1
|
Cumming BM, Addicott KW, Maruri F, Pillay V, Asmal R, Moodley S, Barreto-Durate B, Araújo-Pereira M, Mazibuko M, Mhlane Z, Mbatha N, Khan K, Makhari S, Karim F, Peetluk L, Pym AS, Moosa MYS, van der Heijden YF, Sterling TS, Andrade BB, Leslie A, Steyn AJC. Longitudinal mitochondrial bioenergetic signatures of blood monocytes and lymphocytes improve during treatment of drug-susceptible pulmonary tuberculosis patients Monocyte/lymphocyte bioenergetic signatures post-TB treatment. Front Immunol 2024; 15:1465448. [PMID: 39606220 PMCID: PMC11599235 DOI: 10.3389/fimmu.2024.1465448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
The impact of human pulmonary tuberculosis (TB) on the bioenergetic metabolism of circulating immune cells remains elusive, as does the resolution of these effects with TB treatment. In this study, the rates of oxidative phosphorylation (OXPHOS) and glycolysis in circulating lymphocytes and monocytes of patients with drug-susceptible TB at diagnosis, 2 months, and 6 months during treatment, and 12 months after diagnosis were investigated using extracellular flux analysis. At diagnosis, the bioenergetic parameters of both blood lymphocytes and monocytes of TB patients were severely impaired in comparison to non-TB and non-HIV-infected controls. However, most bioenergetic parameters were not affected by HIV status or glycemic index. Treatment of TB patients restored the % spare respiratory capacity (%SRC) of the circulating lymphocytes to that observed in non-TB and non-HIV infected controls by 12 months. Treatment also improved the maximal respiration of circulating lymphocytes and the %SRC of circulating monocytes of the TB patients. Notably, the differential correlation of the clinical and bioenergetic parameters of the monocytes and lymphocytes from the controls and TB patients at baseline and month 12 was consistent with improved metabolic health and resolution of inflammation following successful TB treatment. Network analysis of the bioenergetic parameters of circulating immune cells with serum cytokine levels indicated a highly coordinated immune response at month 6. These findings underscore the importance of metabolic health in combating TB, supporting the need for further investigation of the bioenergetic immunometabolism associated with TB infection for novel therapeutic approaches aimed at bolstering cellular energetics to enhance immune responses and expedite recovery in TB patients.
Collapse
Affiliation(s)
- Bridgette M. Cumming
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Kelvin W. Addicott
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Fernanda Maruri
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Vanessa Pillay
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Rukaya Asmal
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Sashen Moodley
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Beatriz Barreto-Durate
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Mariana Araújo-Pereira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Matilda Mazibuko
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Zoey Mhlane
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nikiwe Mbatha
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Senamile Makhari
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Lauren Peetluk
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Alexander S. Pym
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Yuri F. van der Heijden
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
- Global Division, The Aurum Institute, Johannesburg, South Africa
| | - Timothy S. Sterling
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Bruno B. Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Alasdair Leslie
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College of London, London, United Kingdom
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Bupphathong S, Lim J, Fang HW, Tao HY, Yeh CE, Ku TA, Huang W, Kuo TY, Lin CH. Enhanced Vascular-like Network Formation of Encapsulated HUVECs and ADSCs Coculture in Growth Factors Conjugated GelMA Hydrogels. ACS Biomater Sci Eng 2024; 10:3306-3315. [PMID: 38634810 PMCID: PMC11094682 DOI: 10.1021/acsbiomaterials.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.
Collapse
Affiliation(s)
- Sasinan Bupphathong
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Joshua Lim
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Hsu-Wei Fang
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Hsuan-Ya Tao
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chen-En Yeh
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Tian-An Ku
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Wei Huang
- Department
of Orthodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| | - Ting-Yu Kuo
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
3
|
Nguyen HNT, Vuong CK, Fukushige M, Usuda M, Takagi LK, Yamashita T, Obata-Yasuoka M, Hamada H, Osaka M, Tsukada T, Hiramatsu Y, Ohneda O. Extracellular vesicles derived from SARS-CoV-2 M-protein-induced triple negative breast cancer cells promoted the ability of tissue stem cells supporting cancer progression. Front Oncol 2024; 14:1346312. [PMID: 38515582 PMCID: PMC10955079 DOI: 10.3389/fonc.2024.1346312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction SARS-CoV-2 infection increases the risk of worse outcomes in cancer patients, including those with breast cancer. Our previous study reported that the SARS-CoV-2 membrane protein (M-protein) promotes the malignant transformation of triple-negative breast cancer cells (triple-negative BCC). Methods In the present study, the effects of M-protein on the ability of extracellular vesicles (EV) derived from triple-negative BCC to regulate the functions of tissue stem cells facilitating the tumor microenvironment were examined. Results Our results showed that EV derived from M-protein-induced triple-negative BCC (MpEV) significantly induced the paracrine effects of adipose tissue-derived mesenchymal stem cells (ATMSC) on non-aggressive BCC, promoting the migration, stemness phenotypes, and in vivo metastasis of BCC, which is related to PGE2/IL1 signaling pathways, in comparison to EV derived from normal triple-negative BCC (nEV). In addition to ATMSC, the effects of MpEV on endothelial progenitor cells (EPC), another type of tissue stem cells, were examined. Our data suggested that EPC uptaking MpEV acquired a tumor endothelial cell-like phenotype, with increasing angiogenesis and the ability to support the aggressiveness and metastasis of non-aggressive BCC. Discussion Taken together, our findings suggest the role of SARS-CoV-2 M-protein in altering the cellular communication between cancer cells and other non-cancer cells inside the tumor microenvironment via EV. Specifically, M-proteins induced the ability of EV derived from triple-negative BCC to promote the functions of non-cancer cells, such as tissue stem cells, in tumorigenesis.
Collapse
Affiliation(s)
- Hoai-Nga Thi Nguyen
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Cat-Khanh Vuong
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Mizuho Fukushige
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Momoko Usuda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Liora Kaho Takagi
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Mana Obata-Yasuoka
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Motoo Osaka
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Toru Tsukada
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Sun XX, Nosrati Z, Ko J, Lee CM, Bennewith KL, Bally MB. Induced Vascular Normalization-Can One Force Tumors to Surrender to a Better Microenvironment? Pharmaceutics 2023; 15:2022. [PMID: 37631236 PMCID: PMC10458586 DOI: 10.3390/pharmaceutics15082022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy has changed the way many cancers are being treated. Researchers in the field of immunotherapy and tumor immunology are investigating similar questions: How can the positive benefits achieved with immunotherapies be enhanced? Can this be achieved through combinations with other agents and if so, which ones? In our view, there is an urgent need to improve immunotherapy to make further gains in the overall survival for those patients that should benefit from immunotherapy. While numerous different approaches are being considered, our team believes that drug delivery methods along with appropriately selected small-molecule drugs and drug candidates could help reach the goal of doubling the overall survival rate that is seen in some patients that are given immunotherapeutics. This review article is prepared to address how immunotherapies should be combined with a second treatment using an approach that could realize therapeutic gains 10 years from now. For context, an overview of immunotherapy and cancer angiogenesis is provided. The major targets in angiogenesis that have modulatory effects on the tumor microenvironment and immune cells are highlighted. A combination approach that, for us, has the greatest potential for success involves treatments that will normalize the tumor's blood vessel structure and alter the immune microenvironment to support the action of immunotherapeutics. So, this is reviewed as well. Our focus is to provide an insight into some strategies that will engender vascular normalization that may be better than previously described approaches. The potential for drug delivery systems to promote tumor blood vessel normalization is considered.
Collapse
Affiliation(s)
- Xu Xin Sun
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Zeynab Nosrati
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
| | - Janell Ko
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
| | - Che-Min Lee
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kevin L. Bennewith
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (Z.N.); (J.K.); (C.-M.L.); (K.L.B.); (M.B.B.)
- Interdisciplinary Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals, Vancouver, BC V6N 3P8, Canada
- Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Oon CE, Subramaniam AV, Ooi LY, Yehya AHS, Lee YT, Kaur G, Sasidharan S, Qiu B, Wang X. BZD9L1 benzimidazole analogue hampers colorectal tumor progression by impeding angiogenesis. World J Gastrointest Oncol 2023; 15:810-827. [PMID: 37275453 PMCID: PMC10237024 DOI: 10.4251/wjgo.v15.i5.810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The development of new vasculatures (angiogenesis) is indispensable in supplying oxygen and nutrients to fuel tumor growth. Epigenetic dysregulation in the tumor vasculature is critical to colorectal cancer (CRC) progression. Sirtuin (SIRT) enzymes are highly expressed in blood vessels. BZD9L1 benzimidazole analogue is a SIRT 1 and 2 inhibitor with reported anticancer activities in CRC. However, its role has yet to be explored in CRC tumor angiogenesis.
AIM To investigate the anti-angiogenic potential of BZD9L1 on endothelial cells (EC) in vitro, ex vivo and in HCT116 CRC xenograft in vivo models.
METHODS EA.hy926 EC were treated with half inhibitory concentration (IC50) (2.5 μM), IC50 (5.0 μM), and double IC50 (10.0 μM) of BZD9L1 and assessed for cell proliferation, adhesion and SIRT 1 and 2 protein expression. Next, 2.5 μM and 5.0 μM of BZD9L1 were employed in downstream in vitro assays, including cell cycle, cell death and sprouting in EC. The effect of BZD9L1 on cell adhesion molecules and SIRT 1 and 2 were assessed via real-time quantitative polymerase chain reaction (qPCR). The growth factors secreted by EC post-treatment were evaluated using the Quantibody Human Angiogenesis Array. Indirect co-culture with HCT116 CRC cells was performed to investigate the impact of growth factors modulated by BZD9L1-treated EC on CRC. The effect of BZD9L1 on sprouting impediment and vessel regression was determined using mouse choroids. HCT116 cells were also injected subcutaneously into nude mice and analyzed for the outcome of BZD9L1 on tumor necrosis, Ki67 protein expression indicative of proliferation, cluster of differentiation 31 (CD31) and CD34 EC markers, and SIRT 1 and 2 genes via hematoxylin and eosin, immunohistochemistry and qPCR, respectively.
RESULTS BZD9L1 impeded EC proliferation, adhesion, and spheroid sprouting through the downregulation of intercellular adhesion molecule 1, vascular endothelial cadherin, integrin-alpha V, SIRT1 and SIRT2 genes. The compound also arrested the cells at G1 phase and induced apoptosis in the EC. In mouse choroids, BZD9L1 inhibited sprouting and regressed sprouting vessels compared to the negative control. Compared to the negative control, the compound also reduced the protein levels of angiogenin, basic fibroblast growth factor, platelet-derived growth factor and placental growth factor, which then inhibited HCT116 CRC spheroid invasion in co-culture. In addition, a significant reduction in CRC tumor growth was noted alongside the downregulation of human SIRT1 (hSIRT1), hSIRT2, CD31, and CD34 EC markers and murine SIRT2 gene, while the murine SIRT1 gene remained unaffected, compared to vehicle control. Histology analyses revealed that BZD9L1 at low (50 mg/kg) and high (250 mg/kg) doses reduced Ki-67 protein expression, while BZD9L1 at the high dose diminished tumor necrosis compared to vehicle control.
CONCLUSION These results highlighted the anti-angiogenic potential of BZD9L1 to reduce CRC tumor progression. Furthermore, together with previous anticancer findings, this study provides valuable insights into the potential of BZD9L1 to co-target CRC tumor vasculatures and cancer cells via SIRT1 and/or SIRT2 down-regulation to improve the therapeutic outcome.
Collapse
Affiliation(s)
- Chern Ein Oon
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ayappa V Subramaniam
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Lik Yang Ooi
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ashwaq Hamid Salem Yehya
- Cancer Research, Eman Biodiscoveries, Kedah 08000, Malaysia
- Vatche and Tamar Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Yeuan Ting Lee
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Beiying Qiu
- Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 168751, Singapore
| | - Xiaomeng Wang
- Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore 169857, Singapore
| |
Collapse
|
6
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
7
|
Scott XO, Chen SH, Hadad R, Yavagal D, Peterson EC, Starke RM, Dietrich WD, Keane RW, de Rivero Vaccari JP. Cohort study on the differential expression of inflammatory and angiogenic factors in thrombi, cerebral and peripheral plasma following acute large vessel occlusion stroke. J Cereb Blood Flow Metab 2022; 42:1827-1839. [PMID: 35673992 PMCID: PMC9536118 DOI: 10.1177/0271678x221106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Inflammation plays an important role in the pathogenesis of stroke. The differential expression of inflammatory and angiogenic factors in thrombi and plasma remain undefined. In this observational cohort study, we evaluated angiogenic factors and inflammatory cytokines, in cerebral thrombi, local cerebral plasma (CP), and peripheral plasma (PP) in patients with acute ischemic stroke. Protein analysis of thrombi, CP and PP were used to measure angiogenic and inflammatory proteins using electrochemiluminescence. Our data indicate that VEGF-A, VEGF-C, bFGF, IL-4, IL-13, IL-1β, IL-2, IL-8, IL-16, IL-6 and IL-12p70 were higher in the thrombi of acute ischemic stroke patients than in the CP and PP of stroke patients. Moreover, the protein levels of GM-CSF were lower in the PP than in the CP and the clot. Moreover, VEGF-D, Flt-1, PIGF, TIE-2, IL-5, TNF-β, IL-15, IL-12/IL-23p40, IFN-γ and IL-17A were higher in PP and CP than in thrombi. Our results show that cytokines mediating the inflammatory response and proteins involved in angiogenesis are differentially expressed in thrombi within the cerebral and peripheral circulations. These data highlight the importance of identifying new biomarkers in different compartments of the circulatory system and in thrombi that may be used for the diagnosis and treatment of stroke patients.
Collapse
Affiliation(s)
- Xavier O Scott
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie H Chen
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric C Peterson
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert M Starke
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Goswami AG, Basu S, Huda F, Pant J, Ghosh Kar A, Banerjee T, Shukla VK. An appraisal of vascular endothelial growth factor (VEGF): the dynamic molecule of wound healing and its current clinical applications. Growth Factors 2022; 40:73-88. [PMID: 35584274 DOI: 10.1080/08977194.2022.2074843] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a critical step of wound healing, and its failure leads to chronic wounds. The idea of restoring blood flow to the damaged tissues by promoting neo-angiogenesis is lucrative and has been researched extensively. Vascular endothelial growth factor (VEGF), a key dynamic molecule of angiogenesis has been investigated for its functions. In this review, we aim to appraise its biology, the comprehensive role of this dynamic molecule in the wound healing process, and how this knowledge has been translated in clinical application in various types of wounds. Although, most laboratory research on the use of VEGF is promising, its clinical applications have not met great expectations. We discuss various lacunae that might exist in making its clinical application unsuccessful for commercial use, and provide insight to the foundation for future research.
Collapse
Affiliation(s)
- Aakansha Giri Goswami
- Department of General surgery, All India Institute of Medical Sciences, Rishikesh, India
| | - Somprakas Basu
- Department of General surgery, All India Institute of Medical Sciences, Rishikesh, India
| | - Farhanul Huda
- Department of General surgery, All India Institute of Medical Sciences, Rishikesh, India
| | - Jayanti Pant
- Department of Physiology, All India Institute of Medical Sciences, Rishikesh, India
| | - Amrita Ghosh Kar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Tsuji-Tamura K, Tamura M. Basic fibroblast growth factor uniquely stimulates quiescent vascular smooth muscle cells and induces proliferation and dedifferentiation. FEBS Lett 2022; 596:1686-1699. [PMID: 35363891 DOI: 10.1002/1873-3468.14345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels normally remain stable over the long-term. However, in atherosclerosis, vascular cells leave the quiescent state and enter an activated state. Here, we investigated the factors that trigger breakage of the quiescent state by screening growth factors and cytokines using a vascular smooth muscle cell (SMC) line and an endothelial cell (EC) line. Despite known functions of the tested factors, only basic fibroblast growth factor (bFGF) was identified as a potent trigger of quiescence breakage in SMCs, but not ECs. bFGF disrupted tight SMC-monolayers, and caused morphological changes, proliferation and dedifferentiation. Human primary SMCs, but not ECs, also showed similar results. Aberrant SMC-proliferation is a critical histological event in atherosclerosis. We thus provide further insights into the role of bFGF in vascular pathobiology.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Masato Tamura
- Oral Biochemistry and Molecular Biology, Department of Oral Health Science, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| |
Collapse
|
10
|
Beneficial Effects of Caffeic Acid Phenethyl Ester on Wound Healing in a Diabetic Mouse: Role of VEGF and NO. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Cutaneous wound healing is delayed in patients with diabetes. Caffeic acid phenethyl ester (CAPE) has been identified as an effective constituent of propolis with improved wound healing abilities via an oxidative stress decrease. However, its impact on wound healing in diabetic models and its underlying mechanisms remain unclear. Determining the vascular endothelial growth factor (VEGF) contents in a human vascular smooth muscle cell (VSMC)-conditioned medium was assessed using human VEGF immunoassay and vascular reactivity using porcine coronary artery rings. Later, C57BL/6 or db/db mice were anesthetized, after which a 6-mm biopsy punch was manipulated for perforation via the back skin. Subsequently, CAPE was applied to the wound and changed daily. Furthermore, the injury in each mouse was digitally photographed, and the wound area was quantified. We observed that CAPE increased VEGF levels in human VSMC-conditioned medium, improved endothelium-dependent nitric oxide (NO)-mediated vasorelaxation, inhibited U46619-induced vasoconstriction porcine coronary artery, and enhanced cutaneous wound healing in the diabetic mouse model. Hence, we propose that CAPE improves wound healing in diabetic mice, which is aided by increased VEGF and NO expression.
Collapse
|
11
|
Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int J Biol Macromol 2021; 192:298-322. [PMID: 34634326 DOI: 10.1016/j.ijbiomac.2021.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Today, chronic wound care and management can be regarded as a clinically critical issue. However, the limitations of current approaches for wound healing have encouraged researchers and physicians to develop more efficient alternative approaches. Advances in tissue engineering and regenerative medicine have resulted in the development of promising approaches that can accelerate wound healing and improve the skin regeneration rate and quality. The design and fabrication of scaffolds that can address the multifactorial nature of chronic wound occurrence and provide support for the healing process can be considered an important area requiring improvement. In this regard, polysaccharide-based scaffolds have distinctive properties such as biocompatibility, biodegradability, high water retention capacity and nontoxicity, making them ideal for wound healing applications. Their tunable structure and networked morphology could facilitate a number of functions, such as controlling their diffusion, maintaining wound moisture, absorbing a large amount of exudates and facilitating gas exchange. In this review, the wound healing process and the influential factors, structure and properties of carbohydrate polymers, physical and chemical crosslinking of polysaccharides, scaffold fabrication techniques, and the use of polysaccharide-based scaffolds in skin tissue engineering and wound healing applications are discussed.
Collapse
|
12
|
Kanno C, Kaneko T, Endo M, Kitabatake T, Sakuma T, Kanaya Y, Watanabe Y, Hasegawa H. Anti-VEGFR therapy is one of the healing inhibitors of antiresorptive-related osteonecrosis of the jaw. J Bone Miner Metab 2021; 39:423-429. [PMID: 33196901 DOI: 10.1007/s00774-020-01170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Antiresorptive-related osteonecrosis of the jaw (ARONJ) is a rare but serious adverse event associated with bone-modifying agents (BMAs) and affects patients in the terminal stages of cancer. Molecular targeting drugs (MTDs), anti-vascular endothelial growth factor receptor (VEGFR), and anti-epidermal growth factor receptor (EGFR) drugs are essential in various cancer treatments, although MTDs are risk factors for ARONJ. However, the mechanism through which MTDs affect treatment prognosis of ARONJ remains unclear. Therefore, we investigated the potential inhibitory factors for healing in the conservative therapy of ARONJ with a focus on MTDs. MATERIALS AND METHODS Sixty patients who were administered BMAs for the treatment of malignancies and who underwent conservative treatment for ARONJ were assessed. The healing rate of ARONJ for each risk factor was retrospectively evaluated. RESULTS Among the 60 patients, 27 were male and 33 were female. The median age was 67 years, and the median follow-up period was 292 (range 91-1758) days. The healing rate was lower in those treated with both zoledronic acid (Za) and denosumab (Dmab) than in those treated with Za or Dmab alone (0% vs. 28.8%, p = 0.03). Regarding the administration of MTDs, the treatment rate with anti-VEGFR drugs was 7.1% (p = 0.04), anti-EGFR drugs was 12.5% (p = 0.18), and without MTDs was 36.8%. CONCLUSION In the conservative treatment of ARONJ, the administration of several BMAs and anti-VEGFR drugs was the factor contributing to the inhibition of healing.
Collapse
Affiliation(s)
- Chihiro Kanno
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima City, Fukushima,, 960-1295, Japan
| | - Tetsuharu Kaneko
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima City, Fukushima,, 960-1295, Japan
| | - Manabu Endo
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima City, Fukushima,, 960-1295, Japan
| | - Takehiro Kitabatake
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima City, Fukushima,, 960-1295, Japan
| | - Tomoko Sakuma
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima City, Fukushima,, 960-1295, Japan
| | - Yoshiaki Kanaya
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima City, Fukushima,, 960-1295, Japan
| | - Yuki Watanabe
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima City, Fukushima,, 960-1295, Japan
| | - Hiroshi Hasegawa
- Department of Oral and Maxillofacial Surgery, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima City, Fukushima,, 960-1295, Japan.
| |
Collapse
|
13
|
FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13061360. [PMID: 33802841 PMCID: PMC8002748 DOI: 10.3390/cancers13061360] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary As the most common primary liver cancer, HCC is a tricky cancer resistant to systemic therapies. The fibroblast growth factor family and its receptors are gaining more and more attention in various cancers. Noticing an explosion in the number of studies about aberrant FGF/FGFR signaling in HCC being studied, we were encouraged to summarize them. This review discusses how FGF/FGFR signaling influences HCC development and its implications in HCC prediction and target treatment, and combination treatment. Abstract Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, ranking third in cancer deaths worldwide. Over the last decade, several studies have emphasized the development of tyrosine kinase inhibitors (TKIs) to target the aberrant pathways in HCC. However, the outcomes are far from satisfactory due to the increasing resistance and adverse effects. The family of fibroblast growth factor (FGF) and its receptors (FGFR) are involved in various biological processes, including embryogenesis, morphogenesis, wound repair, and cell growth. The aberrant FGF/FGFR signaling is also observed in multiple cancers, including HCC. Anti-FGF/FGFR provides delightful benefits for cancer patients, especially those with FGF signaling alteration. More and more multi-kinase inhibitors targeting FGF signaling, pan-FGFR inhibitors, and selective FGFR inhibitors are now under preclinical and clinical investigation. This review summarizes the aberrant FGF/FGFR signaling in HCC initiating, development and treatment status, and provide new insights into the treatment of HCC.
Collapse
|
14
|
Nosrati H, Aramideh Khouy R, Nosrati A, Khodaei M, Banitalebi-Dehkordi M, Ashrafi-Dehkordi K, Sanami S, Alizadeh Z. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J Nanobiotechnology 2021; 19:1. [PMID: 33397416 PMCID: PMC7784275 DOI: 10.1186/s12951-020-00755-7] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/12/2020] [Indexed: 12/23/2022] Open
Abstract
Skin is the body's first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | | | - Ali Nosrati
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| | - Mehdi Banitalebi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Korosh Ashrafi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Jiang Y, Lian XL. Heart regeneration with human pluripotent stem cells: Prospects and challenges. Bioact Mater 2020; 5:74-81. [PMID: 31989061 PMCID: PMC6965207 DOI: 10.1016/j.bioactmat.2020.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease, ranging from congenital heart disease to adult myocardial infarction, is the leading cause of death worldwide. In pursuit of reliable cardiovascular regenerative medicine, human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer plenty of potential cell-based applications. HPSCs are capable of proliferating indefinitely in an undifferentiated state, and are also pluripotent, being able to differentiate into virtually any somatic cell types given specific stepwise cues, thus representing an unlimited source to generate functional cardiovascular cells for heart regeneration. Here we recapitulated current advances in developing efficient protocols to generate hPSC-derived cardiovascular cell lineages, including cardiomyocytes, endothelial cells, and epicardial cells. We also discussed applications of hPSC-derived cells in combination with compatible bioactive materials, promising trials of cell transplantation in animal models of myocardial infarction, and potential hurdles to bring us closer to the ultimate goal of cell-based heart repair. HPSCs hold tremendous therapeutic potential for treating CVDs. HPSCs could differentiate into multiple cardiovascular cell lineages. Transplantation of hPSC-derived cardiovascular cells and biomaterials shows promising results, but challenges still remain.
Collapse
Affiliation(s)
- Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
16
|
Xu H, Zou X, Xia P, Aboudi MAK, Chen R, Huang H. Differential Effects of Platelets Selectively Activated by Protease-Activated Receptors on Meniscal Cells. Am J Sports Med 2020; 48:197-209. [PMID: 31765237 DOI: 10.1177/0363546519886120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscal injury is very common, and injured meniscal tissue has a limited healing ability because of poor vascularity. Platelets contain both pro- and anti-angiogenic factors, which can be released by platelet selective activation. HYPOTHESIS Platelets release a high level of vascular endothelial growth factor (VEGF) when they are activated by protease-activated receptor 1 (PAR1), whereas the platelets release endostatin when they are activated by protease-activated receptor 4 (PAR4). The PAR1-treated platelets enhance the proliferation of meniscal cells in vitro and promote in vivo healing of wounded meniscal tissue. STUDY DESIGN Controlled laboratory study. METHOD Platelets were isolated from human blood and activated with different reagents. The released growth factors from the activated platelets were determined by immunostaining and enzyme-linked immunosorbent assay. The effects of the platelets with different treatments on meniscal cells were tested by an in vitro model of cell culture and an in vivo model of wounded meniscal healing. RESULTS The results indicated that platelets contained both pro- and antiangiogenic factors including VEGF and endostatin. In unactivated platelets, VEGF and endostatin were contained inside of the platelets. Both VEGF and endostatin were released from the platelets when they were activated by thrombin. However, only VEGF was released from the platelets when they were activated by PAR1, and only endostatin was released from the platelets when they were activated by PAR4. The rat meniscal cells grew much faster in the medium that contained PAR1-activated platelets than in the medium that contained either PAR4-activated platelets or unactivated platelets. The wounds treated with PAR1-activated platelets healed faster than those treated with either PAR4-activated platelets or unactivated platelets. Many blood vessel-like structures were found in the wounded menisci treated with PAR1-activated platelets. CONCLUSION The PAR1-activated platelets released high levels of VEGF, which increased the proliferation of rat meniscal cells in vitro, enhanced the vascularization of menisci in vivo, and promoted healing of wounded menisci. CLINICAL RELEVANCE Our results suggested that selective activated platelets can be used clinically to enhance healing of wounded meniscal tissue.
Collapse
Affiliation(s)
- Hongyao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangjie Zou
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengcheng Xia
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mohammad Ahmad Kamal Aboudi
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ran Chen
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - He Huang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.,China Orthopaedic Regeneration Medicine Group, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Itoh T, Hatano R, Komiya E, Otsuka H, Narita Y, Aune TM, Dang NH, Matsuoka S, Naito H, Tominaga M, Takamori K, Morimoto C, Ohnuma K. Biological Effects of IL-26 on T Cell–Mediated Skin Inflammation, Including Psoriasis. J Invest Dermatol 2019; 139:878-889. [DOI: 10.1016/j.jid.2018.09.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
|
18
|
Hoch D, Gauster M, Hauguel-de Mouzon S, Desoye G. Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta. Mol Aspects Med 2019; 66:21-30. [DOI: 10.1016/j.mam.2018.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
19
|
Yang J. The role of reactive oxygen species in angiogenesis and preventing tissue injury after brain ischemia. Microvasc Res 2018; 123:62-67. [PMID: 30594490 DOI: 10.1016/j.mvr.2018.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress, which is defined as an imbalance between proxidant and antioxidant systems, is the essential mechanism involving in the ischemic process. During the early stage of brain ischemia, reactive oxygen species (ROS) are increased. Increased ROS are thought of a consequence of brain ischemia and exacerbating disease due to inducing cell death, apoptosis and senescence by oxidative stress. During brain tissue repair, ROS are act as signaling molecules and may be benefical for regulating angiogenesis and preventing tissue injury. New blood vessel formation is essentially required for rescuing tissue from brain ischemia. In ischemic conditions, ROS promotes angiogenesis, either directly or via the generation of active oxidation products. ROS-induced angiogenesis involves several signaling pathways. This paper reviewed current understanding of the role of ROS as a mediator and modulator of angiogenesis in brain ischemia.
Collapse
Affiliation(s)
- Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang 050000, Hebei Province, China.
| |
Collapse
|
20
|
Lam SF, Shirure VS, Chu YE, Soetikno AG, George SC. Microfluidic device to attain high spatial and temporal control of oxygen. PLoS One 2018; 13:e0209574. [PMID: 30571786 PMCID: PMC6301786 DOI: 10.1371/journal.pone.0209574] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Microfluidic devices have been successfully used to recreate in vitro biological microenvironments, including disease states. However, one constant issue for replicating microenvironments is that atmospheric oxygen concentration (21% O2) does not mimic physiological values (often around 5% O2). We have created a microfluidic device that can control both the spatial and temporal variations in oxygen tensions that are characteristic of in vivo biology. Additionally, since the microcirculation is responsive to hypoxia, we used a 3D sprouting angiogenesis assay to confirm the biological relevance of the microfluidic platform. Our device consists of three parallel connected tissue chambers and an oxygen scavenger channel placed adjacent to these tissue chambers. Experimentally measured oxygen maps were constructed using phosphorescent lifetime imaging microscopy and compared with values from a computational model. The central chamber was loaded with endothelial and fibroblast cells to form a 3D vascular network. Four to six days later, fibroblasts were loaded into the side chambers, and a day later the oxygen scavenger (sodium sulfite) was flowed through the adjacent channel to induce a spatial and temporal oxygen gradient. Our results demonstrate that both constant chronic and intermittent hypoxia can bias vessel growth, with constant chronic hypoxia showing higher degrees of biased angiogenesis. Our simple design provides consistent control of spatial and temporal oxygen gradients in the tissue microenvironment and can be used to investigate important oxygen-dependent biological processes in conditions such as cancer and ischemic heart disease.
Collapse
Affiliation(s)
- Sandra F. Lam
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Venktesh S. Shirure
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Yunli E. Chu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Alan G. Soetikno
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Steven C. George
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| |
Collapse
|
21
|
Vascular smooth muscle cells activate PI3K/Akt pathway to attenuate myocardial ischemia/reperfusion-induced apoptosis and autophagy by secreting bFGF. Biomed Pharmacother 2018; 107:1779-1785. [PMID: 30257397 DOI: 10.1016/j.biopha.2018.05.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Vascular smooth muscle cells (VSMCs) has been reported to be implicated in atherosclerotic plaque instability and rupture. Recently, it has been demonstrated that VSMCs block the progression of cardiac remodeling and thus promoting cardiac function in a rat myocardial infarction model. However, the detailed molecular mechanism of how VSMCs contributes to recovery in myocardial ischemia/reperfusion remains not fully understood. METHODS We have isolated, identified and cultured VSMCs from rats to co-culture with rat cardiomyocyte H9C2. To culture H9C2 cells under hypoxia, we utilized CoCl2-containing medium to culture for 8 h and then was replaced with normal media for additional 16 h. Cell viability was examined by MTT assay and apoptosis was determined by flow cytometry. Infarcted area of myocardial tissue was measured by TTC staining. RESULTS VSMCs was shown to promote cell viability and inhibit apoptosis of H9C2 cells under hypoxia, which exhibited upregulated anti-apoptotic protein Bcl-2 and autophagy-related protein p62, whereas pro-apoptotic protein cleaved caspase-3 and the level of LC3II/LC3I were downregulated. Then, we confirmed VSMCs played the contributory role in cell viability of H9C2 under hypoxia by secreting bFGF, which exerted its function through PI3K/Akt pathway. Finally, in vivo, the results demonstrated that VSMCs transplantation contributed to recovery of myocardial ischemia. CONCLUSION We determine that VSMCs promote recovery of infarcted cardiomyocyte through secretion of bFGF, which then activating PI3K/Akt pathway to inhibit apoptosis and autophagy. These findings provide more insights into the molecular mechanism underlying VSMCs contributing to recovery of myocardial I/R and facilitate developing therapeutical strategies for treating heart diseases.
Collapse
|
22
|
Kovac M, Litvin YA, Aliev RO, Zakirova EY, Rutland CS, Kiyasov AP, Rizvanov AA. Gene Therapy Using Plasmid DNA Encoding VEGF164 and FGF2 Genes: A Novel Treatment of Naturally Occurring Tendinitis and Desmitis in Horses. Front Pharmacol 2018; 9:978. [PMID: 30233367 PMCID: PMC6127648 DOI: 10.3389/fphar.2018.00978] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 11/30/2022] Open
Abstract
This clinical study describes the intralesional application of the plasmid DNA encoding two therapeutic species-specific growth factors: vascular endothelial growth factor (VEGF164) and fibroblast growth factor 2 (FGF2) in seven horses to restore naturally occurring injuries of the superficial digital flexor tendon (SDFT) (tendinitis) and in three horses with suspensory ligament branch desmitis. Following application all horses were able to commence a more rapid exercise program in comparison to standardized exercise programs. Clinical observation and ultrasonic imaging was used to evaluate the regeneration rate of the tendon and ligament injury recovery and to confirm the safety of this gene therapy in horses, throughout a 12 month period. Follow-up data of the horses revealed a positive outcome including significant ultrasonographic and clinical improvements in 8 out of 10 horses with SDFT and suspensory ligament branch lesions, with return to their pre-injury level of performance by 2–6 months after the completion of treatment. The ninth horse initially presenting with severe suspensory ligament branch desmopathy, showed no significant ultrasonographic improvements in the first 2 months after treatment, however, it improved clinically and became less lame. The final horse, presenting with severe tendinitis of the SDFT returned to their pre-injury level of performance, but experienced re-injury 6 months after treatment. This data is highly promising, however, further research in experimental models, with the histopathological, immunohistochemical and gene expression evaluation of the equine tendon/ligament after gene therapy application is required in order to fully understand the mechanisms of action. This treatment and the significant clinical impacts observed represents an important advancement in the field of medicine.
Collapse
Affiliation(s)
- Milomir Kovac
- Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | - Yaroslav A Litvin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ruslan O Aliev
- Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | - Elena Y Zakirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Catrin S Rutland
- School of Veterinary Medicine and Science, Faculty of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Andrey P Kiyasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
23
|
Eddy AC, Bidwell GL, George EM. Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ 2018; 9:36. [PMID: 30144822 PMCID: PMC6109337 DOI: 10.1186/s13293-018-0195-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a pregnancy-induced hypertensive disorder resulting from abnormal placentation, which causes factors such as sFlt-1 to be released into the maternal circulation. Though anti-hypertensive drugs and magnesium sulfate can be given in an effort to moderate symptoms, the syndrome is not well controlled. A hallmark characteristic of preeclampsia, especially early-onset preeclampsia, is angiogenic imbalance resulting from an inappropriately upregulated sFlt-1 acting as a decoy receptor binding vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), reducing their bioavailability. Administration of sFlt-1 leads to a preeclamptic phenotype, and several models of preeclampsia also have elevated levels of plasma sFlt-1, demonstrating its role in driving the progression of this disease. Treatment with either VEGF or PlGF has been effective in attenuating hypertension and proteinuria in multiple models of preeclampsia. VEGF, however, may have overdose toxicity risks that have not been observed in PlGF treatment, suggesting that PlGF is a potentially safer therapeutic option. This review discusses angiogenic balance as it relates to preeclampsia and the studies which have been performed in order to alleviate the imbalance driving the maternal syndrome.
Collapse
Affiliation(s)
- Adrian C Eddy
- Department of Physiology and Biophysics, 2500 N State St, Jackson, MS, 39216, USA
| | - Gene L Bidwell
- Department of Cell and Molecular Biology, 2500 N State St, Jackson, MS, 39216, USA.,Department of Neurology, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Eric M George
- Department of Physiology and Biophysics, 2500 N State St, Jackson, MS, 39216, USA. .,Department of Cell and Molecular Biology, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
24
|
Involvement of Bradykinin B2 Receptor in Pathological Vascularization in Oxygen-Induced Retinopathy in Mice and Rabbit Cornea. Int J Mol Sci 2018; 19:ijms19020330. [PMID: 29360776 PMCID: PMC5855552 DOI: 10.3390/ijms19020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
The identification of components of the kallikrein-kinin system in the vitreous from patients with microvascular retinal diseases suggests that bradykinin (BK) signaling may contribute to pathogenesis of retinal vascular complications. BK receptor 2 (B2R) signaling has been implicated in both pro-inflammatory and pro-angiogenic effects promoted by BK. Here, we investigated the role of BK/B2R signaling in the retinal neovascularization in the oxygen-induced retinopathy (OIR) model. Blockade of B2R signaling by the antagonist fasitibant delayed retinal vascularization in mouse pups, indicating that the retinal endothelium is a target of the BK/B2R system. In the rabbit cornea assay, a model of pathological neoangiogenesis, the B2 agonist kallidin induced vessel sprouting and promoted cornea opacity, a sign of edema and tissue inflammation. In agreement with these results, in the OIR model, a blockade of B2R signaling significantly reduced retinal neovascularization, as determined by the area of retinal tufts, and, in the retinal vessel, it also reduced vascular endothelial growth factor and fibroblast growth factor-2 expression. All together, these findings show that B2R blockade reduces retinal neovascularization and inhibits the expression of proangiogenic and pro-inflammatory cytokines, suggesting that targeting B2R signaling may be an effective strategy for treating ischemic retinopathy.
Collapse
|
25
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
26
|
Shill DD, Polley KR, Willingham TB, Call JA, Murrow JR, McCully KK, Jenkins NT. Experimental intermittent ischemia augments exercise-induced inflammatory cytokine production. J Appl Physiol (1985) 2017; 123:434-441. [DOI: 10.1152/japplphysiol.01006.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
Acute exercise-induced inflammation is implicated in mediating the beneficial adaptations to regular exercise. Evidence suggests that reduced oxygen and/or blood flow to contracting muscle alters cytokine appearance. However, the acute inflammatory responses to hypoxic/ischemic exercise have been documented with inconsistent results and may not accurately reflect the ischemia produced during exercise in patients with ischemic cardiovascular diseases. Therefore, we determined the extent to which local inflammation is involved in the response to ischemic exercise. Fourteen healthy males performed unilateral isometric forearm contractions for 30 min with and without experimental ischemia. Blood was drawn at baseline, 5 and 10 min into exercise, at the end of exercise, and 30, 60, and 120 min after exercise. Oxygen saturation levels, as measured by near-infrared spectroscopy, were reduced by 10% and 41% during nonischemic and ischemic exercise, respectively. Nonischemic exercise did not affect cytokine values. Ischemia enhanced concentrations of basic fibroblast growth factor, interleukin (IL)-6, IL-10, tumor necrosis factor-alpha, and vascular endothelial growth factor during exercise, but IL-8 was not influenced by ischemic exercise. In conclusion, the present study demonstrates that ischemic, small-muscle endurance exercise elicits local inflammatory cytokine production compared with nonischemic exercise. NEW & NOTEWORTHY We demonstrate that ischemic, small-muscle endurance exercise elicits local inflammatory cytokine production compared with nonischemic exercise. The present study advances our knowledge of the inflammatory response to exercise in a partial ischemic state, which may be relevant for understanding the therapeutic effects of exercise training for people with ischemic cardiovascular disease-associated comorbidities.
Collapse
Affiliation(s)
- Daniel D. Shill
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | - Kristine R. Polley
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia
| | | | - Jarrod A. Call
- Department of Kinesiology, University of Georgia, Athens, Georgia
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia; and
| | - Jonathan R. Murrow
- Department of Kinesiology, University of Georgia, Athens, Georgia
- Augusta University-University of Georgia Medical Partnership, Athens, Georgia
| | - Kevin K. McCully
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | | |
Collapse
|
27
|
HIF1A overexpression using cell-penetrating DNA-binding protein induces angiogenesis in vitro and in vivo. Mol Cell Biochem 2017; 437:99-107. [PMID: 28660411 DOI: 10.1007/s11010-017-3098-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
Abstract
Hypoxia-inducible factor-1 alpha (HIF1A) is an important transcription factor for angiogenesis. Recent studies have used the protein transduction domain (PTD) to deliver genes, but the PTD has not been used to induce the expression of HIF1A. This study aimed at using a novel PTD (Hph-1-GAL4; ARVRRRGPRR) to overexpress the HIF1A and identify the effects on angiogenesis in vitro and in vivo. Overexpression of HIF1A was induced using Hph-1-GAL4 in human umbilical vein/vascular endothelium cells (HUVEC). The expression levels of genes were analyzed by the quantitative real-time polymerase chain reaction (qPCR) after 2 and 4 days, respectively. An in vitro tube formation was performed using Diff-Quik staining. HIF1A and Hph-1-GAL4 were injected subcutaneously into the ventral area of each 5-week-old mouse. All of the plugs were retrieved after 1 week, and the gene expression levels were evaluated by qPCR. Each Matrigel plug was evaluated using the hemoglobin assay and hematoxylin and eosin (HE) staining. The expression levels of HIF1A and HIF1A target genes were significantly higher in HIF1A-transfected HUVEC than in control HUVEC in vitro. In the in vivo Matrigel plug assay, the amount of hemoglobin was significantly higher in the HIF1A-treatment group than in the PBS-treatment group. Blood vessels were identified in the HIF1A-treatment group. The expression levels of HIF1A, vascular endothelial growth factor (Vegf), and Cd31 were significantly higher in the HIF1A-treatment group than in the PBS-treatment group. These findings suggest that using Hph-1-G4D to overexpress HIF1A might be useful for transferring genes and regenerating tissues.
Collapse
|
28
|
Andrés-Guerrero V, Perucho-González L, García-Feijoo J, Morales-Fernández L, Saenz-Francés F, Herrero-Vanrell R, Júlvez LP, Llorens VP, Martínez-de-la-Casa JM, Konstas AGP. Current Perspectives on the Use of Anti-VEGF Drugs as Adjuvant Therapy in Glaucoma. Adv Ther 2017; 34:378-395. [PMID: 28000166 PMCID: PMC5331081 DOI: 10.1007/s12325-016-0461-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 12/14/2022]
Abstract
The approval of one of the first anti-vascular endothelial growth factor (VEGF) agents for the treatment of neovascular age-related macular degeneration one decade ago marked the beginning of a new era in the management of several sight-threatening retinal diseases. Since then, emerging evidence has demonstrated the utility of these therapies for the treatment of other ocular conditions characterized by elevated VEGF levels. In this article we review current perspectives on the use of anti-VEGF drugs as adjuvant therapy in the management of neovascular glaucoma (NVG). The use of anti-VEGFs for modifying wound healing in glaucoma filtration surgery (GFS) is also reviewed. Selected studies investigating the use of anti-VEGF agents or antimetabolites in GFS or the management of NVG have demonstrated that these agents can improve surgical outcomes. However, anti-VEGF agents have yet to demonstrate specific advantages over the more established agents commonly used today. Further studies are needed to evaluate the duration of action, dosing intervals, and toxicity profile of these treatments.
Collapse
|
29
|
Zhang J, Yang J, Huang T, Shu Y, Chen L. Identification of novel proliferative diabetic retinopathy related genes on protein–protein interaction network. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.09.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Abstract
The anoxemia theory proposes that an imbalance between the demand for and supply of oxygen in the arterial wall is a key factor in the development of atherosclerosis. There is now substantial evidence that there are regions within the atherosclerotic plaque in which profound hypoxia exists; this may fundamentally change the function, metabolism, and responses of many of the cell types found within the developing plaque and whether the plaque will evolve into a stable or unstable phenotype. Hypoxia is characterized in molecular terms by the stabilization of hypoxia-inducible factor (HIF) 1α, a subunit of the heterodimeric nuclear transcriptional factor HIF-1 and a master regulator of oxygen homeostasis. The expression of HIF-1 is localized to perivascular tissues, inflammatory macrophages, and smooth muscle cells adjacent to the necrotic core of atherosclerotic lesions and regulates several genes that are important to vascular function including vascular endothelial growth factor, nitric oxide synthase, endothelin-1, and erythropoietin. This review summarizes the effects of hypoxia on the functions of cells involved in atherogenesis and the evidence for its potential importance from experimental models and clinical studies.
Collapse
Affiliation(s)
- Gordon A A Ferns
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Lamia Heikal
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
31
|
Harada S, Nakamura Y, Shiraya S, Fujiwara Y, Kishimoto Y, Onohara T, Otsuki Y, Kishimoto S, Yamamoto Y, Hisatome I, Nishimura M. Smooth muscle cell sheet transplantation preserve cardiac function and minimize cardiac remodeling in a rat myocardial infarction model. J Cardiothorac Surg 2016; 11:131. [PMID: 27495170 PMCID: PMC4974781 DOI: 10.1186/s13019-016-0508-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 07/26/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We examined whether a vascular smooth muscle cell (SMC) sheet is effective in the treatment of a rat myocardial infarction (MI) model. METHODS We examined the effect of SMC sheet on the cardiac function and cardiac remodeling in a rat MI model in comparison with their effect of dermal fibroblast (DFB) sheet in vivo. Furthermore, we estimated the apoptosis and secretion of angiogenic factor of SMC under hypoxic condition in comparison with DFB. Seven days after MI, monolayer cell sheets were transplanted on the infarcted area (SMC transplantation group, SMC-Tx; DFB transplantation group, DFB-Tx; no cell sheet transplantation group, Untreated; neither MI nor cell sheet transplantation group, Sham). We evaluated cardiac function by echocardiogram, degree of cardiac remodeling by histological examination, and secretion of angiogenic growth factor by enzyme immunoassay. RESULTS Twenty-eight days after transplantation, SMC-Tx showed the following characteristics compared with the other groups: 1) significantly greater fractional area shortening (SMC-Tx, 32.3 ± 2.1 %; DFB-Tx, 23.3 ± 2.1 %; untreated, 25.1 ± 2.6 %), 2) suppressed left ventricular dilation, smaller scar expansion, and preserved wall thickness of the area at risk and the posterior wall, 3) decreased fibrosis, preserved myocardium in the scar area, and greater number of arterioles in border-zone, 4) tight attachment of SMC sheets on the scarred myocardium, and less apoptotic cell death. In in vitro experiments, SMCs secreted higher amounts of basic fibroblast growth factor (SMC, 157.7 ± 6.4 pg/ml; DFB, 3.1 ± 1.0 pg/ml), and showed less apoptotic cell death under hypoxia. CONCLUSIONS Our results illustrate that transplantation of SMC sheets inhibited the progression of cardiac remodeling and improve cardiac function. These beneficial effects may be due to superior SMC survival.
Collapse
Affiliation(s)
- Shingo Harada
- Division of Organ Regeneration Surgery, Department of Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan.,Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Yoshinobu Nakamura
- Division of Organ Regeneration Surgery, Department of Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Suguru Shiraya
- Division of Organ Regeneration Surgery, Department of Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yoshikazu Fujiwara
- Division of Organ Regeneration Surgery, Department of Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yuichiro Kishimoto
- Division of Organ Regeneration Surgery, Department of Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Takeshi Onohara
- Division of Organ Regeneration Surgery, Department of Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yuki Otsuki
- Division of Organ Regeneration Surgery, Department of Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Satoru Kishimoto
- Division of Organ Regeneration Surgery, Department of Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Yasutaka Yamamoto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Motonobu Nishimura
- Division of Organ Regeneration Surgery, Department of Surgery, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, 683-8504, Japan.
| |
Collapse
|
32
|
Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine. J Clin Med 2016; 5:jcm5060056. [PMID: 27275837 PMCID: PMC4929411 DOI: 10.3390/jcm5060056] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023] Open
Abstract
Stroke is one of the major causes of death and adult disability worldwide. The underlying pathophysiology of stroke is highly complicated, consisting of impairments of multiple signalling pathways, and numerous pathological processes such as acidosis, glutamate excitotoxicity, calcium overload, cerebral inflammation and reactive oxygen species (ROS) generation. The current treatment for ischemic stroke is limited to thromolytics such as recombinant tissue plasminogen activator (tPA). tPA has a very narrow therapeutic window, making it suitable to only a minority of stroke patients. Hence, there is great urgency to develop new therapies that can protect brain tissue from ischemic damage. Recent studies have shown that new vessel formation after stroke not only replenishes blood flow to the ischemic area of the brain, but also promotes neurogenesis and improves neurological functions in both animal models and patients. Therefore, drugs that can promote angiogenesis after ischemic stroke can provide therapeutic benefits in stroke management. In this regard, Chinese herbal medicine (CHM) has a long history in treating stroke and the associated diseases. A number of studies have demonstrated the pro-angiogenic effects of various Chinese herbs and herbal formulations in both in vitro and in vivo settings. In this article, we present a comprehensive review of the current knowledge on angiogenesis in the context of ischemic stroke and discuss the potential use of CHM in stroke management through modulation of angiogenesis.
Collapse
|
33
|
Yu J, Yang LN, Wu YY, Li BH, Weng SM, Hu CL, Han YL. 13-Methyltetradecanoic acid mitigates cerebral ischemia/reperfusion injury. Neural Regen Res 2016; 11:1431-1437. [PMID: 27857745 PMCID: PMC5090844 DOI: 10.4103/1673-5374.191216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
13-Methyltetradecanoic acid can stabilize cell membrane and have anti-inflammatory, antioxidant and anti-apoptotic effects. Previous studies mainly focused on peripheral nerve injury, but seldom on the central nervous system. We investigated whether these properties of 13-methyltetradecanoic acid have a neuroprotective effect on focal cerebral ischemia/reperfusion injury, and detected the expression of basic fibroblast growth factor and vascular endothelial growth factor. This study established rat models of middle cerebral artery occlusion/reperfusion injury by ischemia for 2 hours and reperfusion for 24 hours. At the beginning of reperfusion, 13-methyltetradecanoic acid 10, 40 or 80 mg/kg was injected into the tail vein. Results found that various doses of 13-methyltetradecanoic acid effectively reduced infarct volume, mitigate cerebral edema, and increased the mRNA and protein expression of basic fibroblast growth factor and vascular endothelial growth factor at 24 hours of reperfusion. The effect was most significant in the 13-methyltetradecanoic acid 40 and 80 mg/kg groups. The findings suggest that 13-methyltetradecanoic acid can relieve focal ischemia/reperfusion injury immediately after reperfusion, stimulate the upregulation of basic fibroblast growth factor and vascular endothelial growth factor to exert neuroprotective effects.
Collapse
Affiliation(s)
- Juan Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Li-Nan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yan-Yun Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Bao-Hua Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Sheng-Mei Weng
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chun-Lan Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yong-Ling Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
34
|
Lv X, Yang J, Feng C, Li Z, Chen S, Xie M, Huang J, Li H, Wang H, Xu Y. Bacterial Cellulose-Based Biomimetic Nanofibrous Scaffold with Muscle Cells for Hollow Organ Tissue Engineering. ACS Biomater Sci Eng 2015; 2:19-29. [PMID: 33418641 DOI: 10.1021/acsbiomaterials.5b00259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we built a bilayer nanofibrous material by utilizing the gelatinization properties of potato starch (PS) to interrupt bacterial cellulose (BC) assembly during static culture to create more free spaces within the fibrous network. Then, muscle cells were cultured on the loose surface of the BC/PS scaffolds to build biomaterials for hollow organ reconstruction. Our results showed that the BC/PS scaffolds exhibited similar mechanical characters to those in the traditional BC scaffolds. And the pore sizes and porosities of BC/PS scaffolds could be controlled by adjusting the starch content. The average nanofiber diameters of unmodified BC and BC/PS composites is approximately to that of the urethral acellular matrix. Those scaffolds permit the muscle cells infiltration into the loose layer and the BC/PS membranes with muscle cells could enhance wound healing in vivo and vitro. Our study suggested that the use of bilayer BC/PS nanofibrous scaffolds may lead to improved vessel formation. BC/PS nanofibrous scaffolds with muscle cells enhanced the repair in dog urethral defect models, resulting in patent urethra. Improved organized muscle bundles and epithelial layer were observed in animals treated with BC/PS scaffold seeded by muscle cells compared with those treated with pure BC/PS scaffold. This study suggests that this biomaterial could be suitable for tissue engineered urinary tract reconstruction and this type of composite scaffold could be used for numerous other types of hollow organ tissue engineering grafts, including vascular, bladder, ureter, esophagus, and intestine.
Collapse
Affiliation(s)
- XiangGuo Lv
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - JingXuan Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Chao Feng
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhe Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - ShiYan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - MinKai Xie
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - JianWen Huang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - HongBin Li
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - HuaPing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - YueMin Xu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Eastern Urological Reconstruction and Repair Institute, Shanghai, China
| |
Collapse
|
35
|
Tanaka M, Yamaguchi M, Shiota M, Kawamoto Y, Takahashi K, Inagaki A, Osada-Oka M, Harada A, Wanibuchi H, Izumi Y, Miura K, Iwao H, Ohkawa Y. Establishment of neutralizing rat monoclonal antibodies for fibroblast growth factor-2. Monoclon Antib Immunodiagn Immunother 2015; 33:261-9. [PMID: 25171006 DOI: 10.1089/mab.2013.0085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor-2 (FGF-2) plays a critical role in endothelial survival, proliferation, and angiogenesis and is localized on the cell membrane by binding to heparan sulfate proteoglycans. Here we established a neutralizing monoclonal antibody, 1B9B9, against FGF-2 using the rat medial iliac lymph node method. 1B9B9 blocked the binding of FGF-2 to its receptor, inhibiting FGF-2-induced proliferation and corresponding downstream signaling in endothelial cells. Treatment of human umbilical vein endothelial cells with 1B9B9 reduced the basal phosphorylation levels of Akt and MAPK. Furthermore, continued treatment with 1B9B9 induced cell death by apoptosis. Compared with FGF-2 knockdown, 1B9B9 significantly reduced cell survival. In addition, the combination of FGF-2 siRNA and 1B9B9 showed a synergistic effect. The data indicate that 1B9B9 established by the rat iliac lymph node method is a fully compatible neutralizing antibody.
Collapse
Affiliation(s)
- Masako Tanaka
- 1 Department of Pharmacology, Osaka City University Medical School , Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abbaszadeh M, Aidenloo NS, Nematollahi MK, Motarjemizadeh Q. Investigating the Association between Angiogenic Cytokines and Corneal Neovascularization in Sulfur Mustard Intoxicated Subjects 26 Years after Exposure. Toxicol Int 2015; 21:300-6. [PMID: 25948970 PMCID: PMC4413414 DOI: 10.4103/0971-6580.155375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the associations between the concentrations of three major angiogenic cytokines-vascular endothelial growth factor-A165 (VEGF-A165), basic fibroblast growth factor (bFGF), and platelet-derived growth factor-BB (PDGF-BB)-in the tear of sulfur mustard (SM)-exposed subjects and corneal neovascularization (CNV) 26 years after exposure. MATERIALS AND METHODS The concentrations of VEGF-A, bFGF, and PDGF-BB were measured by enzyme-linked immunosorbent assay (ELISA) in reflex tears of (i) SM-injured patients with CNV (positive case group including 18 individuals) and (ii) SM-injured patients without CNV (negative case group including 22 individuals). Then results were compared to corresponding values obtained from tears of 40 healthy control subjects. RESULTS The mean concentrations of all investigated growth factors, VEGF-A165, bFGF, and PDGF-BB, were significantly higher in positive cases than controls (P ≤ 0.001, P = 0.028, and P = 0.041, respectively). Whereas, VEGF-A165 was the only growth factor which displayed significantly elevated concentrations in negative case group compared to the healthy individuals (P = 0.030). Additionally, the mean level of VEGF-A165 was also higher in positive patient group than negative patients (P = 0.022). Subjects with increased concentrations of tear VEGF-A165 were more than 10 times more likely to suffer from CNV than normal individuals (odds ratio (OR) = 10.43, confidence interval (CI): 2.14-38.46, P = 0.001), while elevated levels of bFGF and PDGF-BB increased the risk of CNV by about twofold. CONCLUSION Although all investigated cytokines had increased in tears of positive patients, VEGF-A was the only one which showed a significant correlation with the severity of CNV, and thus played a crucial role in corneal angiogenesis.
Collapse
|
37
|
|
38
|
Semeraro F, Cancarini A, dell'Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J Diabetes Res 2015; 2015:582060. [PMID: 26137497 PMCID: PMC4475523 DOI: 10.1155/2015/582060] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/03/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in the working-age population of the Western world. The pathogenesis of DR is complex and several vascular, inflammatory, and neuronal mechanisms are involved. Inflammation mediates structural and molecular alterations associated with DR. However, the molecular mechanisms underlying the inflammatory pathways associated with DR are not completely characterized. Previous studies indicate that tissue hypoxia and dysregulation of immune responses associated with diabetes mellitus can induce increased expression of numerous vitreous mediators responsible for DR development. Thus, analysis of vitreous humor obtained from diabetic patients has made it possible to identify some of the mediators (cytokines, chemokines, and other factors) responsible for DR pathogenesis. Further studies are needed to better understand the relationship between inflammation and DR. Herein the main vitreous-related factors triggering the occurrence of retinal complication in diabetes are highlighted.
Collapse
Affiliation(s)
- F. Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - A. Cancarini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - R. dell'Omo
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - S. Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - M. R. Romano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples, Italy
| | - C. Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
- ICRRS Neuromed, Pozzilli, Isernia, Italy
- *C. Costagliola:
| |
Collapse
|
39
|
Baptista V, Marya N, Singh A, Rupawala A, Gondal B, Cave D. Continuing challenges in the diagnosis and management of obscure gastrointestinal bleeding. World J Gastrointest Pathophysiol 2014; 5:523-533. [PMID: 25400996 PMCID: PMC4231517 DOI: 10.4291/wjgp.v5.i4.523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/28/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
The diagnosis and management of obscure gastrointestinal bleeding (OGIB) have changed dramatically since the introduction of video capsule endoscopy (VCE) followed by deep enteroscopy and other imaging technologies in the last decade. Significant advances have been made, yet there remains room for improvement in our diagnostic yield and treatment capabilities for recurrent OGIB. In this review, we will summarize the latest technologies for the diagnosis of OGIB, limitations of VCE, technological enhancement in VCE, and different management options for OGIB.
Collapse
|
40
|
Rolfo C, Bronte G, Sortino G, Papadimitriou K, Passiglia F, Fiorentino E, Marogy G, Russo A, Peeters M. The role of targeted therapy for gastrointestinal tumors. Expert Rev Gastroenterol Hepatol 2014; 8:875-85. [PMID: 24957206 DOI: 10.1586/17474124.2014.922870] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many targeted drugs have been studied to target the molecular pathways involved in the development of gastrointestinal cancers. Anti-VEGF, anti-EGFR agents, and recently also multi-kinase inhibitor regorafenib, have already been available for the treatment of metastatic colorectal cancer patients. To date, Her-2 positive, gastric cancer patients, are also treated with trastuzumab, while the multi-targeted inhibitor, sorafenib, represents the standard treatment for hepatocellular carcinoma patients. Finally, sunitinib and everolimus, have been approved for the treatment of the neuroendocrine gastroenteropancreatic tumors. Actually a great number of further drugs are under preclinical and clinical development. The aim of this review is to provide a comprehensive overview of the state of art, focusing on the new emerging strategies in the personalized treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Christian Rolfo
- Oncology Department, University Hospital Antwerp UZA, University of Antwerp, Wilrijkstraat 10, 2650, Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Talwar T, Srivastava MVP. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery. Ann Indian Acad Neurol 2014; 17:1-6. [PMID: 24753650 PMCID: PMC3992742 DOI: 10.4103/0972-2327.128519] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/02/2013] [Accepted: 12/01/2013] [Indexed: 02/06/2023] Open
Abstract
Stroke is a major health problem world-wide and its burden has been rising in last few decades. Until now tissue plasminogen activator is only approved treatment for stroke. Angiogenesis plays a vital role for striatal neurogenesis after stroke. Administration of various growth factors in an early post ischemic phase, stimulate both angiogenesis and neurogenesis and lead to improved functional recovery after stroke. However vascular endothelial growth factors (VEGF) is the most potent angiogenic factor for neurovascularization and neurogenesis in ischemic injury can be modulated in different ways and thus can be used as therapy in stroke. In response to the ischemic injury VEGF is released by endothelial cells through natural mechanism and leads to angiogenesis and vascularization. This release can also be up regulated by exogenous administration of Mesenchymal stem cells, by various physical therapy regimes and electroacupuncture, which further potentiate the efficacy of VEGF as therapy in post stroke recovery. Recent published literature was searched using PubMed and Google for the article reporting on methods of up regulation of VEGF and therapeutic potential of growth factors in stroke.
Collapse
Affiliation(s)
- Tanu Talwar
- Department of Neurology, AIIMS, New Delhi, India
| | | |
Collapse
|
42
|
Lin HC, Huang YT, Yang YY, Lee PC, Hwang LH, Lee WP, Kuo YJ, Lee KC, Hsieh YC, Liu RS. Beneficial effects of dual vascular endothelial growth factor receptor/fibroblast growth factor receptor inhibitor brivanib alaninate in cirrhotic portal hypertensive rats. J Gastroenterol Hepatol 2014; 29:1073-82. [PMID: 24325631 DOI: 10.1111/jgh.12480] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM Vascular endothelial (VEGF) and fibroblast growth factor (FGF)-induced hepatic stellate (HSCs) and liver endothelial cells (LECs) activation accelerates hepatic fibrogenesis and angiogenesis, and hemodynamic dysarrangements in cirrhosis. VEGF targeting agents had been reported as potential drugs for cirrhosis. However, the evaluation of effects of dual VEGF/FGF targeting agent in cirrhosis is still limited. METHODS Using hemodynamic parameters, blood chemistry, primary isolated HSCs and LECs, histology, and digital imaging, we assess the effects of 2-week brivanib alaninate, a dual VEGFR/FGFR inhibitor, treatment in the pathophysiology of bile duct-ligated-cirrhotic rats. RESULTS Fibrogenic and angiogenic markers in the serum and liver of bile duct-ligated-cirrhotic rats, including hydroxyproline, transforming growth factor-β1, angiopoietin-1, VEGF, FGF-2, endocan and phosphorylated-VEGFR2/VEGFR2, and phosphorylated-FGFR/FGFR together with hepatic CD31/angiopoietin-1 expressions (immunohistochemistry staining), angiogenesis (micro-computed tomography scan), microcirculatory dysfunction (in vivo miscroscopy and in situ liver perfusion study), portal hypertension, and hyperdynamic circulations (colored microsphere methods) were markedly suppressed and ameliorated by brivanib alaninate treatment. In in vitro study, acute brivanib alaninate incubation inhibited the transforming growth factor-β1-induced HSCs contraction/migration and VEGF-induced LECs angiogenesis. Concomitantly, the overexpression of various fibrogenic and angiogenic markers in HSCs and LECs, and in their culture media, was increased in parallel and these changes were suppressed by acute brivanib alaninate incubation. CONCLUSIONS This study demonstrated that brivanib alaninate targeting multiple mechanisms and working in the different pathogenic steps of the complications of cirrhotic rats with portal hypertension.
Collapse
Affiliation(s)
- Han-Chieh Lin
- Division of Gastroenterology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Voronov E, Carmi Y, Apte RN. The role IL-1 in tumor-mediated angiogenesis. Front Physiol 2014; 5:114. [PMID: 24734023 PMCID: PMC3975103 DOI: 10.3389/fphys.2014.00114] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/07/2014] [Indexed: 12/12/2022] Open
Abstract
Tumor angiogenesis is one of the hallmarks of tumor progression and is essential for invasiveness and metastasis. Myeloid inflammatory cells, such as immature myeloid precursor cells, also termed myeloid-derived suppressor cells (MDSCs), neutrophils, and monocytes/macrophages, are recruited to the tumor microenvironment by factors released by the malignant cells that are subsequently “educated” in situ to acquire a pro-invasive, pro-angiogenic, and immunosuppressive phenotype. The proximity of myeloid cells to endothelial cells (ECs) lining blood vessels suggests that they play an important role in the angiogenic response, possibly by secreting a network of cytokines/chemokines and inflammatory mediators, as well as via activation of ECs for proliferation and secretion of pro-angiogenic factors. Interleukin-1 (IL-1) is an “alarm,” upstream, pro-inflammatory cytokine that is generated primarily by myeloid cells. IL-1 initiates and propagates inflammation, mainly by inducing a local cytokine network and enhancing inflammatory cell infiltration to affected sites and by augmenting adhesion molecule expression on ECs and leukocytes. Pro-inflammatory mediators were recently shown to play an important role in tumor-mediated angiogenesis and blocking their function may suppress tumor progression. In this review, we summarize the interactions between IL-1 and other pro-angiogenic factors during normal and pathological conditions. In addition, the feasibility of IL-1 neutralization approaches for anti-cancer therapy is discussed.
Collapse
Affiliation(s)
- Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Yaron Carmi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The Cancer Research Center, Ben-Gurion University of the Negev Beer-Sheva, Israel
| |
Collapse
|
44
|
Xiao L, Ueno D, Catros S, Homer-Bouthiette C, Charles L, Kuhn L, Hurley MM. Fibroblast growth factor-2 isoform (low molecular weight/18 kDa) overexpression in preosteoblast cells promotes bone regeneration in critical size calvarial defects in male mice. Endocrinology 2014; 155:965-74. [PMID: 24424065 PMCID: PMC3929728 DOI: 10.1210/en.2013-1919] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Repair of bone defects remains a significant clinical problem. Bone morphogenetic protein 2 (BMP2) is US Food and Drug Administration-approved for fracture healing but is expensive and has associated morbidity. Studies have shown that targeted overexpression of the 18-kDa low-molecular-weight fibroblast growth factor 2 isoform (LMW) by the osteoblastic lineage of transgenic mice increased bone mass. This study tested the hypotheses that overexpression of LMW would directly enhance healing of a critical size calvarial bone defect in mice and that this overexpression would have a synergistic effect with low-dose administration of BMP2 on critical size calvarial bone defect healing. Bilateral calvarial defects were created in LMW transgenic male mice and control/vector transgenic (Vector) male mice and scaffold with or without BMP2 was placed into the defects. New bone formation was assessed by VIVA-computed tomography of live animals over a 27-week period. Radiographic and computed tomography analysis revealed that at all time points, healing of the defect was enhanced in LMW mice compared with that in Vector mice. Although the very low concentration of BMP2 did not heal the defect in Vector mice, it resulted in complete healing of the defect in LMW mice. Histomorphometric and gene analysis revealed that targeted overexpression of LMW in osteoblast precursors resulted in enhanced calvarial defect healing due to increased osteoblast activity and increased canonical Wnt signaling.
Collapse
Affiliation(s)
- Liping Xiao
- Department of Medicine (L.X., C.H.-B., M.M.H.) and Department of Reconstructive Sciences (L.C., L.K.), University of Connecticut Health Center, Farmington, Connecticut 06030; Unit of Oral and Maxillofacial Implantology (D.U.), Tsurumi University School of Dental Medicine, Yokohama 230, Japan; and Inserm U1026 (S.C.), University of Bordeaux Segalen, 33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Ngangan AV, Waring JC, Cooke MT, Mandrycky CJ, McDevitt TC. Soluble factors secreted by differentiating embryonic stem cells stimulate exogenous cell proliferation and migration. Stem Cell Res Ther 2014; 5:26. [PMID: 24564947 PMCID: PMC4055104 DOI: 10.1186/scrt415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Stem cells are being investigated as catalysts of tissue regeneration to either directly replace or promote cellularity lost as a result of traumatic injury or degenerative disease. In many reports, despite low numbers of stably integrated cells, the transient presence of cells delivered or recruited to sites of tissue remodeling globally benefits functional recovery. Such findings have motivated the need to determine how paracrine factors secreted from transplanted cells may be capable of positively impacting endogenous repair processes and somatic cell responses. METHODS Embryonic stem cells were differentiated as embryoid bodies (EBs) in vitro and media conditioned by EBs were collected at different intervals of time. Gene and protein expression analysis of several different growth factors secreted by EBs were examined by polymerase chain reaction and enzyme-linked immunosorbent assay analysis, respectively, as a function of time. The proliferation and migration of fibroblasts and endothelial cells treated with EB conditioned media was examined compared with unconditioned and growth media controls. RESULTS The expression of several growth factors, including bone morphogenic protein-4, insulin-like growth factors and vascular endothelial growth factor-A, increased during the course of embryonic stem cell (ESC) differentiation as EBs. Conditioned media collected from EBs at different stages of differentiation stimulated proliferation and migration of both fibroblasts and endothelial cells, based on 5-bromo-2'-deoxyuridine incorporation and transwell assays, respectively. CONCLUSIONS Overall, these results demonstrate that differentiating ESCs express increasing amounts of various growth factors over time that altogether are capable of stimulating mitogenic and motogenic activity of exogenous cell populations.
Collapse
|
46
|
Honnami M, Choi S, Liu IL, Kamimura W, Taguchi T, Hojo H, Shimohata N, Ohba S, Koyama H, Nishimura R, Chung UI, Sasaki N, Mochizuki M. Repair of rabbit segmental femoral defects by using a combination of tetrapod-shaped calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel. Biomaterials 2013; 34:9056-62. [DOI: 10.1016/j.biomaterials.2013.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/07/2013] [Indexed: 12/29/2022]
|
47
|
Wang L, Ying YF, Ouyang YL, Wang JF, Xu J. VEGF and bFGF increase survival of xenografted human ovarian tissue in an experimental rabbit model. J Assist Reprod Genet 2013; 30:1301-11. [PMID: 24062194 DOI: 10.1007/s10815-013-0043-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/27/2013] [Indexed: 12/01/2022] Open
Abstract
PURPOSE The aim of this study is to determine whether vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) could increase the survival of xenografted human ovarian tissue in an experimental rabbit model. METHODS Fresh human ovarian tissue was xenotransplanted into the back muscle of 25 castrated female New Zealand rabbits for 6 weeks with the immunosuppression of FTY720 (2 mg/kg/d). Rabbits were randomly divided into five experimental groups: (A) graft and host treatment with VEGF (50 ng/ml); (B) graft and host treatment with bFGF (100 ng/ml); (C) graft and host treatment with VEGF(50 ng/ml) + bFGF (100 ng/ml); (D) graft and host treatment with normal saline; (E) control group, no treatment. 4 weeks after transplantation, human menopausal gonadotropin (HMG) 10 IU was administered every second day in group A, group B, group C and group D for 2 weeks. Graft survival was assessed by graft recovery rate, histological analysis, immunohistochemical staining for CD31 and Ki-67expression, TUNEL assay. RESULTS After 6 weeks of grafting, the number of CD31-positive stained cells increased significantly in group A, group B and group C compared to the control group. All groups showed strong Ki-67 immunostaining in ovarian stroma. Only one rabbit in group C retained the grafts' follicles. Grafting resulted in relative lower fibrosis in group A and group C compared to the control group. Apoptosis was significantly lower in group C compared to the control group. CONCLUSIONS Fresh human ovarian cortex grafted into the back muscle of rabbit can sustain part of ovarian tissue function with the immunosuppression of FTY720, although follicle number diminishes significantly after grafting. The administration of VEGF and bFGF, especially the combination of them, may trigger angiogenesis, reduce apoptosis and fibrosis, increase survival in transplanted human ovarian tissue.
Collapse
Affiliation(s)
- Lin Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | | | | | | | | |
Collapse
|
48
|
Hernández JL, Padilla L, Dakhel S, Coll T, Hervas R, Adan J, Masa M, Mitjans F, Martinez JM, Coma S, Rodríguez L, Noé V, Ciudad CJ, Blasco F, Messeguer R. Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody. PLoS One 2013; 8:e72480. [PMID: 24023743 PMCID: PMC3762817 DOI: 10.1371/journal.pone.0072480] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/10/2013] [Indexed: 01/06/2023] Open
Abstract
S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.
Collapse
Affiliation(s)
| | - Laura Padilla
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - Sheila Dakhel
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - Toni Coll
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - Rosa Hervas
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - Jaume Adan
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - Marc Masa
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | | | | | - Silvia Coma
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Laura Rodríguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Carlos J. Ciudad
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | | | - Ramon Messeguer
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| |
Collapse
|
49
|
Greaves NS, Ashcroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci 2013; 72:206-17. [PMID: 23958517 DOI: 10.1016/j.jdermsci.2013.07.008] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/11/2022]
Abstract
Cutaneous wound healing ultimately functions to facilitate barrier restoration following injury-induced loss of skin integrity. It is an evolutionarily conserved, multi-cellular, multi-molecular process involving co-ordinated inter-play between complex signalling networks. Cellular proliferation is recognised as the third stage of this sequence. Within this phase, fibroplasia and angiogenesis are co-dependent processes which must be successfully completed in order to form an evolving extracellular matrix and granulation tissue. The resultant structures guide cellular infiltration, differentiation and secretory profile within the wound environment and consequently have major influence on the success or failure of wound healing. This review integrates in vitro, animal and human in vivo studies, to provide up to date descriptions of molecular and cellular interactions involved in fibroplasia and angiogenesis. Significant molecular networks include adhesion molecules, proteinases, cytokines and chemokines as well as a plethora of growth factors. These signals are produced by, and affect behaviour of, cells including fibroblasts, fibrocytes, keratinocytes, endothelial cells and inflammatory cells resulting in significant cellular phenotypic and functional plasticity, as well as controlling composition and remodelling of structural proteins including collagen and fibronectin. The interdependent relationship between angiogenesis and fibroplasia relies on dynamic reciprocity between cellular components, matrix proteins and bioactive molecules. Unbalanced regulation of any one component can have significant consequences resulting in delayed healing, chronic wounds or abnormal scar formation. Greater understanding of angiogenic and fibroplastic mechanisms underlying chronic wound pathogenesis has identified novel therapeutic targets and enabled development of improved treatment strategies including topical growth factors and skin substitutes.
Collapse
Affiliation(s)
- Nicholas S Greaves
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, UK; The University of Manchester, Manchester Academic Health Science Centre, University Hospital South Manchester Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | | | | | | |
Collapse
|
50
|
Chiu CZ, Wang BW, Shyu KG. Effects of cyclic stretch on the molecular regulation of myocardin in rat aortic vascular smooth muscle cells. J Biomed Sci 2013; 20:50. [PMID: 23855625 PMCID: PMC3734126 DOI: 10.1186/1423-0127-20-50] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The expression of myocardin, a cardiac-restricted gene, increases during environmental stress. How mechanical stretch affects the regulation of myocardin in vascular smooth muscle cells (VSMCs) is not fully understood. We identify the mechanisms and pathways through which mechanical stretch induces myocardin expression in VSMCs. RESULTS Rat VSMCs grown on a flexible membrane base were stretched to 20% of maximum elongation, at 60 cycles per min. An in vivo model of aorta-caval shunt in adult rats was also used to investigate myocardin expression. Cyclic stretch significantly increased myocardin and angiotensin II (AngII) expression after 18 and 6 h of stretch. Addition of extracellular signal-regulated kinases (ERK) pathway inhibitor (PD98059), ERK small interfering RNA (siRNA), and AngII receptor blocker (ARB; losartan) before stretch inhibited the expression of myocardin protein. Gel shift assay showed that myocardin-DNA binding activity increased after stretch. PD98059, ERK siRNA and ARB abolished the binding activity induced by stretch. Stretch increased while myocardin-mutant plasmid, PD98059, and ARB abolished the promoter activity. Protein synthesis by measuring [3H]proline incorporation into the cells increased after cyclic stretch, which represented hypertrophic change of VSMCs. An in vivo model of aorta-caval shunt also demonstrated increased myocardin protein expression in the aorta. Confocal microscopy showed increased VSMC size 24 h after cyclic stretch and VSMC hypertrophy after creation of aorta-caval shunt for 3 days. CONCLUSIONS Cyclic stretch enhanced myocardin expression mediated by AngII through the ERK pathway in cultured rat VSMCs. These findings suggest that myocardin plays a role in stretch-induced VSMC hypertrophy.
Collapse
|