1
|
Ning S, Li J, He M, Yu Y, Guo Z. Androgen receptor alleviates doxorubicin-induced endoplasmic reticulum stress and myocardial injury by interacting with SERCA2a. Free Radic Biol Med 2025; 230:127-137. [PMID: 39947494 DOI: 10.1016/j.freeradbiomed.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
The clinical use of the anticancer drug doxorubicin (DOX) is limited due to its time- and dose-dependent cardiotoxicity. Therefore, there is an urgent need to explore the molecular mechanism and coping strategies for alleviating DOX-induced cardiotoxicity (DIC) and solve the difficulties in clinical application. The role and mechanism of androgen receptor (AR), which is the target of androgen, in DIC remain unclear. Here, we elucidated the molecular mechanisms of AR in DOX-induced cardiotoxicity. Inhibition of AR aggravated the DOX-induced cardiac function impairment, while the activation of AR showed obvious therapeutic effect and rescued cardiac function of rats. AR can physically interact with SERCA2a. Activation of AR participates in the regulation of DOX-induced myocardial injury by modulating SERCA2a, attenuating DOX-induced endoplasmic reticulum stress, improving calcium (Ca2+) cycling homeostasis, and inhibiting ROS levels and apoptosis, thereby participating in the regulation of DOX induced myocardial injury. Altogether, these findings reveal for the first time the relationship and role between AR and SERCA2a in regulating the progression of DIC, suggesting that AR may play a therapeutic role as a new target against DIC.
Collapse
Affiliation(s)
- Shuwei Ning
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Jianhui Li
- Department of Pathology, Xuchang Central Hospital, Xuchang, 461000, China
| | - Mei He
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Yuexin Yu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Mauvais-Jarvis F, Lindsey SH. Metabolic benefits afforded by estradiol and testosterone in both sexes: clinical considerations. J Clin Invest 2024; 134:e180073. [PMID: 39225098 PMCID: PMC11364390 DOI: 10.1172/jci180073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Testosterone (T) and 17β-estradiol (E2) are produced in male and female humans and are potent metabolic regulators in both sexes. When E2 and T production stops or decreases during aging, metabolic dysfunction develops and promotes degenerative metabolic and vascular disease. Here, we discuss the shared benefits afforded by E2 and T for metabolic function human females and males. In females, E2 is central to bone and vascular health, subcutaneous adipose tissue distribution, skeletal muscle insulin sensitivity, antiinflammatory immune function, and mitochondrial health. However, T also plays a role in female skeletal, vascular, and metabolic health. In males, T's conversion to E2 is fundamental to bone and vascular health, as well as prevention of excess visceral adiposity and the promotion of insulin sensitivity via activation of the estrogen receptors. However, T and its metabolite dihydrotestosterone also prevent excess visceral adiposity and promote skeletal muscle growth and insulin sensitivity via activation of the androgen receptor. In conclusion, T and E2 are produced in both sexes at sex-specific concentrations and provide similar and potent metabolic benefits. Optimizing levels of both hormones may be beneficial to protect patients from cardiometabolic disease and frailty during aging, which requires further study.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Medicine Service, Section of Endocrinology, Hormone Therapy Clinic, Southeast Louisiana VA Medical Center, New Orleans, Louisiana, USA
- Deming Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, Louisiana, USA
| | - Sarah H. Lindsey
- Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, Louisiana, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Leek C, Cantu A, Sonti S, Gutierrez MC, Eldredge L, Sajti E, Xu HN, Lingappan K. Role of sex as a biological variable in neonatal alveolar macrophages. Redox Biol 2024; 75:103296. [PMID: 39098263 PMCID: PMC11345582 DOI: 10.1016/j.redox.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The lung macrophages play a crucial role in health and disease. Sexual dimorphism significantly impacts the phenotype and function of tissue-resident macrophages. The primary mechanisms responsible for sexually dimorphic outcomes in bronchopulmonary dysplasia (BPD) remain unidentified. We tested the hypothesis that biological sex plays a crucial role in the transcriptional state of alveolar macrophages, using neonatal murine hyperoxia-induced lung injury as a relevant model for human BPD. The effects of neonatal hyperoxia exposure (95 % FiO2, PND1-5: saccular stage) on the lung myeloid cells acutely after injury and during normoxic recovery were measured. Alveolar macrophages (AM) from room air- and hyperoxia exposed from male and female neonatal murine lungs were subjected to bulk-RNA Sequencing. AMs are significantly depleted in the hyperoxia-exposed lung acutely after injury, with subsequent recovery in both sexes. The transcriptome of the alveolar macrophages is impacted by neonatal hyperoxia exposure and by sex as a biological variable. Pathways related to DNA damage and interferon-signaling were positively enriched in female AMs. Metabolic pathways related to glucose and carbohydrate metabolism were positively enriched in the male AMs, while oxidative phosphorylation was negatively enriched. These pathways were shared with monocytes and airway macrophages from intubated male and female human premature neonates.
Collapse
Affiliation(s)
- Connor Leek
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Abiud Cantu
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Shilpa Sonti
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Manuel Cantu Gutierrez
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Laurie Eldredge
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Washington School of Medicine, Seattle Children's Hospital, WA, USA
| | - Eniko Sajti
- Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, CA, USA
| | - He N Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krithika Lingappan
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA.
| |
Collapse
|
4
|
De Velasco MA, Kura Y, Fujita K, Uemura H. Moving toward improved immune checkpoint immunotherapy for advanced prostate cancer. Int J Urol 2024; 31:307-324. [PMID: 38167824 DOI: 10.1111/iju.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Human prostate cancer is a heterogenous malignancy that responds poorly to immunotherapy targeting immune checkpoints. The immunosuppressive tumor microenvironment that is typical of human prostate cancer has been the main obstacle to these treatments. The effectiveness of these therapies is also hindered by acquired resistance, leading to slow progress in prostate cancer immunotherapy. Results from the highly anticipated late-stage clinical trials of PD-1/PD-L1 immune checkpoint blockade in patients with advanced prostate cancer have highlighted some of the obstacles to immunotherapy. Despite the setbacks, there is much that has been learned about the mechanisms that drive resistance, and new strategies are being developed and tested. Here, we review the status of immune checkpoint blockade and the immunosuppressive tumor microenvironment and discuss factors contributing to innate and adaptive resistance to immune checkpoint blockade within the context of prostate cancer. We then examine current strategies aiming to overcome these challenges as well as prospects.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yurie Kura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
5
|
Quintela-Castro FCDA, Pereira TSS, Alves DB, Chiepe L, Nascimento LS, Chiepe KCMB, Barcelos RM, Costa BM, Enriquez-Martinez OG, Rossoni JV, Bellettini-Santos T. Lipid profile and risk of cardiovascular disease in adult transgender men receiving cross-sex hormone therapy: a systematic review. Nutr Rev 2023; 81:1310-1320. [PMID: 36779324 DOI: 10.1093/nutrit/nuad003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
CONTEXT A recent US national survey of the health status of the male transgender population has raised awareness about the little-studied relationship between testosterone hormone therapy in transgender men and cardiovascular outcomes. OBJECTIVE The aim of this systematic review was to assess the relationship between cross-sex hormone therapy in transgender men and lipid profiles and cardiovascular risk. DATA SOURCES The PubMed, SciELO, SpringerLink, and EBSCOhost databases were searched up to March 2021 for studies assessing the association between cross-sex hormone therapy and the incidence of outcomes related to cardiovascular disease in transgender men over 18 years of age . DATA EXTRACTION Data extracted were sorted into clinical data (systolic, diastolic, and mean blood pressure), anthropometric data (body mass index, weight, waist circumference, fat mass, and lean mass), and biochemical data (triglycerides, total cholesterol, low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], very low-density lipoprotein cholesterol [VLDL-C], and the HDL-C to LDL-C ratio). DATA ANALYSIS Study quality was appraised independently by two reviewers using the Cochrane tools for assessment of methodological quality or risk of bias in nonrandomized studies, and the Newcastle-Ottawa Scale was applied. Of 735 studies identified, 11 were included in the review. Most studies reported no change in cholesterol or triglyceride levels after hormone treatment. A reduction in HDL-C levels was observed in 7 of 11 studies, although this alone cannot be considered a cardiovascular risk factor. Likewise, clinical and anthropometric findings showed no changes predictive of cardiovascular risk. CONCLUSIONS Although these findings suggest that hormone therapy may lead to a decrease in HDL-C levels and an increase in LDL-C levels, they are insufficient to establish a relationship with cardiovascular disease. Furthermore, no significant effects on metabolic and anthropometric values were found. Further studies with higher quality and longer follow-up periods are needed to establish cardiovascular risk. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD 42020212560.
Collapse
Affiliation(s)
| | | | - Danúbia Boy Alves
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Colatina, Espirito Santo, Brazil
| | - Letícia Chiepe
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Colatina, Espirito Santo, Brazil
| | - Laura Sperandio Nascimento
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Colatina, Espirito Santo, Brazil
| | | | - Rafael Mazioli Barcelos
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Colatina, Espirito Santo, Brazil
| | - Bruno Maia Costa
- Department of Health, Multivix College São Mateus, São Mateus, Espirito Santo, Brazil
| | | | - Joamyr Victor Rossoni
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Colatina, Espirito Santo, Brazil
| | - Tatiani Bellettini-Santos
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Colatina, Espirito Santo, Brazil
| |
Collapse
|
6
|
Collins HE. Female cardiovascular biology and resilience in the setting of physiological and pathological stress. Redox Biol 2023; 63:102747. [PMID: 37216702 PMCID: PMC10209889 DOI: 10.1016/j.redox.2023.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
For years, females were thought of as smaller men with complex hormonal cycles; as a result, females have been largely excluded from preclinical and clinical research. However, in the last ten years, with the increased focus on sex as a biological variable, it has become clear that this is not the case, and in fact, male and female cardiovascular biology and cardiac stress responses differ substantially. Premenopausal women are protected from cardiovascular diseases, such as myocardial infarction and resultant heart failure, having preserved cardiac function, reduced adverse remodeling, and increased survival. Many underlying biological processes that contribute to ventricular remodeling differ between the sexes, such as cellular metabolism; immune cell responses; cardiac fibrosis and extracellular matrix remodeling; cardiomyocyte dysfunction; and endothelial biology; however, it is unclear how these changes afford protection to the female heart. Although many of these changes are dependent on protection provided by female sex hormones, several of these changes occur independent of sex hormones, suggesting that the nature of these changes is more complex than initially thought. This may be why studies focused on the cardiovascular benefits of hormone replacement therapy in post-menopausal women have provided mixed results. Some of the complexity likely stems from the fact that the cellular composition of the heart is sexually dimorphic and that in the setting of MI, different subpopulations of these cell types are apparent. Despite the documented sex-differences in cardiovascular (patho)physiology, the underlying mechanisms that contribute are largely unknown due to inconsistent findings amongst investigators and, in some cases, lack of rigor in reporting and consideration of sex-dependent variables. Therefore, this review aims to describe current understanding of the sex-dependent differences in the myocardium in response to physiological and pathological stressors, with a focus on the sex-dependent differences that contribute to post-infarction remodeling and resultant functional decline.
Collapse
Affiliation(s)
- Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, Delia B. Baxter Research Building, University of Louisville, 580 S. Preston S, Louisville, KY 40202, USA.
| |
Collapse
|
7
|
Fairweather D, Beetler DJ, Musigk N, Heidecker B, Lyle MA, Cooper LT, Bruno KA. Sex and gender differences in myocarditis and dilated cardiomyopathy: An update. Front Cardiovasc Med 2023; 10:1129348. [PMID: 36937911 PMCID: PMC10017519 DOI: 10.3389/fcvm.2023.1129348] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
In the past decade there has been a growing interest in understanding sex and gender differences in myocarditis and dilated cardiomyopathy (DCM), and the purpose of this review is to provide an update on this topic including epidemiology, pathogenesis and clinical presentation, diagnosis and management. Recently, many clinical studies have been conducted examining sex differences in myocarditis. Studies consistently report that myocarditis occurs more often in men than women with a sex ratio ranging from 1:2-4 female to male. Studies reveal that DCM also has a sex ratio of around 1:3 women to men and this is also true for familial/genetic forms of DCM. Animal models have demonstrated that DCM develops after myocarditis in susceptible mouse strains and evidence exists for this progress clinically as well. A consistent finding is that myocarditis occurs primarily in men under 50 years of age, but in women after age 50 or post-menopause. In contrast, DCM typically occurs after age 50, although the age that post-myocarditis DCM occurs has not been investigated. In a small study, more men with myocarditis presented with symptoms of chest pain while women presented with dyspnea. Men with myocarditis have been found to have higher levels of heart failure biomarkers soluble ST2, creatine kinase, myoglobin and T helper 17-associated cytokines while women develop a better regulatory immune response. Studies of the pathogenesis of disease have found that Toll-like receptor (TLR)2 and TLR4 signaling pathways play a central role in increasing inflammation during myocarditis and in promoting remodeling and fibrosis that leads to DCM, and all of these pathways are elevated in males. Management of myocarditis follows heart failure guidelines and there are currently no disease-specific therapies. Research on standard heart failure medications reveal important sex differences. Overall, many advances in our understanding of the effect of biologic sex on myocarditis and DCM have occurred over the past decade, but many gaps in our understanding remain. A better understanding of sex and gender effects are needed to develop disease-targeted and individualized medicine approaches in the future.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Nicolas Musigk
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melissa A. Lyle
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Dietrich E, Jomard A, Osto E. Crosstalk between high-density lipoproteins and endothelial cells in health and disease: Insights into sex-dependent modulation. Front Cardiovasc Med 2022; 9:989428. [PMID: 36304545 PMCID: PMC9594152 DOI: 10.3389/fcvm.2022.989428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Intense research in vascular biology has advanced our knowledge of molecular mechanisms of its onset and progression until complications; however, several aspects of the patho-physiology of atherosclerosis remain to be further elucidated. Endothelial cell homeostasis is fundamental to prevent atherosclerosis as the appearance of endothelial cell dysfunction is considered the first pro-atherosclerotic vascular modification. Physiologically, high density lipoproteins (HDLs) exert protective actions for vessels and in particular for ECs. Indeed, HDLs promote endothelial-dependent vasorelaxation, contribute to the regulation of vascular lipid metabolism, and have immune-modulatory, anti-inflammatory and anti-oxidative properties. Sex- and gender-dependent differences are increasingly recognized as important, although not fully elucidated, factors in cardiovascular health and disease patho-physiology. In this review, we highlight the importance of sex hormones and sex-specific gene expression in the regulation of HDL and EC cross-talk and their contribution to cardiovascular disease.
Collapse
Affiliation(s)
- Elisa Dietrich
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Anne Jomard
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Institute for Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Kundu A, Maji S, Kumar S, Bhattacharya S, Chakraborty P, Sarkar J. Clinical aspects and presumed etiology of multisystem inflammatory syndrome in children (MIS-C): A review. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2022; 14:100966. [PMID: 35132389 PMCID: PMC8810427 DOI: 10.1016/j.cegh.2022.100966] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/21/2022] Open
Abstract
The COVID-19 outbreak sparked by SARS-CoV-2, begat significant rates of malady worldwide, where children with an abnormal post-COVID ailment called the Multisystem Inflammatory Syndrome (MIS-C), were reported by April 2020. Here we have reviewed the clinical characteristics of the pediatric patients and the prognosis currently being utilized. A vivid comparison of MIS-C with other clinical conditions has been done. We have addressed the probable etiology and fundamental machinery of the inflammatory reactions, which drive organ failure. The involvement of androgen receptors portrays the likelihood of asymptomatic illness in children below adolescence, contributing to the concept of antibody-dependent enhancement.
Collapse
Key Words
- ACE2, Angiotensin-Converting Enzyme-2
- ADE, Antibody-Dependent Enhancement
- AR, Allosomal Androgen Receptor
- ARDS, Acute Respiratory Distress Syndrome
- BNP, Brain Natriuretic Peptide
- CDC, Centres for Disease Control and Prevention
- CRP, C-reactive protein
- ESR, Erythrocyte Sedimentation Rate
- IVIG, Intravenous Immunoglobulin
- KD, Kawasaki Disease
- Kawasaki disease
- LVEF, Left Ventricular Ejection Fraction
- MIS-C
- MIS-C, Multisystem Inflammatory Syndrome in Children
- Macrophage and antibody-dependent enhancement (ADE)
- Multiorgan failure
- NLRP3, NLR family Pyrin Domain Containing 3
- PCAID, Pediatric COVID-19 Associated Inflammatory Disorder
- PIMS-TS, Pediatric Inflammatory Multisystem Syndrome Temporally Associated
- PPT, Prolonged Prothrombin Time
- PTT, The Prothrombin Time Test
- Pediatric patient
- RT-PCR, Real Time- Polymerase Chain Reaction
- SARS-COV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SARS-CoV-2
- SHLH/MAS, Secondary Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome
- TMPRSS2, Transmembrane Protease, Serine 2
- TNP, Tumour Necrosis Factor
- TSS, Toxic Shock Syndrome
- TTSPs, Type II Transmembrane Serine Protease
Collapse
Affiliation(s)
- Anusrita Kundu
- Department of Botany, Bethune College, Manicktala, Kolkata, West Bengal, 700006, India
| | - Swagata Maji
- Department of Botany, Bethune College, Manicktala, Kolkata, West Bengal, 700006, India
| | - Suchismita Kumar
- Department of Botany, Bethune College, Manicktala, Kolkata, West Bengal, 700006, India
| | - Shreya Bhattacharya
- Department of Botany, Bethune College, Manicktala, Kolkata, West Bengal, 700006, India
| | - Pallab Chakraborty
- Department of Botany, Acharya Prafulla Chandra College, New Barrakpur, Kolkata, West Bengal, 700131, India
| | - Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal, 700084, India,Corresponding author
| |
Collapse
|
10
|
Walker CJ, Schroeder ME, Aguado BA, Anseth KS, Leinwand LA. Matters of the heart: Cellular sex differences. J Mol Cell Cardiol 2021; 160:42-55. [PMID: 34166708 PMCID: PMC8571046 DOI: 10.1016/j.yjmcc.2021.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Nearly all cardiovascular diseases show sexual dimorphisms in prevalence, presentation, and outcomes. Until recently, most clinical trials were carried out in males, and many animal studies either failed to identify the sex of the animals or combined data obtained from males and females. Cellular sex in the heart is relatively understudied and many studies fail to report the sex of the cells used for in vitro experiments. Moreover, in the small number of studies in which sex is reported, most of those studies use male cells. The observation that cells from males and females are inherently different is becoming increasingly clear - either due to acquired differences from hormones and other factors or due to intrinsic differences in genotype (XX or XY). Because of the likely contribution of cellular sex differences in cardiac health and disease, here, we explore differences in mammalian male and female cells in the heart, including the less-studied non-myocyte cell populations. We discuss how the heart's microenvironment impacts male and female cellular phenotypes and vice versa, including how secretory profiles are dependent on cellular sex, and how hormones contribute to sexually dimorphic phenotypes and cellular functions. Intracellular mechanisms that contribute to sex differences, including gene expression and epigenetic remodeling, are also described. Recent single-cell sequencing studies have revealed unexpected sex differences in the composition of cell types in the heart which we discuss. Finally, future recommendations for considering cellular sex differences in the design of bioengineered in vitro disease models of the heart are provided.
Collapse
Affiliation(s)
- Cierra J Walker
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80303, United States of America; Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Megan E Schroeder
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Brian A Aguado
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Kristi S Anseth
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America; Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States of America.
| |
Collapse
|
11
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
12
|
Androgens enhance the ability of intratumoral macrophages to promote breast cancer progression. Oncol Rep 2021; 46:188. [PMID: 34278480 DOI: 10.3892/or.2021.8139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/28/2021] [Indexed: 11/05/2022] Open
Abstract
Androgens are produced locally in breast carcinoma tissues by androgen‑producing enzymes such as 5α‑reductase type 1 (5αRed1) and affect not only breast cancer cells but the tumor microenvironment as well. Tumor‑associated macrophages (TAMs) are primary components of the tumor microenvironment and contribute to tumor progression. Although previous studies suggest that androgen/androgen receptor (AR) signaling in macrophages has important roles in human diseases, androgen action on TAMs has remained largely unknown. We immunolocalized macrophage marker CD163 as well as AR and 5αRed1 in 116 breast carcinomas and correlated them with clinicopathological parameters and clinical outcomes. Moreover, we examined the roles of androgens on macrophages in breast cancer progression using cell lines 4T1 (mouse breast cancer) and RAW264.7 (macrophage) in a tumor‑bearing female BALB/c mouse model. Double immunohistochemistry revealed that AR was sporadically expressed in the macrophages in breast carcinoma tissues. Macrophage infiltration was significantly correlated with an aggressive phenotype of breast carcinomas and worse prognosis, especially in the 5αRed1‑positive group. In a sphere‑forming assay using 4T1 and RAW‑AR cells, which stably express AR, the sphere size was significantly increased due to androgens when 4T1 cells were cocultured with RAW‑AR cells. Furthermore, in vivo experiments revealed that tumor growth and Ki67, a cell proliferation marker, were increased when androgens were stably produced in breast cancer cells and AR was expressed in macrophages. In conclusion, AR is expressed in intratumoral macrophages and is associated with an aggressive phenotype of breast carcinomas, especially when breast cancer cells actively produce androgens. Thus, androgens may enhance the ability of macrophages to promote breast cancer progression.
Collapse
|
13
|
Lanser L, Burkert FR, Thommes L, Egger A, Hoermann G, Kaser S, Pinggera GM, Anliker M, Griesmacher A, Weiss G, Bellmann-Weiler R. Testosterone Deficiency Is a Risk Factor for Severe COVID-19. Front Endocrinol (Lausanne) 2021; 12:694083. [PMID: 34226825 PMCID: PMC8253686 DOI: 10.3389/fendo.2021.694083] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022] Open
Abstract
Background Male sex is related to increased COVID-19 severity and fatality although confirmed infections are similarly distributed between men and women. The aim of this retrospective analysis was to investigate the impact of sex hormones on disease progression and immune activation in men with COVID-19. Patients and Methods We studied for effects of sex hormones on disease severity and immune activation in 377 patients (230 men, 147 women) with PCR-confirmed SARS-CoV-2 infections hospitalized at the Innsbruck University Hospital between February and December 2020. Results Men had more severe COVID-19 with concomitant higher immune system activation upon hospital admission when compared to women. Men with a severe course of infection had lower serum total testosterone (tT) levels whereas luteinizing hormone (LH) and estradiol (E2) levels were within the normal range. tT deficiency was associated with elevated CRP (rs = - 0.567, p < 0.001), IL-6 levels (rs = - 0.563, p < 0.001), lower cholesterol levels (rs = 0.407, p < 0.001) and an increased morbidity and mortality. Men with tT levels < 100 ng/dL had a more than eighteen-fold higher in-hospital mortality risk (OR 18.243 [95%CI 2.301 - 144.639], p = 0.006) compared to men with tT levels > 230 ng/dL. Moreover, while morbidity and mortality showed a positive correlation with E2 levels at admission, we detected a negative correlation with the tT/E2 ratio upon hospital admission. Conclusion Hospitalized men with COVID-19 present with rather low testosterone levels linked to more advanced immune activation, severe clinical manifestations translating into an increased risk for ICU admission or death. The underlying mechanisms remain elusive but may include infection driven hypogonadism as well as inflammation mediated cholesterol reduction causing gonadotropin suppression and impaired androgen formation. Finally, in elderly late onset hypogonadism might also contribute to lower testosterone levels.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | | | - Lis Thommes
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Alexander Egger
- Central Institute for Medical and Chemical Laboratory Diagnosis, Innsbruck University Hospital, Innsbruck, Austria
| | - Gregor Hoermann
- Central Institute for Medical and Chemical Laboratory Diagnosis, Innsbruck University Hospital, Innsbruck, Austria
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - Susanne Kaser
- Department of Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria
| | | | - Markus Anliker
- Central Institute for Medical and Chemical Laboratory Diagnosis, Innsbruck University Hospital, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute for Medical and Chemical Laboratory Diagnosis, Innsbruck University Hospital, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
14
|
Human Umbilical Cord: Information Mine in Sex-Specific Medicine. Life (Basel) 2021; 11:life11010052. [PMID: 33451112 PMCID: PMC7828611 DOI: 10.3390/life11010052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Biological differences between sexes should be considered in all stages of research, as sexual dimorphism starts in utero leading to sex-specific fetal programming. In numerous biomedical fields, there is still a lack of stratification by sex despite primary cultured cells retaining memory of the sex and of the donor. The sex of donors in biological research must be known because variations in cells and cellular components can be used as endpoints, biomarkers and/or targets of pharmacological studies. This selective review focuses on the current findings regarding sex differences observed in the umbilical cord, a widely used source of research samples, both in the blood and in the circulating cells, as well as in the different cellular models obtainable from it. Moreover, an overview on sex differences in fetal programming is reported. As it emerges that the sex variable is still often forgotten in experimental models, we suggest that it should be mandatory to adopt sex-oriented research, because only awareness of these issues can lead to innovative research.
Collapse
|
15
|
Younis JS, Skorecki K, Abassi Z. The Double Edge Sword of Testosterone's Role in the COVID-19 Pandemic. Front Endocrinol (Lausanne) 2021; 12:607179. [PMID: 33796068 PMCID: PMC8009245 DOI: 10.3389/fendo.2021.607179] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a complex disease with a multifaceted set of disturbances involving several mechanisms of health and disease in the human body. Sex hormones, estrogen, and testosterone, seem to play a major role in its pathogenesis, development, spread, severity, and mortalities. Examination of factors such as age, gender, ethnic background, genetic prevalence, and existing co-morbidities, may disclose the mechanisms underlying SARS-CoV-2 infection, morbidity, and mortality, paving the way for COVID-19 amelioration and substantial flattening of the infection curve. In this mini-review, we focus on the role of testosterone through a discussion of the intricate mechanisms of disease development and deterioration. Accumulated evidence suggests that there are links between high level (normal male level) as well as low level (age-related hypogonadism) testosterone in disease progression and expansion, supporting its role as a double-edged sword. Unresolved questions point to the essential need for further targeted studies to substantiate these contrasting mechanisms.
Collapse
Affiliation(s)
- Johnny S. Younis
- Reproductive Medicine, Department of Obstetrics and Gynecology, Baruch Padeh Medical Center, Poriya, Israel
- Azrieili Faculty of Medicine in Galilee, Bar-Ilan University, Safed, Israel
- *Correspondence: Johnny S. Younis,
| | - Karl Skorecki
- Azrieili Faculty of Medicine in Galilee, Bar-Ilan University, Safed, Israel
| | - Zaid Abassi
- Department of Physiology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
16
|
Özdemir BC. Androgen Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:169-183. [PMID: 33123999 DOI: 10.1007/978-3-030-47189-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The key function of mesenchymal/stromal androgen receptor (AR) signaling for prostate development has been well documented by tissue recombination experiments. Some studies have addressed the expression and function of AR in stromal cells in prostate cancer, yet our understanding of the role of stromal AR in other tissues beyond prostate is still insufficient.Genomic analysis has revealed that cellular responses to androgens differ between epithelial and stromal cells. AR in stromal cells seems not to act via classical AR transcription factors such as FOXA1 but rather depends on the JUN/AP1 complex. Stromal AR appears to have tumor-promoting and tumor-protective functions depending on tumor stage. Loss of AR signaling in fibroblasts has been detected already in premalignant lesions in the skin and prostate and has been associated with tumor induction in xenografts of skin cancer and aggressive disease features and poor patient prognosis in prostate cancer. Moreover, AR expression is found on virtually all tissue-infiltrating immune cells and plays critical roles in immune cell function. These findings suggest a potential deleterious impact of current androgen deprivation therapies which inhibit both epithelial and stromal AR, highlighting the need to develop tissue-specific AR inhibitors.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland. .,International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
17
|
Yin H, Favreau-Lessard AJ, deKay JT, Herrmann YR, Robich MP, Koza RA, Prudovsky I, Sawyer DB, Ryzhov S. Protective role of ErbB3 signaling in myeloid cells during adaptation to cardiac pressure overload. J Mol Cell Cardiol 2020; 152:1-16. [PMID: 33259856 DOI: 10.1016/j.yjmcc.2020.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Myeloid cells play an important role in a wide variety of cardiovascular disorders, including both ischemic and non-ischemic cardiomyopathies. Neuregulin-1 (NRG-1)/ErbB signaling has recently emerged as an important factor contributing to the control of inflammatory activation of myeloid cells after an ischemic injury. However, the role of ErbB signaling in myeloid cells in non-ischemic cardiomyopathy is not fully understood. This study investigated the role of ErbB3 receptors in the regulation of early adaptive response using a mouse model of transverse aortic constriction (TAC) for non-ischemic cardiomyopathy. METHODS AND RESULTS TAC surgery was performed in groups of age- and sex-matched myeloid cell-specific ErbB3-deficient mice (ErbB3MyeKO) and control animals (ErbB3MyeWT). The number of cardiac CD45 immune cells, CD11b myeloid cells, Ly6G neutrophils, and Ly6C monocytes was determined using flow cytometric analysis. Five days after TAC, survival was dramatically reduced in male but not female ErbB3MyeKO mice or control animals. The examination of lung weight to body weight ratio suggested that acute pulmonary edema was present in ErbB3MyeKO male mice after TAC. To determine the cellular and molecular mechanisms involved in the increased mortality in ErbB3MyeKO male mice, cardiac cell populations were examined at day 3 post-TAC using flow cytometry. Myeloid cells accumulated in control but not in ErbB3MyeKO male mouse hearts. This was accompanied by increased proliferation of Sca-1 positive non-immune cells (endothelial cells and fibroblasts) in control but not ErbB3MyeKO male mice. No significant differences in intramyocardial accumulation of myeloid cells or proliferation of Sca-1 cells were found between the groups of ErbB3MyeKO and ErbB3MyeWT female mice. An antibody-based protein array analysis revealed that IGF-1 expression was significantly downregulated only in ErbB3MyeKO mice hearts compared to control animals after TAC. CONCLUSION Our data demonstrate the crucial role of myeloid cell-specific ErbB3 signaling in the cardiac accumulation of myeloid cells, which contributes to the activation of cardiac endothelial cells and fibroblasts and development of an early adaptive response to cardiac pressure overload in male mice.
Collapse
Affiliation(s)
- Haifeng Yin
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | | | - Joanne T deKay
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Yodit R Herrmann
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Michael P Robich
- Maine Medical Center Research Institute, Scarborough, ME, United States of America; Maine Medical Center, Cardiovascular Institute, Portland, ME, United States of America
| | - Robert A Koza
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Douglas B Sawyer
- Maine Medical Center Research Institute, Scarborough, ME, United States of America; Maine Medical Center, Cardiovascular Institute, Portland, ME, United States of America
| | - Sergey Ryzhov
- Maine Medical Center Research Institute, Scarborough, ME, United States of America.
| |
Collapse
|
18
|
Wang YH, Wang HS, Shih IH. Verruciform xanthoma: An elderly male genital predominance trend. Australas J Dermatol 2020; 62:e290-e292. [PMID: 33247836 DOI: 10.1111/ajd.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Yu-Hsin Wang
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Aesthetic Medicine, Chang Gung Clinic, Taipei, Taiwan.,Department of Dermatology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsiang Sheng Wang
- Department of Pathology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - I-Hsin Shih
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Aesthetic Medicine, Chang Gung Clinic, Taipei, Taiwan
| |
Collapse
|
19
|
Becerra-Diaz M, Song M, Heller N. Androgen and Androgen Receptors as Regulators of Monocyte and Macrophage Biology in the Healthy and Diseased Lung. Front Immunol 2020; 11:1698. [PMID: 32849595 PMCID: PMC7426504 DOI: 10.3389/fimmu.2020.01698] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Androgens, the predominant male sex hormones, drive the development and maintenance of male characteristics by binding to androgen receptor (AR). As androgens are systemically distributed throughout the whole organism, they affect many tissues and cell types in addition to those in male sexual organs. It is now clear that the immune system is a target of androgen action. In the lungs, many immune cells express ARs and are responsive to androgens. In this review, we describe the effects of androgens and ARs on lung myeloid immune cells-monocytes and macrophages-as they relate to health and disease. In particular, we highlight the effect of androgens on lung diseases, such as asthma, chronic obstructive pulmonary disease and lung fibrosis. We also discuss the therapeutic use of androgens and how circulating androgens correlate with lung disease. In addition to human studies, we also discuss how mouse models have helped to uncover the effect of androgens on monocytes and macrophages in lung disease. Although the role of estrogen and other female hormones has been broadly analyzed in the literature, we focus on the new perspectives of androgens as modulators of the immune system that target myeloid cells during lung inflammation.
Collapse
Affiliation(s)
| | | | - Nicola Heller
- Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
20
|
Henze L, Schwinge D, Schramm C. The Effects of Androgens on T Cells: Clues to Female Predominance in Autoimmune Liver Diseases? Front Immunol 2020; 11:1567. [PMID: 32849531 PMCID: PMC7403493 DOI: 10.3389/fimmu.2020.01567] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The immune system responds differently in women and in men. Generally speaking, adult females show stronger innate and adaptive immune responses than males. This results in lower risk of developing most of the infectious diseases and a better ability to clear viral infection in women (1–5). On the other hand, women are at increased risk of developing autoimmune diseases (AID) such as rheumatoid arthritis, multiple sclerosis (MS), systemic lupus erythematosus (SLE), Sjögren's syndrome, and the autoimmune liver diseases autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) (6). Factors contributing to the female sex bias in autoimmune diseases include environmental exposure, e.g., microbiome, behavior, and genetics including X chromosomal inactivation of genes. Several lines of evidence and clinical observations clearly indicate that sex hormones contribute significantly to disease pathogenesis, and the role of estrogen in autoimmune diseases has been extensively studied. In many of these diseases, including the autoimmune liver diseases, T cells are thought to play an important pathogenetic role. We will use this mini-review to focus on the effects of androgens on T cells and how the two major androgens, testosterone and dihydrotestosterone, potentially contribute to the pathogenesis of autoimmune liver diseases (AILD).
Collapse
Affiliation(s)
- Lara Henze
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Schwinge
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Goren A, McCoy J, Wambier CG, Vano-Galvan S, Shapiro J, Dhurat R, Washenik K, Lotti T. What does androgenetic alopecia have to do with COVID-19? An insight into a potential new therapy. Dermatol Ther 2020; 33:e13365. [PMID: 32237190 PMCID: PMC7228378 DOI: 10.1111/dth.13365] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Andy Goren
- Applied Biology, Inc., Irvine, California, USA
| | - John McCoy
- Applied Biology, Inc., Irvine, California, USA
| | - Carlos G Wambier
- Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Sergio Vano-Galvan
- Trichology Unit, Dermatology Department, Ramon y Cajal Hospital, IRYCIS, University of Alcala, Madrid, Spain
| | - Jerry Shapiro
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Rachita Dhurat
- Department of Dermatology, LTM Medical College & Hospital Sion, Mumbai, India
| | - Kenneth Washenik
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA.,Bosley Medical Group, Beverly Hills, California, USA
| | - Torello Lotti
- Department of Dermatology and Venereology, University of Rome "G.Marconi", Rome, Italy
| |
Collapse
|
22
|
Uçar A. Challenges in the Cross-Sectional Assessment of Cardiovascular Risk in Children with Premature Adrenarche due to the Multifaceted Nature of Atherosclerosis
. Horm Res Paediatr 2019; 87:143-144. [PMID: 28166531 DOI: 10.1159/000455851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
|
23
|
Scott JM, Dillon EL, Kinsky M, Chamberlain A, McCammon S, Jupiter D, Willis M, Hatch S, Richardson G, Danesi C, Randolph K, Durham W, Wright T, Urban R, Sheffield-Moore M. Effects of adjunct testosterone on cardiac morphology and function in advanced cancers: an ancillary analysis of a randomized controlled trial. BMC Cancer 2019; 19:778. [PMID: 31391011 PMCID: PMC6686390 DOI: 10.1186/s12885-019-6006-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adjunct testosterone therapy improves lean body mass, quality of life, and physical activity in patients with advanced cancers; however, the effects of testosterone on cardiac morphology and function are unknown. Accordingly, as an ancillary analysis of a randomized, placebo-controlled trial investigating the efficacy of testosterone supplementation on body composition in men and women with advanced cancers, we explored whether testosterone supplementation could prevent or reverse left ventricular (LV) atrophy and dysfunction. METHODS Men and women recently diagnosed with late stage (≥IIB) or recurrent head and neck or cervical cancer who were scheduled to receive standard of care chemotherapy or concurrent chemoradiation were administered an adjunct 7 week treatment of weekly intramuscular injections of either 100 mg testosterone (T, n = 1 M/5F) or placebo (P, n = 6 M/4F) in a double-blinded randomized fashion. LV morphology (wall thickness), systolic function (ejection fraction, EF), diastolic function (E/A; E'/E), arterial elastance (Ea), end-systolic elastance (Ees), and ventricular-arterial coupling (Ea/Ees) were assessed. RESULTS No significant differences were observed in LV posterior wall thickness in placebo (pre: 1.10 ± 0.1 cm; post: 1.16 ± 0.2 cm; p = 0.11) or testosterone groups (pre: 0.99 ± 0.1 cm; post: 1.14 ± 0.20 cm; p = 0.22). Compared with placebo, testosterone significantly improved LVEF (placebo: - 1.8 ± 4.3%; testosterone: + 6.2 ± 4.3%; p < 0.05), Ea (placebo: 0.0 ± 0.2 mmHg/mL; testosterone: - 0.3 ± 0.2 mmHg/mL; p < 0.05), and Ea/Ees (placebo: 0.0 ± 0.1; testosterone: - 0.2 ± 0.1; p < 0.05). CONCLUSIONS In patients with advanced cancers, testosterone was associated with favorable changes in left ventricular systolic function, arterial elastance, and ventricular-arterial coupling. Given the small sample size, the promising multisystem benefits of testosterone warrants further evaluation in a definitive randomized trial. TRIAL REGISTRATION This study was prospectively registered on ClinicalTrials.gov (NCT00878995; date of registration: April 9, 2009).
Collapse
Affiliation(s)
- Jessica M Scott
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Lichar Dillon
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Michael Kinsky
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Albert Chamberlain
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Susan McCammon
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel Jupiter
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX, USA
| | - Maurice Willis
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sandra Hatch
- Department of Radiation Oncology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gwyn Richardson
- Department of Gynecologic Oncology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher Danesi
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Kathleen Randolph
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Health and Kinesiology, Texas A&M University, 155 Ireland St., College Station, TX, TX 77845, USA
| | - William Durham
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Traver Wright
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Health and Kinesiology, Texas A&M University, 155 Ireland St., College Station, TX, TX 77845, USA
| | - Randall Urban
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Melinda Sheffield-Moore
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA.
- Department of Health and Kinesiology, Texas A&M University, 155 Ireland St., College Station, TX, TX 77845, USA.
| |
Collapse
|
24
|
Chen FF, Song FQ, Chen YQ, Wang ZH, Li YH, Liu MH, Li Y, Song M, Zhang W, Zhao J, Zhong M. Exogenous testosterone alleviates cardiac fibrosis and apoptosis via Gas6/Axl pathway in the senescent mice. Exp Gerontol 2019; 119:128-137. [PMID: 30710682 DOI: 10.1016/j.exger.2019.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Androgen has been implicated in aging-related cardiac remodeling, but its precise role in aging heart remains controversial. We aimed to investigate the role of testosterone in the development of aging-related cardiac remodeling and the mechanisms involved. METHODS Wild type and Axl knockout mice (Axl-/-) were randomized into three groups: the young group (n = 30, 3 months old), the aging group (n = 30, 18 months old), the testosterone undecanoate treatment group (TU, n = 30, 18 months old). Mice in the TU group were given testosterone undecanoate (39 mg/kg) by subcutaneous injection on the back at fifteen-months-old, once a month, a total of three times. The old group received solvent reagent (corn oil) by the same method. RESULTS The aging mice exhibited a decrease in serum testosterone, and Gas6 levels and an increase in apoptosis, and manifested cardiac fibrosis. Testosterone injection to wild type mice increased the levels of testosterone and Gas6 in serum and decreased cardiac apoptosis and fibrosis. Axl-/-mice receiving testosterone injection exhibited no obvious improvement in cardiac remodeling although the levels of testosterone and Gas6 in serum elevated. CONCLUSIONS These data indicated that testosterone replacement therapy (TRT) alleviates cardiac fibrosis and apoptosis, at least in part by enhancing Gas6 expression. Moreover, deletion of Axl disables testosterone, which indicated that Axl is an important downstream regulator of testosterone. TRT would improve aging-related cardiac remolding via Gas6/Axl signaling pathway, implicating its therapeutic potential to treat aging-related heart disease.
Collapse
Affiliation(s)
- Fang-Fang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fang-Qiang Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Critical Care Medicine, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Yan-Qing Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Gerontology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhi-Hao Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Geriatric Medicine, Qilu Hospital of Shandong University; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan, China
| | - Yi-Hui Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming-Hao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, CAMS and PUMC, Beijing, China
| | - Ya Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
25
|
Chaudhari S, Cushen SC, Osikoya O, Jaini PA, Posey R, Mathis KW, Goulopoulou S. Mechanisms of Sex Disparities in Cardiovascular Function and Remodeling. Compr Physiol 2018; 9:375-411. [PMID: 30549017 DOI: 10.1002/cphy.c180003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies demonstrate disparities between men and women in cardiovascular disease prevalence, clinical symptoms, treatments, and outcomes. Enrollment of women in clinical trials is lower than men, and experimental studies investigating molecular mechanisms and efficacy of certain therapeutics in cardiovascular disease have been primarily conducted in male animals. These practices bias data interpretation and limit the implication of research findings in female clinical populations. This review will focus on the biological origins of sex differences in cardiovascular physiology, health, and disease, with an emphasis on the sex hormones, estrogen and testosterone. First, we will briefly discuss epidemiological evidence of sex disparities in cardiovascular disease prevalence and clinical manifestation. Second, we will describe studies suggesting sexual dimorphism in normal cardiovascular function from fetal life to older age. Third, we will summarize and critically discuss the current literature regarding the molecular mechanisms underlying the effects of estrogens and androgens on cardiac and vascular physiology and the contribution of these hormones to sex differences in cardiovascular disease. Fourth, we will present cardiovascular disease risk factors that are positively associated with the female sex, and thus, contributing to increased cardiovascular risk in women. We conclude that inclusion of both men and women in the investigation of the role of estrogens and androgens in cardiovascular physiology will advance our understanding of the mechanisms underlying sex differences in cardiovascular disease. In addition, investigating the role of sex-specific factors in the development of cardiovascular disease will reduce sex and gender disparities in the treatment and diagnosis of cardiovascular disease. © 2019 American Physiological Society. Compr Physiol 9:375-411, 2019.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Paresh A Jaini
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rachel Posey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
26
|
Becerra-Díaz M, Strickland AB, Keselman A, Heller NM. Androgen and Androgen Receptor as Enhancers of M2 Macrophage Polarization in Allergic Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2018; 201:2923-2933. [PMID: 30305328 DOI: 10.4049/jimmunol.1800352] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Allergic asthma is a disease initiated by a breach of the lung mucosal barrier and an inappropriate Th2 inflammatory immune response that results in M2 polarization of alveolar macrophages (AM). The number of M2 macrophages in the airway correlates with asthma severity in humans. Sex differences in asthma suggest that sex hormones modify lung inflammation and macrophage polarization. Asthmatic women have more M2 macrophages than asthmatic men and androgens have been used as an experimental asthma treatment. In this study, we demonstrate that although androgen (dihydrotestosterone) reconstitution of castrated mice reduced lung inflammation in a mouse model of allergic lung inflammation, it enhanced M2 polarization of AM. This indicates a cell-specific role for androgens. Dihydrotestosterone also enhanced IL-4-stimulated M2 macrophage polarization in vitro. Using mice lacking androgen receptor (AR) in monocytes/macrophages (ARfloxLysMCre), we found that male but not female mice exhibited less eosinophil recruitment and lung inflammation due to impaired M2 polarization. There was a reduction in eosinophil-recruiting chemokines and IL-5 in AR-deficient AM. These data reveal an unexpected and novel role for androgen/AR in promoting M2 macrophage polarization. Our findings are also important for understanding pathology in diseases promoted by M2 macrophages and androgens, such as asthma, eosinophilic esophagitis, and prostate cancer, and for designing new approaches to treatment.
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205; and
| | - Ashley B Strickland
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205; and
| | - Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205; and
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205; and .,Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
27
|
Kadel S, Kovats S. Sex Hormones Regulate Innate Immune Cells and Promote Sex Differences in Respiratory Virus Infection. Front Immunol 2018; 9:1653. [PMID: 30079065 PMCID: PMC6062604 DOI: 10.3389/fimmu.2018.01653] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 01/27/2023] Open
Abstract
Sex differences in the incidence and severity of respiratory virus infection are widely documented in humans and murine models and correlate with sex biases in numbers and/or functional responses of innate immune cells in homeostasis and lung infection. Similarly, changes in sex hormone levels upon puberty, pregnancy, and menopause/aging are associated with qualitative and quantitative differences in innate immunity. Immune cells express receptors for estrogens (ERα and ERβ), androgens (AR), and progesterone (PR), and experimental manipulation of sex hormone levels or receptors has revealed that sex hormone receptor activity often underlies sex differences in immune cell numbers and/or functional responses in the respiratory tract. While elegant studies have defined mechanistic roles for sex hormones and receptors in innate immune cells, much remains to be learned about the cellular and molecular mechanisms of action of ER, PR, and AR in myeloid cells and innate lymphocytes to promote the initiation and resolution of antiviral immunity in the lung. Here, we review the literature on sex differences and sex hormone regulation in innate immune cells in the lung in homeostasis and upon respiratory virus infection.
Collapse
Affiliation(s)
- Sapana Kadel
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
28
|
Batton KA, Austin CO, Bruno KA, Burger CD, Shapiro BP, Fairweather D. Sex differences in pulmonary arterial hypertension: role of infection and autoimmunity in the pathogenesis of disease. Biol Sex Differ 2018; 9:15. [PMID: 29669571 PMCID: PMC5907450 DOI: 10.1186/s13293-018-0176-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/09/2018] [Indexed: 01/14/2023] Open
Abstract
Registry data worldwide indicate an overall female predominance for pulmonary arterial hypertension (PAH) of 2–4 over men. Genetic predisposition accounts for only 1–5% of PAH cases, while autoimmune diseases and infections are closely linked to PAH. Idiopathic PAH may include patients with undiagnosed autoimmune diseases based on the relatively high presence of autoantibodies in this group. The two largest PAH registries to date report a sex ratio for autoimmune connective tissue disease-associated PAH of 9:1 female to male, highlighting the need for future studies to analyze subgroup data according to sex. Autoimmune diseases that have been associated with PAH include female-dominant systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome, and thyroiditis as well as male-dominant autoimmune diseases like myocarditis which has been linked to HIV-associated PAH. The sex-specific association of PAH to certain infections and autoimmune diseases suggests that sex hormones and inflammation may play an important role in driving the pathogenesis of disease. However, there is a paucity of data on sex differences in inflammation in PAH, and more research is needed to better understand the pathogenesis underlying PAH in men and women. This review uses data on sex differences in PAH and PAH-associated autoimmune diseases from registries to provide insight into the pathogenesis of disease.
Collapse
Affiliation(s)
- Kyle A Batton
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Charles D Burger
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Brian P Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
29
|
Takov K, Wu J, Denvir MA, Smith LB, Hadoke PWF. The role of androgen receptors in atherosclerosis. Mol Cell Endocrinol 2018; 465:82-91. [PMID: 29024781 DOI: 10.1016/j.mce.2017.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 12/19/2022]
Abstract
Male disadvantage in cardiovascular health is well recognised. However, the influence of androgens on atherosclerosis, one of the major causes of many life-threatening cardiovascular events, is not well understood. With the dramatic increase in clinical prescription of testosterone in the past decade, concerns about the cardiovascular side-effects of androgen supplementation or androgen deprivation therapy are increasing. Potential atheroprotective effects of testosterone could be secondary to (aromatase-mediated) conversion into oestradiol or, alternatively, to direct activation of androgen receptors (AR). Recent development of animal models with cell-specific AR knockout has indicated a complex role for androgen action in atherosclerosis. Most studies suggest androgens are atheroprotective but the precise role of AR remains unclear. Increased use of AR knockout models should clarify the role of AR in atherogenesis and, thus, lead to exploitation of this pathway as a therapeutic target.
Collapse
Affiliation(s)
- Kaloyan Takov
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Junxi Wu
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Martin A Denvir
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Patrick W F Hadoke
- University/ BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
30
|
Boese AC, Chang L, Yin KJ, Chen YE, Lee JP, Hamblin MH. Sex differences in abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol 2018; 314:H1137-H1152. [PMID: 29350999 DOI: 10.1152/ajpheart.00519.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder with a high case fatality rate in the instance of rupture. AAA is a multifactorial disease, and the etiology is still not fully understood. AAA is more likely to occur in men, but women have a greater risk of rupture and worse prognosis. Women are reportedly protected against AAA possibly by premenopausal levels of estrogen and are, on average, diagnosed at older ages than men. Here, we review the present body of research on AAA pathophysiology in humans, animal models, and cultured cells, with an emphasis on sex differences and sex steroid hormone signaling.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Lin Chang
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine , New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| |
Collapse
|
31
|
Abstract
The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function.
Collapse
|
32
|
Elewa YHA, Ichii O, Kon Y. Sex-related differences in autoimmune-induced lung lesions in MRL/MpJ-fas lpr mice are mediated by the development of mediastinal fat-associated lymphoid clusters. Autoimmunity 2017; 50:306-316. [PMID: 28665157 DOI: 10.1080/08916934.2017.1344973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
MRL/MpJ-Faslpr (lpr) mice are a model for autoimmune diseases such as systemic lupus erythematosus (SLE). These diseases mainly affect women, with a 10:1 female-to-male ratio, and cause pleuropulmonary lesions. We previously revealed a correlation between mediastinal fat-associated lymphoid cluster (MFALC) development and cellular infiltration in the lungs of lpr male mice; however, we did not report on MFALCs in females. The purpose of this investigation was to reveal sex-related differences in MFALCs in lpr mice. We compared the morphological features of MFALCs and lung mononuclear cell aggregates (LMCAs) in 5-month-old male and female lpr mice. The females showed significantly elevated anti-dsDNA autoantibody titers and larger MFALCs, with a higher ratio of lymphatic vessel (LV) and high endothelial venule (HEV) areas to MFALC area, and greater numbers of T- and B-cells, macrophages, and proliferating and dendritic cells in MFALCs and LMCAs than males. Our data indicated that MFALCs were more developed and lung lesions were more severe in female than in male lpr mice, thereby suggesting a potential role for LVs and HEVs in the establishment of MFALCs and lung lesions. Further investigation in female lpr mice will be needed for treatment of human respiratory diseases and autoimmune disorders.
Collapse
Affiliation(s)
- Yaser Hosny Ali Elewa
- a Department of Histology and Cytology, Faculty of Veterinary Medicine , Zagazig University , Zagazig , Egypt.,b Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Osamu Ichii
- b Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| | - Yasuhiro Kon
- b Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
33
|
Boese AC, Kim SC, Yin KJ, Lee JP, Hamblin MH. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626075 DOI: 10.1152/ajpheart.00217.2016] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences between women and men are often overlooked and underappreciated when studying the cardiovascular system. It has been long assumed that men and women are physiologically similar, and this notion has resulted in women being clinically evaluated and treated for cardiovascular pathophysiological complications as men. Currently, there is increased recognition of fundamental sex differences in cardiovascular function, anatomy, cell signaling, and pathophysiology. The National Institutes of Health have enacted guidelines expressly to gain knowledge about ways the sexes differ in both normal function and diseases at the various research levels (molecular, cellular, tissue, and organ system). Greater understanding of these sex differences will be used to steer future directions in the biomedical sciences and translational and clinical research. This review describes sex-based differences in the physiology and pathophysiology of the vasculature, with a special emphasis on sex steroid receptor (estrogen and androgen receptor) signaling and their potential impact on vascular function in health and diseases (e.g., atherosclerosis, hypertension, peripheral artery disease, abdominal aortic aneurysms, cerebral aneurysms, and stroke).
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Seong C Kim
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Pyo Lee
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
34
|
Pedersen L, Christensen LL, Pedersen SM, Andersen M. Reduction of calprotectin and phosphate during testosterone therapy in aging men: a randomized controlled trial. J Endocrinol Invest 2017; 40:529-538. [PMID: 28000180 DOI: 10.1007/s40618-016-0597-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/09/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To investigate the effect of testosterone treatment on biomarkers calprotectin, fibroblast growth factor 23 (FGF23), soluble Klotho, phosphate, calcium, parathyroid hormone, creatinine and estimated glomerular filtration rate. DESIGN Randomized, double-blinded, placebo-controlled study. SETTING Odense Androgen Study-the effect of Testim and training in hypogonadal men. PARTICIPANTS Men aged 60-78 years old with a low normal concentration of free of bioavailable testosterone <7.3 nmol/L and waist circumference >94 cm recruited from 2008 to 2009 (N = 48) by advertisement. INTERVENTION Participants were randomized to receive 5-10 g gel/50-100 mg testosterone (Testim®, Ipsen, France) or 5-10 g gel/placebo. RESULTS The plasma levels of calprotectin and phosphate were significantly reduced in the group receiving testosterone therapy (gel) compared to the placebo group (p < 0.05). Testosterone treatment did not have any significant effect on plasma levels of FGF23 or soluble Klotho. The reduction in phosphate levels was inversely associated with bioavailable testosterone. CONCLUSION Compared to the placebo group, 6 months of testosterone therapy (gel) reduced calprotectin and phosphate levels suggesting decreased inflammation and decreased cardiovascular risk.
Collapse
Affiliation(s)
- L Pedersen
- Department of Clinical Chemistry, Holbæk Hospital, Smedelundsgade 60, 4300, Holbæk, Denmark.
| | - L L Christensen
- Department of Endocrinology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - S M Pedersen
- Department of Clinical Chemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| | - M Andersen
- Department of Endocrinology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense, Denmark
| |
Collapse
|
35
|
Horizontal alignment of 5' -> 3' intergene distance segment tropy with respect to the gene as the conserved basis for DNA transcription. Future Sci OA 2017; 3:FSO160. [PMID: 28344824 PMCID: PMC5351715 DOI: 10.4155/fsoa-2016-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/31/2016] [Indexed: 01/31/2023] Open
Abstract
AIM To study the conserved basis for gene expression in comparative cell types at opposite ends of the cell pressuromodulation spectrum, the lymphatic endothelial cell and the blood microvascular capillary endothelial cell. METHODS The mechanism for gene expression is studied in terms of the 5' -> 3' direction paired point tropy quotients (prpTQs) and the final 5' -> 3' direction episodic sub-episode block sums split-integrated weighted average-averaged gene overexpression tropy quotient (esebssiwaagoTQ). RESULTS The final 5' -> 3' esebssiwaagoTQ classifies an lymphatic endothelial cell overexpressed gene as a supra-pressuromodulated gene (esebssiwaagoTQ ≥ 0.25 < 0.75) every time and classifies a blood microvascular capillary endothelial cell overexpressed gene every time as an infra-pressuromodulated gene (esebssiwaagoTQ < 0.25) (100% sensitivity; 100% specificity). CONCLUSION Horizontal alignment of 5' -> 3' intergene distance segment tropy wrt the gene is the basis for DNA transcription in the pressuromodulated state.
Collapse
|
36
|
Mudrovcic N, Arefin S, Van Craenenbroeck AH, Kublickiene K. Endothelial maintenance in health and disease: Importance of sex differences. Pharmacol Res 2017; 119:48-60. [PMID: 28108363 DOI: 10.1016/j.phrs.2017.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
The vascular endothelium has emerged as more than just an inert monolayer of cells lining the vascular bed. It represents the interface between the blood stream and vessel wall, and has a strategic role in regulating vascular homeostasis by the release of vasoactive substances. Endothelial dysfunction contributes to the development and progression of cardiovascular disease. Recognition of sex-specific factors implicated in endothelial cell biology is important for the identification of clinically relevant preventive and/or therapeutic strategies. This review aims to give an overview of the recent advances in understanding the importance of sex specific observations in endothelial maintenance, both in healthy and diseased conditions. The female endothelium is highlighted in the context of polycystic ovary syndrome and pre-eclampsia. Furthermore, sex differences are explored in chronic kidney disease, which is currently appreciated as one of public health priorities. Overall, this review endorses integration of sex analysis in experimental and patient-oriented research in the exciting field of vascular biology.
Collapse
Affiliation(s)
- Neja Mudrovcic
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Amaryllis H Van Craenenbroeck
- Department of Nephrology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium; Department of Clinical Science, Intervention & Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, Intervention & Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Gender Medicine, Department of Medicine-Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
37
|
Franconi F, Rosano G, Basili S, Montella A, Campesi I. Human cells involved in atherosclerosis have a sex. Int J Cardiol 2016; 228:983-1001. [PMID: 27915217 DOI: 10.1016/j.ijcard.2016.11.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/06/2016] [Indexed: 12/30/2022]
Abstract
The influence of sex has been largely described in cardiovascular diseases. Atherosclerosis is a complex process that involves many cell types such as vessel cells, immune cells and endothelial progenitor cells; however, many, if not all, studies do not report the sex of the cells. This review focuses on sex differences in human cells involved in the atherosclerotic process, emphasizing the role of sex hormones. Furthermore, we report sex differences and issues related to the processes that determine the fate of the cells such as apoptotic and autophagic mechanisms. The analysis of the data reveals that there are still many gaps in our knowledge regarding sex influences in atherosclerosis, largely for the cell types that have not been well studied, stressing the urgent need for a clear definition of experimental conditions and the inclusion of both sexes in preclinical studies.
Collapse
Affiliation(s)
- Flavia Franconi
- Assessorato alle Politiche per la Persona of Basilicata Region, Potenza, Italy; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St. George's University of London, United Kingdom
| | - Stefania Basili
- Department of Internal Medicine and Medical Specialties - Research Center on Gender and Evaluation and Promotion of Quality in Medicine (CEQUAM), Sapienza University of Rome, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Osilo, Italy.
| |
Collapse
|
38
|
Deligiannis A, Björnstad H, Carre F, Heidbüchel H, Kouidi E, Panhuyzen-Goedkoop NM, Pigozzi F, Schänzer W, Vanhees L. ESC Study Group of Sports Cardiology Position Paper on adverse cardiovascular effects of doping in athletes. ACTA ACUST UNITED AC 2016; 13:687-94. [PMID: 17001206 DOI: 10.1097/01.hjr.0000224482.95597.7a] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The use of doping substances and methods is extensive not only among elite athletes, but also among amateur and recreational athletes. Many types of drugs are used by athletes to enhance performance, to reduce anxiety, to increase muscle mass, to reduce weight or to mask the use of other drugs during testing. However, the abuse of doping substances and methods has been associated with the occurrence of numerous health side-effects. The adverse effects depend on the type of the consumed drug, as well as the amount and duration of intake and the sensitivity of the body, since there is a large inter-individual variability in responses to a drug. Usually the doses used in sports are much higher than those used for therapeutic purposes and the use of several drugs in combination is frequent, leading to higher risk of side-effects. Among biomedical side-effects of doping, the cardiovascular ones are the most deleterious. Myocardial infarction, hyperlipidemia, hypertension, thrombosis, arrythmogenesis, heart failure and sudden cardiac death have been noted following drug abuse. This paper reviews the literature on the adverse cardiovascular effects after abuse of prohibited substances and methods in athletes, aiming to inform physicians, trainers and athletes and to discourage individuals from using drugs during sports.
Collapse
Affiliation(s)
- Asterios Deligiannis
- Laboratory of Sports Medicine, Aristotle University, Thessaloniki, Greece. stergios@ med.auth.gr
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Androgen actions on endothelium functions and cardiovascular diseases. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2016; 13:183-96. [PMID: 27168746 PMCID: PMC4854959 DOI: 10.11909/j.issn.1671-5411.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genomic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system.
Collapse
|
40
|
Pharmacologic blockade and genetic deletion of androgen receptor attenuates aortic aneurysm formation. J Vasc Surg 2016; 63:1602-1612.e2. [PMID: 26817611 DOI: 10.1016/j.jvs.2015.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/05/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Testosterone is theorized to play a major role in the pathophysiology of abdominal aortic aneurysms (AAAs) because this disease occurs primarily in men. The role of the androgen receptor (AR) in the formation of AAAs has not been well elucidated, and therefore, it is hypothesized that androgen blockade will attenuate experimental aortic aneurysm formation. METHODS Aortas of 8- to 12-week-old male C57Bl/6 wild-type (WT) mice or male AR knockout (AR(-/-)) mice were perfused with purified porcine pancreatic elastase (0.35 U/mL) to induce AAA formation. Two groups of WT male mice were treated with the AR blockers flutamide (50 mg/kg) or ketoconazole (150 mg/kg) twice daily by intraperitoneal injection. Aortas were harvested on day 14 after video micrometry was used to measure AAA diameter. Cytokine arrays and histologic analysis were performed on aortic tissue. Groups were compared using an analysis of variance and a Tukey post hoc test. RESULTS Flutamide and ketoconazole treatment (mean ± standard error of the mean) attenuated AAA formation in WT mice (84.2% ± 22.8% [P = .009] and 91.5% ± 18.2% [P = .037]) compared with WT elastase (121% ± 5.23%). In addition, AR(-/-) mice showed attenuation of AAA growth (64.4% ± 22.7%; P < .0001) compared with WT elastase. Cytokine arrays of aortic tissue revealed decreased levels of proinflammatory cytokines interleukin (IL)-α, IL-6, and IL-17 in flutamide-treated and AR(-/-) groups compared with controls. CONCLUSIONS Pharmacologic and genetic AR blockade cause attenuation of AAA formation. Therapies for AR blockade used in prostate cancer may provide medical treatment to halt progression of AAAs in humans.
Collapse
|
41
|
Huang CK, Luo J, Lai KP, Wang R, Pang H, Chang E, Yan C, Sparks J, Lee SO, Cho J, Chang C. Androgen receptor promotes abdominal aortic aneurysm development via modulating inflammatory interleukin-1α and transforming growth factor-β1 expression. Hypertension 2015; 66:881-91. [PMID: 26324502 DOI: 10.1161/hypertensionaha.115.05654] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sex difference is a risk factor for abdominal aortic aneurysm (AAA) formation yet the reason for male predominance remains unclear. Androgen and the androgen receptor (AR) influence the male sex difference, indicating that AR signaling may affect AAA development. Using angiotensin II–induced AAA in apolipoprotein E null mouse models (82.4% AAA incidence), we found that mice lacking AR failed to develop AAA and aorta had dramatically reduced macrophages infiltration and intact elastic fibers. These findings suggested that AR expression in endothelial cells, macrophages, or smooth muscle cells might play a role in AAA development. Selective knockout of AR in each of these cell types further demonstrated that mice lacking AR in macrophages (20% AAA incidence) or smooth muscle cells (12.5% AAA incidence) but not in endothelial cells (71.4% AAA incidence) had suppressed AAA development. Mechanism dissection showed that AR functioned through modulation of interleukin-1α (IL-1α) and transforming growth factor-β1 signals and by targeting AR with the AR degradation enhancer ASC-J9 led to significant suppression of AAA development. These results demonstrate the underlying mechanism by which AR influences AAA development is through IL-1α and transforming growth factor-β1, and provides a potential new therapy to suppress/prevent AAA by targeting AR with ASC-J9.
Collapse
Affiliation(s)
- Chiung-Kuei Huang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
McGrath KCY, Hill MD, McRobb LS, Heather AK. The androgen receptor drives the sex-specific expression of vascular cell adhesion molecule-1 in endothelial cells but not lipid metabolism genes in monocyte-derived macrophages. Horm Mol Biol Clin Investig 2015; 2:203-9. [PMID: 25961193 DOI: 10.1515/hmbci.2010.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/12/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Anecdotal evidence suggests that male sex hormones are proatherogenic. We hypothesized that the male sex hormone receptor, the androgen receptor (AR), acts as a molecular switch in sex-specific inflammatory signaling in vascular cells. MATERIALS AND METHODS AR expression in human umbilical vein endothelial cells (HUVECs), human monocyte-derived macrophages (MDMs) or HeLa cells was modulated by transfection with AR siRNA or human AR cDNA expression vector. Activity and expression levels were measured by luciferase reporter assays, Western blotting or real-time PCR analysis. RESULTS AR knockdown reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in genetically male HUVECs. Conversely, AR upregulation in genetically female HUVECs induced VCAM-1 expression and increased dihydrotestosterone-stimulated monocyte adhesion. Co-transfection of an AR expression vector with VCAM-1 or NF-κB-reporter vectors into phenotypically female, AR-negative HeLa cells confirmed AR regulation of VCAM-1 expression as well as AR activation of NF-κB. AR upregulation was not sufficient to increase ICAM-1 levels in female HUVECs or lipoprotein metabolism gene expression in female MDMs, despite AR knockdown limiting expression in their male counterparts. CONCLUSIONS AR acts as a molecular switch to induce VCAM-1 expression. Low AR levels in female HUVECs limit NF-κB/VCAM-1 induction and monocyte adhesion and could contribute to the gender bias in cardiovascular disease. Unidentified factors in female cells limit induction of other proatherogenic genes not primarily regulated by NF-κB.
Collapse
|
44
|
Fairweather D. Sex differences in inflammation during atherosclerosis. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 8:49-59. [PMID: 25983559 PMCID: PMC4405090 DOI: 10.4137/cmc.s17068] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is the leading cause of death in the United States and worldwide, yet more men die from atherosclerosis than women, and at a younger age. Women, on the other hand, mainly develop atherosclerosis following menopause, and particularly if they have one or more autoimmune diseases, suggesting that the immune mechanisms that increase disease in men are different from those in women. The key processes in the pathogenesis of atherosclerosis are vascular inflammation, lipid accumulation, intimal thickening and fibrosis, remodeling, and plaque rupture or erosion leading to myocardial infarction and ischemia. Evidence indicates that sex hormones alter the immune response during atherosclerosis, resulting in different disease phenotypes according to sex. Women, for example, respond to infection and damage with increased antibody and autoantibody responses, while men have elevated innate immune activation. This review describes current knowledge regarding sex differences in the inflammatory immune response during atherosclerosis. Understanding sex differences is critical for improving individualized medicine.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
45
|
Agiannitopoulos K, Bakalgianni A, Marouli E, Zormpa I, Manginas A, Papamenzelopoulos S, Lamnissou K. Gender Specificity of a Genetic Variant of Androgen Receptor and Risk of Coronary Artery Disease. J Clin Lab Anal 2015; 30:204-7. [PMID: 25716092 DOI: 10.1002/jcla.21837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Androgens are known to influence the risk of developing cardiovascular diseases. This study aims at investigating the possible association between G1733A polymorphism in the coding region of androgen receptor (AR) gene and premature coronary artery disease (CAD). METHODS A total of 460 Greek subjects were investigated for the G1733A polymorphism. The patient group consisted of 250 CAD individuals, aged less than 58 years, while 210 healthy individuals served as controls. Genotyping was performed using the PCR-RFLP method. RESULTS Significant differences in genotype distribution (P = 0.0067) and allele frequencies (P = 0.0060) have been observed between patients and controls in the women's subgroup. Conversely, the genotype/allele frequencies were similar between patients and controls in the subgroup of men. CONCLUSION We may conclude that the G1733A polymorphism of AR gene could be a useful genetic marker for the assessment of a woman's risk for CAD in our Caucasian Greek population.
Collapse
Affiliation(s)
| | - Angeliki Bakalgianni
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Athens, Greece
| | - Eirini Marouli
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Athens, Greece
| | - Ioanna Zormpa
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Athens, Greece
| | | | | | - Klea Lamnissou
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Athens, Greece
| |
Collapse
|
46
|
Franconi F, Rosano G, Campesi I. Need for gender-specific pre-analytical testing: the dark side of the moon in laboratory testing. Int J Cardiol 2014; 179:514-35. [PMID: 25465806 DOI: 10.1016/j.ijcard.2014.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
Many international organisations encourage studies in a sex-gender perspective. However, research with a gender perspective presents a high degree of complexity, and the inclusion of sex-gender variable in experiments presents many methodological questions, the majority of which are still neglected. Overcoming these issues is fundamental to avoid erroneous results. Here, pre-analytical aspects of the research, such as study design, choice of utilised specimens, sample collection and processing, animal models of diseases, and the observer's role, are discussed. Artefacts in this stage of research could affect the predictive value of all analyses. Furthermore, the standardisation of research subjects according to their lifestyles and, if female, to their life phase and menses or oestrous cycle, is urgent to harmonise research worldwide. A sex-gender-specific attention to pre-analytical aspects could produce a decrease in the time for translation from the bench to bedside. Furthermore, sex-gender-specific pre-clinical pharmacological testing will enable adequate assessment of pharmacokinetic and pharmacodynamic actions of drugs and will enable, where appropriate, an adequate gender-specific clinical development plan. Therefore, sex-gender-specific pre-clinical research will increase the gender equity of care and will produce more evidence-based medicine.
Collapse
Affiliation(s)
- Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy; Vicepresident of Basilicata Region.
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St George's University of London, United Kingdom
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy
| |
Collapse
|
47
|
Reis SLB, Abdo CHN. Benefits and risks of testosterone treatment for hypoactive sexual desire disorder in women: a critical review of studies published in the decades preceding and succeeding the advent of phosphodiesterase type 5 inhibitors. Clinics (Sao Paulo) 2014; 69:294-303. [PMID: 24714838 PMCID: PMC3971358 DOI: 10.6061/clinics/2014(04)11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/10/2013] [Indexed: 01/08/2023] Open
Abstract
With advancing age, there is an increase in the complaints of a lack of a libido in women and erectile dysfunction in men. The efficacy of phosphodiesterase type 5 inhibitors, together with their minimal side effects and ease of administration, revolutionized the treatment of erectile dysfunction. For women, testosterone administration is the principal treatment for hypoactive sexual desire disorder. We sought to evaluate the use of androgens in the treatment of a lack of libido in women, comparing two periods, i.e., before and after the advent of the phosphodiesterase type 5 inhibitors. We also analyzed the risks and benefits of androgen administration. We searched the Latin-American and Caribbean Health Sciences Literature, Cochrane Library, Excerpta Medica, Scientific Electronic Library Online, and Medline (PubMed) databases using the search terms disfunção sexual feminina/female sexual dysfunction, desejo sexual hipoativo/female hypoactive sexual desire disorder, testosterona/testosterone, terapia androgênica em mulheres/androgen therapy in women, and sexualidade/sexuality as well as combinations thereof. We selected articles written in English, Portuguese, or Spanish. After the advent of phosphodiesterase type 5 inhibitors, there was a significant increase in the number of studies aimed at evaluating the use of testosterone in women with hypoactive sexual desire disorder. However, the risks and benefits of testosterone administration have yet to be clarified.
Collapse
Affiliation(s)
- Sandra Léa Bonfim Reis
- Department of Pathophysiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carmita H N Abdo
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
48
|
Inaba T, Kobayashi T, Tsutsui TW, Ogawa M, Uchida M, Tsutsui T. Expression status of mRNA for sex hormone receptors in human dental pulp cells and the response to sex hormones in the cells. Arch Oral Biol 2013; 58:943-50. [DOI: 10.1016/j.archoralbio.2013.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 12/11/2012] [Accepted: 02/02/2013] [Indexed: 01/09/2023]
|
49
|
Spoletini I, Caprio M, Vitale C, Rosano GMC. Androgens and cardiovascular disease: Gender-related differences. ACTA ACUST UNITED AC 2013; 19:82-6. [DOI: 10.1177/1754045313487720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Androgens are known to play a pivotal role in cardiovascular function. However, a definitive explanation as to how their impact differs between genders is yet to be provided. In this review, the existing studies on the link between androgens and cardiovascular disease have been analysed, with a particular focus on the gender-specific differences. Several studies agree that both direct and indirect effects of testosterone on cardiovascular function show a gender-related dimorphism. Consistently, men and women display different responses to androgen supplementation treatment. Post-menopausal women may particularly benefit from testosterone supplementation therapy. Future studies should further clarify the optimal dose and route of administration of testosterone, and more women should be included in clinical trials, in order to identify novel gender-specific targets, and finally to develop therapeutic strategies.
Collapse
Affiliation(s)
- Ilaria Spoletini
- Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Massimiliano Caprio
- Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Cristiana Vitale
- Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Giuseppe MC Rosano
- Centre for Clinical and Basic Research, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
- Laboratory of Vascular Physiology, IRCCS San Raffaele, London, United Kingdom
| |
Collapse
|
50
|
Fairweather D, Cooper LT, Blauwet LA. Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr Probl Cardiol 2013; 38:7-46. [PMID: 23158412 DOI: 10.1016/j.cpcardiol.2012.07.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heart failure due to nonischemic dilated cardiomyopathy (DCM) contributes significantly to the global burden of cardiovascular disease. Myocarditis is, in turn, a major cause of acute DCM in both men and women. However, recent clinical and experimental evidence suggests that the pathogenesis and prognosis of DCM differ between the sexes. This seminar provides a contemporary perspective on the immune mediators of myocarditis, including interdependent elements of the innate and adaptive immune response. The heart's acute response to injury is influenced by sex hormones that appear to determine the subsequent risk of chronic DCM. Preliminary data suggest additional genetic variations may account for some of the differences in epidemiology, left ventricular recovery, and survival between men and women. We highlight the gaps in our knowledge regarding the management of women with acute DCM and discuss emerging therapies, including bromocriptine for the treatment of peripartum cardiomyopathy.
Collapse
|