1
|
Miura T, Kouzu H, Tanno M, Tatekoshi Y, Kuno A. Role of AMP deaminase in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:3195-3211. [PMID: 38386218 DOI: 10.1007/s11010-024-04951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-Ku, Sapporo, 006-8585, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Yuki Tatekoshi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Miura T, Kuno A, Tanaka M. Diabetes modulation of the myocardial infarction- acute kidney injury axis. Am J Physiol Heart Circ Physiol 2022; 322:H394-H405. [PMID: 35089809 DOI: 10.1152/ajpheart.00639.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since there is crosstalk in functions of the heart and kidney, acute or chronic injury in one of the two organs provokes adaptive and/or maladaptive responses in both organs, leading to cardiorenal syndrome (CRS). Acute kidney injury (AKI) induced by acute heart failure is referred to as type 1 CRS, and a frequent cause of this type of CRS is acute myocardial infarction (AMI). Diabetes mellitus increases the risk of AMI and also the risk of AKI of various causes. However, there have been only a few studies in which animal models of diabetes were used to examine how diabetes modulates AMI-induced AKI. In this review, we summarize findings regarding the mechanisms of type 1 CRS and the impact of diabetes on both AMI and renal susceptibility to AKI and we discuss mechanisms by which diabetes modulates AMI-induced AKI. Hemodynamic alterations induced by AMI could be augmented by diabetes via its detrimental effect on infarct size and contractile function of the non-infarcted region in the heart. Diabetes increases susceptibility of renal cells to hypoxia and oxidative stress by modulation of signaling pathways that regulate cell survival and autophagy. Recent studies have shown that diabetes mellitus even at early stage of cardiomyopathy/nephropathy predisposes the kidney to AMI-induced AKI, in which activation of toll-like receptors and reactive oxygen species derived from NADPH oxidases are involved. Further analysis of crosstalk between diabetic cardiomyopathy and diabetic kidney disease is necessary for obtaining a more comprehensive understanding of modulation of the AMI-AKI axis by diabetes.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan.,Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
4
|
Cornejo MA, Nguyen J, Cazares J, Escobedo B, Nishiyama A, Nakano D, Ortiz RM. Partial Body Mass Recovery After Caloric Restriction Abolishes Improved Glucose Tolerance in Obese, Insulin Resistant Rats. Front Endocrinol (Lausanne) 2020; 11:363. [PMID: 32587574 PMCID: PMC7298117 DOI: 10.3389/fendo.2020.00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
Caloric restriction, among other behavioral interventions, has demonstrated benefits on improving glycemic control in obesity-associated diabetic subjects. However, an acute and severe intervention without proper maintenance could reverse the initial benefits, with additional metabolic derangements. To assess the effects of an acute caloric restriction in a metabolic syndrome model, a cohort of 15-week old Long Evans Tokushima Otsuka (LETO) and Otsuka Long Evans Tokushima Fatty (OLETF) rats were calorie restricted (CR: 50% × 10 days) with or without a 10-day body mass (BM) recovery period, along with their respective ad libitum controls. An oral glucose tolerance test (oGTT) was performed after CR and BM recovery. Both strains had higher rates of mass gain during recovery vs. ad lib controls; however, the regain was partial (ca. 50% of ad lib controls) over the measurement period. Retroperitoneal and epididymal adipose masses decreased 30% (8.8 g, P < 0.001) in OLETF; however, this loss only accounted for 11.5% of the total BM loss. CR decreased blood glucose AUC 16% in LETO and 19% in OLETF, without significant decreases in insulin. Following CR, hepatic expression of the gluconeogenic enzyme, PEPCK, was reduced 55% in OLETF compared to LETO, and plasma triglycerides (TG) decreased 86%. Acute CR induced improvements in glucose tolerance and TG suggestive of improvements in metabolism; however, partial recovery of BM following CR abolished the improvement in glucose tolerance. The present study highlights the importance of proper maintenance of BM after CR as only partial recovery of the lost BM reversed benefits of the initial mass loss.
Collapse
Affiliation(s)
- Manuel A. Cornejo
- School of Natural Sciences, University of California, Merced, Merced, CA, United States
- *Correspondence: Manuel A. Cornejo
| | - Julie Nguyen
- School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Joshua Cazares
- School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Benny Escobedo
- School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Rudy M. Ortiz
- School of Natural Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
5
|
Wanezaki S, Saito S, Inoue N, Tachibana N, Yanagita T, Nagao K. Hydrophilic β-conglycinin Peptide Reduces Hepatic Triglyceride Accumulation in Obese Model OLETF Rats. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
| | - Shintaro Saito
- Department of Biological Resource Science, Saga University
| | - Nao Inoue
- Faculty of Agriculture, Yamagata University
| | | | | | - Koji Nagao
- Department of Biological Resource Science, Saga University
| |
Collapse
|
6
|
Wanezaki S, Saito S, Inoue N, Tachibana N, Shirouchi B, Sato M, Yanagita T, Nagao K. Soy β-Conglycinin Peptide Attenuates Obesity and Lipid Abnormalities in Obese Model OLETF Rats. J Oleo Sci 2020; 69:495-502. [PMID: 32378551 DOI: 10.5650/jos.ess20010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously reported that soy β-conglycinin (βCG) improves obesity-induced metabolic abnormalities, but not obesity, in obese model Otsuka Long-Evans Tokushima fatty (OLETF) rats. In the present study, we aimed to investigate the effects of βCG-derived peptide consumption on obesity and lipid abnormality in OLETF rats. To this end, wild-type Long-Evans Tokushima Otsuka and OLETF rats were provided a normal diet containing 20% casein for four weeks as a control. In addition, we prepared βCG peptide by enzymatic hydrolysis, and OLETF rats were fed a diet in which half of the casein was replaced by βCG peptide (βCG peptide group). Consequently, rats in the βCG peptide group showed decreased abdominal white adipose tissue weight and lipid content (serum and liver triglycerides, and serum and liver cholesterol) compared to control OLETF rats. Further analysis demonstrated that βCG peptide consumption decreased lipogenic enzyme activity and increased lipolytic enzyme activity in the liver of OLETF rats. In addition, suppressive effects on both synthesis and absorption of cholesterol were observed in βCG peptide-fed OLETF rats. These findings suggest that peptidization of βCG enhanced the anti-obese and hypolipidemic effects of βCG.
Collapse
Affiliation(s)
| | - Shintaro Saito
- Department of Biological Resource Science, Saga University
| | - Nao Inoue
- Faculty of Agriculture, Yamagata University
| | | | - Bungo Shirouchi
- Department of Bioscience and Biotechnology, Graduate School, Kyushu University
| | - Masao Sato
- Department of Bioscience and Biotechnology, Graduate School, Kyushu University
| | | | - Koji Nagao
- Department of Biological Resource Science, Saga University
| |
Collapse
|
7
|
Singh G, Krishan P. Dietary restriction regimens for fighting kidney disease: Insights from rodent studies. Exp Gerontol 2019; 128:110738. [PMID: 31593758 DOI: 10.1016/j.exger.2019.110738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/11/2023]
Abstract
This review critically discusses the research findings on the effects of various dietary restriction regimens in rodent models of kidney disease. Long-term caloric restriction executed at both early and progressive stages of kidney disease was found to exert beneficial effects in rodents. Moreover, some studies have also demonstrated the efficacy of short-term caloric restriction in treating the kidney disease of variable aetiologies possibly by improving mitochondrial dysfunction, autophagy process and suppression of inflammation. However, the mechanisms underlying these short-term caloric restriction mediated protective effects in rodent models of kidney disease are not completely understood. Importantly, few available evidences have also suggested that carbohydrate restriction can exert beneficial effects in aging and experimentally induced renal injury models, but the mechanisms are not explored yet. Interestingly, the benefits of low protein diet in kidney disease models are extensively reported in literature. However, in most of these studies implementation of the low protein dietary regimen was found to associated with increased high carbohydrate and caloric intake (non-isocaloric). Thus, testing the effects of low protein diet under isocaloric conditions might further help to particularly understand the role of dietary protein content in pathology of kidney disease. Moreover, the direct evidences comparing the efficacy of various dietary restriction regimens in rodent models of kidney diseases are also scarce at present.
Collapse
Affiliation(s)
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
8
|
Kimura Y, Kuno A, Tanno M, Sato T, Ohno K, Shibata S, Nakata K, Sugawara H, Abe K, Igaki Y, Yano T, Miki T, Miura T. Canagliflozin, a sodium-glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. J Diabetes Investig 2019; 10:933-946. [PMID: 30663266 PMCID: PMC6626958 DOI: 10.1111/jdi.13009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is a risk factor of acute kidney injury after myocardial infarction (MI), a form of cardiorenal syndrome. Recent clinical trials have shown that a sodium-glucose cotransporter 2 (SGLT2) inhibitor improved both cardiac and renal outcomes in patients with type 2 diabetes mellitus, but effects of an SGLT2 inhibitor on cardiorenal syndrome remain unclear. MATERIALS AND METHODS Type 2 diabetes mellitus (Otsuka Long-Evans Tokushima Fatty rats [OLETF]) and control (Long-Evans Tokushima Otsuka rats [LETO]) were treated with canagliflozin, an SGLT2 inhibitor, for 2 weeks. Renal tissues were analyzed at 12 h after MI with or without preoperative fasting. RESULTS Canagliflozin reduced blood glucose levels in OLETF, and blood β-hydroxybutyrate levels were increased by canagliflozin only with fasting. MI increased neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 protein levels in the kidney by 3.2- and 1.6-fold, respectively, in OLETF, but not in LETO. The renal messenger ribonucleic acid level of Toll-like receptor 4 was higher in OLETF than in LETO after MI, whereas messenger ribonucleic acid levels of cytokines/chemokines were not significantly different. Levels of lipid peroxides, nicotinamide adenine dinucleotide phosphate oxidase (NOX)2 and NOX4 proteins after MI were significantly higher in OLETF than in LETO. Canagliflozin with pre-MI fasting suppressed MI-induced renal expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in OLETF, together with reductions in lipid peroxides and NOX proteins in the kidney. Blood β-hydroxybutyrate levels before MI were inversely correlated with neutrophil gelatinase-associated lipocalin protein levels in OLETF. Pre-incubation with β-hydroxybutyrate attenuated angiotensin II-induced upregulation of NOX4 in NRK-52E cells. CONCLUSIONS The findings suggest that SGLT2 inhibitor treatment with a fasting period protects kidneys from MI-induced cardiorenal syndrome, possibly by β-hydroxybutyrate-mediated reduction of NOXs and oxidative stress, in type 2 diabetic rats.
Collapse
Affiliation(s)
- Yukishige Kimura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of PharmacologySapporo Medical University School of MedicineSapporoJapan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
- Department of Cellular Physiology and Signal TransductionSapporo Medical University School of MedicineSapporoJapan
| | - Kouhei Ohno
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Satoru Shibata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Kei Nakata
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Hirohito Sugawara
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Koki Abe
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yusuke Igaki
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic MedicineSapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
9
|
Aoi W, Zou X, Xiao JB, Marunaka Y. Body Fluid pH Balance in Metabolic Health and Possible Benefits of Dietary Alkaline Foods. EFOOD 2019. [DOI: 10.2991/efood.k.190924.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
10
|
Abstract
Metabolic syndrome is a complex disorder that comprises several other complex disorders, including obesity, hypertension, dyslipidemia, and diabetes. There are several rat models that encompass component features of MetS. Some models are inbred strains selected for one or more traits underlying MetS; others are population models with genetic risk for MetS traits, are induced by environmental stressors such as diet, are spontaneous monogenic mutant models, or are congenic strains derived from a combination of these models. Together they can be studied to identify the genetic and physiological underpinnings of MetS to identify candidate genes or mechanisms for study in human MetS subjects.
Collapse
Affiliation(s)
- Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
11
|
Ohno K, Kuno A, Murase H, Muratsubaki S, Miki T, Tanno M, Yano T, Ishikawa S, Yamashita T, Miura T. Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats. Am J Physiol Heart Circ Physiol 2017; 313:H1130-H1142. [PMID: 28822965 DOI: 10.1152/ajpheart.00205.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/28/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) after acute myocardial infarction (MI) worsens the prognosis of MI patients. Although type 2 diabetes mellitus (DM) is a major risk factor of AKI after MI, the underlying mechanism remains unclear. Here, we examined the roles of renal Toll-like receptors (TLRs) in the impact of DM on AKI after MI. MI was induced by coronary artery ligation in Otsuka-Long-Evans-Tokushima fatty (OLETF) rats, a rat DM model, and Long-Evans-Tokushima-Otsuka (LETO) rats, nondiabetic controls. Sham-operated rats served as no-MI controls. Renal mRNA levels of TLR2 and myeloid differentiation factor 88 (MyD88) were significantly higher in sham-operated OLETF rats than in sham-operated LETO rats, although levels of TLR1, TLR3, and TLR4 were similar. At 12 h after MI, protein levels of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the kidney were elevated by 5.3- and 4.0-fold, respectively, and their mRNA levels were increased in OLETF but not LETO rats. The increased KIM-1 and NGAL expression levels after MI in the OLETF kidney were associated with upregulated expression of TLR1, TLR2, TLR4, MyD88, IL-6, TNF-α, chemokine (C-C motif) ligand 2, and transforming growth factor-β1 and also with activation of p38 MAPK, JNK, and NF-κB. Cu-CPT22, a TLR1/TLR2 antagonist, administered before MI significantly suppressed MI-induced upregulation of KIM-1, TLR2, TLR4, MyD88, and chemokine (C-C motif) ligand 2 levels and activation of NF-κB, whereas NGAL levels and IL-6 and TNF-α expression levels were unchanged. The results suggest that DM increases the susceptibility to AKI after acute MI by augmented activation of renal TLRs and that TLR1/TLR2-mediated signaling mediates KIM-1 upregulation after MI.NEW & NOTEWORTHY This is the first report to demonstrate the involvement of Toll-like recpetors (TLRs) in diabetes-induced susceptibility to acute kidney injury after acute myocardial infarction. We propose that the TLR1/TLR2 heterodimer may be a new therapeutic target for the prevention of acute kidney injury in diabetic patients.
Collapse
Affiliation(s)
- Kouhei Ohno
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Atsushi Kuno
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; and.,Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromichi Murase
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Shingo Muratsubaki
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Takayuki Miki
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Masaya Tanno
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Satoko Ishikawa
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Tomohisa Yamashita
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Tetsuji Miura
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| |
Collapse
|
12
|
Nagao K, Jinnouchi T, Kai S, Yanagita T. Pterostilbene, a dimethylated analog of resveratrol, promotes energy metabolism in obese rats. J Nutr Biochem 2017; 43:151-155. [PMID: 28319852 DOI: 10.1016/j.jnutbio.2017.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/29/2016] [Accepted: 02/08/2017] [Indexed: 11/27/2022]
Abstract
Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a dimethylated analog of resveratrol and has been reported to exert various pharmacological effects. In this study, we evaluated the effect of pterostilbene on the pathogenesis of obesity and energy metabolism in obese rats. Pterostilbene significantly activates silent mating type information regulation 2 homolog-1 and peroxisome proliferator-activated receptor-alpha in vitro. At 4 weeks a 0.5% pterostilbene diet markedly suppressed the abdominal white adipose tissue (WAT) accumulation in obese rats. The oxygen consumption and energy expenditure were significantly higher in the pterostilbene group, and pterostilbene increased the fat metabolism rather than the carbohydrate metabolism in obese rats. The mRNA level of uncoupling protein, a thermogenic regulator, was increased and the mRNA levels of fatty acid synthase and leptin, which are involved in lipogenesis and fat storage, were markedly decreased in WAT after the pterostilbene feeding. These results suggest that pterostilbene prevents WAT accumulation through the enhancement of energy metabolism and partly the suppression of lipogenesis in obese OLETF rats.
Collapse
Affiliation(s)
- Koji Nagao
- Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Tomoyuki Jinnouchi
- Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Shunichi Kai
- Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Teruyoshi Yanagita
- Department of Health and Nutrition Sciences, Nishikyushu University, Kanzaki 842-8585, Japan
| |
Collapse
|
13
|
Soman S, Rajamanickam C, Rauf AA, Madambath I. Molecular mechanisms of the antiglycative and cardioprotective activities of Psidium guajava leaves in the rat diabetic myocardium. PHARMACEUTICAL BIOLOGY 2016; 54:3078-3085. [PMID: 27418019 DOI: 10.1080/13880209.2016.1207090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 04/19/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Antiglycative potential of Psidium guajava L. (Myrtaceae) leaves has been established. However, the molecular basis of its antiglycative potential remains unknown. OBJECTIVE The ethyl acetate fraction of P. guajava leaves (PGEt) was evaluated to determine the cardioprotective effect and its mechanism of action compared to quercetin. MATERIALS AND METHODS After the induction of diabetes by streptozotocin (55 mg/kg body weight), PGEt and quercetin (50 mg/kg body weight) was administered for 60 days. Rats were grouped as follows: Group C: Control, Group D: Diabetic, Group D + E: Diabetic rats treated with PGEt, Group D + Q: Diabetic rats treated with quercetin. The antiglycative potential was evaluated by assaying glycosylated haemoglobin, serum fructosamine and advanced glycation end product levels. The differential receptor for advanced glycation end products and nuclear factor kappa B (NFκB) protein levels was determined by western blot and the transcript level changes of connective tissue growth factor (CTGF), brain natriuretic peptide (BNP) and TGF-β1 in heart tissue were assessed by RT-PCR analysis. RESULTS Glycated haemoglobin and serum fructosamine levels were found to be enhanced in diabetic rats when compared with control. Administration of PGEt significantly reduced the glycated haemoglobin and fructosamine levels to a larger extent than quercetin treated diabetic rats. PGEt reduced the translocation of NFκB from cytosol to nucleus when compared with diabetic rats. Expression of TGF-β1, CTGF and BNP was downregulated in PGEt treated groups compared with diabetic controls. DISCUSSION AND CONCLUSION Administration of PGEt ameliorated diabetes associated changes in the myocardium to a greater extent than quercetin.
Collapse
Affiliation(s)
- Sowmya Soman
- a Department of Biochemistry , University of Kerala , Kariavattom , Thiruvananthapuram , Kerala , India
| | - Chellam Rajamanickam
- a Department of Biochemistry , University of Kerala , Kariavattom , Thiruvananthapuram , Kerala , India
| | - Arun A Rauf
- a Department of Biochemistry , University of Kerala , Kariavattom , Thiruvananthapuram , Kerala , India
| | - Indira Madambath
- a Department of Biochemistry , University of Kerala , Kariavattom , Thiruvananthapuram , Kerala , India
| |
Collapse
|
14
|
Sadar S, Kaspate D, Vyawahare N. Protective effect of L-glutamine against diabetes-induced nephropathy in experimental animal: Role of KIM-1, NGAL, TGF-β1, and collagen-1. Ren Fail 2016; 38:1483-1495. [PMID: 27756197 DOI: 10.1080/0886022x.2016.1227918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy is a serious microvascular complication and one of the main causes of end-stage renal disease. L-Glutamine (LG) is naturally occurring amino acids with antidiabetic and antioxidant potential. The aim of present investigation was to evaluate the potential of LG against streptozotocin (STZ)-induced diabetic nephropathy (DN) in laboratory rats. DN was induced in male Wistar rats (200-220 g) by intraperitoneal administration of STZ (55 mg/kg). Animals were treated orally with either distilled water (10 mg/kg) or LG (250, 500, and 1000 mg/kg) or Sitagliptin (5 mg/kg). Various biochemical, molecular, and histological (hematoxylin-eosin and Masson's trichrome stain) parameters were assessed. Administration of LG (500 and 1000 mg/kg) significantly inhibited (p < .05) STZ-induced alterations in serum and urine biochemistry (urine creatinine, uric acid, albumin, and BUN). It also significantly increased creatinine clearance rate. STZ induced increase in renal oxidonitrosative stress was significantly decreased (p < .05) by LG (500 and 1000 mg/kg) treatment. Upregulated renal KIM-1, NGAL, TGF-β1, and collagen-1 mRNA expression after STZ administration was significantly inhibited (p < .05) by LG (500 and 1000 mg/kg) treatment. Correlation analysis also revealed that antidiabetic potential of LG attenuates STZ-induced elevated renal KIM-1, NGAL, TGF-β1, and collagen-1 mRNA expression. Histopathological alteration induced by STZ in renal tissue was ameliorated by LG treatment. In conclusion, results of present investigation suggest that treatment with LG ameliorated STZ-induced DN via the inhibition of oxidonitrosative stress as well as downregulation of KIM-1, NGAL, TGF-β1, and collagen-1 mRNA expressions.
Collapse
Affiliation(s)
- Smeeta Sadar
- a Padmashree Dr D. Y. Patil College of Pharmacy , Akurdi , Pune , Maharashtra , India
| | - Dipti Kaspate
- b Cognizant Technology Solution , Hinjewadi, Pune , Maharashtra , India
| | - Neeraj Vyawahare
- a Padmashree Dr D. Y. Patil College of Pharmacy , Akurdi , Pune , Maharashtra , India
| |
Collapse
|
15
|
Koncsos G, Varga ZV, Baranyai T, Boengler K, Rohrbach S, Li L, Schlüter KD, Schreckenberg R, Radovits T, Oláh A, Mátyás C, Lux Á, Al-Khrasani M, Komlódi T, Bukosza N, Máthé D, Deres L, Barteková M, Rajtík T, Adameová A, Szigeti K, Hamar P, Helyes Z, Tretter L, Pacher P, Merkely B, Giricz Z, Schulz R, Ferdinandy P. Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress. Am J Physiol Heart Circ Physiol 2016; 311:H927-H943. [PMID: 27521417 DOI: 10.1152/ajpheart.00049.2016] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022]
Abstract
Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4 High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca2+/calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria.
Collapse
Affiliation(s)
- Gábor Koncsos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Tamás Baranyai
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kerstin Boengler
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - Ling Li
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - Klaus-Dieter Schlüter
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - Rolf Schreckenberg
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Árpád Lux
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tímea Komlódi
- Department of Medical Biochemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Nóra Bukosza
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; CROmed Translational Research Centers, Budapest, Hungary
| | - László Deres
- 1st Department of Internal Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Monika Barteková
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Slovakia; Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomáš Rajtík
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Adriana Adameová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine and Szentágothai Research Centre & MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, Pécs, Hungary; and
| | - László Tretter
- Department of Medical Biochemistry, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Pacher
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary;
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Rafiq K, Fujisawa Y, Sherajee SJ, Rahman A, Sufiun A, Kobori H, Koepsell H, Mogi M, Horiuchi M, Nishiyama A. Role of the renal sympathetic nerve in renal glucose metabolism during the development of type 2 diabetes in rats. Diabetologia 2015; 58:2885-98. [PMID: 26450431 PMCID: PMC4630257 DOI: 10.1007/s00125-015-3771-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 01/23/2023]
Abstract
AIMS/HYPOTHESIS Recent clinical studies have shown that renal sympathetic denervation (RDX) improves glucose metabolism in patients with resistant hypertension. We aimed to elucidate the potential contribution of the renal sympathetic nervous system to glucose metabolism during the development of type 2 diabetes. METHODS Uninephrectomised diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats underwent RDX at 25 weeks of age and were followed up to 46 weeks of age. RESULTS RDX decreased plasma and renal tissue noradrenaline (norepinephrine) levels and BP. RDX also improved glucose metabolism and insulin sensitivity, which was associated with increased in vivo glucose uptake by peripheral tissues. Furthermore, RDX suppressed overexpression of sodium-glucose cotransporter 2 (Sglt2 [also known as Slc5a2]) in renal tissues, which was followed by an augmentation of glycosuria in type 2 diabetic OLETF rats. Similar improvements in glucose metabolism after RDX were observed in young OLETF rats at the prediabetic stage (21 weeks of age) without changing BP. CONCLUSIONS/INTERPRETATION Here, we propose the new concept of a connection between renal glucose metabolism and the renal sympathetic nervous system during the development of type 2 diabetes. Our data demonstrate that RDX exerts beneficial effects on glucose metabolism by an increase in tissue glucose uptake and glycosuria induced by Sglt2 suppression. These data have provided a new insight not only into the treatment of hypertensive type 2 diabetic patients, but also the pathophysiology of insulin resistance manifested by sympathetic hyperactivity.
Collapse
Affiliation(s)
- Kazi Rafiq
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Yoshihide Fujisawa
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shamshad J Sherajee
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Abu Sufiun
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hiroyuki Kobori
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Institute, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Graduate School of Medicine, Ehime University, Matsuyama, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Graduate School of Medicine, Ehime University, Matsuyama, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
17
|
Kouzu H, Miki T, Tanno M, Kuno A, Yano T, Itoh T, Sato T, Sunaga D, Murase H, Tobisawa T, Ogasawara M, Ishikawa S, Miura T. Excessive degradation of adenine nucleotides by up-regulated AMP deaminase underlies afterload-induced diastolic dysfunction in the type 2 diabetic heart. J Mol Cell Cardiol 2015; 80:136-45. [PMID: 25599963 DOI: 10.1016/j.yjmcc.2015.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is often complicated with diastolic heart failure, which decompensates under increased afterload. Focusing on cardiac metabolomes, we examined mechanisms by which T2DM augments ventricular diastolic stiffness in response to pressure overloading. Pressure-volume relationships (PVRs) and myocardial metabolomes were determined at baseline and during elevation of aortic pressure by phenylephrine infusion in a model of T2DM, OLETF, and its non-diabetic control, LETO. Pressure overloading augmented diastolic stiffness without change in systolic reserve in OLETF as indicated by a left-upward shift of end-diastolic PVR. In contrast, PVRs under cardioplegic arrest in buffer-perfused isolated hearts were similar in OLETF and LETO, indicating that extracellular matrix or titin remodeling does not contribute to the afterload-induced increase in stiffness of the beating ventricle of OLETF. Metabolome analyses revealed impaired glycolysis and facilitation of the pentose phosphate pathway in OLETF. Pressure overloading significantly reduced ATP and total adenine nucleotides by 34% and 40%, respectively, in OLETF but not in LETO, while NADH-to-NAD(+) ratios were similar in the two groups. The decline in ATP by pressure overloading in OLETF was associated with increased inosine 5-monophosphate and decreased adenosine levels, being consistent with the 2.5-times higher activity of cardiac AMP deaminase in OLETF. Tissue ATP level was negatively correlated with tau of LV pressure and LVEDP. These results suggest that ATP depletion due to excessive degradation of adenine nucleotides by up-regulated AMP deaminase underlies ventricular stiffening during acute pressure overloading in T2DM hearts.
Collapse
Affiliation(s)
- Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahito Itoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Daisuke Sunaga
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromichi Murase
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Tobisawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Ogasawara
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoko Ishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
18
|
Vaněčková I, Maletínská L, Behuliak M, Nagelová V, Zicha J, Kuneš J. Obesity-related hypertension: possible pathophysiological mechanisms. J Endocrinol 2014; 223:R63-78. [PMID: 25385879 DOI: 10.1530/joe-14-0368] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hypertension is one of the major risk factors of cardiovascular diseases, but despite a century of clinical and basic research, the discrete etiology of this disease is still not fully understood. The same is true for obesity, which is recognized as a major global epidemic health problem nowadays. Obesity is associated with an increasing prevalence of the metabolic syndrome, a cluster of risk factors including hypertension, abdominal obesity, dyslipidemia, and hyperglycemia. Epidemiological studies have shown that excess weight gain predicts future development of hypertension, and the relationship between BMI and blood pressure (BP) appears to be almost linear in different populations. There is no doubt that obesity-related hypertension is a multifactorial and polygenic trait, and multiple potential pathogenetic mechanisms probably contribute to the development of higher BP in obese humans. These include hyperinsulinemia, activation of the renin-angiotensin-aldosterone system, sympathetic nervous system stimulation, abnormal levels of certain adipokines such as leptin, or cytokines acting at the vascular endothelial level. Moreover, some genetic and epigenetic mechanisms are also in play. Although the full manifestation of both hypertension and obesity occurs predominantly in adulthood, their roots can be traced back to early ontogeny. The detailed knowledge of alterations occurring in the organism of experimental animals during particular critical periods (developmental windows) could help to solve this phenomenon in humans and might facilitate the age-specific prevention of human obesity-related hypertension. In addition, better understanding of particular pathophysiological mechanisms might be useful in so-called personalized medicine.
Collapse
Affiliation(s)
- Ivana Vaněčková
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Lenka Maletínská
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Michal Behuliak
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Veronika Nagelová
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Josef Zicha
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of PhysiologyAcademy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech RepublicInstitute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| |
Collapse
|
19
|
Horgan S, Watson C, Glezeva N, Baugh J. Murine models of diastolic dysfunction and heart failure with preserved ejection fraction. J Card Fail 2014; 20:984-95. [PMID: 25225111 DOI: 10.1016/j.cardfail.2014.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
Left ventricular diastolic dysfunction leads to heart failure with preserved ejection fraction, an increasingly prevalent condition largely driven by modern day lifestyle risk factors. As heart failure with preserved ejection fraction accounts for almost one-half of all patients with heart failure, appropriate nonhuman animal models are required to improve our understanding of the pathophysiology of this syndrome and to provide a platform for preclinical investigation of potential therapies. Hypertension, obesity, and diabetes are major risk factors for diastolic dysfunction and heart failure with preserved ejection fraction. This review focuses on murine models reflecting this disease continuum driven by the aforementioned common risk factors. We describe various models of diastolic dysfunction and highlight models of heart failure with preserved ejection fraction reported in the literature. Strengths and weaknesses of the different models are discussed to provide an aid to translational scientists when selecting an appropriate model. We also bring attention to the fact that heart failure with preserved ejection fraction is difficult to diagnose in animal models and that, therefore, there is a paucity of well described animal models of this increasingly important condition.
Collapse
Affiliation(s)
- S Horgan
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland; Noninvasive Cardiovascular Imaging, Brigham and Women's Hospital, Boston, Massachusetts.
| | - C Watson
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - N Glezeva
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - J Baugh
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
20
|
Importance of pH homeostasis in metabolic health and diseases: crucial role of membrane proton transport. BIOMED RESEARCH INTERNATIONAL 2014; 2014:598986. [PMID: 25302301 PMCID: PMC4180894 DOI: 10.1155/2014/598986] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/30/2014] [Indexed: 11/18/2022]
Abstract
Protons dissociated from organic acids in cells are partly buffered. If not, they are transported to the extracellular fluid through the plasma membrane and buffered in circulation or excreted in urine and expiration gas. Several transporters including monocarboxylate transporters and Na(+)/H(+) exchanger play an important role in uptake and output of protons across plasma membranes in cells of metabolic tissues including skeletal muscle and the liver. They also contribute to maintenance of the physiological pH of body fluid. Therefore, impairment of these transporters causes dysfunction of cells, diseases, and a decrease in physical performance associated with abnormal pH. Additionally, it is known that fluid pH in the interstitial space of metabolic tissues is easily changed due to little pH buffering capacitance in interstitial fluids and a reduction in the interstitial fluid pH may mediate the onset of insulin resistance unlike blood containing pH buffers such as Hb (hemoglobin) and albumin. In contrast, habitual exercise and dietary intervention regulate expression/activity of transporters and maintain body fluid pH, which could partly explain the positive effect of healthy lifestyle on disease prognosis.
Collapse
|
21
|
Sato T, Kobayashi T, Kuno A, Miki T, Tanno M, Kouzu H, Itoh T, Ishikawa S, Kojima T, Miura T, Tohse N. Type 2 diabetes induces subendocardium-predominant reduction in transient outward K+ current with downregulation of Kv4.2 and KChIP2. Am J Physiol Heart Circ Physiol 2014; 306:H1054-65. [DOI: 10.1152/ajpheart.00414.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we examined if and how cardiac ion channels are modified by type 2 diabetes mellitus (T2DM). Subendocardial (Endo) myocytes and subepicardial (Epi) myocytes were isolated from left ventricles of Otsuka-Long-Evans-Tokushima Fatty rats (OLETF) rats, a rat model of T2DM, and Otsuka-Long-Evans-Tokushima (LETO) rats (nondiabetic control rats). Endo and Epi myocytes were used for whole cell patch-clamp recordings and for protein and mRNA analyses. Action potential durations in Endo and Epi myocytes were longer in OLETF rats than in LETO rats, and the difference was larger in Endo myocytes. Steady-state transient outward K+ current ( Ito) density was reduced in Endo but not Epi myocytes of OLETF rats compared with LETO rats, although the contribution of the fast component of Ito recovery from inactivation was smaller in both Endo and Epi myocytes of OLETF rats than in LETO rats. Kv4.2 protein was reduced only in Endo myocytes in OLETF rats, although voltage-gated K+ channel-interacting protein 2 (KChIP2) protein levels in both Endo and Epi myocytes were lower in OLETF rats than in LETO rats. Corresponding regional differences in mRNA levels of KChIP2 and Kv4.2 were observed between OLETF and LETO rats. mRNA levels of Iroquois homeobox 5 in Endo myocytes were 53% higher in OLETF rats than in LETO rats. Densities of inward rectifier K+ current and L-type Ca2+ current and mRNA levels of Kv4.3 and Kv1.4 were similar in OLETF and LETO rats. In conclusion, T2DM induces Endo-predominant prolongation of the action potential duration via a reduction of the fast component of Ito recovery from inactivation and reduced steady-state Ito, in which downregulation of Kv4.2 and KChIP2 may be involved. Increased Iroquois homeobox 5 expression may underlie Kv4.2 downregulation in T2DM.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan; and
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahito Itoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoko Ishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
22
|
Matsumoto M, Sasaki N, Tsujino T, Akahori H, Naito Y, Masuyama T. Iron restriction prevents diabetic nephropathy in Otsuka Long-Evans Tokushima fatty rat. Ren Fail 2013; 35:1156-62. [PMID: 23902566 DOI: 10.3109/0886022x.2013.819729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High body iron levels are found in type 2 diabetes mellitus (DM). Iron excess leads to tissue injury through free radical formation. We investigated the effect of iron restriction on renal damage in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 DM. OLETF rats (n = 18) were divided into three groups at 10 weeks of age: high fat diet containing 8% NaCl (HFS, n = 6), HFS diet with iron restricted (HFS + IR, n = 6), and HFS with hydralazine (HFS + Hyd, n = 6). Long-Evans Tokushima (LETO) rats served as control. Iron restriction decreased hemoglobin levels, systolic blood pressure, and urinary excretion of protein and 8-hydroxy-2'-deoxyguanosine in the OLETF rats fed with HFS diet. Compared to the HFS group, the expression of desmin, renal glomerular injury marker and iron deposition in the renal tubules were attenuated in the HFS + IR group but not in the HFS + Hyd group at 26 weeks of age. Moreover, renal hypoxia (evaluated as pimonidazole adducts) was improved in the HFS + IR group compared to the HFS group in spite of anemia. Iron restriction prevented the production of reactive oxygen species and the development of early stage nephropathy in OLETF rats. Iron restriction may be beneficial in prevention of nephropathy in type 2 DM.
Collapse
Affiliation(s)
- Mika Matsumoto
- Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Kim SO, Lee HS, Ahn K, Park K. COMP-angiopoietin-1 promotes cavernous angiogenesis in a type 2 diabetic rat model. J Korean Med Sci 2013; 28:725-30. [PMID: 23678264 PMCID: PMC3653085 DOI: 10.3346/jkms.2013.28.5.725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/25/2013] [Indexed: 11/20/2022] Open
Abstract
Cartilage oligomeric matrix protein-angiopoietin-1 (COMP-Ang1) is an angiogenic factor for vascular angiogenesis. The aim was to investigate the effect of an intracavernosal injection of COMP-Ang1 on cavernosal angiogenesis in a diabetic rat model. Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats made up the experimental group (1 yr old) and Long-Evans Tokushima Otsuka (LETO) rats made up the control group. The experimental group was divided into vehicle only, 10 µg COMP-Ang1, and 20 µg COMP-Ang1. COMP-Ang1 was injected into the corpus cavernosum of the penis. After 4 weeks, the penile tissues of the rats were obtained for immunohistochemistry and Western blot analysis. The immunoreactivity of PECAM-1 and VEGF was increased in the COMP-Ang1 group compared with the vehicle only group. Moreover, the expression of PECAM-1 and VEGF was notably augmented in the 20 µg Comp Ang-1 group. In the immunoblotting study, the expression of PECAM-1 and VEGF protein was significantly less in the OLEFT rats than in the control LETO rats. However, this expression was restored to control level after intracavernosal injection of COMP-Ang1. These results show that an intracavernosal injection of COMP-Ang1 enhances cavernous angiogenesis by structurally reinforcing the cavernosal endothelium.
Collapse
Affiliation(s)
- Sun-Ouck Kim
- Department of Urology, Chonnam National University Medical School, Gwangju, Korea
- Sexual Medicine Research Center, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun-Suk Lee
- Department of Urology, Chonnam National University Medical School, Gwangju, Korea
- Sexual Medicine Research Center, Chonnam National University Medical School, Gwangju, Korea
| | - Kyuyoun Ahn
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
- Sexual Medicine Research Center, Chonnam National University Medical School, Gwangju, Korea
| | - Kwangsung Park
- Department of Urology, Chonnam National University Medical School, Gwangju, Korea
- Sexual Medicine Research Center, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
24
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
25
|
Aoi W, Hosogi S, Niisato N, Yokoyama N, Hayata H, Miyazaki H, Kusuzaki K, Fukuda T, Fukui M, Nakamura N, Marunaka Y. Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extracts. Biochem Biophys Res Commun 2013; 432:650-3. [PMID: 23416075 DOI: 10.1016/j.bbrc.2013.02.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 12/31/2022]
Abstract
Propolis, a resinous mixture collected from plants by the Apis mellifera bee, contains high level nutrient factors including vitamins, polyphenols, and amino acids that would be expected to improve insulin sensitivity. Insulin resistance would secondarily cause elevation of blood pressure and increase the risk of cardiovascular diseases. The purpose of this study is to investigate the effect of propolis extracts on blood glucose levels and blood pressures in an early developmental stage of insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. OLETF rats (10 weeks old) were divided into three different groups: normal diet, 0.1% propolis diet, and 0.5% propolis diet. After 8 weeks, blood glucose levels, blood pressures, plasma metabolic factors and hormones, and interstitial fluid pH were measured. Casual blood glucose levels were decreased associated with a reduction of plasma insulin levels in both propolis diet groups compared with normal diet group. Propolis decreased systolic blood pressure with no significant changes in plasma aldosterone levels. We also found that interstitial fluid pH in ascites, liver, and skeletal muscle was higher in rats fed propolis diet than rats fed normal diet. These data suggests that dietary propolis improves insulin sensitivity and blood pressures in the early stage of the process in development of insulin resistance, which may be mediated by suppression of metabolic acidosis.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nemoto S, Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Pravastatin normalizes ET-1-induced contraction in the aorta of type 2 diabetic OLETF rats by suppressing the KSR1/ERK complex. Am J Physiol Heart Circ Physiol 2012; 303:H893-902. [DOI: 10.1152/ajpheart.01128.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin (ET)-1 is a likely candidate for a key role in diabetic vascular complications. In the present study, we hypothesized that treatment with pravastatin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase) would normalize the ET-1-induced contraction in aortas isolated from type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Contractile responses were examined by measuring isometric force in endothelium-denuded aortic helical strips from four groups: Long-Evans Tokushima Otsuka (LETO; genetic control), OLETF (type 2 diabetic), pravastatin-treated LETO, and pravastatin-treated OLETF rats. Both immunoblot analysis and immunoprecipitation assays were used to examine Src, protein phosphatase (PP)2A, kinase suppressor of Ras (KSR)1, and ERK signaling pathway protein levels and activities. In endothelium-denuded aortas isolated from OLETF rats at the chronic stage of diabetes (56–60 wk) (vs. those from age-matched LETO rats), we found the following: 1) ET-1-induced contraction was enhanced, 2) ERK1/2 phosphorylation was increased, 3) phosphorylations of KSR1 and PP2A were reduced (i.e., enhancement of the kinase active state), 4) ERK1/2-KSR1 complexes were increased, and 5) Src tyrosine kinase activity was diminished. Endothelium-denuded aortas isolated from OLETF rats treated with pravastatin (10 mg/kg po, daily for 4 wk) exhibited normalized ET-1-induced contractions and suppressed ET-1-stimulated ERK phosphorylation, with the associated phosphorylated KSR1 and phosphorylated PP2A levels being increased toward normal levels. These results suggest that in type 2 diabetic rats, pravastatin normalizes ET-1-induced contraction in aortic smooth muscle via a suppression of PP2A/KSR1/ERK activities after an enhancement of Src kinase activity.
Collapse
Affiliation(s)
- Shingo Nemoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| |
Collapse
|
27
|
Sima CA, Koeners MP, Joles JA, Braam B, Magil AB, Cupples WA. Increased susceptibility to hypertensive renal disease in streptozotocin-treated diabetic rats is not modulated by salt intake. Diabetologia 2012; 55:2246-55. [PMID: 22562180 DOI: 10.1007/s00125-012-2569-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/02/2012] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS In early type 1 diabetes mellitus, renal salt handling is dysregulated, so that the glomerular filtration rate becomes inversely proportional to salt intake. The salt paradox occurs in both humans and rats and, with low salt intake, results in diabetic hyperfiltration. We tested whether increased salt intake could reduce the susceptibility to injury of non-clipped kidneys in diabetic rats with pre-existing Goldblatt hypertension. METHODS Male Long-Evans rats were made hypertensive and half were then made diabetic. Blood glucose was maintained at ~20-25 mmol/l by insulin implants. One half of each received only the salt in normal chow (1% by weight) and the other half received added salt in drinking water to equal 2.7% by weight of food intake. Weekly 24 h blood pressure records were acquired by telemetry during the 4-month experiment. RESULTS Systolic blood pressure was not affected by diabetes or increased salt intake, alone or together. Autoregulation was highly efficient in the non-clipped kidney of both intact and diabetic rats. Histological examination showed minor injury in the clipped kidney, which did not differ among groups. The non-clipped kidney showed extensive pressure-dependent glomerular and vascular injury in both intact and diabetic rats. CONCLUSIONS/INTERPRETATION The relationship between pressure and injury was shifted toward lower blood pressure in diabetic rats, indicating that diabetes increased the susceptibility of the kidney to injury despite preservation of autoregulation. The increased susceptibility was not affected by high salt intake in the diabetic rats, thus disproving the hypothesis.
Collapse
Affiliation(s)
- C A Sima
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Sympathoinhibitory signals from the gut and obesity-related hypertension. Clin Auton Res 2012; 23:33-9. [DOI: 10.1007/s10286-012-0171-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/31/2012] [Indexed: 12/13/2022]
|
29
|
Fredersdorf S, Thumann C, Zimmermann WH, Vetter R, Graf T, Luchner A, Riegger GAJ, Schunkert H, Eschenhagen T, Weil J. Increased myocardial SERCA expression in early type 2 diabetes mellitus is insulin dependent: In vivo and in vitro data. Cardiovasc Diabetol 2012; 11:57. [PMID: 22621761 PMCID: PMC3447673 DOI: 10.1186/1475-2840-11-57] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/02/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Calcium (Ca2+) handling proteins are known to play a pivotal role in the pathophysiology of cardiomyopathy. However little is known about early changes in the diabetic heart and the impact of insulin treatment (Ins). METHODS Zucker Diabetic Fatty rats treated with or without insulin (ZDF ± Ins, n = 13) and lean littermates (controls, n = 7) were sacrificed at the age of 19 weeks. ZDF + Ins (n = 6) were treated with insulin for the last 6 weeks of life. Gene expression of Ca2+ ATPase in the cardiac sarcoplasmatic reticulum (SERCA2a, further abbreviated as SERCA) and phospholamban (PLB) were determined by northern blotting. Ca2+ transport of the sarcoplasmatic reticulum (SR) was assessed by oxalate-facilitated 45Ca-uptake in left ventricular homogenates. In addition, isolated neonatal cardiomyocytes were stimulated in cell culture with insulin, glucose or triiodthyronine (T3, positive control). mRNA expression of SERCA and PLB were measured by Taqman PCR. Furthermore, effects of insulin treatment on force of contraction and relaxation were evaluated by cardiomyocytes grown in a three-dimensional collagen matrix (engineered heart tissue, EHT) stimulated for 5 days by insulin. By western blot phosphorylations status of Akt was determed and the influence of wortmannin. RESULTS SERCA levels increased in both ZDF and ZDF + Ins compared to control (control 100 ± 6.2 vs. ZDF 152 ± 26.6* vs. ZDF + Ins 212 ± 18.5*# % of control, *p < 0.05 vs. control, #p < 0.05 vs. ZDF) whereas PLB was significantly decreased in ZDF and ZDF + Ins (control 100 ± 2.8 vs. ZDF 76.3 ± 13.5* vs. ZDF + Ins 79.4 ± 12.9* % of control, *p < 0.05 vs control). The increase in the SERCA/PLB ratio in ZDF and ZDF ± Ins was accompanied by enhanced Ca2+ uptake to the SR (control 1.58 ± 0.1 vs. ZDF 1.85 ± 0.06* vs. ZDF + Ins 2.03 ± 0.1* μg/mg/min, *p < 0.05 vs. control). Interestingly, there was a significant correlation between Ca2+ uptake and SERCA2a expression. As shown by in-vitro experiments, the effect of insulin on SERCA2a mRNA expression seemed to have a direct effect on cardiomyocytes. Furthermore, long-term treatment of engineered heart tissue with insulin increased the SERCA/PLB ratio and accelerated relaxation time. Akt was significantly phosphorylated by insulin. This effect could be abolished by wortmannin. CONCLUSION The current data demonstrate that early type 2 diabetes is associated with an increase in the SERCA/PLB ratio and that insulin directly stimulates SERCA expression and relaxation velocity. These results underline the important role of insulin and calcium handling proteins in the cardiac adaptation process of type 2 diabetes mellitus contributing to cardiac remodeling and show the important role of PI3-kinase-Akt-SERCA2a signaling cascade.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Northern
- Blotting, Western
- Calcium/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic/drug effects
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Male
- Myocardial Contraction/drug effects
- Myocardium/enzymology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Phosphorylation
- Polymerase Chain Reaction
- Proto-Oncogene Proteins c-akt
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Rats, Zucker
- Sarcoplasmic Reticulum/enzymology
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Time Factors
- Up-Regulation
Collapse
Affiliation(s)
- Sabine Fredersdorf
- Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Regensburg, Germany
- Klinik und Poliklinik für Innere Medizin II des Universitätsklinikums Regensburg, 93042, Regensburg, Germany
| | - Christian Thumann
- Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Regensburg, Germany
| | - Wolfram H Zimmermann
- Institut für Pharmakologie, Universitätsmedizin, Georg-August Universität Göttingen, Göttingen, Germany
| | - Roland Vetter
- Institut für Klinische Pharmakologie und Toxikologie, Universitätsmedizin - Berlin, Berlin, Germany
| | - Tobias Graf
- Medizinische Klinik II, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Andreas Luchner
- Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Regensburg, Germany
| | - Günter AJ Riegger
- Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Regensburg, Germany
| | - Heribert Schunkert
- Medizinische Klinik II, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Thomas Eschenhagen
- Institut für Klinische und Experimentelle Pharmakologie und Toxikologie, Universität Hamburg, Hamburg, Germany
| | - Joachim Weil
- Medizinische Klinik II, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
30
|
Sofue T, Kiyomoto H, Kobori H, Urushihara M, Nishijima Y, Kaifu K, Hara T, Matsumoto S, Ichimura A, Ohsaki H, Hitomi H, Kawachi H, Hayden MR, Whaley-Connell A, Sowers JR, Ito S, Kohno M, Nishiyama A. Early treatment with olmesartan prevents juxtamedullary glomerular podocyte injury and the onset of microalbuminuria in type 2 diabetic rats. Am J Hypertens 2012; 25:604-11. [PMID: 22318512 PMCID: PMC3328599 DOI: 10.1038/ajh.2012.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Studies were performed to determine if early treatment with an angiotensin II (Ang II) receptor blocker (ARB), olmesartan, prevents the onset of microalbuminuria by attenuating glomerular podocyte injury in Otsuka Long-Evans Tokushima Fatty (OLETF) rats with type 2 diabetes mellitus. METHODS OLETF rats were treated with either a vehicle, olmesartan (10 mg/kg/day) or a combination of nonspecific vasodilators (hydralazine 15 mg/kg/day, hydrochlorothiazide 6 mg/kg/day, and reserpine 0.3 mg/kg/day; HHR) from the age of 7-25 weeks. RESULTS OLETF rats were hypertensive and had microalbuminuria from 9 weeks of age. At 15 weeks, OLETF rats had higher Ang II levels in the kidney, larger glomerular desmin-staining areas (an index of podocyte injury), and lower gene expression of nephrin in juxtamedullary glomeruli, than nondiabetic Long-Evans Tokushima Otsuka (LETO) rats. At 25 weeks, OLETF rats showed overt albuminuria, and higher levels of Ang II in the kidney and larger glomerular desmin-staining areas in superficial and juxtamedullary glomeruli compared to LETO rats. Reductions in mRNA levels of nephrin were also observed in superficial and juxtamedullary glomeruli. Although olmesartan did not affect glucose metabolism, it decreased blood pressure and prevented the renal changes in OLETF rats. HHR treatment also reduced blood pressure, but did not affect the renal parameters. CONCLUSIONS This study demonstrated that podocyte injury occurs in juxtamedullary glomeruli prior to superficial glomeruli in type 2 diabetic rats with microalbuminuria. Early treatment with an ARB may prevent the onset of albuminuria through its protective effects on juxtamedullary glomerular podocytes.
Collapse
|
31
|
Nemoto S, Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Aminoguanidine normalizes ET-1-induced aortic contraction in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats by suppressing Jab1-mediated increase in ET(A)-receptor expression. Peptides 2012; 33:109-19. [PMID: 22154739 DOI: 10.1016/j.peptides.2011.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 01/08/2023]
Abstract
Circulating levels of endothelin (ET)-1 are increased in the diabetic state, as is endogenous ET(A)-receptor-mediated vasoconstriction. However, the responsible mechanisms remain unknown. We hypothesized that ET-1-induced vasoconstriction is augmented in type 2 diabetes with hyperglycemia through an increment in advanced glycation end-products (AGEs). So, we investigated whether treatment with aminoguanidine (AG), an inhibitor of AGEs, would normalize the ET-1-induced contraction induced by ET-1 in strips of thoracic aortas isolated from OLETF rats at the chronic stage of diabetes. In such aortas (vs. those from age-matched genetic control LETO rats): (1) the ET-1-induced contraction was enhanced, (2) the levels of HIF1α/ECE1/plasma ET-1 and plasma CML-AGEs were increased, (3) the ET-1-stimulated ERK phosphorylation mediated by ET(A)-R was increased, (4) the expression level of Jab1-modified ET(A)-R protein was reduced, and (5) the expression level of O-GlcNAcylated ET(A)-R protein was increased. Aortas isolated from such OLETF rats that had been treated with AG (50mg/kg/day for 10 weeks) exhibited reduced ET-1-induced contraction, suppressed ET-1-stimulated ERK phosphorylation accompanied by down-regulation of ET(A)-R, and increased modification of ET(A)-R by Jab1. Such AG-treated rats exhibited normalized plasma ET-1 and CML-AGE levels, and their aortas exhibited decreased HIF1α/ECE1 expression. However, such AG treatment did not alter the elevated levels of plasma glucose or insulin, or systolic blood pressure seen in OLETF rats. These data from the OLETF model suggest that within the timescale studied here, AG normalizes ET-1-induced aortic contraction by suppressing ET(A)-R/ERK activities and/or by normalizing the imbalance between Jab1 and O-GlcNAc in type 2 diabetes.
Collapse
Affiliation(s)
- Shingo Nemoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
32
|
D'Souza A, Howarth FC, Yanni J, Dobryznski H, Boyett MR, Adeghate E, Bidasee KR, Singh J. Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Exp Physiol 2011; 96:875-88. [PMID: 21622965 DOI: 10.1113/expphysiol.2011.058271] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study tested the hypothesis that experimental prediabetes can elicit structural remodelling in the left ventricle (LV). Left ventricles isolated from 8-week-old male Goto-Kakizaki (GK) rats and age-matched male Wistar control rats were used to assess remodelling changes and underlying transforming growth factor β1 (TGFβ1) activity, prohypertrophic Akt-p70S6K1 signalling and gene expression profile of the extracellular matrix (ECM) using histological, immunohistochemical, immunoblotting and quantitative gene expression analyses. Prediabetes in GK rats was confirmed by impaired glucose tolerance and modestly elevated fasting blood glucose. Left ventricle remodelling in the GK rat presented with marked hypertrophy of cardiomyocytes and increased ECM deposition that together translated into increased heart size in the absence of ultrastructural changes or fibre disarray. Molecular derangements underlying this phenotype included recapitulation of the fetal gene phenotype markers B-type natriuretic peptide and α-skeletal muscle actin, activation of the Akt-p70S6K1 pathway and altered gene expression profile of key components (collagen 1α and fibronectin) and modulators of the ECM (matrix metalloproteinases 2 and 9 and connective tissue growth factor). These changes were correlated with parallel findings of increased TGFβ1 transcription and activation in the LV and elevated active TGFβ1 in plasma of GK rats compared with control animals (Student's t test, P < 0.05 versus age-matched Wistar control animals for all parameters). This is the first report to describe LV structural remodelling in experimental prediabetes. The results suggest that ventricular decompensation pathognomonic of advanced diabetic cardiomyopathy may have possible origins in profibrotic and prohypertrophic mechanisms triggered before the onset of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Alicia D'Souza
- School of Forensic and Investigative Science, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Inoue N, Nagao K, Sakata K, Yamano N, Gunawardena PER, Han SY, Matsui T, Nakamori T, Furuta H, Takamatsu K, Yanagita T. Screening of soy protein-derived hypotriglyceridemic di-peptides in vitro and in vivo. Lipids Health Dis 2011; 10:85. [PMID: 21600040 PMCID: PMC3116501 DOI: 10.1186/1476-511x-10-85] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/22/2011] [Indexed: 11/17/2022] Open
Abstract
Background Soy protein and soy peptides have attracted considerable attention because of their potentially beneficial biological properties, including antihypertensive, anticarcinogenic, and hypolipidemic effects. Although soy protein isolate contains several bioactive peptides that have distinct physiological activities in lipid metabolism, it is not clear which peptide sequences are responsible for the triglyceride (TG)-lowering effects. In the present study, we investigated the effects of soy protein-derived peptides on lipid metabolism, especially TG metabolism, in HepG2 cells and obese Otsuka Long-Evans Tokushima fatty (OLETF) rats. Results In the first experiment, we found that soy crude peptide (SCP)-LD3, which was prepared by hydrolyze of soy protein isolate with endo-type protease, showed hypolipidemic effects in HepG2 cells and OLETF rats. In the second experiment, we found that hydrophilic fraction, separated from SCP-LD3 with hydrophobic synthetic absorbent, revealed lipid-lowering effects in HepG2 cells and OLETF rats. In the third experiment, we found that Fraction-C (Frc-C) peptides, fractionated from hydrophilic peptides by gel permeation chromatography-high performance liquid chromatography, significantly reduced TG synthesis and apolipoprotein B (apoB) secretion in HepG2 cells. In the fourth experiment, we found that the fraction with 0.1% trifluoroacetic acid, isolated from Frc-C peptides by octadecylsilyl column chromatography, showed hypolipidemic effects in HepG2 cells. In the final experiment, we found that 3 di-peptides, Lys-Ala, Val-Lys, and Ser-Tyr, reduced TG synthesis, and Ser-Tyr additionally reduced apoB secretion in HepG2 cells. Conclusion Novel active peptides with TG-lowering effects from soy protein have been isolated.
Collapse
Affiliation(s)
- Nao Inoue
- Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Furuichi K, Hisada Y, Shimizu M, Okumura T, Kitagawa K, Yoshimoto K, Iwata Y, Yokoyama H, Kaneko S, Wada T. Matrix metalloproteinase-2 (MMP-2) and membrane-type 1 MMP (MT1-MMP) affect the remodeling of glomerulosclerosis in diabetic OLETF rats. Nephrol Dial Transplant 2011; 26:3124-31. [PMID: 21414971 DOI: 10.1093/ndt/gfr125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND We reported previously that diabetic glomerular nodular-like lesions were formed during the reconstruction process of mesangiolysis. However, the precise mechanism has yet to be elucidated. Here, we investigated the roles of matrix metalloproteinase (MMP)-2, which is activated from proMMP-2 by membrane-type (MT)-MMP in the sclerotic and endothelial cell injury process of a type II diabetic model, Otsuka Long-Evans Tokushima Fatty (OLETF) rats. METHODS Monocrotaline (MCT) or saline only was injected three times every 4 weeks in 36-week-old OLETF rats and control Long-Evans Tokushima Otsuka rats. Glomerular expression and enzymatic activity of MMP-2 and MT1-MMP were assessed by immunohistochemistry, gelatin zymography of cultured glomerular supernatants, in situ enzymatic detection and reverse transcription-polymerase chain reaction. RESULTS Mesangial matrix increased in OLETF rats. In addition, mesangiolysis and nodular-like mesangial expansion were observed only in MCT-injected endothelial injured OLETF rats. MMP-2 and MT1-MMP proteins increased in the expanded mesangial lesions in OLETF rats. Gelatin zymography revealed an increase in 62-kDa activated MMP-2 in the culture supernatants of isolated glomeruli from OLETF rats. In situ enzymatic activity of MMP in the mesangial areas was also detected in 50-week-old MCT-injected OLETF rats. CONCLUSION These results suggest that MMP-2 and MT1-MMP are produced and activated in glomeruli through the progression of diabetic nephropathy and may have some effect on the remodeling of the glomerular matrix in diabetic nephropathy.
Collapse
Affiliation(s)
- Kengo Furuichi
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Panchal SK, Brown L. Rodent models for metabolic syndrome research. J Biomed Biotechnol 2010; 2011:351982. [PMID: 21253582 PMCID: PMC3018657 DOI: 10.1155/2011/351982] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 02/07/2023] Open
Abstract
Rodents are widely used to mimic human diseases to improve understanding of the causes and progression of disease symptoms and to test potential therapeutic interventions. Chronic diseases such as obesity, diabetes and hypertension, together known as the metabolic syndrome, are causing increasing morbidity and mortality. To control these diseases, research in rodent models that closely mimic the changes in humans is essential. This review will examine the adequacy of the many rodent models of metabolic syndrome to mimic the causes and progression of the disease in humans. The primary criterion will be whether a rodent model initiates all of the signs, especially obesity, diabetes, hypertension and dysfunction of the heart, blood vessels, liver and kidney, primarily by diet since these are the diet-induced signs in humans with metabolic syndrome. We conclude that the model that comes closest to fulfilling this criterion is the high carbohydrate, high fat-fed male rodent.
Collapse
Affiliation(s)
- Sunil K. Panchal
- Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Lindsay Brown
- Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
36
|
Ishii Y, Maki M, Yamamoto H, Sasase T, Kakutani M, Ohta T. Evaluation of blood pressure in Spontaneously Diabetic Torii-Lepr(fa) rats. Exp Anim 2010; 59:525-9. [PMID: 20661000 DOI: 10.1538/expanim.59.525] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The Spontaneously Diabetic Torii-Lepr(fa) (SDT-fa/fa) rat, a new model of obese type 2 diabetes, shows obesity, hyperglycemia, and hyperlipidemia from 6 weeks of age. Diabetic complications such as nephropathy and cataract are observed with aging; however, blood pressure change with age has not previously been examined. In this study, blood pressure was periodically measured and the change was investigated. Blood pressure in male SDT-fa/fa rats was elevated at 8, 16, and 24 weeks of age, whereas the heart rate was not changed. In addition to hyperglycemia, hyperlipidemia, and proteinuria, hyperleptinemia and increased urine angiotensinogen were observed in SDT-fa/fa rats. Blood pressure and heart rate in the male original SDT (SDT-+/+) rat did not significantly change. In conclusion, the SDT-fa/fa rat is a promising model, showing significant hypertension with diabetes mellitus.
Collapse
Affiliation(s)
- Yukihito Ishii
- Japan Tobacco Inc., Central Pharmaceutical Research Institute, Takatsuki, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Nagao K, Yamano N, Shirouchi B, Inoue N, Murakami S, Sasaki T, Yanagita T. Effects of citrus auraptene (7-geranyloxycoumarin) on hepatic lipid metabolism in vitro and in vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9028-9032. [PMID: 20681532 DOI: 10.1021/jf1020329] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent reports have shown that citrus auraptene (7-geranyloxycoumarin) possesses valuable pharmacological properties, including anticarcinogenic, anti-inflammatory, antihelicobacter, antigenotoxic, and neuroprotective effects. In the present study, we investigated the effect of dietary auraptene on hepatic lipid metabolism both in vitro and in vivo. Results suggested that auraptene has the ability to normalize lipid abnormalities in HepG2 hepatocytes. After 4 weeks of auraptene feeding, abdominal white adipose tissue weight and hepatic triglyceride (TG) levels were dose-dependently lowered in Otsuka Long-Evans Tokushima fatty (OLETF) rats. The activities of carnitine palmitoyltransferase, a key enzyme in mitochondrial fatty acid β-oxidation, and peroxisomal β-oxidation were markedly and dose-dependently enhanced in OLETF rat livers by auraptene feeding. Additionally, hepatic expression of acyl-CoA oxidase, the initial enzyme of the peroxisomal β-oxidation system, was significantly and dose-dependently enhanced by auraptene administration. These results suggest that auraptene administration alleviates obesity and hepatic TG accumulation in part through lipolysis enhancement in the livers of obese OLETF rats.
Collapse
Affiliation(s)
- Koji Nagao
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Kanter M, Sen S, Donmez S, Aktas C, Ustundag S, Erboga M. Protective effects of irbesartan and alpha lipoic acid in STZ-induced diabetic nephropathy in rats. Ren Fail 2010; 32:498-505. [DOI: 10.3109/08860221003646360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
39
|
Matsumoto T, Ishida K, Nakayama N, Taguchi K, Kobayashi T, Kamata K. Mechanisms underlying the losartan treatment-induced improvement in the endothelial dysfunction seen in mesenteric arteries from type 2 diabetic rats. Pharmacol Res 2010; 62:271-81. [PMID: 20304070 DOI: 10.1016/j.phrs.2010.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 11/24/2022]
Abstract
It is well known that type 2 diabetes mellitus is frequently associated with vascular dysfunction and an elevated systemic blood pressure, yet the underlying mechanisms are not completely understood. We previously reported that in mesenteric arteries from established type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats, which exhibit endothelial dysfunction, there is an imbalance between endothelium-derived vasodilators [namely, nitric oxide (NO) and hyperpolarizing factor (EDHF)] and vasoconstrictors [contracting factors (EDCFs) such as cyclooxygenase (COX)-derived prostanoids]. Here, we investigated whether the angiotensin II receptor antagonist losartan might improve endothelial dysfunction in OLETF rats at the established stage of diabetes. In mesenteric arteries isolated from OLETF rats [vs. those from age-matched control Long-Evans Tokushima Otsuka (LETO) rats]: (1) the acetylcholine (ACh)-induced relaxation was impaired, (2) the NO- and EDHF-mediated relaxations were reduced, (3) the ACh-induced EDCF-mediated contraction and the production of prostanoids were increased, and (4) superoxide generation was increased. After such OLETF rats had received losartan (25 mg/kg/day p.o. for 4 weeks), their isolated mesenteric arteries exhibited: (1) improvements in ACh-induced NO- and EDHF-mediated relaxations, (2) reduced EDCF- and arachidonic acid-induced contractions, (3) suppressed production of prostanoids, (4) reduced PGE(2)-mediated contraction, and (5) reduced superoxide generation. Within the timescale studied here, losartan did not change the protein expressions of endothelial NO synthase, COX1, or COX2 in mesenteric arteries from either OLETF or LETO rats. Losartan thus normalizes vascular dysfunction in this type 2 diabetic model, and the above effects may contribute to the reduction of adverse cardiovascular events seen in diabetic patients treated with angiotensin II receptor blockers.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Wajima D, Nakamura M, Horiuchi K, Miyake H, Takeshima Y, Tamura K, Motoyama Y, Konishi N, Nakase H. Enhanced cerebral ischemic lesions after two-vein occlusion in diabetic rats. Brain Res 2010; 1309:126-35. [DOI: 10.1016/j.brainres.2009.10.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 10/22/2009] [Accepted: 10/24/2009] [Indexed: 11/26/2022]
|
41
|
Karakikes I, Kim M, Hadri L, Sakata S, Sun Y, Zhang W, Chemaly ER, Hajjar RJ, Lebeche D. Gene remodeling in type 2 diabetic cardiomyopathy and its phenotypic rescue with SERCA2a. PLoS One 2009; 4:e6474. [PMID: 19649297 PMCID: PMC2714457 DOI: 10.1371/journal.pone.0006474] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 07/03/2009] [Indexed: 12/31/2022] Open
Abstract
Background/Aim Diabetes-associated myocardial dysfunction results in altered gene expression in the heart. We aimed to investigate the changes in gene expression profiles accompanying diabetes-induced cardiomyopathy and its phenotypic rescue by restoration of SERCA2a expression. Methods/Results Using the Otsuka Long-Evans Tokushima Fatty rat model of type 2 diabetes and the Agilent rat microarray chip, we analyzed gene expression by comparing differential transcriptional changes in age-matched control versus diabetic hearts and diabetic hearts that received gene transfer of SERCA2a. Microarray expression profiles of selected genes were verified with real-time qPCR and immunoblotting. Our analysis indicates that diabetic cardiomyopathy is associated with a downregulation of transcripts. Diabetic cardiomyopathic hearts have reduced levels of SERCA2a. SERCA2a gene transfer in these hearts reduced diabetes-associated hypertrophy, and differentially modulated the expression of 76 genes and reversed the transcriptional profile induced by diabetes. In isolated cardiomyocytes in vitro, SERCA2a overexpression significantly modified the expression of a number of transcripts known to be involved in insulin signaling, glucose metabolism and cardiac remodeling. Conclusion This investigation provided insight into the pathophysiology of cardiac remodeling and the potential role of SERCA2a normalization in multiple pathways in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ioannis Karakikes
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Maengjo Kim
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lahouaria Hadri
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Susumu Sakata
- Department of Physiology II, Nara Medical University, Kashihara, Nara, Japan
| | - Yezhou Sun
- Bioinformatics Laboratory of Personalized Medicine Research Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Weijia Zhang
- Bioinformatics Laboratory of Personalized Medicine Research Program, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Elie R. Chemaly
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Roger J. Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Djamel Lebeche
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Matsumoto M, Tsujino T, Naito Y, Sakoda T, Ohyanagi M, Nonaka H, Masuyama T. High Salt Intake Elevated Blood Pressure but not Changed Circadian Blood Pressure Rhythm in Otsuka Long-Evans Tokushima Fatty (OLETF) Rat. Clin Exp Hypertens 2009; 31:271-80. [DOI: 10.1080/10641960902822526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Lee SJ, Kang JG, Ryu OH, Kim CS, Ihm SH, Choi MG, Yoo HJ, Kim DS, Kim TW. Effects of alpha-lipoic acid on transforming growth factor beta1-p38 mitogen-activated protein kinase-fibronectin pathway in diabetic nephropathy. Metabolism 2009; 58:616-23. [PMID: 19375583 DOI: 10.1016/j.metabol.2008.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 12/05/2008] [Indexed: 12/23/2022]
Abstract
In diabetic nephropathy, transforming growth factor beta1 (TGFbeta1) is related to p38 mitogen-activated protein kinase (MAPK) that induces production of fibronectin in mesangial cells. We investigated the effects of alpha-lipoic acid (ALA), a potent antioxidant, on proteinuria and TGFbeta1-p38 MAPK-fibronectin pathway in diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. After ALA treatment for 5 weeks in OLETF rats at 30 weeks of age, plasma malondialdehyde, urinary protein excretion, renal cortical TGFbeta1, and fibronectin protein levels were decreased; and urinary protein excretion was positively correlated with renal cortical TGFbeta1 and fibronectin protein levels. Phospho-form but not total-form levels as well as fold activations of each protein consisting of p38 MAPK pathway were also attenuated. These results suggest that ALA ameliorates proteinuria by attenuating expressions of TGFbeta1 and fibronectin proteins, and these favorable effects are related to inhibition of phosphorylating activation of p38 MAPK pathway in renal cortex of OLETF rats.
Collapse
Affiliation(s)
- Seong Jin Lee
- Department of Endocrinology and Metabolism, College of Medicine, Hallym University, ChunCheon 200-704, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lau C, Sudbury I, Thomson M, Howard PL, Magil AB, Cupples WA. Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1761-70. [PMID: 19339676 DOI: 10.1152/ajpregu.90731.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hyperfiltration occurs in early type 1 diabetes mellitus in both rats and humans. It results from afferent vasodilation and thus may impair stabilization of glomerular capillary pressure by autoregulation. It is inversely related to dietary salt intake, the "salt paradox." Restoration of normal glomerular filtration rate (GFR) involves increased preglomerular resistance, probably mediated by tubuloglomerular feedback (TGF). To begin to test whether the salt paradox has pathogenic significance, we compared intact vs. diabetic (streptozotocin) Long-Evans rats with normal and increased salt intake, 1 and approximately 3% by weight of food eaten, respectively. Weekly 24-h blood pressure records were acquired by telemetry before and during diabetes. Blood glucose was maintained at approximately 20 mmol/l by insulin implants. GFR was significantly elevated only in diabetic rats on normal salt intake, confirming diabetic hyperfiltration and the salt paradox. Renal blood flow dynamics show strong contributions to autoregulation by both TGF and the myogenic mechanism and were not impaired by diabetes or by increased salt intake. Separately, systolic pressure was not elevated in diabetic rats at any time during 12 wk with normal or high salt intake. Autoregulation was effective in all groups, and the diabetic-normal salt group showed significantly improved autoregulation at low perfusion pressures. Histological examination revealed very minor glomerulosclerosis and modest mesangial expansion, although neither was diagnostic of diabetes. Periodic acid-Schiff-positive droplets found in distal tubules and collecting duct segments were diagnostic of diabetic kidneys. Biologically significant effects attributable to increased salt intake were abrogation of hyperfiltration and of the left shift in autoregulation in diabetic rats.
Collapse
Affiliation(s)
- Catherine Lau
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Strict angiotensin blockade prevents the augmentation of intrarenal angiotensin II and podocyte abnormalities in type 2 diabetic rats with microalbuminuria. J Hypertens 2008; 26:1849-59. [PMID: 18698221 DOI: 10.1097/hjh.0b013e3283060efa] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Beneficial effects of angiotensin II type 1 receptor blockers have been indicated for patients with diabetic nephropathy. We investigated the effects of an angiotensin II type 1 receptor blocker, telmisartan, on intrarenal angiotensin II levels and the progression of albuminuria or glomerular injury in type 2 diabetic Otsuka Long-Evans Tokushima Fatty rats with microalbuminuria. METHODS AND RESULTS Otsuka Long-Evans Tokushima Fatty rats were randomly treated with telmisartan (10 mg/kg/day, orally), hydralazine (25 mg/kg/day in drinking water) or vehicle from the initiation of albuminuria (13 weeks old). At this age, Otsuka Long-Evans Tokushima Fatty rats showed low but detectable albuminuria (1.0 +/- 0.1 mg/day) and higher systolic blood pressure, postprandial blood glucose and kidney angiotensin II levels than age-matched nondiabetic Long-Evans Tokushima Otsuka rats. At 35 weeks of age, vehicle-treated Otsuka Long-Evans Tokushima Fatty rats did not show apparent glomerular injury or tubulointerstitial fibrosis but did exhibit severe albuminuria (72.6 +/- 5.9 mg/day) and accumulation of cytoplasmic granules containing albumin in podocytes. Otsuka Long-Evans Tokushima Fatty rats also showed higher systolic blood pressure, postprandial blood glucose, collagen gene expression, desmin staining (a marker of podocyte injury) and angiotensin II levels than Long-Evans Tokushima Otsuka rats. Treatment with telmisartan did not affect postprandial blood glucose but decreased systolic blood pressure, collagen gene expression, desmin staining and angiotensin II levels. Telmisartan also prevented the development of albuminuria (0.6 +/- 0.1 mg/day at 35 weeks old) and accumulation of cytoplasmic granules. Hydralazine treatment resulted in a similar reduction in systolic blood pressure and partially attenuated the albuminuria (35.4 +/- 1.8 mg/day at 35 weeks old) but did not affect the other parameters. CONCLUSION The present results suggest the contribution of augmented intrarenal angiotensin II levels to the initiation and progression of albuminuria as well as podocyte abnormalities in type 2 diabetic rats. Angiotensin II blockade may inhibit the transition from microalbuminuria to overt nephropathy through prevention of intrarenal angiotensin II augmentation, independently of changes in blood pressure and glucose levels.
Collapse
|
46
|
Kovacs P, Hajnal A. Altered pontine taste processing in a rat model of obesity. J Neurophysiol 2008; 100:2145-57. [PMID: 18550724 DOI: 10.1152/jn.01359.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The increased palatability of modern diet contributes to eating beyond homeostatic need and in turn to the growing prevalence of obesity. How palatability is coded in taste-evoked neural activity and whether this activity differs between obese and lean remains unknown. To investigate this, we used extracellular single-unit recording in the second central gustatory relay, the pontine parabrachial nucleus while stimulating the tongue with various concentrations of sucrose (0.01-1.5 M) in Otsuka Long Evans Tokushima Fatty (OLETF) rats, lacking CCK-1R. The analyses included a total of 179 taste-responsive neurons in age-matched prediabetic, obese OLETF and lean Long Evans Tokushima Otsuka (LETO) controls. Compared with LETO, we found more NaCl-, and fewer sucrose-responsive neurons (67 vs. 47% and 14 vs. 32%), and an overall reduced response magnitude to sucrose in the OLETF rats. Further, in the obese rats there was a rightward shift in sucrose concentration-response functions relative to lean controls with a higher response-threshold (0.37+/-0.05 vs. 0.23+/-0.2 M, P<0.05) and maximal neural response to higher sucrose concentrations (0.96+/-0.07 vs. 0.56+/-0.5 M, P<0.001). These findings demonstrate altered central gustatory processing for sucrose in obese OLETF rat and further support the notion that palatability is encoded in the across neuron pattern.
Collapse
Affiliation(s)
- Peter Kovacs
- Department of Neural and Behavioral Sciences H181, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|
47
|
Nugent DA, Smith DM, Jones HB. A review of islet of Langerhans degeneration in rodent models of type 2 diabetes. Toxicol Pathol 2008; 36:529-51. [PMID: 18467681 DOI: 10.1177/0192623308318209] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes mellitus (TTDM) is characterized by progressive loss of glucose control through multifactorial mechanisms. The search for an understanding of TTDM has relied on animal models since the realization of the importance of the pancreas in controlling plasma glucose concentration. Rodent models of TTDM are developed to express hyperglycemia and not islet degeneration per se. Degeneration of the islets of Langerhans with beta-cell loss is secondary to insulin resistance and is regarded as the more important lesion. Despite this, differences between models are seen in the development and progression of islet degeneration. Assessing the differences between the models is important to appreciate the various aspects of TTDM and understand their advantages as well as their deficiencies. Relevant animal models of TTDM provide opportunities to investigate important physiological and cell biological processes that may ultimately lead to development of targeted therapies. This article reviews the importance, advantages, and limitations of rodent models of TTDM in relation to the histopathological changes that characterize islet degeneration. Pathophysiological mechanisms that contribute to islet degeneration are also discussed and are placed into the context of changes in islet histological appearances.
Collapse
Affiliation(s)
- David A Nugent
- Pathology Department, Safety Assessment, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | | | | |
Collapse
|
48
|
Rosa MP, Baroni GV, Portal VL. Potencial terapêutico para a prevenção e tratamento da nefropatia e neuropatia diabéticas: evidências do uso do cilostazol. ACTA ACUST UNITED AC 2007; 51:1528-32. [DOI: 10.1590/s0004-27302007000900017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 10/05/2007] [Indexed: 11/22/2022]
Abstract
O cilostazol é um inibidor seletivo da fosfodiesterase tipo III com ação vasodilatadora, antiagregante plaquetária e antitrombótica. É considerada a droga de primeira escolha na claudicação intermitente devido à doença arterial obstrutiva periférica. Vários estudos demonstraram melhora significativa na distância percorrida na caminhada sem dor e na qualidade de vida, sem aumentar o risco de sangramento. Essas ações também foram verificadas em pacientes diabéticos, pois o cilostazol não afeta o metabolismo da glicose. Estudos, principalmente experimentais, têm mostrado resultados satisfatórios na melhora do fluxo sangüíneo neural, na atividade da bomba de sódio e potássio, na resistência à insulina e na microalbuminúria. Neste artigo, apresentamos uma revisão do uso do cilostazol na prevenção e no tratamento das complicações do diabetes mellitus, como nefropatia e neuropatia. Ressalta-se a necessidade do controle adequado dos níveis glicêmicos, da hipertensão arterial sistêmica e do tabagismo. Um maior número de estudos clínicos é necessário para melhor compreensão desses efeitos benéficos.
Collapse
|
49
|
Griffin KA, Abu-Naser M, Abu-Amarah I, Picken M, Williamson GA, Bidani AK. Dynamic blood pressure load and nephropathy in the ZSF1 (fa/facp) model of type 2 diabetes. Am J Physiol Renal Physiol 2007; 293:F1605-13. [PMID: 17728379 DOI: 10.1152/ajprenal.00511.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes and increased blood pressure (BP) are believed to interact synergistically in the pathogenesis and progression of diabetic nephropathy. The present studies were performed to examine if there were differences in BP load and/or protective renal autoregulatory capacity between the obese diabetic Zucker fatty /spontaneously hypertensive heart failure F1 hybrid (ZSF1) ( fa/ facp) rats and their lean controls. By ∼26 wk of age, ZSF1 ( n = 13) but not their lean controls ( n = 16) had developed substantial proteinuria (180 ± 19 vs. 16 ± 1.4 mg/24 h) and glomerulosclerosis (19 ± 2.4 vs. 0.6 ± 0.2%; P < 0.001). However, average ambient systolic BP by radiotelemetry (12–26 wk of age) was modestly lower in ZSF1 than in lean controls (130 ± 1.4 vs. 137 ± 1.7 mmHg, P < 0.002), although the 24-h BP power spectra showed a mild increase at frequencies <0.1 Hz in the ZSF1. Autoregulatory capacity under anesthesia in response to step changes in perfusion pressure between 100 and 140 mmHg was similarly well preserved in both ZSF1 and lean controls at 16–18 wk of age [autoregulatory indexes (AI) <0.1]. Similarly, differences were not observed for dynamic autoregulation in conscious rats [transfer functions between BP (input) and renal blood flow (output) using chronic Transonic flow probes]. Collectively, these data indicate that the pathogenesis of nephropathy in the ZSF1 model of type 2 diabetic nephropathy is largely independent of differences in systemic BP and/or its potential renal transmission. However, these data do not exclude the possibility that the diabetic milieu may alter the glomerular capillaries in the ZSF1, such that there is an enhanced local susceptibility to injury with even normal glomerular pressures.
Collapse
Affiliation(s)
- Karen A Griffin
- Department of Internal Medicine, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Shirouchi B, Nagao K, Inoue N, Ohkubo T, Hibino H, Yanagita T. Effect of dietary omega 3 phosphatidylcholine on obesity-related disorders in obese Otsuka Long-Evans Tokushima fatty rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:7170-6. [PMID: 17661494 DOI: 10.1021/jf071225x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Recent reports have shown that dietary phosphatidylcholine (PC) has various beneficial biological effects. Omega 3 polyunsaturated fatty acids (omega3 PUFAs) have also been reported to have lipid-lowering effects in animal models and human studies. In the present study, we investigated the effect of omega3 PUFAs containing PC (omega3-PC) on obesity-related disorders in Otsuka Long-Evans Tokushima fatty (OLETF) rats. Rats were fed semisynthetic diets that contained either 5% corn oil and 2% egg-PC or 5% corn oil and 2% omega3-PC for 4 weeks. During this 4 week feeding of the omega3-PC, the OLEFT rats showed a decrease of omental white adipose tissue weight. In addition, the omega3-PC diet significantly decreased liver weight and hepatic lipid levels in OLETF rats. These changes were attributable to the significant suppression of fatty acid synthase activity and significant enhancement in the activities of carnitine palmitoyltransferase and peroxisomal beta-oxidation. Moreover, the omega3-PC diet reduced serum glucose levels concomitant with the increase of serum adiponectin levels. These results show that compared with egg-PC, omega3-PC can prevent or alleviate obesity-related disorders through the suppression of fatty acid synthesis, enhancement of fatty acid beta-oxidation, and increase of the serum adiponectin level in OLETF rats.
Collapse
Affiliation(s)
- Bungo Shirouchi
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | | | | | | | | | | |
Collapse
|