidemia, a high residual risk of cardiovascular disease remains despite lipid lowering therapy. Current cardiovascular risk prediction mainly focuses on low-density lipoprotein cholesterol (LDL-c) levels, neglecting other contributing risk factors. Moreover, the efficacy of LDL-c lowering by statins resulting in reduced cardiovascular risk is only partially effective. Secondly, from a metrological viewpoint LDL-c falls short as a reliable measurand. Both direct and calculated LDL-c tests produce inaccurate test results at the low end under aggressive lipid lowering therapy. As LDL-c tests underperform both clinically and metrologically, there is an urging need for molecularly defined biomarkers. Over the years, apolipoproteins have emerged as promising biomarkers in the context of cardiovascular disease as they are the functional workhorses in lipid metabolism. Among these, apolipoprotein B (ApoB), present on all atherogenic lipoprotein particles, has demonstrated to clinically outperform LDL-c. Other apolipoproteins, such as Apo(a) - the characteristic apolipoprotein of the emerging risk factor lipoprotein(a) -, and ApoC-III - an inhibitor of triglyceride-rich lipoprotein clearance -, have attracted attention as well. To support personalized medicine, we need to move to molecularly defined risk markers, like the apolipoproteins. Molecularly defined diagnosis and molecularly targeted therapy require molecularly measured biomarkers. This review provides a summary of the scientific validity and (patho)physiological role of nine serum apolipoproteins, Apo(a), ApoB, ApoC-I, ApoC-II, ApoC-III, ApoE and its phenotypes, ApoA-I, ApoA-II, and ApoA-IV, in lipid metabolism, their association with cardiovascular disease, and their potential as cardiovascular risk markers when measured in a multiplex apolipoprotein panel.
Collapse
Affiliation(s)
- Esther Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Sato M, Neufeld EB, Playford MP, Lei Y, Sorokin AV, Aponte AM, Freeman LA, Gordon SM, Dey AK, Jeiran K, Hamasaki M, Sampson ML, Shamburek RD, Tang J, Chen MY, Kotani K, Anderson JL, Dullaart RP, Mehta NN, Tietge UJ, Remaley AT. Cell-free, high-density lipoprotein-specific phospholipid efflux assay predicts incident cardiovascular disease. J Clin Invest 2023; 133:e165370. [PMID: 37471145 PMCID: PMC10503808 DOI: 10.1172/jci165370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/18/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUNDCellular cholesterol efflux capacity (CEC) is a better predictor of cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C) but is not suitable as a routine clinical assay.METHODSWe developed an HDL-specific phospholipid efflux (HDL-SPE) assay to assess HDL functionality based on whole plasma HDL apolipoprotein-mediated solubilization of fluorescent phosphatidylethanolamine from artificial lipid donor particles. We first assessed the association of HDL-SPE with prevalent coronary artery disease (CAD): study I included NIH severe-CAD (n = 50) and non-CAD (n = 50) participants, who were frequency matched for sex, BMI, type 2 diabetes mellitus, and smoking; study II included Japanese CAD (n = 70) and non-CAD (n = 154) participants. We also examined the association of HDL-SPE with incident CVD events in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study comparing 340 patients with 340 controls individually matched for age, sex, smoking, and HDL-C levels.RESULTSReceiver operating characteristic curves revealed stronger associations of HDL-SPE with prevalent CAD. The AUCs in study I were as follows: HDL-SPE, 0.68; apolipoprotein A-I (apoA-I), 0.62; HDL-C, 0.63; and CEC, 0.52. The AUCs in study II were as follows: HDL-SPE, 0.83; apoA-I, 0.64; and HDL-C, 0.53. Also longitudinally, HDL-SPE was significantly associated with incident CVD events independent of traditional risk factors with ORs below 0.2 per SD increment in the PREVEND study (P < 0.001).CONCLUSIONHDL-SPE could serve as a routine clinical assay for improving CVD risk assessment and drug discovery.TRIAL REGISTRATIONClinicalTrials.gov NCT01621594.FUNDINGNHLBI Intramural Research Program, NIH (HL006095-06).
Collapse
Affiliation(s)
- Masaki Sato
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
- Biochemical Research Laboratory II, Eiken Chemical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Edward B. Neufeld
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Yu Lei
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Alexander V. Sorokin
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Angel M. Aponte
- Proteomics Core Facility, NHLBI, NIH, Bethesda, Maryland, USA
| | - Lita A. Freeman
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Scott M. Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Amit K. Dey
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kianoush Jeiran
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Masato Hamasaki
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
- Biochemical Research Laboratory II, Eiken Chemical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | | | - Robert D. Shamburek
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Marcus Y. Chen
- Laboratory of Cardiovascular CT, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kazuhiko Kotani
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
| | - Josephine L.C. Anderson
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robin P.F. Dullaart
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Uwe J.F. Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- The NIH Clinical Center and
| |
Collapse
|
3
|
CREBH Systemically Regulates Lipid Metabolism by Modulating and Integrating Cellular Functions. Nutrients 2021; 13:nu13093204. [PMID: 34579081 PMCID: PMC8472586 DOI: 10.3390/nu13093204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclic AMP-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor expressed in the liver and small intestine. The activity of CREBH is regulated not only at the transcriptional level but also at the posttranslational level. CREBH governs triglyceride metabolism in the liver by controlling gene expression, with effects including the oxidation of fatty acids, lipophagy, and the expression of apolipoproteins related to the lipoprotein lipase activation and suppression of lipogenesis. The activation and functions of CREBH are controlled in response to the circadian rhythm. On the other hand, intestinal CREBH downregulates the absorption of lipids from the diet. CREBH deficiency in mice leads to severe hypertriglyceridemia and fatty liver in the fasted state and while feeding a high-fat diet. Therefore, when crossing CREBH knockout (KO) mice with an atherosclerosis model, low-density lipoprotein receptor KO mice, these mice exhibit severe atherosclerosis. This phenotype is seen in both liver- and small intestine-specific CREBH KO mice, suggesting that CREBH controls lipid homeostasis in an enterohepatic interaction. This review highlights that CREBH has a crucial role in systemic lipid homeostasis to integrate cellular functions related to lipid metabolism.
Collapse
|
4
|
Enterohepatic Transcription Factor CREB3L3 Protects Atherosclerosis via SREBP Competitive Inhibition. Cell Mol Gastroenterol Hepatol 2020; 11:949-971. [PMID: 33246135 PMCID: PMC7900604 DOI: 10.1016/j.jcmgh.2020.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS cAMP responsive element-binding protein 3 like 3 (CREB3L3) is a membrane-bound transcription factor involved in the maintenance of lipid metabolism in the liver and small intestine. CREB3L3 controls hepatic triglyceride and glucose metabolism by activating plasma fibroblast growth factor 21 (FGF21) and lipoprotein lipase. In this study, we intended to clarify its effect on atherosclerosis. METHODS CREB3L3-deficifient, liver-specific CREB3L3 knockout, intestine-specific CREB3L3 knockout, both liver- and intestine-specific CREB3L3 knockout, and liver CREB3L3 transgenic mice were crossed with LDLR-/- mice. These mice were fed with a Western diet to develop atherosclerosis. RESULTS CREB3L3 ablation in LDLR-/- mice exacerbated hyperlipidemia with accumulation of remnant APOB-containing lipoprotein. This led to the development of enhanced aortic atheroma formation, the extent of which was additive between liver- and intestine-specific deletion. Conversely, hepatic nuclear CREB3L3 overexpression markedly suppressed atherosclerosis with amelioration of hyperlipidemia. CREB3L3 directly up-regulates anti-atherogenic FGF21 and APOA4. In contrast, it antagonizes hepatic sterol regulatory element-binding protein (SREBP)-mediated lipogenic and cholesterogenic genes and regulates intestinal liver X receptor-regulated genes involved in the transport of cholesterol. CREB3L3 deficiency results in the accumulation of nuclear SREBP proteins. Because both transcriptional factors share the cleavage system for nuclear transactivation, full-length CREB3L3 and SREBPs in the endoplasmic reticulum (ER) functionally inhibit each other. CREB3L3 promotes the formation of the SREBP-insulin induced gene 1 complex to suppress SREBPs for ER-Golgi transport, resulting in ER retention and inhibition of proteolytic activation at the Golgi and vice versa. CONCLUSIONS CREB3L3 has multi-potent protective effects against atherosclerosis owing to new mechanistic interaction between CREB3L3 and SREBPs under atherogenic conditions.
Collapse
|
5
|
Effect of Embryo Vitrification on the Steroid Biosynthesis of Liver Tissue in Rabbit Offspring. Int J Mol Sci 2020; 21:ijms21228642. [PMID: 33207830 PMCID: PMC7696440 DOI: 10.3390/ijms21228642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Preimplantation embryo manipulations during standard assisted reproductive technologies (ART) have significant repercussions on offspring. However, few studies to date have investigated the potential long-term outcomes associated with the vitrification procedure. Here, we performed an experiment to unravel the particular effects related to stress induced by embryo transfer and vitrification techniques on offspring phenotype from the foetal period through to prepuberal age, using a rabbit model. In addition, the focus was extended to the liver function at prepuberal age. We showed that, compared to naturally conceived animals (NC), offspring derived after embryo exposure to the transfer procedure (FT) or cryopreservation-transfer procedure (VT) exhibited variation in growth and body weight from foetal life to prepuberal age. Strikingly, we found a nonlinear relationship between FT and VT stressors, most of which were already present in the FT animals. Furthermore, we displayed evidence of variation in liver function at prepuberal age, most of which occurred in both FT and VT animals. The present major novel finding includes a significant alteration of the steroid biosynthesis profile. In summary, here we provide that embryonic manipulation during the vitrification process is linked with embryo phenotypic adaptation detected from foetal life to prepuberal age and suggests that this phenotypic variation may be associated, to a great extent, with the effect of embryo transfer.
Collapse
|
6
|
Temporal Dynamics of High-Density Lipoprotein Proteome in Diet-Controlled Subjects with Type 2 Diabetes. Biomolecules 2020; 10:biom10040520. [PMID: 32235466 PMCID: PMC7226298 DOI: 10.3390/biom10040520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
We examined the effect of mild hyperglycemia on high-density lipoprotein (HDL) metabolism and kinetics in diet-controlled subjects with type 2 diabetes (T2D). 2H2O-labeling coupled with mass spectrometry was applied to quantify HDL cholesterol turnover and HDL proteome dynamics in subjects with T2D (n = 9) and age- and BMI-matched healthy controls (n = 8). The activities of lecithin–cholesterol acyltransferase (LCAT), cholesterol ester transfer protein (CETP), and the proinflammatory index of HDL were quantified. Plasma adiponectin levels were reduced in subjects with T2D, which was directly associated with suppressed ABCA1-dependent cholesterol efflux capacity of HDL. The fractional catabolic rates of HDL cholesterol, apolipoprotein A-II (ApoA-II), ApoJ, ApoA-IV, transthyretin, complement C3, and vitamin D-binding protein (all p < 0.05) were increased in subjects with T2D. Despite increased HDL flux of acute-phase HDL proteins, there was no change in the proinflammatory index of HDL. Although LCAT and CETP activities were not affected in subjects with T2D, LCAT was inversely associated with blood glucose and CETP was inversely associated with plasma adiponectin. The degradation rates of ApoA-II and ApoA-IV were correlated with hemoglobin A1c. In conclusion, there were in vivo impairments in HDL proteome dynamics and HDL metabolism in diet-controlled patients with T2D.
Collapse
|
7
|
Advanced Glycated apoA-IV Loses Its Ability to Prevent the LPS-Induced Reduction in Cholesterol Efflux-Related Gene Expression in Macrophages. Mediators Inflamm 2020; 2020:6515401. [PMID: 32410861 PMCID: PMC7201780 DOI: 10.1155/2020/6515401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
We addressed how advanced glycation (AGE) affects the ability of apoA-IV to impair inflammation and restore the expression of genes involved in cholesterol efflux in lipopolysaccharide- (LPS-) treated macrophages. Recombinant human apoA-IV was nonenzymatically glycated by incubation with glycolaldehyde (GAD), incubated with cholesterol-loaded bone marrow-derived macrophages (BMDMs), and then stimulated with LPS prior to measurement of proinflammatory cytokines by ELISA. Genes involved in cholesterol efflux were quantified by RT-qPCR, and cholesterol efflux was measured by liquid scintillation counting. Carboxymethyllysine (CML) and pyrraline (PYR) levels, determined by Liquid Chromatography-Mass Spectrometry (LC-MS/MS), were greater in AGE-modified apoA-IV (AGE-apoA-IV) compared to unmodified-apoA-IV. AGE-apoA-IV inhibited expression of interleukin 6 (Il6), TNF-alpha (Tnf), IL-1 beta (Il1b), toll-like receptor 4 (Tlr4), tumor necrosis factor receptor-associated factor 6 (Traf6), Janus kinase 2/signal transducer and activator of transcription 3 (Jak2/Stat3), nuclear factor kappa B (Nfkb), and AGE receptor 1 (Ddost) as well as IL-6 and TNF-alpha secretion. AGE-apoA-IV alone did not change cholesterol efflux or ABCA-1 levels but was unable to restore the LPS-induced reduction in expression of Abca1 and Abcg1. AGE-apoA-IV inhibited inflammation but lost its ability to counteract the LPS-induced changes in expression of genes involved in macrophage cholesterol efflux that may contribute to atherosclerosis.
Collapse
|
8
|
Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH, Blaho VA, Nagumo R, Satoh K, Izumi T, Hla T. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. J Lipid Res 2019; 60:1912-1921. [PMID: 31462513 DOI: 10.1194/jlr.ra119000277] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Indexed: 11/20/2022] Open
Abstract
HDL-bound ApoM and albumin are protein chaperones for the circulating bioactive lipid, sphingosine 1-phosphate (S1P); in this role, they support essential extracellular S1P signaling functions in the vascular and immune systems. We previously showed that ApoM- and albumin-bound S1P exhibit differences in receptor activation and biological functions. Whether the physiological functions of S1P require chaperones is not clear. We examined ApoM-deficient, albumin-deficient, and double-KO (DKO) mice for circulatory S1P and its biological functions. In albumin-deficient mice, ApoM was upregulated, thus enabling S1P functions in embryonic development and postnatal adult life. The Apom:Alb DKO mice reproduced, were viable, and exhibited largely normal vascular and immune functions, which suggested sufficient extracellular S1P signaling. However, Apom:Alb DKO mice had reduced levels (∼25%) of plasma S1P, suggesting that novel S1P chaperones exist to mediate S1P functions. In this study, we report the identification of ApoA4 as a novel S1P binding protein. Recombinant ApoA4 bound to S1P, activated multiple S1P receptors, and promoted vascular endothelial barrier function, all reflective of its function as a S1P chaperone in the absence of ApoM and albumin. We suggest that multiple S1P chaperones evolved to support complex and essential extracellular signaling functions of this lysolipid mediator in a redundant manner.
Collapse
Affiliation(s)
- Hideru Obinata
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Yukata Wada
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Steven Swendeman
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Catherine H Liu
- Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Victoria A Blaho
- Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Rieko Nagumo
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | - Takashi Izumi
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
9
|
Proteomic Analysis of Liver from Human Lipoprotein(a) Transgenic Mice Shows an Oxidative Stress and Lipid Export Response. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4963942. [PMID: 30596094 PMCID: PMC6286786 DOI: 10.1155/2018/4963942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/11/2018] [Indexed: 12/26/2022]
Abstract
Background Mouse models of hypercholesterolaemia have been used to identify arterial proteins involved in atherosclerosis. As the liver is extremely sensitive to dyslipidemia, one might expect major changes in the abundance of liver proteins in these models even before atherosclerosis develops. Methods Lipid levels were measured and a proteomic approach was used to quantify proteins in the livers of mice with an elevated low-density lipoprotein (LDL) and the presence of lipoprotein(a) [Lp(a)] but no atherosclerosis. Results The livers of Lp(a) mice showed an increased triglyceride but reduced phospholipid and oxidised lipid content. Two-dimensional gel electrophoresis and mass spectrometry analysis identified 24 liver proteins with significantly increased abundance in Lp(a) mice (P<0.05). A bioinformatic analysis of the 24 proteins showed the major effect was that of an enhanced antioxidant and lipid efflux response with significant increases in antioxidant (Park7, Gpx1, Prdx6, and Sod1) and lipid metabolism proteins (Fabp4, Acaa2, apoA4, and ApoA1). Interestingly, human liver cells treated with Lp(a) showed significant increases in Gpx1 and Prdx6 but not Sod1 or Park7. Conclusions The presence of human LDL and Lp(a) in mice promotes an enhanced flux of lipids into the liver which elicits an antioxidant and lipid export response before the onset of atherosclerosis. The antioxidant response can be reproduced in human liver cells treated with Lp(a).
Collapse
|
10
|
CREBH Regulates Systemic Glucose and Lipid Metabolism. Int J Mol Sci 2018; 19:ijms19051396. [PMID: 29738435 PMCID: PMC5983805 DOI: 10.3390/ijms19051396] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 12/23/2022] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor that primarily localizes in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins related to lipoprotein lipase (LPL) activation. CREBH in the small intestine reduces cholesterol transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy with peroxisome proliferator-activated receptor α (PPARα), has a crucial role in upregulating Fgf21 expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism. CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα) in regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and lipid metabolism in the liver and small intestine.
Collapse
|
11
|
Pamir N, Hutchins PM, Ronsein GE, Wei H, Tang C, Das R, Vaisar T, Plow E, Schuster V, Koschinsky ML, Reardon CA, Weinberg R, Dichek DA, Marcovina S, Getz GS, Heinecke JW. Plasminogen promotes cholesterol efflux by the ABCA1 pathway. JCI Insight 2017; 2:92176. [PMID: 28768900 DOI: 10.1172/jci.insight.92176] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Using genetic and biochemical approaches, we investigated proteins that regulate macrophage cholesterol efflux capacity (CEC) and ABCA1-specific CEC (ABCA1 CEC), 2 functional assays that predict cardiovascular disease (CVD). Macrophage CEC and the concentration of HDL particles were markedly reduced in mice deficient in apolipoprotein A-I (APOA1) or apolipoprotein E (APOE) but not apolipoprotein A-IV (APOA4). ABCA1 CEC was markedly reduced in APOA1-deficient mice but was barely affected in mice deficient in APOE or APOA4. High-resolution size-exclusion chromatography of plasma produced 2 major peaks of ABCA1 CEC activity. The early-eluting peak, which coeluted with HDL, was markedly reduced in APOA1- or APOE-deficient mice. The late-eluting peak was modestly reduced in APOA1-deficient mice but little affected in APOE- or APOA4-deficient mice. Ion-exchange chromatography and shotgun proteomics suggested that plasminogen (PLG) accounted for a substantial fraction of the ABCA1 CEC activity in the peak not associated with HDL. Human PLG promoted cholesterol efflux by the ABCA1 pathway, and PLG-dependent efflux was inhibited by lipoprotein(a) [Lp(a)]. Our observations identify APOA1, APOE, and PLG as key determinants of CEC. Because PLG and Lp(a) associate with human CVD risk, interplay among the proteins might affect atherosclerosis by regulating cholesterol efflux from macrophages.
Collapse
Affiliation(s)
- Nathalie Pamir
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Patrick M Hutchins
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Hao Wei
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Riku Das
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Edward Plow
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Volker Schuster
- Hospital for Children and Adolescents, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Richard Weinberg
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David A Dichek
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Santica Marcovina
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Park JG, Xu X, Cho S, Lee AH. Loss of Transcription Factor CREBH Accelerates Diet-Induced Atherosclerosis in Ldlr-/- Mice. Arterioscler Thromb Vasc Biol 2016; 36:1772-81. [PMID: 27417587 DOI: 10.1161/atvbaha.116.307790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/30/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Liver-enriched transcription factor cAMP-responsive element-binding protein H (CREBH) regulates plasma triglyceride clearance by inducing lipoprotein lipase cofactors, such as apolipoprotein A-IV (apoA-IV), apoA-V, and apoC-II. CREBH also regulates apoA-I transcription. This study aims to determine whether CREBH has a role in lipoprotein metabolism and development of atherosclerosis. APPROACH AND RESULTS CREBH-deficient Creb3l3(-/-) mice were bred with Ldlr(-/-) mice creating Ldlr(-/-) Creb3l3(-/-) double knockout mice. Mice were fed on a high-fat and high-sucrose Western diet for 20 weeks. We showed that CREBH deletion in Ldlr(-/-) mice increased very low-density lipoprotein-associated triglyceride and cholesterol levels, consistent with the impairment of lipoprotein lipase-mediated triglyceride clearance in these mice. In contrast, high-density lipoprotein cholesterol levels were decreased in CREBH-deficient mice, which was associated with decreased production of apoA-I from the liver. The results indicate that CREBH directly activated Apoa1 gene transcription. Accompanied by the worsened atherogenic lipid profile, Ldlr(-/-) Creb3l3(-/-) mice developed significantly more atherosclerotic lesions in the aortas than Ldlr(-/-) mice. CONCLUSIONS We identified CREBH as an important regulator of lipoprotein metabolism and suggest that increasing hepatic CREBH activity may be a novel strategy for prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jong-Gil Park
- From the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Xu Xu
- From the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Sungyun Cho
- From the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Ann-Hwee Lee
- From the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
13
|
Li X, Xu M, Wang F, Ji Y, DavidsoN WS, Li Z, Tso P. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line. PLoS One 2015; 10:e0142098. [PMID: 26556724 PMCID: PMC4640595 DOI: 10.1371/journal.pone.0142098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
We have previously shown that the nuclear receptor, NR1D1, is a cofactor in ApoA-IV-mediated downregulation of gluconeogenesis. Nuclear receptor, NR4A1, is involved in the transcriptional regulation of various genes involved in inflammation, apoptosis, and glucose metabolism. We investigated whether NR4A1 influences the effect of ApoA-IV on hepatic glucose metabolism. Our in situ proximity ligation assays and coimmunoprecipitation experiments indicated that ApoA-IV colocalized with NR4A1 in human liver (HepG2) and kidney (HEK-293) cell lines. The chromatin immunoprecipitation experiments and luciferase reporter assays indicated that the ApoA-IV and NR4A1 colocalized at the RORα response element of the human G6Pase promoter, reducing its transcriptional activity. Our RNA interference experiments showed that knocking down the expression of NR4A1 in primary mouse hepatocytes treated with ApoA-IV increased the expression of NR1D1, G6Pase, and PEPCK, and that knocking down NR1D1 expression increased the level of NR4A1. We also found that ApoA-IV induced the expression of endogenous NR4A1 in both cultured primary mouse hepatocytes and in the mouse liver, and decreased glucose production in primary mouse hepatocytes. Our findings showed that ApoA-IV colocalizes with NR4A1, which suppresses G6Pase and PEPCK gene expression at the transcriptional level, reducing hepatic glucose output and lowering blood glucose. The ApoA-IV-induced increase in NR4A1 expression in hepatocytes mediates further repression of gluconeogenesis. Our findings suggest that NR1D1 and NR4A1 serve similar or complementary functions in the ApoA-IV-mediated regulation of gluconeogenesis.
Collapse
Affiliation(s)
- Xiaoming Li
- National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, 157 W 5th Rd, Xincheng, Xi'an, Shaanxi, 710004, China
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
| | - Min Xu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
| | - Fei Wang
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
| | - Yong Ji
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
| | - W. Sean DavidsoN
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
| | - Zongfang Li
- National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, 157 W 5th Rd, Xincheng, Xi'an, Shaanxi, 710004, China
- * E-mail: (PT); (ZL)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, 45237–0507, United States of America
- * E-mail: (PT); (ZL)
| |
Collapse
|
14
|
Wang F, Kohan AB, Lo CM, Liu M, Howles P, Tso P. Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res 2015; 56:1403-18. [PMID: 25640749 DOI: 10.1194/jlr.r052753] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut Advanced Technology Laboratory, Storrs, CT 06269
| | - Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
15
|
|
16
|
Gomaraschi M, Ossoli A, Vitali C, Pozzi S, Vitali Serdoz L, Pitzorno C, Sinagra G, Franceschini G, Calabresi L. Off-target effects of thrombolytic drugs: apolipoprotein A-I proteolysis by alteplase and tenecteplase. Biochem Pharmacol 2012; 85:525-30. [PMID: 23219857 DOI: 10.1016/j.bcp.2012.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 11/29/2022]
Abstract
The administration of thrombolytic drugs is of proven benefit in a variety of clinical conditions requiring acute revascularization, including acute myocardial infarction (AMI), ischemic stroke, pulmonary embolism, and venous thrombosis. Generated plasmin can degrade non-target proteins, including apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoproteins (HDL). Aim of the present study was to compare the extent of apoA-I proteolytic degradation in AMI patients treated with two thrombolytic drugs, alteplase and the genetically engineered t-PA variant tenecteplase. ApoA-I degradation was evaluated in sera from 38 AMI patients treated with alteplase or tenecteplase. In vitro, apoA-I degradation was tested by incubating control sera or purified HDL with alteplase or tenecteplase at different concentrations (5-100 μg/ml). Treatment with alteplase and tenecteplase results in apoA-I proteolysis; the extent of apoA-I degradation was more pronounced in alteplase-treated patients than in tenecteplase-treated patients. In vitro, the extent of apoA-I proteolysis was higher in alteplase-treated sera than in tenecteplase-treated sera, in the whole drug concentration range. No direct effect of the two thrombolytic agents on apoA-I degradation was observed. In addition to apoA-I, apoA-IV was also degraded by the two thrombolytic agents and again proteolytic degradation was higher with alteplase than tenecteplase. In conclusion, this study indicates that both alteplase and tenecteplase cause plasmin-mediated proteolysis of apoA-I, with alteplase resulting in a greater apoA-I degradation than tenecteplase, potentially causing a transient impairment of HDL atheroprotective functions.
Collapse
Affiliation(s)
- Monica Gomaraschi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Reboulleau A, Robert V, Vedie B, Doublet A, Grynberg A, Paul JL, Fournier N. Involvement of cholesterol efflux pathway in the control of cardiomyocytes cholesterol homeostasis. J Mol Cell Cardiol 2012; 53:196-205. [PMID: 22668787 DOI: 10.1016/j.yjmcc.2012.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/10/2012] [Accepted: 05/26/2012] [Indexed: 11/16/2022]
Abstract
Although cholesterol-rich microdomains are highly involved in the functions of cardiomyocytes, the cholesterol homeostasis is largely unknown in these cells. We developed experimental procedures to assess cholesterol synthesis, cholesterol masses and cholesterol efflux from primary cultures of cardiac myocytes obtained from 2 to 4 days old Wistar rats. We first observed that cardiomyocytes poorly internalized exogenously supplied native or modified LDL and that free cholesterol (FC) efflux to free apolipoprotein AI (apo AI) and to HDL was mediated by ATP binding cassette transporter A1 (ABCA1) and likely by ATP binding cassette transporter G1 (ABCG1), respectively, which are both upregulated by liver X receptor/retinoid X receptor (LXR/RXR) activation. We then investigated the consequences of cholesterol synthesis inhibition on cholesterol homeostasis using an HMGCoA reductase inhibitor (pravastatin, 90% effective concentration (EC90): 0.11 mM, 18 h). We observed no impact of cholesterol synthesis inhibition on the FC or cholesteryl ester (CE) masses. Consistently with no FC mass changes, pravastatin treatment had no notable impact on LDL receptors mRNA expression or on the capacity of cardiomyocytes to uptake radiolabeled LDL. Conversely, pravastatin treatment induced a significant decrease of cholesterol efflux to both apo AI and HDL whereas the passive aqueous diffusion remained unchanged. The cholesterol efflux pathway reductions induced by cholesterol synthesis inhibition were not caused by a reduction of ABC transporter expression (mRNA or protein). These results show that cardiac myocytes down-regulate active cholesterol efflux processes when endogenous cholesterol synthesis is inhibited, allowing them to preserve cholesterol homeostasis.
Collapse
Affiliation(s)
- Anne Reboulleau
- Univ Paris-Sud, EA 4529, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc Natl Acad Sci U S A 2012; 109:9641-6. [PMID: 22619326 DOI: 10.1073/pnas.1201433109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine in response to fat absorption. Here we demonstrate a potential role for apoA-IV in regulating glucose homeostasis. ApoA-IV-treated isolated pancreatic islets had enhanced insulin secretion under conditions of high glucose but not of low glucose, suggesting a direct effect of apoA-IV to enhance glucose-stimulated insulin release. This enhancement involves cAMP at a level distal to Ca(2+) influx into the β cells. Knockout of apoA-IV results in compromised insulin secretion and impaired glucose tolerance compared with WT mice. Challenging apoA-IV(-/-) mice with a high-fat diet led to fasting hyperglycemia and more severe glucose intolerance associated with defective insulin secretion than occurred in WT mice. Administration of exogenous apoA-IV to apoA-IV(-/-) mice improved glucose tolerance by enhancing insulin secretion in mice fed either chow or a high-fat diet. Finally, we demonstrate that exogenous apoA-IV injection decreases blood glucose levels and stimulates a transient increase in insulin secretion in KKAy diabetic mice. These results suggest that apoA-IV may provide a therapeutic target for the regulation of glucose-stimulated insulin secretion and treatment of diabetes.
Collapse
|
19
|
Rye KA, Barter PJ. Predictive value of different HDL particles for the protection against or risk of coronary heart disease. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:473-80. [PMID: 22051746 DOI: 10.1016/j.bbalip.2011.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/10/2011] [Accepted: 10/13/2011] [Indexed: 12/26/2022]
Abstract
The inverse relationship between plasma HDL levels and the risk of developing coronary heart disease is well established. The underlying mechanisms of this relationship are poorly understood, largely because HDL consist of several functionally distinct subpopulations of particles that are continuously being interconverted from one to another. This review commences with an outline of what is known about the origins of individual HDL subpopulations, how their distribution is regulated, and describes strategies that are currently available for isolating them. We then summarise what is known about the functionality of specific HDL subpopulations, and how these findings might impact on cardiovascular risk. The final section highlights major gaps in existing knowledge of HDL functionality, and suggests how these deficiencies might be addressed. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Kerry-Anne Rye
- Lipid Research Group, The Heart Research Institute, Sydney, NSW, Australia.
| | | |
Collapse
|
20
|
Dhanwani R, Khan M, Alam SI, Rao PVL, Parida M. Differential proteome analysis of Chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics 2011; 11:1936-51. [PMID: 21472854 DOI: 10.1002/pmic.201000500] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 11/08/2022]
Abstract
Chikungunya infection is a major disease of public health concern. The recurrent outbreaks of this viral disease and its progressive evolution demands a potential strategy to understand major aspects of its pathogenesis. Unlike other alphaviruses, Chikungunya virus (CHIKV) pathogenesis is poorly understood. In every consecutive outbreak, some new symptoms associated with virulence and disease manifestations are being reported such as neurological implication, increased severity and enhanced vector competence. In order to unravel the mechanism of the disease process, proteomic analysis was performed to evaluate the host response in CHIKV-infected mice tissues. Comparative analysis of the multiple gels representing the particular tissue extract from mock and CHIKV-infected tissues revealed a drastic reprogramming of physiological conditions through 35 and 15 differentially expressed proteins belonging to different classes such as stress, inflammation, apoptosis, urea cycle, energy metabolism, etc. from liver and brain, respectively. Based on the alterations obtained in the CHIKV mouse model, most of the aspects of CHIKV infection such as disease severity, neurological complications, disease susceptibility and immunocompetence could be defined. This is the first report unravelling the complicated pathways involved in the mechanism of Chikungunya disease pathogenesis employing proteomic approach.
Collapse
Affiliation(s)
- Rekha Dhanwani
- Division of Virology, Defence Research and Development Establishment (DRDE), Gwalior, Madhya Pradesh, India
| | | | | | | | | |
Collapse
|
21
|
Costa PM, Chicano-Gálvez E, López Barea J, DelValls TA, Costa MH. Alterations to proteome and tissue recovery responses in fish liver caused by a short-term combination treatment with cadmium and benzo[a]pyrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3338-3346. [PMID: 20719421 DOI: 10.1016/j.envpol.2010.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 07/18/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
The livers of soles (Solea senegalensis) injected with subacute doses of cadmium (Cd), benzo[a]pyrene (B[a]P), or their combination, were screened for alterations to cytosolic protein expression patterns, complemented by cytological and histological analyses. Cadmium and B[a]P, but not combined, induced hepatocyte apoptosis and Kupfer cell hyperplasia. Proteomics, however, suggested that apoptosis was triggered through distinct pathways. Cadmium and B[a]P caused upregulation of different anti-oxidative enzymes (peroxiredoxin and glutathione peroxidase, respectively) although co-exposure impaired induction. Similarly, apoptosis was inhibited by co-exposure, to which may have contributed a synergistic upregulation of tissue metalloproteinase inhibitor, beta-actin and a lipid transport protein. The regulation factors of nine out of eleven identified proteins of different types revealed antagonistic or synergistic effects between Cd and B[a]P at the prospected doses after 24 h of exposure. The results indicate that co-exposure to Cd and B[a]P may enhance toxicity by impairing specific responses and not through cumulative damage.
Collapse
Affiliation(s)
- P M Costa
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal.
| | | | | | | | | |
Collapse
|
22
|
Impact of android overweight or obesity and insulin resistance on basal and postprandial SR-BI and ABCA1-mediated serum cholesterol efflux capacities. Atherosclerosis 2010; 209:422-9. [DOI: 10.1016/j.atherosclerosis.2009.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/17/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
|
23
|
Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, Rothblat GH. The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 2007; 48:2453-62. [PMID: 17761631 DOI: 10.1194/jlr.m700274-jlr200] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cholesterol efflux occurs by different pathways, including transport mediated by specific proteins. We determined the effect of enriching cells with free cholesterol (FC) on the release of FC to human serum. Loading Fu5AH cells with FC had no effect on fractional efflux, whereas enriching mouse peritoneal macrophages (MPMs) resulted in a doubling of fractional efflux. Efflux from cholesterol-normal MPM and Fu5AH cells to 15 human sera correlated well with HDL parameters. However, these relationships were reduced or lost with cholesterol-loaded MPMs. Using macrophages from scavenger receptor class B type I (SR-BI)-, ABCA1-, and ABCG1-knockout mice, together with inhibitors of SR-BI- and ABCA1-mediated efflux, we were able to quantitate efflux upon loading macrophages with excess cholesterol and to establish the contributions of the various efflux pathways in cholesterol-normal and -enriched cells. The removal of ABCA1 had essentially no effect on the total efflux when cell cholesterol levels were normal. However, in cholesterol-enriched cells, the removal of ABCA1 reduced efflux by 50%. Approximately 20% of the efflux stimulated by FC-loading MPM is attributable to ABCG1. The SR-BI contribution to efflux was small. Another pathway that is present in all cells is aqueous diffusion. Our studies demonstrate that this mechanism is one of the major contributors to efflux, particularly in cholesterol-normal cells.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Gastroenterology, Hepatology, and Nutrition Division, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kretowski A, Hokanson JE, McFann K, Kinney GL, Snell-Bergeon JK, Maahs DM, Wadwa RP, Eckel RH, Ogden LG, Garg SK, Li J, Cheng S, Erlich HA, Rewers M. The apolipoprotein A-IV Gln360His polymorphism predicts progression of coronary artery calcification in patients with type 1 diabetes. Diabetologia 2006; 49:1946-54. [PMID: 16770585 DOI: 10.1007/s00125-006-0317-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 04/21/2006] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Individuals with type 1 diabetes have an increased incidence of coronary artery disease (CAD) and a higher risk of cardiovascular death compared with individuals of the same age in the general population. While chronic hyperglycaemia and insulin resistance partially explain excess CAD, little is known about the potential genetic determinants of accelerated coronary atherosclerosis in type 1 diabetes. The aim of the present study was to evaluate the association of apolipoprotein A-IV (APOA4) polymorphisms with coronary artery calcification (CAC) progression, a marker of subclinical atherosclerosis. SUBJECTS AND METHODS Two previously well-studied functional APOA4 polymorphisms resulting in the substitution of the amino acid Thr for Ser at codon 347 and Gln for His at codon 360 were genotyped in 634 subjects with type 1 diabetes and 739 non-diabetic control subjects, the participants of the prospective Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. RESULTS The His360 allele was associated with a significantly higher risk of CAC progression among patients with type 1 diabetes (33.7 vs 21.2%, p=0.014), but not in the control subjects (14.1 vs 11.1%, p=0.42). Logistic regression analysis confirmed that the presence of the APOA4 His360 allele predicts an increased risk of progression of coronary atherosclerosis in adults with type 1 diabetes of long duration (odds ratio = 3.3, p=0.003 after adjustment for covariates associated with CAD risk). CONCLUSIONS /INTERPRETATION: This is the first report suggesting an association between the APOA4 Gln360His polymorphism and risk of CAC progression in subjects with type 1 diabetes. Additional studies are needed to explore potential interactions between APOA4 genotypes and metabolic/oxidative stress components of the diabetic milieu leading to rapid progression of atherosclerosis.
Collapse
Affiliation(s)
- A Kretowski
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Mail Stop A140, P.O. Box 6511, Aurora, CO 80045-6511, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mweva S, Paul JL, Cambillau M, Goudouneche D, Beaune P, Simon A, Fournier N. Comparison of different cellular models measuring in vitro the whole human serum cholesterol efflux capacity. Eur J Clin Invest 2006; 36:552-9. [PMID: 16893377 DOI: 10.1111/j.1365-2362.2006.01673.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fu5AH rat hepatoma cells and cAMP (cyclic AMP)-pretreated J774 mouse macrophages are commonly used as models for SR-BI (scavenger receptor class B type I) and ABCA1 (ATP binding cassette transporter 1)-mediated free cholesterol efflux to whole serum, respectively. However, the responsiveness of Fu5AH, control or cAMP pretreated J774 cells to the various lipids and HDL (high-density lipoprotein)-parameters from both normo- and dyslipidaemic subjects has never been compared within the same study. MATERIALS AND METHODS Fifty-eight men were classified into four groups: type IIa hypercholesterolaemic (n = 12), type IIb dyslipidaemic (n = 13), type IV hypertriglyceridaemic (n = 18) and normolipidaemic (n = 15) were recruited. A complete lipid profile including prebeta-HDL was performed. Cholesterol efflux from Fu5AH cells as well as from control or cAMP pretreated J774 cells were measured; the difference between these two latter values being taken as the ABCA1-mediated efflux. RESULTS The Fu5AH and the control J774 cells delivered cholesterol to mature HDLs, especially to phospholipid (PL)-rich HDL. Using cAMP pretreated cells, the ABCA1-dependent efflux was highly sensitive to prebeta-HDL, which appeared to be a factor in determining the efflux. Consistent with the dependence of the SR-BI-mediated efflux on HDL-PL levels, which are not different between groups, all sera displayed similar efflux capacities from the Fu5AH cells. Conversely, in accordance with their high prebeta-HDL levels, the ABCA1-dependent efflux highlighted the efficiency of type IV sera. CONCLUSION Two complementary cellular models providing SR-BI and ABCA1-dependent efflux should be used to measure the capacity of a biological fluid which contains a wide variety of components to promote cholesterol efflux.
Collapse
Affiliation(s)
- S Mweva
- Service de Biochimie, Hôpital Européen Georges Pompidou, Paris, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Spaulding HL, Saijo F, Turnage RH, Alexander JS, Aw TY, Kalogeris TJ. Apolipoprotein A-IV attenuates oxidant-induced apoptosis in mitotic competent, undifferentiated cells by modulating intracellular glutathione redox balance. Am J Physiol Cell Physiol 2006; 290:C95-C103. [PMID: 16120654 DOI: 10.1152/ajpcell.00388.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidant-mediated modulation of the intracellular redox state affects the apoptotic cascade by altering the balance between cellular signals for survival and suicide. Apolipoprotein A-IV (Apo A-IV) is known to possess antioxidant-like activity. In the present study, we tested 1) whether Apo A-IV could influence redox-dependent apoptosis and, if so, 2) whether such an effect could be mediated by modulation of intracellular redox balance. Mitotic competent, undifferentiated PC-12 cells were incubated with either tert-butyl hydroperoxide (TBH) or diamide with or without preincubation with human Apo A-IV. Apo A-IV significantly decreased apoptosis produced by both TBH and diamide, and washout of A-IV before incubation with TBH and diamide did not eliminate its protective effect. Apo A-I had no such protective effect. The Apo A-IV effect was not blocked by d,l-buthionine-[ S, R]-sulfoximine, but it was reversed by both dehydroisoandrosterone and transfection with an antisense oligodeoxynucleotide to glucose-6-phosphate dehydrogenase (G6PD). Apo A-IV abolished the transient, oxidant-induced rise in glutathione disulfide (GSSG) and cellular redox imbalance previously shown to initiate the apoptotic cascade. Apo A-IV had no effect on GSSG reductase activity, but it stimulated G6PD activity 10-fold. These results suggest a novel role for Apo A-IV in the regulation of intracellular glutathione redox balance and the modulation of redox-dependent apoptosis via stimulation of G6PD activity.
Collapse
Affiliation(s)
- Heather L Spaulding
- Dept. of Surgery, Louisiana State Univ. Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | | | | | |
Collapse
|
27
|
Nguyen AD, Pan CJ, Shieh JJ, Chou JY. Increased cellular cholesterol efflux in glycogen storage disease type Ia mice: A potential mechanism that protects against premature atherosclerosis. FEBS Lett 2005; 579:4713-8. [PMID: 16098970 DOI: 10.1016/j.febslet.2005.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 06/21/2005] [Accepted: 07/18/2005] [Indexed: 11/26/2022]
Abstract
Glycogen storage disease type Ia (GSD-Ia) patients manifest a pro-atherogenic lipid profile but are not at elevated risk for developing atherosclerosis. Serum phospholipid, which correlates positively with the scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux, and apolipoprotein A-IV and E, acceptors for ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol transport, are increased in GSD-Ia mice. Importantly, sera from GSD-Ia mice are more efficient than sera from control littermates in promoting SR-BI- and ABCA1-mediated cholesterol effluxes. As the first step in reverse cholesterol transport, essential for cholesterol homeostasis, these observations provide one explanation why GSD-Ia patients are apparently protected against premature atherosclerosis.
Collapse
Affiliation(s)
- Andrew D Nguyen
- Section on Cellular Differentiation, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Building 10, Room 9D42, NIH 9000, Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
Beulens JWJ, Sierksma A, van Tol A, Fournier N, van Gent T, Paul JL, Hendriks HFJ. Moderate alcohol consumption increases cholesterol efflux mediated by ABCA1. J Lipid Res 2004; 45:1716-23. [PMID: 15231854 DOI: 10.1194/jlr.m400109-jlr200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moderate alcohol consumption increases HDL cholesterol, which is involved in reverse cholesterol transport (RCT). The aim of this study was to investigate the effect of moderate alcohol consumption on cholesterol efflux, using J774 mouse macrophages and Fu5AH cells, and on other parameters in the RCT pathway. Twenty-three healthy men (45-65 years) participated in a randomized, partially diet-controlled, crossover trial. They consumed four glasses of whisky (40 g of alcohol) or water daily for 17 days. After 17 days of whisky consumption, serum capacity to induce ABCA1-dependent cholesterol efflux from J774 mouse macrophages was increased by 17.5% (P = 0.027) compared with water consumption. Plasma capacity to induce cholesterol efflux from Fu5AH cells increased by 4.6% (P = 0.002). Prebeta-HDL, apolipoprotein A-I (apoA-I), and lipoprotein A-I:A-II also increased by 31.6, 6.2, and 5.7% (P < 0.05), respectively, after whisky consumption compared with water consumption. Changes of cAMP-stimulated cholesterol efflux correlated (r = 0.65, P < 0.05) with changes of apoA-I but not with changes of prebeta-HDL (r = 0.30, P = 0.18). Cholesterol efflux capacities from serum of lean men were higher than those from overweight men. In conclusion, this study shows that moderate alcohol consumption increases the capacity of serum to induce cholesterol efflux from J774 mouse macrophages, which may be mediated by ABCA1.
Collapse
Affiliation(s)
- J W J Beulens
- Netherlands Organization for Applied Scientific Research (TNO), Nutrition and Food Research, Zeist, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Khovidhunkit W, Duchateau PN, Medzihradszky KF, Moser AH, Naya-Vigne J, Shigenaga JK, Kane JP, Grunfeld C, Feingold KR. Apolipoproteins A-IV and A-V are acute-phase proteins in mouse HDL. Atherosclerosis 2004; 176:37-44. [PMID: 15306172 DOI: 10.1016/j.atherosclerosis.2004.04.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 03/01/2004] [Accepted: 04/08/2004] [Indexed: 11/18/2022]
Abstract
BACKGROUND Infection and inflammation are associated with atherosclerosis. During infection and inflammation, HDL decreases and there are changes in the levels of several HDL-associated proteins. To identify changes in the protein composition of HDL during infection and inflammation, a proteomic approach was utilized. METHODS AND RESULTS Using two-dimensional gel electrophoresis and mass spectrometry, we found the expected increases in apolipoprotein (apo) SAA and apo E, as well as a decrease in apo A-I on HDL isolated from mice injected with endotoxin. We identified apo A-IV and apo A-V as positive acute-phase proteins in mouse HDL. We also found an increase in hepatic mRNA levels of apo A-IV and apo A-V after injection of endotoxin. Interleukin-6 increased apo A-IV and apo A-V mRNA levels in Hep3B cells. Additionally, we demonstrated that the protein levels of apo A-II in acute-phase HDL and the hepatic mRNA levels of apo A-II were decreased. CONCLUSIONS Apo A-IV and A-V are positive acute-phase proteins that increase in the serum during inflammation while apo A-II is a negative acute-phase protein in mice. Similar to other positive and negative acute-phase proteins, changes in hepatic production account for the changes in serum levels. However, the changes in apo A-IV and apo A-V, two apolipoproteins whose activities are not fully understood, may serve functions other than regulating lipid metabolism during the acute-phase response (APR). Coupled with the other changes in HDL proteins that occur, these changes are likely to alter the functional properties of HDL perhaps increasing the risk of atherosclerosis.
Collapse
Affiliation(s)
- Weerapan Khovidhunkit
- Metabolism Section, Department of Veterans Affairs Medical Center, 4150 Clement Street, Box 111 F, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vowinkel T, Mori M, Krieglstein CF, Russell J, Saijo F, Bharwani S, Turnage RH, Davidson WS, Tso P, Granger DN, Kalogeris TJ. Apolipoprotein A-IV inhibits experimental colitis. J Clin Invest 2004; 114:260-9. [PMID: 15254593 PMCID: PMC450164 DOI: 10.1172/jci21233] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 05/25/2004] [Indexed: 12/13/2022] Open
Abstract
The antiatherogenic properties of apoA-IV suggest that this protein may act as an anti-inflammatory agent. We examined this possibility in a mouse model of acute colitis. Mice consumed 3% dextran sulfate sodium (DSS) in their drinking water for 7 days, with or without daily intraperitoneal injections of recombinant human apoA-IV. apoA-IV significantly and specifically delayed the onset, and reduced the severity and extent of, DSS-induced inflammation, as assessed by clinical disease activity score, macroscopic appearance and histology of the colon, and tissue myeloperoxidase activity. Intravital fluorescence microscopy of colonic microvasculature revealed that apoA-IV significantly inhibited DSS-induced leukocyte and platelet adhesive interactions. Furthermore, apoA-IV dramatically reduced the upregulation of P-selectin on colonic endothelium during DSS-colitis. apoA-IV knockout mice exhibited a significantly greater inflammatory response to DSS than did their WT littermates; this greater susceptibility to DSS-induced inflammation was reversed upon exogenous administration of apoA-IV to knockout mice. These results provide the first direct support for the hypothesis that apoA-IV is an endogenous anti-inflammatory protein. This anti-inflammatory effect likely involves the inhibition of P-selectin-mediated leukocyte and platelet adhesive interactions.
Collapse
Affiliation(s)
- Thorsten Vowinkel
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport 71130-3932, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vowinkel T, Mori M, Krieglstein CF, Russell J, Saijo F, Bharwani S, Turnage RH, Davidson WS, Tso P, Granger DN, Kalogeris TJ. Apolipoprotein A-IV inhibits experimental colitis. J Clin Invest 2004. [PMID: 15254593 DOI: 10.1172/jci200421233] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The antiatherogenic properties of apoA-IV suggest that this protein may act as an anti-inflammatory agent. We examined this possibility in a mouse model of acute colitis. Mice consumed 3% dextran sulfate sodium (DSS) in their drinking water for 7 days, with or without daily intraperitoneal injections of recombinant human apoA-IV. apoA-IV significantly and specifically delayed the onset, and reduced the severity and extent of, DSS-induced inflammation, as assessed by clinical disease activity score, macroscopic appearance and histology of the colon, and tissue myeloperoxidase activity. Intravital fluorescence microscopy of colonic microvasculature revealed that apoA-IV significantly inhibited DSS-induced leukocyte and platelet adhesive interactions. Furthermore, apoA-IV dramatically reduced the upregulation of P-selectin on colonic endothelium during DSS-colitis. apoA-IV knockout mice exhibited a significantly greater inflammatory response to DSS than did their WT littermates; this greater susceptibility to DSS-induced inflammation was reversed upon exogenous administration of apoA-IV to knockout mice. These results provide the first direct support for the hypothesis that apoA-IV is an endogenous anti-inflammatory protein. This anti-inflammatory effect likely involves the inhibition of P-selectin-mediated leukocyte and platelet adhesive interactions.
Collapse
Affiliation(s)
- Thorsten Vowinkel
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport 71130-3932, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fournier N, Francone O, Rothblat G, Goudouneche D, Cambillau M, Kellner-Weibel G, Robinet P, Royer L, Moatti N, Simon A, Paul JL. Enhanced efflux of cholesterol from ABCA1-expressing macrophages to serum from type IV hypertriglyceridemic subjects. Atherosclerosis 2004; 171:287-93. [PMID: 14644399 DOI: 10.1016/j.atherosclerosis.2003.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since elevated plasma triglycerides (TGs) are an independent cardiovascular risk factor, we have compared the cholesterol efflux potential of sera from asymptomatic hypertriglyceridemic (HTG) type IIb, type IV or normolipidemic (NLP) individuals using two different cell systems. In both type IIb and IV HTG, the efflux of cholesterol from SR-BI-rich Fu5AH cells was similar to that obtained with NLP. The maintenance of efflux efficiency in spite of reduced HDL-cholesterol levels can be mainly attributed to the relative enrichment of HDL with phospholipid. In the J774 macrophage cell system, pretreatment with cAMP, which upregulates ABCA1, induced a markedly higher increase in efflux to type IV sera compared with type IIb or NLP. In addition, type IV sera exhibited two-fold higher pre-beta HDL relative concentration (percentage of total apo AI) compared with NLP. Moreover, positive correlations were established between ABCA1-mediated efflux and the serum pre-beta HDL levels or TG concentrations. Thus, the hyperTGemia is associated with a higher fraction of apo AI recovered as pre-beta HDL which appear to be partly responsible for enhanced efflux obtained upon the cAMP stimulation of J774 cells. In conclusion, we demonstrated for the first time that the ABCA1-expressing J774 cell system is responsive to the percent of apo AI present in human serum as pre-beta HDL. Our results suggest that high-plasma TG, accompanied by low HDL may not result in an impaired cholesterol efflux capacity.
Collapse
Affiliation(s)
- Natalie Fournier
- Laboratoire de Biochimie, Faculté des Sciences Pharmaceutiques, Châtenay-Malabry, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Woloszynek JC, Roberts M, Coleman T, Vogler C, Sly W, Semenkovich CF, Sands MS. Numerous transcriptional alterations in liver persist after short-term enzyme-replacement therapy in a murine model of mucopolysaccharidosis type VII. Biochem J 2004; 379:461-9. [PMID: 14705966 PMCID: PMC1224072 DOI: 10.1042/bj20031048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 01/05/2004] [Accepted: 01/06/2004] [Indexed: 12/20/2022]
Abstract
The lysosomal storage disease MPS VII (mucopolysaccharidosis type VII) is caused by a deficiency in beta-glucuronidase activity, and results in the accumulation of partially degraded glycosaminoglycans in many cell types. Although MPS VII is a simple monogenetic disorder, the clinical presentation is complex and incompletely understood. ERT (enzyme replacement therapy) is relatively effective at improving the clinical course of the disease; however, some pathologies persist. In order to clarify the molecular events contributing to the disease phenotype and how ERT might impact upon them, we analysed liver tissue from untreated and treated MPS VII mice at both 2 and 5 months of age using biochemical assays and microarray analysis. Overall, as the disease progresses, more genes have altered expression and, at either age, numerous transcriptional changes in multiple pathways appear to be refractory to therapy. With respect to the primary site of disease, both transcriptional and post-transcriptional mechanisms are involved in the regulation of lysosomal enzymes and other lysosome-associated proteins. Many of the changes observed in both lysosome-associated mRNAs and proteins are normalized by enzyme replacement. In addition, gene expression changes in seemingly unrelated pathways may account for the complex metabolic phenotype of the MPS VII mouse. In particular, beta-glucuronidase deficiency appears to induce physiological malnutrition in MPS VII mice. Malnutrition may account for the pronounced adipose storage deficiency observed in this animal. Studying the molecular response to lysosomal storage, especially those changes recalcitrant to therapy, has revealed additional targets that may improve the efficacy of existing therapies.
Collapse
Affiliation(s)
- Josh C Woloszynek
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Choy HA, Wang XP, Schotz MC. Reduced atherosclerosis in hormone-sensitive lipase transgenic mice overexpressing cholesterol acceptors. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1634:76-85. [PMID: 14643795 DOI: 10.1016/j.bbalip.2003.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophage-specific overexpression of cholesteryl ester hydrolysis in hormone-sensitive lipase transgenic (HSL Tg) female mice paradoxically increases cholesterol esterification and cholesteryl ester accumulation in macrophages, and thus susceptibility to diet-induced atherosclerosis compared to nontransgenic C57BL/6 mice. The current studies suggest that whereas increased cholesterol uptake could contribute to transgenic foam cell formation, there are no differences in cholesterol synthesis and the expression of cholesterol efflux mediators (ABCA1, ABCG1, apoE, PPARgamma, and LXRalpha) compared to wild-type macrophages. HSL Tg macrophages exhibit twofold greater efflux of cholesterol to apoA-I in vitro, suggesting the potential rate-limiting role of cholesteryl ester hydrolysis in efflux. However, macrophage cholesteryl ester levels appear to depend on the relative efficacy of alternate pathways for free cholesterol in either efflux or re-esterification. Thus, increased atherosclerosis in HSL Tg mice appears to be due to the coupling of the efficient re-esterification of excess free cholesterol to its limited removal mediated by the cholesterol acceptors in these mice. The overexpression of cholesterol acceptors in HSL-apoA-IV double-transgenic mice increases plasma HDL levels and decreases diet-induced atherosclerosis compared to HSL Tg mice, with aortic lesions reduced to sizes in nontransgenic littermates. The results in vivo are consistent with the effective efflux from HSL Tg macrophages supplemented with HDL and apoA-I in vitro, and highlight the importance of cholesterol acceptors in inhibiting atherosclerosis caused by imbalances in the cholesteryl ester cycle.
Collapse
Affiliation(s)
- Henry A Choy
- Lipid Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
35
|
Favari E, Lee M, Calabresi L, Franceschini G, Zimetti F, Bernini F, Kovanen PT. Depletion of pre-beta-high density lipoprotein by human chymase impairs ATP-binding cassette transporter A1- but not scavenger receptor class B type I-mediated lipid efflux to high density lipoprotein. J Biol Chem 2003; 279:9930-6. [PMID: 14701812 DOI: 10.1074/jbc.m312476200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette transporter A1 (ABCA1) mediates the efflux of cellular unesterified cholesterol and phospholipid to lipid-poor apolipoprotein A-I. Chymase, a protease secreted by mast cells, selectively cleaves pre-beta-migrating particles from high density lipoprotein (HDL)(3) and reduces the efflux of cholesterol from macrophages. To evaluate whether this effect is the result of reduction of ABCA1-dependent or -independent pathways of cholesterol efflux, in this study we examined the efflux of cholesterol to preparations of chymase-treated HDL(3) in two types of cell: 1) in J774 murine macrophages endogenously expressing low levels of scavenger receptor class B, type I (SR-BI), and high levels of ABCA1 upon treatment with cAMP; and 2) in Fu5AH rat hepatoma cells endogenously expressing high levels of the SR-BI and low levels of ABCA1. Treatment of HDL(3) with the human chymase resulted in rapid depletion of pre-beta-HDL and a concomitant decrease in the efflux of cholesterol and phospholipid (2-fold and 3-fold, respectively) from the ABCA1-expressing J774 cells. In contrast, efflux of free cholesterol from Fu5AH to chymase-treated and to untreated HDL(3) was similar. Incubation of HDL(3) with phospholipid transfer protein led to an increase in pre-beta-HDL contents as well as in ABCA1-mediated cholesterol efflux. A decreased cholesterol efflux to untreated HDL(3) but not to chymase-treated HDL(3) was observed in ABCA1-expressing J774 with probucol, an inhibitor of cholesterol efflux to lipid-poor apoA-I. Similar results were obtained using brefeldin and gliburide, two inhibitors of ABCA1-mediated efflux. These results indicate that chymase treatment of HDL(3) specifically impairs the ABCA1-dependent pathway without influencing either aqueous or SR-BI-facilitated diffusion and that this effect is caused by depletion of lipid-poor pre-beta-migrating particles in HDL(3). Our results are compatible with the view that HDL(3) promotes ABCA1-mediated lipid efflux entirely through its lipid-poor fraction with pre-beta mobility.
Collapse
Affiliation(s)
- Elda Favari
- Department of Pharmacological and Biological Sciences, and Applied Chemistry, University of Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Thorngate FE, Yancey PG, Kellner-Weibel G, Rudel LL, Rothblat GH, Williams DL. Testing the role of apoA-I, HDL, and cholesterol efflux in the atheroprotective action of low-level apoE expression. J Lipid Res 2003; 44:2331-8. [PMID: 12951361 DOI: 10.1194/jlr.m300224-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low levels of transgenic mouse apolipoprotein E (apoE) suppress atherosclerosis in apoE knockout (apoE-/-) mice without normalizing plasma cholesterol. To test whether this is due to facilitation of cholesterol efflux from the vessel wall, we produced apoA-I-/-/apoE-/- mice with or without the transgene. Even without apoA-I and HDL, apoA-I-/-/apoE-/- mice had the same amount of aorta cholesteryl ester as apoE-/- mice. Low apoE in the apoA-I-/-/apoE-/- transgenic mice reduced aortic lesions by 70% versus their apoA-I-/-/apoE-/- siblings. To define the free cholesterol (FC) efflux capacity of lipoproteins from the various genotypes, sera were assayed on macrophages expressing ATP-binding cassette transporter A1 (ABCA1). Surprisingly, ABCA1 FC efflux was twice as high to sera from the apoA-I-/-/apoE-/- or apoE-/- mice compared with wild-type mice, and this activity correlated with serum apoA-IV. Immunodepletion of apoA-IV from apoA-I-/-/apoE-/- serum abolished ABCA1 FC efflux, indicating that apoAI-V serves as a potent acceptor for FC efflux via ABCA1. With increasing apoE expression, apoA-IV and FC acceptor capacity decreased, indicating a reciprocal relationship between plasma apoE and apoA-IV. Low plasma apoE (1-3 x 10(-8) M) suppresses atherosclerosis by as yet undefined mechanisms, not dependent on the presence of apoA-I or HDL or an increased capacity of serum acceptors for FC efflux.
Collapse
Affiliation(s)
- Fayanne E Thorngate
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ezeh B, Haiman M, Alber HF, Kunz B, Paulweber B, Lingenhel A, Kraft HG, Weidinger F, Pachinger O, Dieplinger H, Kronenberg F. Plasma distribution of apoA-IV in patients with coronary artery disease and healthy controls. J Lipid Res 2003; 44:1523-9. [PMID: 12777472 DOI: 10.1194/jlr.m300060-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies showed lower apolipoprotein A-IV (apoA-IV) plasma concentrations in patients with coronary artery disease (CAD). The actual distribution of the antiatherogenic apoA-IV in human plasma, however, is discussed controversially and it was never investigated in CAD patients. We therefore developed a gentle technique to separate the various apoA-IV-containing plasma fractions. Using a combination of precipitation of all lipoproteins with 40% phosphotungstic acid and 4 M MgCl2, as well as immunoprecipitation of all apoA-I-containing particles with an anti-apoA-I antibody, we obtained three fractions of apoA-IV: lipid-free apoA-IV (about 4% of total apoA-IV), apoA-IV associated with apoA-I (LpA-I:A-IV, 12%), and apoA-I-unbound but lipoprotein-containing apoA-IV (LpA-IV, 84%). We compared these three apoA-IV fractions between 52 patients with a history of CAD and 52 age- and sex-matched healthy controls. Patients had significantly lower apoA-IV levels when compared to controls (10.28 +/- 3.67 mg/dl vs. 11.85 +/- 2.82 mg/dl, P = 0.029), but no major differences for the three plasma apoA-IV fractions. We conclude that our gentle separation method reveals a different distribution of apoA-IV than in many earlier studies. No major differences exist in the apoA-IV plasma distribution pattern between CAD patients and controls. Therefore, the antiatherogenic effect of apoA-IV has to be explained by other functional properties of apoA-IV (e.g., the antioxidative characteristics).
Collapse
Affiliation(s)
- Benjie Ezeh
- Institute of Medical Biology and Human Genetics, University of Innsbruck, Schöpfstr 41, A-6020, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Guerin M, Le Goff W, Frisdal E, Schneider S, Milosavljevic D, Bruckert E, Chapman MJ. Action of ciprofibrate in type IIb hyperlipoproteinemia: modulation of the atherogenic lipoprotein phenotype and stimulation of high-density lipoprotein-mediated cellular cholesterol efflux. J Clin Endocrinol Metab 2003; 88:3738-46. [PMID: 12915663 DOI: 10.1210/jc.2003-030191] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of ciprofibrate (100 mg/d) on apolipoprotein (apo)B- and apoAI-containing lipoprotein subclasses, cholesteryl ester (CE) transfer protein activity, and plasma high-density lipoprotein (HDL)-mediated cellular cholesterol efflux were evaluated in 10 patients displaying type IIB hyperlipidemia. Plasma concentrations of large very low-density lipoprotein (VLDL)-1 (Sf 60-400) and of small VLDL-2 (Sf 20-60) were markedly diminished after fibrate treatment (-40%, P = 0.001; and -25%, P = 0.003, respectively). We observed a reduction (-17%; P = 0.005) in plasma low-density lipoprotein (LDL) levels resulting from significant reductions in concentrations of dense LDL particles (-46%; P < 0.0001). Ciprofibrate induced elevation in plasma total HDL (+13%; P = 0.005) levels; such elevation occurred preferentially in HDL-3 (+22%; P = 0.009). Marked reduction in numbers of atherogenic apoB100-containing particle acceptors was associated with a 25% decrease (P < 0.02) in CE transfer protein-mediated CE transfer from HDL. Finally, a significant fibrate-mediated elevation (+13%; P = 0.01 compared with baseline) in the capacity of plasma from type IIB subjects to mediate free cholesterol efflux from scavenger receptor class B, type I-expressing Fu5AH hepatoma cells was observed. In conclusion, the action of ciprofibrate in type IIB dyslipidemia leads to preferential reduction in particle numbers of atherogenic VLDL-1, VLDL-2, and dense LDL and, concomitantly, to elevation in HDL-3 levels that are associated with stimulation of HDL-mediated cellular free cholesterol efflux through the scavenger receptor class B, type I receptor pathway.
Collapse
Affiliation(s)
- Maryse Guerin
- Institut National de la Santé et de la Recherche Médicale Unité 551, Dyslipoproteinemia and Atherosclerosis, Hôpital de la Pitié, 75651 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Stan S, Delvin E, Lambert M, Seidman E, Levy E. Apo A-IV: an update on regulation and physiologic functions. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:177-87. [PMID: 12633684 DOI: 10.1016/s1388-1981(03)00004-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolipoprotein (apo) A-IV, first identified 28 years ago as a plasma lipoprotein moiety, is now known to participate in the regulation of various metabolic pathways. It is synthesized primarily in the enterocytes of the small intestine during fat absorption. After entry into the bloodstream, the 46-kDa glycoprotein apo A-IV appears associated with chylomicrons, high-density lipoproteins, and in the lipoprotein-free fraction. It has a role in lipid absorption, transport and metabolism, and may act as a post-prandial satiety signal, an anti-oxidant and a major factor in the prevention of atherosclerosis. After summarizing and discussing these functions for reader's comprehension, the current review focuses on the regulation of apo A-IV by nutrients, biliary components, drugs, hormones and gastrointestinal peptides. The understanding of the involved mechanisms that underline apo A-IV regulation may in the long run allow us to switch on its gene, which may confer multiple beneficial effects, including the protection from atherosclerosis.
Collapse
Affiliation(s)
- Simona Stan
- Research Center, Hôpital Sainte-Justine, Université de Montréal, Montréal, Québec, Canada H3T 1C5
| | | | | | | | | |
Collapse
|
40
|
Singaraja RR, Fievet C, Castro G, James ER, Hennuyer N, Clee SM, Bissada N, Choy JC, Fruchart JC, McManus BM, Staels B, Hayden MR. Increased ABCA1 activity protects against atherosclerosis. J Clin Invest 2002; 110:35-42. [PMID: 12093886 PMCID: PMC151034 DOI: 10.1172/jci15748] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ABC transporter ABCA1 plays a key role in the first steps of the reverse cholesterol transport pathway by mediating lipid efflux from macrophages. Previously, it was demonstrated that human ABCA1 overexpression in vivo in transgenic mice results in a mild elevation of plasma HDL levels and increased efflux of cholesterol from macrophages. In this study, we determined the effect of overexpression of ABCA1 on atherosclerosis development. Human ABCA1 transgenic mice (BAC(+)) were crossed with ApoE(-/-) mice, a strain that spontaneously develop atherosclerotic lesions. BAC(+)ApoE(-/-) mice developed dramatically smaller, less-complex lesions as compared with their ApoE(-/-) counterparts. In addition, there was increased efflux of cholesterol from macrophages isolated from the BAC(+)ApoE(-/-) mice. Although the increase in plasma HDL cholesterol levels was small, HDL particles from BAC(+)ApoE(-/-) mice were significantly better acceptors of cholesterol. Lipid analysis of HDL particles from BAC(+)ApoE(-/-) mice revealed an increase in phospholipid levels, which was correlated significantly with their ability to enhance cholesterol efflux.
Collapse
Affiliation(s)
- Roshni R Singaraja
- Centre for Molecular Medicine and Therapeutics, Children's and Women's Hospital, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Singaraja RR, Fievet C, Castro G, James ER, Hennuyer N, Clee SM, Bissada N, Choy JC, Fruchart JC, McManus BM, Staels B, Hayden MR. Increased ABCA1 activity protects against atherosclerosis. J Clin Invest 2002. [DOI: 10.1172/jci0215748] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Weinberg RB, Anderson RA, Cook VR, Emmanuel F, Denèfle P, Tall AR, Steinmetz A. Interfacial exclusion pressure determines the ability of apolipoprotein A-IV truncation mutants to activate cholesterol ester transfer protein. J Biol Chem 2002; 277:21549-53. [PMID: 11940599 DOI: 10.1074/jbc.m202197200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used a panel of recombinant human apolipoprotein (apo) A-IV truncation mutants, in which pairs of 22-mer alpha-helices were sequentially deleted along the primary sequence, to examine the impact of protein structure and interfacial activity on the ability of apoA-IV to activate cholesterol ester transfer protein. Circular dichroism and fluorescence spectroscopy revealed that the secondary structure, conformation, and molecular stability of recombinant human apoA-IV were identical to the native protein. However, deletion of any of the alpha-helical domains in apoA-IV disrupted its tertiary structure and impaired its molecular stability. Surprisingly, determination of the water/phospholipid interfacial exclusion pressure of the apoA-IV truncation mutants revealed that, for most, deletion of amphipathic alpha-helical domains increased their affinity for phospholipid monolayers. All of the truncation mutants activated the transfer of fluorescent-labeled cholesterol esters between high and low density lipoproteins at a rate higher than native apoA-IV. There was a strong positive correlation (r = 0.790, p = 0.002) between the rate constant for cholesterol ester transfer and interfacial exclusion pressure. We conclude that molecular interfacial exclusion pressure, rather than specific helical domains, determines the degree to which apoA-IV, and likely other apolipoproteins, facilitate cholesterol ester transfer protein-mediated lipid exchange.
Collapse
Affiliation(s)
- Richard B Weinberg
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Stein O, Ben-Naim M, Dabach Y, Hollander G, Stein Y. Macrophage cholesterol efflux to free apoprotein A-I in C3H and C57BL/6 mice. Biochem Biophys Res Commun 2002; 290:1376-81. [PMID: 11820773 DOI: 10.1006/bbrc.2002.6358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol efflux from peritoneal macrophages of mice C57BL/6 susceptible and C3H resistant to atherosclerosis was compared, using apoprotein A-I as acceptor. The elicited macrophages were labeled with 3H-cholesterol and cholesterol enriched by incubation for 24 h with acetylated LDL. After incubation for 6 or 24 h, 3H-cholesterol efflux to free apoA-I (10 microg/ml) was significantly higher with macrophages derived from C3H mice compared to C57BL/6 mice. The cells were also pretreated with 0.3-0.45 mM cyclic AMP, 10 microM 9-cis-retinoic acid or 10 microM 22(R)-hydroxycholesterol, RXR and LXR ligands. Treatment with cyclic AMP, RXR, or LXR ligands, resulted in enhancement of 3H-cholesterol efflux in both strains. Under all conditions, 3H-cholesterol efflux was significantly higher in C3H compared to C57BL/6 macrophages. In conclusion, the higher cholesterol efflux from C3H macrophages could contribute toward the resistance of this strain to diet-induced atherosclerosis despite hypercholesterolemia.
Collapse
Affiliation(s)
- Olga Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
44
|
Scott BR, McManus DC, Franklin V, McKenzie AG, Neville T, Sparks DL, Marcel YL. The N-terminal globular domain and the first class A amphipathic helix of apolipoprotein A-I are important for lecithin:cholesterol acyltransferase activation and the maturation of high density lipoprotein in vivo. J Biol Chem 2001; 276:48716-24. [PMID: 11602583 DOI: 10.1074/jbc.m106265200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the role of the N terminus of apolipoprotein A-I (apoA-I) in the maturation of high density lipoproteins (HDL), two N-terminal mutants with deletions of residues 1-43 and 1-65 (referred to as Delta 1-43 and Delta 1-65 apoA-I) were studied. In vitro, these deletions had little effect on cellular cholesterol efflux from macrophages but LCAT activation was reduced by 50 and 70% for the Delta 1-43 and Delta 1-65 apoA-I mutants, respectively, relative to wild-type (Wt) apoA-I. To further define the role of the N terminus of apoA-I in HDL maturation, we constructed recombinant adenoviruses containing Wt apoA-I and two similar mutants with deletions of residues 7-43 and 7-65 (referred to as Delta 7-43 and Delta 7-65 apoA-I, respectively). Residues 1-6 were not removed in these mutants to allow proper cleavage of the pro-sequence in vivo. Following injection of these adenoviruses into apoA-I-deficient mice, plasma concentrations of both Delta 7-43 and Delta 7-65 apoA-I were reduced 4-fold relative to Wt apoA-I. The N-terminal deletion mutants, in particular Delta 7-65 apoA-I, were associated with greater proportions of pre beta-HDL and accumulated fewer HDL cholesteryl esters relative to Wt apoA-I. Wt and Delta 7-43 apoA-I formed predominantly alpha-migrating and spherical HDL, whereas Delta 7-65 apoA-I formed only pre beta-HDL of discoidal morphology. This demonstrates that deletion of the first class A amphipathic alpha-helix has a profound additive effect in vivo over the deletion of the globular domain alone (amino acids 1-43) indicating its important role in the production of mature alpha-migrating HDL. In summary, the combined in vitro and in vivo studies demonstrate a role for the N terminus of apoA-I in lecithin:cholesterol acyltransferase activation and the requirement of the first class A amphipathic alpha-helix for the maturation of HDL in vivo.
Collapse
Affiliation(s)
- B R Scott
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Baroukh N, Ostos MA, Vergnes L, Recalde D, Staels B, Fruchart J, Ochoa A, Castro G, Zakin MM. Expression of human apolipoprotein A-I/C-III/A-IV gene cluster in mice reduces atherogenesis in response to a high fat-high cholesterol diet. FEBS Lett 2001; 502:16-20. [PMID: 11478940 DOI: 10.1016/s0014-5793(01)02621-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously generated transgenic (Tg) mice expressing the human apolipoprotein (apo) A-I/C-III/A-IV gene cluster. This expression induced hyperlipidemia but reduced atherosclerotic lesions in genetically modified mice lacking apoE. Atherosclerosis is a multifactorial process and environmental factors such as diet play significant roles in its development. We examined here how an atherogenic diet influences the expression of the human genes and the characteristics of the Tg mice. Our results indicate that a high fat-high cholesterol diet up-regulates the intestinal expression of the three genes and the concentration of the three proteins in plasma. Cholesterol concentration was highly increased in the non-high density lipoprotein (HDL) fraction, and less, although significantly, in the HDL fraction. Tgs showed a 65% reduction in diet-induced aortic lesions compared with non-Tg mice. Atherogenic diet increases the expression of the genes encoding the scavenger receptor class B type I (SR-BI) and ATP binding cassette transporter 1 (ABCA1) proteins. As cholesterol efflux mediated by SR-BI or by ABCA1 was enhanced in Tg mice fed an atherogenic diet, we can hypothesize that increased reverse cholesterol transport is the basis of the protective mechanism observed in these animals. In conclusion, we present evidence that the expression of the human gene cluster in mice protects against atherogenesis in response to an atherogenic diet.
Collapse
Affiliation(s)
- N Baroukh
- Unité d'Expression des Gènes Eucaryotes, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ostos MA, Conconi M, Vergnes L, Baroukh N, Ribalta J, Girona J, Caillaud JM, Ochoa A, Zakin MM. Antioxidative and antiatherosclerotic effects of human apolipoprotein A-IV in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21:1023-8. [PMID: 11397714 DOI: 10.1161/01.atv.21.6.1023] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice expressing human apolipoprotein A-IV (apoA-IV) mainly in the intestine were obtained in an apolipoprotein E-deficient (apoE(0)) background (apoA-IV/E(0) mice). Quantification of aortic lesions and plasma lipid determination showed that compared with their control apoE(0) counterparts, the apoA-IV/E(0) mice are protected against atherosclerosis without an increase in HDL cholesterol. Because oxidized lipoproteins play an important role in atherogenesis, we tested whether the protection observed in these animals is accompanied by an in vivo reduction of the oxidation parameters. The lag time in the formation of conjugated dienes during copper-mediated oxidation, the aggregation state of LDL, and the presence of anti-oxidized LDL antibodies were measured. The presence of oxidized proteins in tissues and the presence of oxidation-specific epitopes in heart sections of atherosclerotic lesions were also analyzed. Except for lag time, the results showed that the oxidation parameters were reduced in the apoA-IV/E(0) mice compared with the apoE(0) mice. This suggests that human apoA-IV acts in vivo as an antioxidant. In addition, human apoA-IV accumulation was detected in the atherosclerotic lesions of apoA-IV/E(0) mice, suggesting that apoA-IV may inhibit oxidative damage to local tissues, thus decreasing the progression of atherosclerosis.
Collapse
Affiliation(s)
- M A Ostos
- Unité d'Expression des Gènes Eucaryotes, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kalogeris TJ, Painter RG. Adaptation of intestinal production of apolipoprotein A-IV during chronic feeding of lipid. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1155-61. [PMID: 11247839 DOI: 10.1152/ajpregu.2001.280.4.r1155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of daily fat supplementation on intestinal gene expression and protein synthesis and plasma levels of apolipoprotein A-IV (apo A-IV). Rats were fasted overnight and then given intragastric bolus infusion of either saline or fat emulsion after 0, 1, 2, 4, 8, or 16 days of similar daily feedings. Four hours after the final saline or fat infusion, plasma and jejunal mucosa were harvested; plasma levels of apo A-IV, triglycerides, and leptin were measured, as well as mucosal apo A-IV mRNA levels and biosynthesis of apo A-IV protein. In response to fat, plasma apo A-IV showed an initial 40% increase compared with saline-injected control rats; with continued daily fat feeding, the plasma A-IV response showed rapid and progressive diminution such that by 4 days, plasma A-IV was not different between fat- and saline-fed groups. Jejunal mucosal apo A-IV synthesis and mRNA levels also showed time-dependent refractoriness to fat feeding. However, the kinetics of this effect were considerably slower than in the case of plasma, requiring 16 days for completion. There was no correlation between plasma leptin or triglyceride levels and intestinal apo A-IV synthesis or plasma apo A-IV. These results indicate rapid, fat-induced, posttranslational adapation of plasma apo A-IV levels and a slower, but similarly complete pretranslational adaptation of intestinal apo A-IV production, which are independent of plasma levels of leptin.
Collapse
Affiliation(s)
- T J Kalogeris
- Department of Surgery, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | | |
Collapse
|
48
|
Abstract
Consistent with several potentially anti-atherogenic activities of high-density lipoproteins in vitro, low plasma levels of high-density lipoprotein cholesterol are associated with an increased risk of coronary heart disease. In addition to genes, lifestyle factors (e.g. smoking, being overweight and physical inactivity) strongly affect plasma high-density lipoprotein cholesterol levels. Moreover, a low level of high-density lipoprotein cholesterol interacts with other risk factors. Raising of high-density lipoprotein cholesterol by either adjustments of lifestyle or drug intervention as well as elimination of additional risk factors are thus thought to affect coronary risk. Here, we summarize the outcomes of observational and interventional studies as well as genetic and experimental research which have recently much advanced our understanding of the function and regulation of high-density lipoprotein metabolism. We conclude from the data that changes in the kinetics and functionality of high-density lipoprotein rather than changes in plasma high-density lipoprotein cholesterol levels per se will affect the anti-atherogenicity of therapeutic interference with high-density lipoprotein metabolism.
Collapse
Affiliation(s)
- A von Eckardstein
- Institut für Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität Münster, Germany.
| | | |
Collapse
|
49
|
Wang N, Silver DL, Costet P, Tall AR. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 2000; 275:33053-8. [PMID: 10918065 DOI: 10.1074/jbc.m005438200] [Citation(s) in RCA: 463] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mutations of the ABC1 transporter have been identified as the defect in Tangier disease, characterized by low HDL and cholesterol ester accumulation in macrophages. A full-length mouse ABC1 cDNA was used to investigate the mechanisms of lipid efflux to apoA-I or HDL in transfected 293 cells. ABC1 expression markedly increased cellular cholesterol and phospholipid efflux to apoA-I but had only minor effects on lipid efflux to HDL. The increased lipid efflux appears to involve a direct interaction between apoA-I and ABC1, because ABC1 expression substantially increased apoA-I binding at the cell surface, and chemical cross-linking and immunoprecipitation analysis showed that apoA-I binds directly to ABC1. In contrast to scavenger receptor BI (SR-BI), another cell surface molecule capable of facilitating cholesterol efflux, ABC1 preferentially bound lipid-free apoA-I but not HDL. Immunofluorescence confocal microscopy showed that ABC1 is primarily localized on the cell surface. In the absence of apoA-I, cells overexpressing ABC1 displayed a distinctive morphology, characterized by plasma membrane protrusions and resembling echinocytes that form when there are excess lipids in the outer membrane hemileaflet. The studies provide evidence for a direct interaction between ABC1 and apoA-I, but not HDL, indicating that free apoA-I is the metabolic substrate for ABC1. Plasma membrane ABC1 may act as a phospholipid/cholesterol flippase, providing lipid to bound apoA-I, or to the outer membrane hemileaflet.
Collapse
Affiliation(s)
- N Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
50
|
Bortnick AE, Rothblat GH, Stoudt G, Hoppe KL, Royer LJ, McNeish J, Francone OL. The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines. J Biol Chem 2000; 275:28634-40. [PMID: 10893411 DOI: 10.1074/jbc.m003407200] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Studies show that lipid-free apoA-I stimulates release of cholesterol and phospholipid from fibroblasts and macrophages. ATP-binding cassette 1 (ABC1) is implicated in this release and has been identified as the genetic defect in Tangier disease, evidence that ABC1 is critical to the biogenesis of high density lipoprotein. We quantified levels of ABC1 mRNA, protein, and cholesterol efflux from J774 mouse macrophages +/- exposure to a cAMP analog. Up-regulating ABC1 mRNA correlated to increased cholesterol efflux in a dose- and time-dependent manner. mRNA levels rose after 15 min of exposure while protein levels rose after 1 h, with increased efflux 2-4 h post-treatment. In contrast to cells from wild-type mice, peritoneal macrophages from the Abc1 -/- mouse showed a lower level of basal efflux and no increase with cAMP treatment. The stimulation of efflux exhibits specificity for apoA-I, high density lipoprotein, and other apolipoproteins as cholesterol acceptors, but not for small unilamellar vesicles, bile acid micelles, or cyclodextrin. We have studied a number of cell types and found that while other cell lines express ABC1 constitutively, only J774 and elicited mouse macrophages show a substantial increase of mRNA and efflux with cAMP treatment. ApoA-I-stimulated efflux was detected from the majority of cell lines examined, independent of treatment.
Collapse
Affiliation(s)
- A E Bortnick
- MCP Hahnemann University, Department of Biochemistry, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | |
Collapse
|