1
|
Nagasawa H, Suzuki H, Ueda S, Suzuki Y. Dual blockade of endothelin A and angiotensin II type 1 receptors with sparsentan as a novel treatment strategy to alleviate IgA nephropathy. Expert Opin Investig Drugs 2024:1-10. [PMID: 39425494 DOI: 10.1080/13543784.2024.2414902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION Although immunoglobulin A nephropathy (IgAN) had been discovered more than 50 years ago, 30-40% of IgAN patients still have primary glomerular disease that progresses to end-stage renal disease. However, various treatment strategies for IgAN have rapidly expanded in recent years to include endothelin (ET) receptor antagonists. AREAS COVERED In this review, we discuss the role of the ET-1/ETA receptor axis in the development of IgAN, especially focusing on the potential of sparsentan, a dual ET and angiotensin receptor antagonist as a novel therapy for IgAN. EXPERT OPINION Evaluation of the MEST-C score at the time of renal biopsy in IgAN is important in determining treatment strategies. If lesions are mainly in the acute phase, such as crescents, steroid therapy should be continued. However, if lesions are mainly in the chronic phase, such as glomerulosclerosis, sparsentan rather than steroid or angiotensin II receptor blocker alone may improve renal outcomes. Although further clinical studies are needed to back up these assumptions, appropriate combination of new drugs containing sparsentan and conventional drugs for IgAN treatment at the appropriate disease stage is expected to further inhibit the progression of renal damage.
Collapse
Affiliation(s)
- Hajime Nagasawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, The Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Seiji Ueda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, The Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Iancu DG, Varga A, Cristescu L, Dumbrava RA, Stoica F, Moldovan DA, Suteu RA, Tilea I. Kidney Dysfunction, Hepatic Impairment, and Lipid Metabolism Abnormalities in Patients with Precapillary Pulmonary Hypertension. Diagnostics (Basel) 2024; 14:1824. [PMID: 39202312 PMCID: PMC11353558 DOI: 10.3390/diagnostics14161824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a global health issue that has profound medical and research implications. METHODS This retrospective study examined changes in renal and liver function, as well as lipid metabolism, over a 12-month period in 49 adult patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). All cases were admitted, managed, and followed up with in the PH Center, County Emergency Clinical Hospital of Targu Mures, Romania. RESULTS Kidney dysfunction was observed in 12.24% of cases at baseline, decreasing to 8.16% at 12 months, and CTEPH patients were more affected. In particular, CTEPH patients exhibited an improvement in renal function, confirmed by an increase in their glomerular filtration rates. Hepatic impairment was present in 57.14% of subjects at baseline, declining to 42.86% at 12 months, with significant improvements noted in the PAH group. Lipid metabolic dysregulations were experienced by 22.45% of all patients at baseline, decreasing to 16.33% at 6 months, with a slow elevation to 24.49% at 12 months, but with no statistically significant differences. Pharmacological regimens were adjusted in accordance with the PH groups, a patient's functional and clinical response, and laboratory tests. CONCLUSIONS Our results demonstrate the multi-organ damage in PH and the importance of individualized treatment approaches.
Collapse
Affiliation(s)
- Dragos Gabriel Iancu
- Doctoral School, G.E. Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (D.G.I.); (L.C.); (R.A.D.); (F.S.); (D.A.M.)
- Department of Internal Medicine II, Emergency Clinical County Hospital, 540042 Targu Mures, Romania
- Faculty of Medicine, G.E. Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Andreea Varga
- Faculty of Medicine, G.E. Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Department of Cardiology II, Emergency Clinical County Hospital, 540042 Targu Mures, Romania
| | - Liviu Cristescu
- Doctoral School, G.E. Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (D.G.I.); (L.C.); (R.A.D.); (F.S.); (D.A.M.)
- Faculty of Medicine, G.E. Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Robert Adrian Dumbrava
- Doctoral School, G.E. Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (D.G.I.); (L.C.); (R.A.D.); (F.S.); (D.A.M.)
- Department of Internal Medicine II, Emergency Clinical County Hospital, 540042 Targu Mures, Romania
| | - Florin Stoica
- Doctoral School, G.E. Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (D.G.I.); (L.C.); (R.A.D.); (F.S.); (D.A.M.)
- Department of Internal Medicine II, Emergency Clinical County Hospital, 540042 Targu Mures, Romania
| | - Diana Andreea Moldovan
- Doctoral School, G.E. Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (D.G.I.); (L.C.); (R.A.D.); (F.S.); (D.A.M.)
- Faculty of Medicine, G.E. Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Department of Cardiology I, The Emergency Institute for Cardiovascular Diseases and Transplantation, 540136 Targu Mures, Romania;
| | - Radu Adrian Suteu
- Department of Cardiology I, The Emergency Institute for Cardiovascular Diseases and Transplantation, 540136 Targu Mures, Romania;
| | - Ioan Tilea
- Faculty of Medicine, G.E. Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Department of Cardiology II, Emergency Clinical County Hospital, 540042 Targu Mures, Romania
| |
Collapse
|
3
|
Kohan DE, Bedard P, Jenkinson C, Hendry B, Komers R. Mechanism of protective actions of sparsentan in the kidney: lessons from studies in models of chronic kidney disease. Clin Sci (Lond) 2024; 138:645-662. [PMID: 38808486 PMCID: PMC11139641 DOI: 10.1042/cs20240249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Simultaneous inhibition of angiotensin II AT1 and endothelin ETA receptors has emerged as a promising approach for treatment of chronic progressive kidney disease. This therapeutic approach has been advanced by the introduction of sparsentan, the first dual AT1 and ETA receptor antagonist. Sparsentan is a single molecule with high affinity for both receptors. It is US Food and Drug Administration approved for immunoglobulin A nephropathy (IgAN) and is currently being developed as a treatment for rare kidney diseases, such as focal segmental glomerulosclerosis. Clinical studies have demonstrated the efficacy and safety of sparsentan in these conditions. In parallel with clinical development, studies have been conducted to elucidate the mechanisms of action of sparsentan and its position in the context of published evidence characterizing the nephroprotective effects of dual ETA and AT1 receptor inhibition. This review summarizes this evidence, documenting beneficial anti-inflammatory, antifibrotic, and hemodynamic actions of sparsentan in the kidney and protective actions in glomerular endothelial cells, mesangial cells, the tubulointerstitium, and podocytes, thus providing the rationale for the use of sparsentan as therapy for focal segmental glomerulosclerosis and IgAN and suggesting potential benefits in other renal diseases, such as Alport syndrome.
Collapse
Affiliation(s)
- Donald E. Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, UT, U.S.A
| | | | | | - Bruce Hendry
- Travere Therapeutics, Inc., San Diego, CA, U.S.A
| | - Radko Komers
- Travere Therapeutics, Inc., San Diego, CA, U.S.A
| |
Collapse
|
4
|
Ivković V, Bruchfeld A. Endothelin receptor antagonists in diabetic and non-diabetic chronic kidney disease. Clin Kidney J 2024; 17:sfae072. [PMID: 38660120 PMCID: PMC11040512 DOI: 10.1093/ckj/sfae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic kidney disease (CKD) is one of the major causes of morbidity and mortality, affecting >800 million persons globally. While we still lack efficient, targeted therapies addressing the major underlying pathophysiologic processes in CKD, findings of several recent trials have brought about a shifting landscape of promising therapies. The endothelin system has been implicated in the pathophysiology of CKD and endothelin receptor antagonists are one class of drugs for which we have increasing evidence of efficacy in these patients. In this review we summarize the most recent findings on the safety and efficacy of endothelin receptor antagonists in diabetic and non-diabetic CKD, future directions of research and upcoming treatments.
Collapse
Affiliation(s)
- Vanja Ivković
- University Hospital Center Zagreb, Department of Nephrology, Hypertension, Dialysis and Transplantation, Zagreb, Croatia
- University of Rijeka, Faculty of Health Studies, Rijeka, Croatia
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Heerspink HJL, Greasley PJ, Ahlström C, Althage M, Dwyer JP, Law G, Wijkmark E, Lin M, Mercier AK, Sunnåker M, Turton M, Wheeler DC, Ambery P. Efficacy and safety of zibotentan and dapagliflozin in patients with chronic kidney disease: study design and baseline characteristics of the ZENITH-CKD trial. Nephrol Dial Transplant 2024; 39:414-425. [PMID: 37632201 PMCID: PMC10899767 DOI: 10.1093/ndt/gfad183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Sodium-glucose co-transporter 2 inhibitors (SGLT2is) are part of the standard of care for patients with chronic kidney disease (CKD), both with and without type 2 diabetes. Endothelin A (ETA) receptor antagonists have also been shown to slow progression of CKD. Differing mechanisms of action of SGLT2 and ETA receptor antagonists may enhance efficacy. We outline a study to evaluate the effect of combination zibotentan/dapagliflozin versus dapagliflozin alone on albuminuria and estimated glomerular filtration rate (eGFR). METHODS We are conducting a double-blind, active-controlled, Phase 2b study to evaluate the efficacy and safety of ETA receptor antagonist zibotentan and SGLT2i dapagliflozin in a planned 415 adults with CKD (Zibotentan and Dapagliflozin for the Treatment of CKD; ZENITH-CKD). Participants are being randomized (1:2:2) to zibotentan 0.25 mg/dapagliflozin 10 mg once daily (QD), zibotentan 1.5 mg/dapagliflozin 10 mg QD and dapagliflozin 10 mg QD alone, for 12 weeks followed by a 2-week off-treatment wash-out period. The primary endpoint is the change in log-transformed urinary albumin-to-creatinine ratio (UACR) from baseline to Week 12. Other outcomes include change in blood pressure from baseline to Week 12 and change in eGFR the study. The incidence of adverse events will be monitored. Study protocol-defined events of special interest include changes in fluid-related measures (weight gain or B-type natriuretic peptide). RESULTS A total of 447 patients were randomized and received treatment in placebo/dapagliflozin (n = 177), zibotentan 0.25 mg/dapagliflozin (n = 91) and zibotentan 1.5 mg/dapagliflozin (n = 179). The mean age was 62.8 years, 30.9% were female and 68.2% were white. At baseline, the mean eGFR of the enrolled population was 46.7 mL/min/1.73 m2 and the geometric mean UACR was 538.3 mg/g. CONCLUSION This study evaluates the UACR-lowering efficacy and safety of zibotentan with dapagliflozin as a potential new treatment for CKD. The study will provide information about an effective and safe zibotentan dose to be further investigated in a Phase 3 clinical outcome trial. CLINICAL TRIAL REGISTRATION NUMBER NCT04724837.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- The George Institute for Global Health, Sydney, New South Wales, Australia
| | - Peter J Greasley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christine Ahlström
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Translational Science & Experimental Medicine, Research and Early Development Cardiovascular, Renal, and Metabolism, Biopharmaceutical R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jamie P Dwyer
- Division of Nephrology/Hypertension, University of Utah Health, Salt Lake City, UT, USA
| | - Gordon Law
- Early Biometrics & Statistical Innovation, Data Science and Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Emma Wijkmark
- Biometrics Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Min Lin
- Biometrics Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Anne-Kristina Mercier
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mikael Sunnåker
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michelle Turton
- Biopharma Clinical Operations, Early CVRM, AstraZeneca, Cambridge, UK
| | - David C Wheeler
- Department of Renal Medicine, University College London, London, UK
| | - Philip Ambery
- Clinical Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
6
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
7
|
Kohan DE, Barratt J, Heerspink HJ, Campbell KN, Camargo M, Ogbaa I, Haile-Meskale R, Rizk DV, King A. Targeting the Endothelin A Receptor in IgA Nephropathy. Kidney Int Rep 2023; 8:2198-2210. [PMID: 38025243 PMCID: PMC10658204 DOI: 10.1016/j.ekir.2023.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and carries a substantial risk of kidney failure. New agency-approved therapies, either specifically for IgAN or for chronic kidney disease (CKD) in general, hold out hope for mitigating renal deterioration in patients with IgAN. The latest addition to this therapeutic armamentarium targets the endothelin-A receptor (ETAR). Activation of ETAR on multiple renal cell types elicits a host of pathophysiological effects, including vasoconstriction, cell proliferation, inflammation, apoptosis, and fibrosis. Blockade of ETAR is renoprotective in experimental models of IgAN and reduces proteinuria in patients with IgAN. This review discusses the evidence supporting the use of ETAR blockade in IgAN as well as addressing the potential role for this class of agents among the current and emerging therapies for treating this disorder.
Collapse
Affiliation(s)
- Donald E. Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kirk N. Campbell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Ike Ogbaa
- Chinook Therapeutics, Seattle, Washington, USA
| | | | - Dana V. Rizk
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew King
- Chinook Therapeutics, Seattle, Washington, USA
| |
Collapse
|
8
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
9
|
Veenit V, Heerspink HJL, Ahlström C, Greasley PJ, Skritic S, van Zuydam N, Kohan DE, Hansen PBL, Menzies RI. The sodium glucose co-transporter 2 inhibitor dapagliflozin ameliorates the fluid-retaining effect of the endothelin A receptor antagonist zibotentan. Nephrol Dial Transplant 2023; 38:2289-2297. [PMID: 37102226 PMCID: PMC10539223 DOI: 10.1093/ndt/gfad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Endothelin A receptor antagonists (ETARA) slow chronic kidney disease (CKD) progression but their use is limited due to fluid retention and associated clinical risks. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) cause osmotic diuresis and improve clinical outcomes in CKD and heart failure. We hypothesized that co-administration of the SGLT2i dapagliflozin with the ETARA zibotentan would mitigate the fluid retention risk using hematocrit (Hct) and bodyweight as proxies for fluid retention. METHODS Experiments were performed in 4% salt fed WKY rats. First, we determined the effect of zibotentan (30, 100 or 300 mg/kg/day) on Hct and bodyweight. Second, we assessed the effect of zibotentan (30 or 100 mg/kg/day) alone or in combination with dapagliflozin (3 mg/kg/day) on Hct and bodyweight. RESULTS Hct at Day 7 was lower in zibotentan versus vehicle groups [zibotentan 30 mg/kg/day, 43% (standard error 1); 100 mg/kg/day, 42% (1); and 300 mg/kg/day, 42% (1); vs vehicle, 46% (1); P < .05], while bodyweight was numerically higher in all zibotentan groups compared with vehicle. Combining zibotentan with dapagliflozin for 7 days prevented the change in Hct [zibotentan 100 mg/kg/day and dapagliflozin, 45% (1); vs vehicle 46% (1); P = .44] and prevented the zibotentan-driven increase in bodyweight (zibotentan 100 mg/kg/day + dapagliflozin 3 mg/kg/day = -3.65 g baseline corrected bodyweight change; P = .15). CONCLUSIONS Combining ETARA with SGLT2i prevents ETARA-induced fluid retention, supporting clinical studies to assess the efficacy and safety of combining zibotentan and dapagliflozin in individuals with CKD.
Collapse
Affiliation(s)
- Vandana Veenit
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christine Ahlström
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stanko Skritic
- Innovation Strategies & External Liaison, Pharmaceutical Technologies & Development, AstraZeneca, Gothenburg, Sweden; Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Natalie van Zuydam
- Biostatistics Sweden, Data Science and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, UT, USA
| | - Pernille B L Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert I Menzies
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
10
|
Martínez-Díaz I, Martos N, Llorens-Cebrià C, Álvarez FJ, Bedard PW, Vergara A, Jacobs-Cachá C, Soler MJ. Endothelin Receptor Antagonists in Kidney Disease. Int J Mol Sci 2023; 24:3427. [PMID: 36834836 PMCID: PMC9965540 DOI: 10.3390/ijms24043427] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Endothelin (ET) is found to be increased in kidney disease secondary to hyperglycaemia, hypertension, acidosis, and the presence of insulin or proinflammatory cytokines. In this context, ET, via the endothelin receptor type A (ETA) activation, causes sustained vasoconstriction of the afferent arterioles that produces deleterious effects such as hyperfiltration, podocyte damage, proteinuria and, eventually, GFR decline. Therefore, endothelin receptor antagonists (ERAs) have been proposed as a therapeutic strategy to reduce proteinuria and slow the progression of kidney disease. Preclinical and clinical evidence has revealed that the administration of ERAs reduces kidney fibrosis, inflammation and proteinuria. Currently, the efficacy of many ERAs to treat kidney disease is being tested in randomized controlled trials; however, some of these, such as avosentan and atrasentan, were not commercialized due to the adverse events related to their use. Therefore, to take advantage of the protective properties of the ERAs, the use of ETA receptor-specific antagonists and/or combining them with sodium-glucose cotransporter 2 inhibitors (SGLT2i) has been proposed to prevent oedemas, the main ERAs-related deleterious effect. The use of a dual angiotensin-II type 1/endothelin receptor blocker (sparsentan) is also being evaluated to treat kidney disease. Here, we reviewed the main ERAs developed and the preclinical and clinical evidence of their kidney-protective effects. Additionally, we provided an overview of new strategies that have been proposed to integrate ERAs in kidney disease treatment.
Collapse
Affiliation(s)
- Irene Martínez-Díaz
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Nerea Martos
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Carmen Llorens-Cebrià
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | | | | | - Ander Vergara
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Maria José Soler
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
11
|
Chung EYM, Badve SV, Heerspink HJL, Wong MG. Endothelin receptor antagonists in kidney protection for diabetic kidney disease and beyond? Nephrology (Carlton) 2023; 28:97-108. [PMID: 36350038 PMCID: PMC10100079 DOI: 10.1111/nep.14130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
The burden of chronic kidney disease is increasing worldwide, largely due to the increasing global prevalence of diabetes mellitus and hypertension. While renin angiotensin system inhibitors and sodium-glucose cotransporter two inhibitors are the management cornerstone for reducing kidney and cardiovascular complications in patients with diabetic and non-diabetic kidney disease (DKD), they are partially effective and further treatments are needed to prevent the progression to kidney failure. Endothelin receptor antagonism represent a potential additional therapeutic option due to its beneficial effect on pathophysiological processes involved in progressive kidney disease including proteinuria, which are independently associated with progression of kidney disease. This review discusses the biological mechanisms of endothelin receptor antagonists (ERA) in kidney protection, the efficacy and safety of ERA in randomised controlled trials reporting on kidney outcomes, and its potential future use in both diabetic and non-DKDs.
Collapse
Affiliation(s)
- Edmund Y M Chung
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Sunil V Badve
- Renal and Metabolic Division, The George Institute for Global Health, University of New South Wales, Newtown, New South Wales, Australia.,Department of Renal Medicine, St George Hospital, Kogarah, New South Wales, Australia
| | - Hiddo J L Heerspink
- Renal and Metabolic Division, The George Institute for Global Health, University of New South Wales, Newtown, New South Wales, Australia.,Department of Clinical Pharmacoy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Muh Geot Wong
- Department of Renal Medicine, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| |
Collapse
|
12
|
Farrah TE, Melville V, Czopek A, Fok H, Bruce L, Mills NL, Bailey MA, Webb DJ, Dear JW, Dhaun N. Arterial stiffness, endothelial dysfunction and impaired fibrinolysis are pathogenic mechanisms contributing to cardiovascular risk in ANCA-associated vasculitis. Kidney Int 2022; 102:1115-1126. [PMID: 35998848 DOI: 10.1016/j.kint.2022.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is a complication of systemic inflammatory diseases including anti-neutrophil cytoplasm antibody-associated vasculitis (AAV). The mechanisms of cardiovascular morbidity in AAV are poorly understood, and risk-reduction strategies are lacking. Therefore, in a series of double-blind, randomized case-control forearm plethysmography and crossover systemic interventional studies, we examined arterial stiffness and endothelial function in patients with AAV in long-term disease remission and in matched healthy volunteers (32 each group). The primary outcome for the case-control study was the difference in endothelium-dependent vasodilation between health and AAV, and for the crossover study was the difference in pulse wave velocity (PWV) between treatment with placebo and selective endothelin-A receptor antagonism. Parallel in vitro studies of circulating monocytes and platelets explored mechanisms. Compared to healthy volunteers, patients with AAV had 30% reduced endothelium-dependent vasodilation and 50% reduced acute release of endothelial active tissue plasminogen activator (tPA), both significant in the case-control study. Patients with AAV had significantly increased arterial stiffness (PWV: 7.3 versus 6.4 m/s). Plasma endothelin-1 was two-fold higher in AAV and independently predicted PWV and tPA release. Compared to placebo, both selective endothelin-A and dual endothelin-A/B receptor blockade reduced PWV and increased tPA release in AAV in the crossover study. Mechanistically, patients with AAV had increased platelet activation, more platelet-monocyte aggregates, and altered monocyte endothelin receptor function, reflecting reduced endothelin-1 clearance. Patients with AAV in long-term remission have elevated cardiovascular risk and endothelin-1 contributes to this. Thus, our data support a role for endothelin-blockers to reduce cardiovascular risk by reducing arterial stiffness and increasing circulating tPA activity.
Collapse
Affiliation(s)
- Tariq E Farrah
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Clinical Research Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK; Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Vanessa Melville
- Clinical Research Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alicja Czopek
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Henry Fok
- Department of Clinical Pharmacology, Kings College London, St Thomas' Hospital, London, UK
| | - Lorraine Bruce
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas L Mills
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David J Webb
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Clinical Research Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - James W Dear
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neeraj Dhaun
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Clinical Research Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK; Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Ameer OZ. Hypertension in chronic kidney disease: What lies behind the scene. Front Pharmacol 2022; 13:949260. [PMID: 36304157 PMCID: PMC9592701 DOI: 10.3389/fphar.2022.949260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a frequent condition encountered during kidney disease development and a leading cause in its progression. Hallmark factors contributing to hypertension constitute a complexity of events that progress chronic kidney disease (CKD) into end-stage renal disease (ESRD). Multiple crosstalk mechanisms are involved in sustaining the inevitable high blood pressure (BP) state in CKD, and these play an important role in the pathogenesis of increased cardiovascular (CV) events associated with CKD. The present review discusses relevant contributory mechanisms underpinning the promotion of hypertension and their consequent eventuation to renal damage and CV disease. In particular, salt and volume expansion, sympathetic nervous system (SNS) hyperactivity, upregulated renin–angiotensin–aldosterone system (RAAS), oxidative stress, vascular remodeling, endothelial dysfunction, and a range of mediators and signaling molecules which are thought to play a role in this concert of events are emphasized. As the control of high BP via therapeutic interventions can represent the key strategy to not only reduce BP but also the CV burden in kidney disease, evidence for major strategic pathways that can alleviate the progression of hypertensive kidney disease are highlighted. This review provides a particular focus on the impact of RAAS antagonists, renal nerve denervation, baroreflex stimulation, and other modalities affecting BP in the context of CKD, to provide interesting perspectives on the management of hypertensive nephropathy and associated CV comorbidities.
Collapse
Affiliation(s)
- Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Omar Z. Ameer,
| |
Collapse
|
14
|
Stuart D, Peterson CS, Hu C, Revelo MP, Huang Y, Kohan DE, Ramkumar N. Lack of renoprotective effects of targeting the endothelin A receptor and (or) sodium glucose transporter 2 in a mouse model of Type 2 diabetic kidney disease. Can J Physiol Pharmacol 2022; 100:763-771. [PMID: 35531905 DOI: 10.1139/cjpp-2022-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two recent clinical trials, using sodium glucose cotransporter (SGLT2) or endothelin-A receptor (ET-A) blocker, reported the first efficacious treatments in 18 years to slow progression of diabetic kidney disease (DKD). We hypothesized that combined inhibition of SGLT2 and ET-A receptor may confer greater protection against renal injury than either agent alone. Uninephrectomized male db/db mice were randomized to four groups: vehicle, SGLT2 inhibitor (dapagliflozin (dapa), 1 mg/kg/day), ET-A blocker (atrasentan (atra), 5 mg/kg/day), or dual treatment from 10 weeks until 22 weeks of age. At 10 weeks of age, no differences were observed in body weight, blood glucose or urinary albumin excretion among the four groups. At 16 and 22 weeks of age, body weight was lower and blood glucose levels higher in the vehicle and atra groups compared with dapa- and dual-treated groups. No notable differences were observed among the four groups in urinary albumin excretion at weeks 16 and 22. Histological analysis showed mild glomerulosclerosis and tubular injury (<5%) in all four groups with reduced glomerulosclerosis in the dual treatment group compared with vehicle. Individual or combined treatment with an SGLT2 inhibitor and (or) an ET-A antagonist did not confer renoprotective effects in this model.
Collapse
Affiliation(s)
- Deborah Stuart
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Caitlin S Peterson
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Chunyan Hu
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah Health, Salt Lake City, UT 84112, USA
| | - Yufeng Huang
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Donald E Kohan
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| | - Nirupama Ramkumar
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT 84132, USA
| |
Collapse
|
15
|
Sandilands EA, Rees JM, Raja K, Dhaun N, Morrison EE, Hickson K, Wraight J, Gray T, Briody L, Cameron S, Thompson AP, Johnston NR, Uren N, Goddard J, Treweeke A, Rushworth G, Webb DJ, Bateman DN, Norrie J, Megson IL, Eddleston M. Acetylcysteine has No Mechanistic Effect in Patients at Risk of Contrast-Induced Nephropathy - A Failure of Academic Clinical Science. Clin Pharmacol Ther 2022; 111:1222-1238. [PMID: 35098531 PMCID: PMC9306485 DOI: 10.1002/cpt.2541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Contrast‐induced nephropathy (CIN) is a major complication of imaging in patients with chronic kidney disease (CKD). The publication of an academic randomized controlled trial (RCT; n = 83) reporting oral (N)‐acetylcysteine (NAC) to reduce CIN led to > 70 clinical trials, 23 systematic reviews, and 2 large RCTs showing no benefit. However, no mechanistic studies were conducted to determine how NAC might work; proposed mechanisms included renal artery vasodilatation and antioxidant boosting. We evaluated the proposed mechanisms of NAC action in participants with healthy and diseased kidneys. Four substudies were performed. Two randomized, double‐blind, placebo‐controlled, three‐period crossover studies (n = 8) assessed the effect of oral and intravenous (i.v.) NAC in healthy kidneys in the presence/absence of iso‐osmolar contrast (iodixanol). A third crossover study in patients with CKD stage III (CKD3) (n = 8) assessed the effect of oral and i.v. NAC without contrast. A three‐arm randomized, double‐blind, placebo‐controlled parallel‐group study, recruiting patients with CKD3 (n = 66) undergoing coronary angiography, assessed the effect of oral and i.v. NAC in the presence of contrast. We recorded systemic (blood pressure and heart rate) and renal (renal blood flow (RBF) and glomerular filtration rate (GFR)) hemodynamics, and antioxidant status, plus biomarkers of renal injury in patients with CKD3 undergoing angiography. Primary outcome for all studies was RBF over 8 hours after the start of i.v. NAC/placebo. NAC at doses used in previous trials of renal prophylaxis was essentially undetectable in plasma after oral administration. In healthy volunteers, i.v. NAC, but not oral NAC, increased blood pressure (mean area under the curve (AUC) mean arterial pressure (MAP): mean difference 29 h⋅mmHg, P = 0.019 vs. placebo), heart rate (28 h⋅bpm, P < 0.001), and RBF (714 h⋅mL/min, 8.0% increase, P = 0.006). Renal vasodilatation also occurred in the presence of contrast (RBF 917 h⋅mL/min, 12% increase, P = 0.005). In patients with CKD3 without contrast, only a rise in heart rate (34 h⋅bpm, P = 0.010) and RBF (288 h⋅mL/min, 6.0% increase, P = 0.001) occurred with i.v. NAC, with no significant effect on blood pressure (MAP rise 26 h⋅mmHg, P = 0.156). Oral NAC showed no effect. In patients with CKD3 receiving contrast, i.v. NAC increased blood pressure (MAP rise 52 h⋅mmHg, P = 0.008) but had no effect on RBF (151 h⋅mL/min, 3.0% increase, P = 0.470), GFR (29 h⋅mL/min/1.73m², P = 0.122), or markers of renal injury. Neither i.v. nor oral NAC affected plasma antioxidant status. We found oral NAC to be poorly absorbed and have no reno‐protective effects. Intravenous, not oral, NAC caused renal artery vasodilatation in healthy volunteers but offered no protection to patients with CKD3 at risk of CIN. These findings emphasize the importance of mechanistic clinical studies before progressing to RCTs for novel interventions. Thousands were recruited to academic clinical trials without the necessary mechanistic studies being performed to confirm the approach had any chance of working.
Collapse
Affiliation(s)
- Euan A Sandilands
- Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,National Poisons Information Service (Edinburgh), Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Jessica Mb Rees
- Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK
| | - Khuram Raja
- Free Radical Research Facility, University of the Highlands & Islands, Inverness, UK
| | - Neeraj Dhaun
- Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Emma E Morrison
- Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,National Poisons Information Service (Edinburgh), Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Kirsty Hickson
- Free Radical Research Facility, University of the Highlands & Islands, Inverness, UK
| | - Jonathan Wraight
- Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,National Poisons Information Service (Edinburgh), Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Tanya Gray
- Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lesley Briody
- Wellcome Trust Clinical Research Facility, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sharon Cameron
- Wellcome Trust Clinical Research Facility, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Adrian P Thompson
- Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Neil R Johnston
- Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Neal Uren
- Department of Cardiology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Jane Goddard
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Andy Treweeke
- Free Radical Research Facility, University of the Highlands & Islands, Inverness, UK
| | - Gordon Rushworth
- Free Radical Research Facility, University of the Highlands & Islands, Inverness, UK
| | - David J Webb
- Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - D Nicholas Bateman
- Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK
| | - John Norrie
- Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK
| | - Ian L Megson
- Free Radical Research Facility, University of the Highlands & Islands, Inverness, UK
| | - Michael Eddleston
- Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,National Poisons Information Service (Edinburgh), Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Zangaladze A, Cai CL, Marcelino M, Aranda JV, Beharry KD. Renal biomarkers of acute kidney injury in response to increasing intermittent hypoxia episodes in the neonatal rat. BMC Nephrol 2021; 22:299. [PMID: 34481475 PMCID: PMC8418040 DOI: 10.1186/s12882-021-02507-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We tested the hypotheses that: 1) early exposure to increasing episodes of clinically relevant intermittent hypoxia (IH) is detrimental to the developing kidneys; and 2) there is a critical number of daily IH episodes which will result in irreparable renal damage that may involve angiotensin (Ang) II and endothelin (ET)-1. METHODS At birth (P0), neonatal rat pups were exposed to brief IH episodes from the first day of life (P0) to P7 or from P0-P14. Pups were either euthanized immediately or placed in room air (RA) until P21. RA littermates served as controls. Kidneys were harvested at P7, P14, and P21 for histopathology; angiotensin converting enzyme (ACE), ACE-2, ET-1, big ET-1, and malondialdehyde (MDA) levels; immunoreactivity of ACE, ACE-2, ET-1, ET-2, ET receptors (ETAR, ETBR), and hypoxia inducible factor (HIF)1α; and apoptosis (TUNEL stain). RESULTS Histopathology showed increased renal damage with 8-12 IH episodes/day, and was associated with Ang II, ACE, HIF1α, and apoptosis. ACE-2 was not expressed at P7, and minimally increased at P14. However, a robust ACE-2 response was seen during recovery with maximum levels noted in the groups recovering from 8 IH episodes/day. ET-1, big ET-1, ETAR, ETBR, and MDA increased with increasing levels of neonatal IH. CONCLUSIONS Chronic neonatal IH causes severe damage to the developing kidney with associated elevations in vasoconstrictors, suggesting hypertension, particularly with 8 neonatal IH episodes. ACE-2 is not activated in early postnatal life, and this may contribute to IH-induced vasoconstriction. Therapeutic targeting of ACE and ET-1 may help decrease the risk for kidney injury in the developing neonate to prevent and/or treat neonatal acute kidney injury and/or chronic kidney disease.
Collapse
Affiliation(s)
- Anano Zangaladze
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew Marcelino
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- SUNY Eye Institute, New York, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
- SUNY Eye Institute, New York, NY, USA.
- Department of Pediatrics & Ophthalmology, Neonatal-Perinatal Medicine Clinical & Translational Research Labs, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Box 49, Brooklyn, NY, 11203, USA.
| |
Collapse
|
17
|
Chavda V, Chaurasia B, Deora H, Umana GE. Chronic Kidney disease and stroke: A Bi-directional risk cascade and therapeutic update. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
18
|
Endothelin receptor antagonists for the treatment of diabetic and nondiabetic chronic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:456-465. [PMID: 33990507 DOI: 10.1097/mnh.0000000000000716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To summarize new clinical findings of endothelin receptor antagonists (ERA) in various etiologies of kidney disease targeted in clinical trials. RECENT FINDINGS Endothelin-1 is a multifunctional peptide with potential relevance to glomerular and tubulointerstitial kidney diseases. The phase 3 SONAR trial demonstrated a significant reduction in clinically relevant kidney outcomes for patients with diabetic kidney disease (DKD) after long-term treatment with the ERA, atrasentan, in addition to blockade of the renin-angiotensin-aldosterone system. Promising preclinical disease models and small clinical trials in non-DKD resulted in the initiation of phase 3 trials investigating the effects of long-term treatment with ERA in patients with immunoglobulin A (IgA) nephropathy and focal segmental glomeruloscelerosis (FSGS). The mechanisms by which ERA protects the kidneys have been extensively studied with evidence for the protection of tubule cells, podocytes, mesangial cells, the endothelial glycocalyx, and a reduction in glomerular perfusion pressure. The occurrence of fluid retention during ERA treatment, particularly in susceptible populations, necessitates strategies to support safe and effective treatment. SUMMARY Treatment with ERA induces long-term kidney protection in DKD. Phase 3 trials are underway to investigate ERA effects in patients with IgA nephropathy and FSGS.
Collapse
|
19
|
Meléndez-Flores JD, Estrada-Bellmann I. Linking chronic kidney disease and Parkinson's disease: a literature review. Metab Brain Dis 2021; 36:1-12. [PMID: 32990929 DOI: 10.1007/s11011-020-00623-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Chronic kidney disease (CKD) has been typically implicated in cardiovascular risk, considering the function the kidney has related to blood pressure, vitamin D, red blood cell metabolism, and electrolyte and acid-base regulation. However, neurological consequences are also attributed to this disease. Among these, recent large epidemiological studies have demonstrated an increased risk for Parkinson's disease (PD) in patients with CKD. Multiple studies have evaluated individually the association of blood pressure, vitamin D, and red blood cell dysmetabolism with PD, however, no study has reviewed the potential mechanisms related to these components in context of CKD and PD. In this review, we explored the association of CKD and PD and linked the components of the former to propose potential pathways explaining a future increased risk for PD, where renin-angiotensin system, oxidative stress, and inflammation have a main role. Potential preventive and therapeutic interventions based on these associations are also explored. More preclinical studies are needed to confirm the potential link of CKD conditions and future PD risk, whereas more interventional studies targeting this association are warranted to confirm their potential benefit in PD.
Collapse
Affiliation(s)
- Jesús D Meléndez-Flores
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos S/N, 64700, Monterrey, NL, Mexico
- Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Ingrid Estrada-Bellmann
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos S/N, 64700, Monterrey, NL, Mexico.
- Movement Disorders Clinic, Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| |
Collapse
|
20
|
Provenzano M, Andreucci M, Garofalo C, Minutolo R, Serra R, De Nicola L. Selective endothelin A receptor antagonism in patients with proteinuric chronic kidney disease. Expert Opin Investig Drugs 2020; 30:253-262. [PMID: 33356648 DOI: 10.1080/13543784.2021.1869720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Selective antagonists of Endothelin-1 receptors (ERA) have been tested in diabetic and nondiabetic chronic kidney disease (CKD). The SONAR trial (Study Of diabetic Nephropathy with AtRasentan) was the first randomized, phase 3, study assessing the long-term effect of ERA on CKD progression.Areas covered: We examine the ERA effects in proteinuric CKD. We discuss the results of the main clinical studies on ERA in CKD and offer an opinion on the findings of SONAR study and future perspectives in this field. We searched in PubMed and ISI Web of Science databases for including experimental and clinical studies that evaluated ERA in proteinuric CKD.Expert opinion: The SONAR study demonstrated that ERA confers protection against risk for CKD progression. This trial stimulated clinical research on ERA, to expand the therapeutic opportunities in CKD patients. Two novel phase 3 studies testing ERA in patients with glomerular disease are ongoing. Within the context of personalized medicine, we think it would be relevant to evaluate the effect of multiple treatments, including ERA, in proteinuric CKD patients. Testing ERA in clinical trials of novel design will also help at identifying the patients who would more benefit from these drugs.
Collapse
Affiliation(s)
- Michele Provenzano
- Renal Unit, Department of Health Sciences, "Magna Grecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, Department of Health Sciences, "Magna Grecia" University, Catanzaro, Italy
| | - Carlo Garofalo
- Nephrology Division, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Roberto Minutolo
- Nephrology Division, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Luca De Nicola
- Nephrology Division, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
21
|
The endothelin system as target for therapeutic interventions in cardiovascular and renal disease. Clin Chim Acta 2020; 506:92-106. [DOI: 10.1016/j.cca.2020.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
|
22
|
Pulmonary hypertension in end-stage renal disease. Respir Med 2020; 164:105905. [PMID: 32094103 DOI: 10.1016/j.rmed.2020.105905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/30/2019] [Accepted: 02/17/2020] [Indexed: 11/20/2022]
Abstract
Pulmonary hypertension associated with end-stage renal disease (ESRD) is an important yet under-recognized condition and can lead to life-threatening complications. The pathogenesis of pulmonary hypertension is peculiar in ESRD, and understanding it is important to recognize such patients at the earliest and commence appropriate treatment. Many studies have discovered the prevalence of pulmonary hypertension to be up to 80% in ESRD and have been associated with increased mortality. WHO has classified pulmonary hypertension in renal failure to be in group 5, a group defined by unclear multifactorial etiologies. Moreover, there is an improvement with renal transplant and closure of AV fistula, thus confirming the contribution from these. The pharmacological management of pulmonary hypertension in this unique population is not very different from other etiologies. However, one should understand that pulmonary hypertension as such, could be multifactorial, and other secondary causes of pulmonary hypertension should also be recognized and treated accordingly. In this article, we will discuss the concept of pulmonary hypertension in ESRD in detail and the options of treatment.
Collapse
|
23
|
Endothelial factors in the pathogenesis and treatment of chronic kidney disease Part I: General mechanisms: a joint consensus statement from the European Society of Hypertension Working Group on Endothelin and Endothelial Factors and The Japanese Society of Hypertension. J Hypertens 2019; 36:451-461. [PMID: 29120962 DOI: 10.1097/hjh.0000000000001599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
: Kidney damage is a common consequence of arterial hypertension, but is also a cause of atherogenesis. Dysfunction and/or harm of the endothelium in glomeruli and tubular interstitium damage the function of these structures and translates into dynamic changes of filtration fraction, with progressive reduction in glomerular filtration rate, expansion of extracellular fluid volume, abnormal ion balance, and hypoxia, ultimately leading to chronic kidney disease. Considering the key role played by endothelial dysfunction in chronic kidney disease, the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension and the Japanese Society of Hypertension have critically reviewed available knowledge on the mechanisms underlying endothelial cell injury. This resulted into two articles: in the first, we herein examine the mechanisms by which endothelial factors induce vascular remodeling and the role of different players, including endothelin-1, the renin-angiotensin-aldosterone system and their interactions, and of oxidative stress; in the second, we discuss the role of endothelial dysfunction in the major disease conditions that affect the kidney.
Collapse
|
24
|
Sidharta PN, Melchior M, Kankam MK, Dingemanse J. Single- and multiple-dose tolerability, safety, pharmacokinetics, and pharmacodynamics of the dual endothelin receptor antagonist aprocitentan in healthy adult and elderly subjects. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:949-964. [PMID: 30962677 PMCID: PMC6435120 DOI: 10.2147/dddt.s199051] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Aprocitentan is an orally active, dual endothelin (ET) receptor antagonist developed for the treatment of hypertension in which, despite available treatments, a medical need exists for drugs with a new mechanism of action. Subjects and methods In this study, the single- and multiple-dose tolerability, safety, pharmacokinetics (PK), and pharmacodynamics of up to 600 mg (single doses) and 100 mg once a day (qd; multiple doses) of aprocitentan were investigated in healthy male and female subjects. The effect of age on the tolerability and PK parameters was investigated at a dose of 100 mg qd. Results Aprocitentan was well tolerated across all doses. No serious adverse events (AEs) occurred. The most frequently reported AE was headache. Small increases in body weight were recorded in subjects receiving 100 mg qd. Plasma concentration-time profiles of aprocitentan were similar after single- and multiple-dose administration, and support a qd dosing regimen based on a half-life of 44 hours. After multiple doses, PK was dose proportional. Accumulation at steady state, reached by Day 8, was 3-fold. Only minor differences in exposure between healthy females and males, healthy elderly and adult subjects, and fed and fasted conditions were observed. Plasma ET-1 concentrations, reflecting ETB receptor antagonism, significantly increased with doses ≥25 mg. Time-matched analysis of electrocardiogram (ECG) parameters did not suggest drug-induced ECG effects. Exposure-response analysis indicated no QTc prolongations at plasma levels up to 10 µg/mL. Conclusion Aprocitentan was well tolerated in healthy subjects with a PK profile favorable for qd dosing.
Collapse
Affiliation(s)
- Patricia N Sidharta
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil CH-4123, Switzerland,
| | - Meggane Melchior
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil CH-4123, Switzerland,
| | - Martin K Kankam
- Vince and Associates Clinical Research, Overland Park, KS 66211, USA
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil CH-4123, Switzerland,
| |
Collapse
|
25
|
Romi MM, Arfian N, Tranggono U, Setyaningsih WAW, Sari DCR. Uric acid causes kidney injury through inducing fibroblast expansion, Endothelin-1 expression, and inflammation. BMC Nephrol 2017; 18:326. [PMID: 29089036 PMCID: PMC5664905 DOI: 10.1186/s12882-017-0736-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Background Uric acid (UA) plays important roles in inducing renal inflammation, intra-renal vasoconstriction and renal damage. Endothelin-1 (ET-1) is a well-known profibrotic factor in the kidney and is associated with fibroblast expansion. We examined the role of hyperuricemia conditions in causing elevation of ET-1 expression and kidney injury. Methods Hyperuricemia was induced in mice using daily intraperitoneal injection of uric acid 125 mg/Kg body weight. An NaCl injection was used in control mice. Mice were euthanized on days-7 (UA7) and 14 (UA14). We also added allopurinol groups (UAL7 and UAL14) with supplementation of allopurinol 50 mg/Kg body weight orally. Uric acid and creatinine serum were measured from blood serum. Periodic Acid Schiff (PAS) and Sirius Red staining were done for glomerulosclerosis, tubular injury and fibrosis quantification. mRNA expression examination was performed for nephrin, podocin, preproEndothelin-1 (ppET-1), MCP-1 and ICAM-1. PDGFRβ immunostaining was done for quantification of fibroblast, while α-SMA immunostaining was done for localizing myofibroblast. Western blot analysis was conducted to quantify TGF-β1, α-SMA and Endothelin A Receptor (ETAR) protein expression. Results Uric acid and creatinine levels were elevated after 7 and 14 days and followed by significant increase of glomerulosclerosis and tubular injury score in the uric acid group (p < 0.05 vs. control). Both UA7 and UA14 groups had higher fibrosis, tubular injury and glomerulosclerosis with significant increase of fibroblast cell number compared with control. RT-PCR revealed down-regulation of nephrin and podocin expression (p < 0.05 vs. control), and up-regulation of MCP-1, ET-1 and ICAM-1 expression (p < 0.05 vs. control). Western blot revealed higher expression of TGF-β1 and α-SMA protein expression. Determination of allopurinol attenuated kidney injury was based on reduction of fibroblast cell number, inflammation mediators and ppET-1 expression with reduction of TGF-β1 and α-SMA protein expression. Conclusions UA induced glomerulosclerosis, tubular injury and renal fibrosis with reduction of podocyte function and inflammatory mediator elevation. ET-1 and fibroblast expansion might modulate hyperuricemia induced renal fibrosis.
Collapse
Affiliation(s)
- Muhammad Mansyur Romi
- Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Untung Tranggono
- Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
26
|
Hunter RW, Moorhouse R, Farrah TE, MacIntyre IM, Asai T, Gallacher PJ, Kerr D, Melville V, Czopek A, Morrison EE, Ivy JR, Dear JW, Bailey MA, Goddard J, Webb DJ, Dhaun N. First-in-Man Demonstration of Direct Endothelin-Mediated Natriuresis and Diuresis. Hypertension 2017; 70:192-200. [PMID: 28507171 PMCID: PMC5739104 DOI: 10.1161/hypertensionaha.116.08832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 01/23/2023]
Abstract
Endothelin (ET) receptor antagonists are potentially novel therapeutic agents in chronic kidney disease and resistant hypertension, but their use is complicated by sodium and water retention. In animal studies, this side effect arises from ETB receptor blockade in the renal tubule. Previous attempts to determine whether this mechanism operates in humans have been confounded by the hemodynamic consequences of ET receptor stimulation/blockade. We aimed to determine the effects of ET signaling on salt transport in the human nephron by administering subpressor doses of the ET-1 precursor, big ET-1. We conducted a 2-phase randomized, double-blind, placebo-controlled crossover study in 10 healthy volunteers. After sodium restriction, subjects received either intravenous placebo or big ET-1, in escalating dose (≤300 pmol/min). This increased plasma concentration and urinary excretion of ET-1. Big ET-1 reduced heart rate (≈8 beats/min) but did not otherwise affect systemic hemodynamics or glomerular filtration rate. Big ET-1 increased the fractional excretion of sodium (from 0.5 to 1.0%). It also increased free water clearance and tended to increase the abundance of the sodium-potassium-chloride cotransporter (NKCC2) in urinary extracellular vesicles. Our protocol induced modest increases in circulating and urinary ET-1. Sodium and water excretion increased in the absence of significant hemodynamic perturbation, supporting a direct action of ET-1 on the renal tubule. Our data also suggest that sodium reabsorption is stimulated by ET-1 in the thick ascending limb and suppressed in the distal renal tubule. Fluid retention associated with ET receptor antagonist therapy may be circumvented by coprescribing potassium-sparing diuretics.
Collapse
Affiliation(s)
- Robert W Hunter
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Rebecca Moorhouse
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Tariq E Farrah
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Iain M MacIntyre
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Takae Asai
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Peter J Gallacher
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Debbie Kerr
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Vanessa Melville
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Alicja Czopek
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Emma E Morrison
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Jess R Ivy
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - James W Dear
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Jane Goddard
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - David J Webb
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Neeraj Dhaun
- From the British Heart Foundation Centre of Research Excellence and The Queen's Medical Research Institute, University of Edinburgh, United Kingdom.
| |
Collapse
|
27
|
Nickel NP, O'Leary JM, Brittain EL, Fessel JP, Zamanian RT, West JD, Austin ED. Kidney dysfunction in patients with pulmonary arterial hypertension. Pulm Circ 2017; 7:38-54. [PMID: 28680564 PMCID: PMC5448543 DOI: 10.1086/690018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PH) and chronic kidney disease (CKD) both profoundly impact patient outcomes, whether as primary disease states or as co-morbid conditions. PH is a common co-morbidity in CKD and vice versa. A growing body of literature describes the epidemiology of PH secondary to chronic kidney disease and end-stage renal disease (ESRD) (WHO group 5 PH). But, there are only limited data on the epidemiology of kidney disease in group 1 PH (pulmonary arterial hypertension [PAH]). The purpose of this review is to summarize the current data on epidemiology and discuss potential disease mechanisms and management implications of kidney dysfunction in PAH. Kidney dysfunction, determined by serum creatinine or estimated glomerular filtration rate, is a frequent co-morbidity in PAH and impaired kidney function is a strong and independent predictor of mortality. Potential mechanisms of PAH affecting the kidneys are increased venous congestion, decreased cardiac output, and neurohormonal activation. On a molecular level, increased TGF-β signaling and increased levels of circulating cytokines could have the potential to worsen kidney function. Nephrotoxicity does not seem to be a common side effect of PAH-targeted therapy. Treatment implications for kidney disease in PAH include glycemic control, lifestyle modification, and potentially Renin-Angiotensin-Aldosterone System (RAAS) blockade.
Collapse
Affiliation(s)
- N P Nickel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - J M O'Leary
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E L Brittain
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J P Fessel
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R T Zamanian
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - J D West
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E D Austin
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
28
|
Tonneijck L, Muskiet MHA, Smits MM, van Bommel EJ, Heerspink HJL, van Raalte DH, Joles JA. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J Am Soc Nephrol 2017; 28:1023-1039. [PMID: 28143897 DOI: 10.1681/asn.2016060666] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An absolute, supraphysiologic elevation in GFR is observed early in the natural history in 10%-67% and 6%-73% of patients with type 1 and type 2 diabetes, respectively. Moreover, at the single-nephron level, diabetes-related renal hemodynamic alterations-as an adaptation to reduction in functional nephron mass and/or in response to prevailing metabolic and (neuro)hormonal stimuli-increase glomerular hydraulic pressure and transcapillary convective flux of ultrafiltrate and macromolecules. This phenomenon, known as glomerular hyperfiltration, classically has been hypothesized to predispose to irreversible nephron damage, thereby contributing to initiation and progression of kidney disease in diabetes. However, dedicated studies with appropriate diagnostic measures and clinically relevant end points are warranted to confirm this assumption. In this review, we summarize the hitherto proposed mechanisms involved in diabetic hyperfiltration, focusing on ultrastructural, vascular, and tubular factors. Furthermore, we review available evidence on the clinical significance of hyperfiltration in diabetes and discuss currently available and emerging interventions that may attenuate this renal hemodynamic abnormality. The revived interest in glomerular hyperfiltration as a prognostic and pathophysiologic factor in diabetes may lead to improved and timely detection of (progressive) kidney disease, and could provide new therapeutic opportunities in alleviating the renal burden in this population.
Collapse
Affiliation(s)
- Lennart Tonneijck
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands;
| | - Marcel H A Muskiet
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Mark M Smits
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik J van Bommel
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacology, University Medical Center Groningen, Groningen, The Netherlands; and
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
29
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 502] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
30
|
Czopek A, Moorhouse R, Webb DJ, Dhaun N. Therapeutic potential of endothelin receptor antagonism in kidney disease. Am J Physiol Regul Integr Comp Physiol 2016; 310:R388-97. [DOI: 10.1152/ajpregu.00478.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/20/2015] [Indexed: 11/22/2022]
Abstract
Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease.
Collapse
Affiliation(s)
- Alicja Czopek
- University/British Heart Foundation Centre of Research Excellence, University of Edinburgh; and The Queen's Medical Research Institute, Edinburgh; and
| | - Rebecca Moorhouse
- University/British Heart Foundation Centre of Research Excellence, University of Edinburgh; and The Queen's Medical Research Institute, Edinburgh; and
| | - David J. Webb
- University/British Heart Foundation Centre of Research Excellence, University of Edinburgh; and The Queen's Medical Research Institute, Edinburgh; and
| | - Neeraj Dhaun
- University/British Heart Foundation Centre of Research Excellence, University of Edinburgh; and The Queen's Medical Research Institute, Edinburgh; and
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom
| |
Collapse
|
31
|
Culshaw GJ, MacIntyre IM, Dhaun N, Webb DJ. Endothelin in nondiabetic chronic kidney disease: preclinical and clinical studies. Semin Nephrol 2016; 35:176-87. [PMID: 25966349 DOI: 10.1016/j.semnephrol.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence and prevalence of chronic kidney disease (CKD) is increasing. Despite current therapies, many patients with CKD have suboptimal blood pressure, ongoing proteinuria, and develop progressive renal dysfunction. Further therapeutic options therefore are required. Over the past 20 years the endothelin (ET) system has become a prime target. Experimental models have shown that ET-1, acting primarily via the endothelin-A receptor, plays an important role in the development of proteinuria, glomerular injury, fibrosis, and inflammation. Subsequent animal and early clinical studies using ET-receptor antagonists have suggested that theses therapies may slow renal disease progression primarily through blood pressure and proteinuria reduction. This review examines the current literature regarding the ET system in nondiabetic CKD.
Collapse
Affiliation(s)
- Geoff J Culshaw
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.
| | - Iain M MacIntyre
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Neeraj Dhaun
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - David J Webb
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| |
Collapse
|
32
|
Abstract
Diabetic kidney disease (DKD) remains the most common cause of chronic kidney disease and multiple therapeutic agents, primarily targeted at the renin-angiotensin system, have been assessed. Their only partial effectiveness in slowing down progression to end-stage renal disease, points out an evident need for additional effective therapies. In the context of diabetes, endothelin-1 (ET-1) has been implicated in vasoconstriction, renal injury, mesangial proliferation, glomerulosclerosis, fibrosis and inflammation, largely through activation of its endothelin A (ETA) receptor. Therefore, endothelin receptor antagonists have been proposed as potential drug targets. In experimental models of DKD, endothelin receptor antagonists have been described to improve renal injury and fibrosis, whereas clinical trials in DKD patients have shown an antiproteinuric effect. Currently, its renoprotective effect in a long-time clinical trial is being tested. This review focuses on the localization of endothelin receptors (ETA and ETB) within the kidney, as well as the ET-1 functions through them. In addition, we summarize the therapeutic benefit of endothelin receptor antagonists in experimental and human studies and the adverse effects that have been described.
Collapse
|
33
|
Endothelin receptors, renal effects and blood pressure. Curr Opin Pharmacol 2015; 21:25-34. [DOI: 10.1016/j.coph.2014.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 11/23/2022]
|
34
|
|
35
|
Abstract
All three members of the endothelin (ET) family of peptides, ET-1, ET-2, and ET-3, are expressed in the human kidney, with ET-1 being the predominant isoform. ET-1 and ET-2 bind to two G-protein-coupled receptors, ETA and ETB, whereas at physiological concentrations ET-3 has little affinity for the ET(A) receptor. The human kidney is unusual among the peripheral organs in expressing a high density of ET(B). The renal vascular endothelium only expresses the ET(B) subtype and ET-1 acts in an autocrine or paracrine manner to release vasodilators. Endothelial ETB in kidney, as well as liver and lungs, also has a critical role in scavenging ET-1 from the plasma. The third major function is ET-1 activation of ET(B) in in the nephron to reduce salt and water re-absorption. In contrast, ET(A) predominate on smooth muscle, causing vasoconstriction and mediating many of the pathophysiological actions of ET-1. The role of the two receptors has been delineated using highly selective ET(A) (BQ123, TAK-044) and ET(B) (BQ788) peptide antagonists. Nonpeptide antagonists, bosentan, macitentan, and ambrisentan, that are either mixed ET(A)/ET(B) antagonists or display ET(A) selectivity, have been approved for clinical use but to date are limited to pulmonary hypertension. Ambrisentan is in clinical trials in patients with type 2 diabetic nephropathy. This review summarizes ET-receptor antagonism in the human kidney, and considers the relative merits of selective versus nonselective antagonism in renal disease.
Collapse
Affiliation(s)
- Janet J Maguire
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke׳s Hospital, Cambridge, United Kingdom
| | - Anthony P Davenport
- Clinical Pharmacology Unit, University of Cambridge, Addenbrooke׳s Hospital, Cambridge, United Kingdom.
| |
Collapse
|
36
|
Žeravica R, Čabarkapa V, Ilinčić B, Sakač V, Mijović R, Nikolić S, Stošić Z. Plasma endothelin-1 level, measured glomerular filtration rate and effective renal plasma flow in diabetic nephropathy. Ren Fail 2015; 37:681-6. [DOI: 10.3109/0886022x.2015.1010990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
37
|
Chade AR, Tullos N, Stewart NJ, Surles B. Endothelin-a receptor antagonism after renal angioplasty enhances renal recovery in renovascular disease. J Am Soc Nephrol 2014; 26:1071-80. [PMID: 25377076 DOI: 10.1681/asn.2014040323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/09/2014] [Indexed: 12/16/2022] Open
Abstract
Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, Department of Medicine, and Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | |
Collapse
|
38
|
Schneider MP, Mann JF. Endothelin antagonism for patients with chronic kidney disease: still a hope for the future. Nephrol Dial Transplant 2014; 29 Suppl 1:i69-i73. [PMID: 24493872 DOI: 10.1093/ndt/gft339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endothelin is tightly involved in the regulation of vascular and renal function in health and in disease. In a variety of animal models of kidney disease, endothelin promotes renal injury through effects on inflammation and fibrosis. Furthermore, experimental data strongly suggest that blocking the actions of endothelin should be beneficial in patients with chronic kidney disease. However, despite encouraging pre-clinical and clinical evidence, endothelin antagonists are not yet an established treatment option in patients with chronic kidney disease. This article reviews key physiological and pathophysiological aspects of the endothelin system in the vasculature and the kidney, as well as results of pre-clinical and clinical studies on the use of endothelin antagonists in chronic kidney disease. We will also provide an outlook on the future of endothelin antagonism in this area, and issues to be resolved before endothelin antagonists are to become a reality for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Markus P Schneider
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg and Nuremberg General Hospital, Erlangen, Germany
| | | |
Collapse
|
39
|
Kohan DE, Barton M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int 2014; 86:896-904. [PMID: 24805108 PMCID: PMC4216619 DOI: 10.1038/ki.2014.143] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 01/10/2023]
Abstract
The incidence and prevalence of chronic kidney disease (CKD), with diabetes and hypertension accounting for the majority of cases, is on the rise, with up to 160 million individuals worldwide predicted to be affected by 2020. Given that current treatment options, primarily targeted at the renin-angiotensin system, only modestly slow down progression to end-stage renal disease, the urgent need for additional effective therapeutics is evident. Endothelin-1 (ET-1), largely through activation of endothelin A receptors, has been strongly implicated in renal cell injury, proteinuria, inflammation, and fibrosis leading to CKD. Endothelin receptor antagonists (ERAs) have been demonstrated to ameliorate or even reverse renal injury and/or fibrosis in experimental models of CKD, whereas clinical trials indicate a substantial antiproteinuric effect of ERAs in diabetic and nondiabetic CKD patients even on top of maximal renin-angiotensin system blockade. This review summarizes the role of ET in CKD pathogenesis and discusses the potential therapeutic benefit of targeting the ET system in CKD, with attention to the risks and benefits of such an approach.
Collapse
Affiliation(s)
- Donald E. Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
40
|
Activation of the endothelin system mediates pathological angiogenesis during ischemic retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3040-51. [PMID: 25203536 DOI: 10.1016/j.ajpath.2014.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 02/08/2023]
Abstract
Retinopathy of prematurity adversely affects premature infants because of oxygen-induced damage of the immature retinal vasculature, resulting in pathological neovascularization (NV). Our pilot studies using the mouse model of oxygen-induced retinopathy (OIR) showed marked increases in angiogenic mediators, including endothelins and endothelin receptor (EDNR) A. We hypothesized that activation of the endothelin system via EDNRA plays a causal role in pathological angiogenesis and up-regulation of angiogenic mediators, including vascular endothelial growth factor A (VEGFA) in OIR. Mice were exposed to 75% oxygen from post-natal day P7 to P12, treated with either vehicle or EDNRA antagonist BQ-123 or EDNRB antagonist BQ-788 on P12, and kept at room air from P12 to P17 (ischemic phase). RT-PCR analysis revealed increased levels of EDN2 and EDNRA mRNA, and Western blot analysis revealed increased EDN2 expression during the ischemic phase. EDNRA inhibition significantly increased vessel sprouting, resulting in enhanced physiological angiogenesis and decreased pathological NV, whereas EDNRB inhibition modestly improved vascular repair. OIR triggered significant increases in VEGFA protein and mRNA for delta-like ligand 4, apelin, angiopoietin-2, and monocyte chemoattractant protein-1. BQ-123 treatment significantly reduced these alterations. EDN2 expression was localized to retinal glia and pathological NV tufts of the OIR retinas. EDN2 also induced VEGFA protein expression in cultured astrocytes. In conclusion, inhibition of the EDNRA during OIR suppresses pathological NV and promotes physiological angiogenesis.
Collapse
|
41
|
Kohan DE, Pollock DM. Endothelin antagonists for diabetic and non-diabetic chronic kidney disease. Br J Clin Pharmacol 2014; 76:573-9. [PMID: 23228194 DOI: 10.1111/bcp.12064] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/04/2012] [Indexed: 12/29/2022] Open
Abstract
Numerous pre-clinical studies have implicated endothelin-1 in the pathogenesis of diabetic and non-diabetic chronic kidney disease (CKD). Renal endothelin-1 production is almost universally increased in kidney disease. The pathologic effects of endothelin-1, including vasoconstriction, proteinuria, inflammation, cellular injury and fibrosis, are likely mediated by the endothelin A (ETA) receptor. ETA antagonism alone, and/or combined ETA/B blockade, reduces CKD progression. Based on the strong pre-clinical data, several clinical trials using ETA antagonists were conducted. Small trials involving acute intravenous endothelin receptor blockade suggest that ETA, but not ETB, blockade exerts protective renal and vascular effects in CKD patients. A large phase 3 trial (ASCEND) examined the effects of avosentan, an endothelin receptor antagonist, on renal disease progression in diabetic nephropathy. Proteinuria was reduced after 3-6 months of treatment. However the study was terminated due to increased morbidity and mortality associated with avosentan-induced fluid retention. Several phase 2 trials using avosentan at lower doses than in ASCEND, atrasentan or sitaxsentan (the latter two being highly ETA-selective) showed reductions in proteinuria on top of renin-angiotensin system blockade. Infrequent and clinically insignificant fluid retention was observed at the most effective doses. Additional trials using ETA blockers are ongoing or being planned in patients with diabetic nephropathy or focal segmental glomerulosclerosis. Moving forward, such studies must be conducted with careful patient selection and attention to dosing in order to minimize adverse side effects. Nonetheless, there is cause for optimism that this class of agents will ultimately prove to be effective for the treatment of CKD.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT
| | | |
Collapse
|
42
|
Cernaro V, Trifirò G, Lorenzano G, Lucisano S, Buemi M, Santoro D. New therapeutic strategies under development to halt the progression of renal failure. Expert Opin Investig Drugs 2014; 23:693-709. [DOI: 10.1517/13543784.2014.899352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Brown KE, Dhaun N, Goddard J, Webb DJ. Potential Therapeutic Role of Phosphodiesterase Type 5 Inhibition in Hypertension and Chronic Kidney Disease. Hypertension 2014; 63:5-11. [DOI: 10.1161/hypertensionaha.113.01774] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kayleigh E. Brown
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| | - Neeraj Dhaun
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| | - Jane Goddard
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| | - David J. Webb
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| |
Collapse
|
44
|
Moorhouse RC, Webb DJ, Kluth DC, Dhaun N. Endothelin Antagonism and Its Role in the Treatment of Hypertension. Curr Hypertens Rep 2013; 15:489-96. [DOI: 10.1007/s11906-013-0380-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Meyers KEC, Sethna C. Endothelin antagonists in hypertension and kidney disease. Pediatr Nephrol 2013; 28:711-20. [PMID: 23070275 DOI: 10.1007/s00467-012-2316-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/11/2023]
Abstract
The endothelin (ET) system seems to play a pivotal role in hypertension and in proteinuric kidney disease, including the micro- and macro-vascular complications of diabetes. Endothelin-1 (ET-1) is a multifunctional peptide that primarily acts as a potent vasoconstrictor with direct effects on systemic vasculature and the kidney. ET-1 and ET receptors are expressed in the vascular smooth muscle cells, endothelial cells, fibroblasts and macrophages in systemic vasculature and arterioles of the kidney, and are associated with collagen accumulation, inflammation, extracellular matrix remodeling, and renal fibrosis. Experimental evidence and recent clinical studies suggest that endothelin receptor blockade, in particular selective ETAR blockade, holds promise in the treatment of hypertension, proteinuria, and diabetes. Concomitant blockade of the ETB receptor is not usually beneficial and may lead to vasoconstriction and salt and water retention. The side-effect profile of ET receptor antagonists and relatively poor antagonist selectivity for ETA receptor are limitations that need to be addressed. This review will discuss what is currently known about the endothelin system, the role of ET-1 in the pathogenesis of hypertension and kidney disease, and summarize literature on the therapeutic potential of endothelin system antagonism.
Collapse
Affiliation(s)
- Kevin E C Meyers
- Nephrology Division, Department of Pediatrics, The Children's Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
46
|
Abstract
Since its discovery over 20 years ago endothelin-1 (ET-1) has been implicated in a number of physiological and pathophysiological processes. Its role in the development and progression of chronic kidney disease (CKD) is well established and is an area of ongoing intense research. There are now available a number of ET receptor antagonists many of which have been used in trials with CKD patients and shown to reduce BP and proteinuria. However, ET-1 has a number of BP-independent effects. Importantly, and in relation to the kidney, ET-1 has clear roles to play in cell proliferation, podocyte dysfunction, inflammation and fibrosis, and arguably, these actions of ET-1 may be more significant in the progression of CKD than its prohypertensive actions. This review will focus on the potential role of ET-1 in renal disease with an emphasis on its BP-independent actions.
Collapse
Affiliation(s)
- Neeraj Dhaun
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
47
|
The pathophysiology of endothelin in complications after solid organ transplantation: a potential novel therapeutic role for endothelin receptor antagonists. Transplantation 2013; 94:885-93. [PMID: 23037008 DOI: 10.1097/tp.0b013e31825f0fbe] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although short-term allograft survival after solid organ transplantation has improved during the past two decades, improvement in long-term graft survival has been less pronounced. Common complications after transplantation include chronic allograft rejection, nephrotoxicity from calcineurin inhibitors (CNIs), and systemic hypertension, which all impact posttransplantation morbidity and mortality. Endothelin (ET)-1, a potent endogenous vasoconstrictor, inducer of fibrosis, and vascular smooth muscle cell proliferation, may play a key role in both the development of CNI-induced nephrotoxicity and endothelial vasculopathy in chronic allograft rejection. ET-1 levels increase after isograft implantation, and ET-1 plays a key role in CNI-induced renal vasoconstriction, sodium retention, and hypertension. Preclinical studies have demonstrated that endothelin receptor antagonists (ERAs) can reduce or prevent CNI-induced hypertension after renal transplantation. In addition, ERAs can ameliorate CNI-induced renal vasoconstriction and improve proteinuria and preserve renal function in animal models of renal transplantation. ET-1 may also play a significant role in cardiac allograft vasculopathy, and in animal models, ERAs improve pulmonary function and ischemic-reperfusion injury in lung transplantation and hepatic function and structure in liver transplantation. Emerging pharmacokinetic data suggest that the selective ERA ambrisentan may be used safely in conjunction with the most commonly used immunosuppressive agents tacrolimus and mycophenolate, albeit with appropriate dose adjustment. The weight of available evidence pointing toward a potential beneficial role of ERAs in ameliorating common complications after solid organ transplantation must be balanced with potential toxicities of ERAs but suggests that a randomized clinical trial of ERAs in transplant patients is warranted.
Collapse
|
48
|
Maguire JJ, Kuc RE, Davenport AP. Defining the affinity and receptor sub-type selectivity of four classes of endothelin antagonists in clinically relevant human cardiovascular tissues. Life Sci 2012; 91:681-6. [PMID: 22634326 DOI: 10.1016/j.lfs.2012.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 12/30/2022]
Abstract
AIMS We have compared the endothelin receptor subtype affinity (K(D)) and selectivity of four structural classes of antagonists (peptide, sulphonamide-based, carboxylic acid-based, myceric acid-based) in human cardiovascular tissues to determine whether these are predicted by values reported for human cloned receptors. Additionally, affinities (K(B)) for these antagonists, determined in ET-1-mediated vasoconstriction assays in human blood vessels, were used to identify discrepancies between K(B) and K(D) determined in the same tissues. MAIN METHODS Competition binding experiments were carried out in sections of human left ventricle, coronary artery and homogenates of saphenous vein to determine K(D) values for structurally different ET(A)-selective (FR139317, BMS 182874, S97-139, sitaxentan, ambrisentan) and mixed (PD142893, Ro462005, bosentan, L-749329, SB209670) antagonists. Schild-derived values of antagonist affinity were obtained in vascular functional studies. KEY FINDINGS When compared with previously reported data in human cloned endothelin receptors, those antagonists reported to be ET(A)-selective exhibited even greater ET(A) selectivity in human ventricle (BMS 182874, sitaxentan, ambrisentan) that expressed both receptor subtypes. Those antagonists reported to have <100 fold selectivity in cloned receptors (PD142893, Ro-462005, bosentan, SB209670, L-749329) did not distinguish between receptor subtypes in human left ventricle. For antagonists where we determined affinity in vascular functional and binding assays (Ro462005, bosentan, BMS 182874, L-749329, SB209670) there was no correlation between the degree of discrepancy in K(B) and K(D) and structural class. SIGNIFICANCE For an antagonist to retain ET(A)-selectivity in vivo it may be necessary to identify those compounds that have at least 1000 fold ET(A):ET(B) selectivity in in vitro assays.
Collapse
Affiliation(s)
- Janet J Maguire
- Clinical Pharmacology Unit, University of Cambridge, Level 6 ACCI, Box 110 Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | | | | |
Collapse
|
49
|
|
50
|
Kimura K, Ohkita M, Koyama M, Matsumura Y. Reduced NO production rapidly aggravates renal function through the NF-κB/ET-1/ETA receptor pathway in DOCA-salt-induced hypertensive rats. Life Sci 2012; 91:644-50. [PMID: 22569294 DOI: 10.1016/j.lfs.2012.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 11/30/2022]
Abstract
AIMS It has been reported that endothelin-1 (ET-1) overproduction and reduced nitric oxide (NO) production are closely related to the progression of renal diseases. In the present study, we examined the interrelation between ET-1 and NO system using rats treated with the combination of deoxycorticosterone acetate (DOCA)-salt and a non selective NO synthase inhibitor N(ω)-nitro-L-arginine (NOARG). MAIN METHODS Rats were treated with DOCA-salt (15 mg/kg, plus drinking water containing 1% NaCl) for two weeks, and then additional treatment of NOARG (0.6 mg/ml in the drinking water) was performed for three days. KEY FINDINGS Combined treatment of DOCA-salt and NOARG drastically developed the severe renal dysfunction and tissue injury. This treatment additionally enhanced renal ET-1 production compared to the rats treated with DOCA-salt alone, whereas a selective ET(A) receptor antagonist ABT-627 completely prevented renal dysfunction and tissue injury. On the other hand, combined treatment of DOCA-salt and NOARG induced the phosphorylation of inhibitory protein kappa B (IκB), followed by the activation of nuclear factor-kappa B (NF-κB) in the kidney. In addition, pyrrolidine-dithiocarbamate completely suppressed not only NF-κB activation but also renal dysfunction and ET-1 overproduction. SIGNIFICANCE These results suggest that NF-κB/ET-1/ET(A) receptor-mediated actions are responsible for the increased susceptibility to DOCA-salt induced renal injuries in the case of reduced NO production.
Collapse
Affiliation(s)
- Kimihiro Kimura
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, Japan
| | | | | | | |
Collapse
|