1
|
Song R, Struhl K. S100A8/S100A9 cytokine acts as a transcriptional coactivator during breast cellular transformation. SCIENCE ADVANCES 2021; 7:7/1/eabe5357. [PMID: 33523865 PMCID: PMC7775746 DOI: 10.1126/sciadv.abe5357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Cytokines are extracellular proteins that convey messages between cells by interacting with cognate receptors at the cell surface and triggering signaling pathways that alter gene expression and other phenotypes in an autocrine or paracrine manner. Here, we show that the calcium-dependent cytokines S100A8 and S100A9 are recruited to numerous promoters and enhancers in a model of breast cellular transformation. This recruitment is associated with multiple DNA sequence motifs recognized by DNA binding transcription factors that are linked to transcriptional activation and are important for transformation. The cytokines interact with these transcription factors in nuclear extracts, and they activate transcription when artificially recruited to a target promoter. Nuclear-specific expression of S100A8/A9 promotes oncogenic transcription and leads to enhanced breast transformation phenotype. These results suggest that, in addition to its classical cytokine function, S100A8/A9 can act as a transcriptional coactivator.
Collapse
Affiliation(s)
- Ruisheng Song
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, MA 02115, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, MA 02115, USA.
| |
Collapse
|
2
|
Canaider S, Facchin F, Tassinari R, Cavallini C, Olivi E, Taglioli V, Zannini C, Bianconi E, Maioli M, Ventura C. Intracrine Endorphinergic Systems in Modulation of Myocardial Differentiation. Int J Mol Sci 2019; 20:ijms20205175. [PMID: 31635381 PMCID: PMC6829321 DOI: 10.3390/ijms20205175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
A wide variety of peptides not only interact with the cell surface, but govern complex signaling from inside the cell. This has been referred to as an "intracrine" action, and the orchestrating molecules as "intracrines". Here, we review the intracrine action of dynorphin B, a bioactive end-product of the prodynorphin gene, on nuclear opioid receptors and nuclear protein kinase C signaling to stimulate the transcription of a gene program of cardiogenesis. The ability of intracrine dynorphin B to prime the transcription of its own coding gene in isolated nuclei is discussed as a feed-forward loop of gene expression amplification and synchronization. We describe the role of hyaluronan mixed esters of butyric and retinoic acids as synthetic intracrines, controlling prodynorphin gene expression, cardiogenesis, and cardiac repair. We also discuss the increase in prodynorphin gene transcription and intracellular dynorphin B afforded by electromagnetic fields in stem cells, as a mechanism of cardiogenic signaling and enhancement in the yield of stem cell-derived cardiomyocytes. We underline the possibility of using the diffusive features of physical energies to modulate intracrinergic systems without the needs of viral vector-mediated gene transfer technologies, and prompt the exploration of this hypothesis in the near future.
Collapse
Affiliation(s)
- Silvia Canaider
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Federica Facchin
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| |
Collapse
|
3
|
Haller H, Park JK, Lindschau C, Meyer M, Menne J. Intrarenal renin-angiotensin system — important player of the local milieu. J Renin Angiotensin Aldosterone Syst 2016; 7:122-5. [PMID: 17083066 DOI: 10.3317/jraas.2006.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hermann Haller
- Department of Nephrology, Hannover Medical School, Germany
| | | | | | | | | |
Collapse
|
4
|
Petrova A, Moffett DF. Comprehensive Immunolocalization Studies of a Putative Serotonin Receptor from the Alimentary Canal of Aedes aegypti Larvae Suggest Its Diverse Roles in Digestion and Homeostasis. PLoS One 2016; 11:e0146587. [PMID: 26808995 PMCID: PMC4726579 DOI: 10.1371/journal.pone.0146587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022] Open
Abstract
Serotonin regulates key processes including digestion and homeostasis in insects. Serotonin effects are mediated by serotonin receptors that transduce information through initiation of second messenger signaling pathways. Lack of information on serotonin receptors associated with the alimentary canal impedes the understanding of the serotonergic role in insect physiology. To address this void, the present study has cloned and identified a putative serotonin receptor (hereafter AaSeR-1) from the alimentary canal of Aedes aegypti (yellow fever mosquito) larvae. In addition to in-silico analyses of AaSeR-1 primary sequence, immunohistochemical investigations were carried out to elucidate receptor expression patterns. Specific AaSeR-1 immunofluorescence was detected in the caeca, the mid- and hindgut, including the Malpighian tubules. These findings point out not only receptor ubiquitous nature but also its involvement in regulation of different stages of nutrient processing and homeostasis. Furthermore, AaSeR-1 may mediate an array of effects through its differential expression at various cell compartments. While AaSeR-1 specific immunofluorescence was depicted in the nucleus and nucleolus of principal cells of the anterior midgut, in the posterior, analyses suggest receptor association with the plasma membrane of both principal and regenerative cells. In addition, AaSeR-1 immunofluorescence was also found in some enteroendocrine cells and in both circular and longitudinal muscles that innervate the alimentary canal. Overall, immunohistochemical analyses of AaSeR-1 expression indicate that this receptor exercises multiple roles in digestion- and homeostasis-related mechanisms.
Collapse
Affiliation(s)
- Adelina Petrova
- School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| | - David Franklin Moffett
- School of Biological Sciences, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
5
|
Mei Wang PH, Andrade MC, Quinto BMR, Di Marco G, Mortara RA, Vio CP, Casarini DE. N-domain angiotensin-I converting enzyme is expressed in immortalized mesangial, proximal tubule and collecting duct cells. Int J Biol Macromol 2015; 72:380-90. [DOI: 10.1016/j.ijbiomac.2014.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 01/30/2023]
|
6
|
Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI. Update on the Angiotensin converting enzyme 2-Angiotensin (1-7)-MAS receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne) 2014; 4:201. [PMID: 24409169 PMCID: PMC3886117 DOI: 10.3389/fendo.2013.00201] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
The renin-angiotensin-system (RAS) constitutes an important hormonal system in the physiological regulation of blood pressure. Indeed, dysregulation of the RAS may lead to the development of cardiovascular pathologies including kidney injury. Moreover, the blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS that the system is comprised of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II-AT1R axis that promotes vasoconstriction, sodium retention, and other mechanisms to maintain blood pressure, as well as increased oxidative stress, fibrosis, cellular growth, and inflammation in pathological conditions. In contrast, the non-classical RAS composed of the ACE2-Ang-(1-7)-Mas receptor axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and oxidative stress. Thus, a reduced tone of the Ang-(1-7) system may contribute to these pathologies as well. Moreover, the non-classical RAS components may contribute to the effects of therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury. The review considers recent studies on the ACE2-Ang-(1-7)-Mas receptor axis regarding the precursor for Ang-(1-7), the intracellular expression and sex differences of this system, as well as an emerging role of the Ang1-(1-7) pathway in fetal programing events and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Mark C. Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson C. Marshall
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ebaa M. Alzayadneh
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hossam A. Shaltout
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmacology and Toxicology, School of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Debra I. Diz
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- *Correspondence: Debra I. Diz, The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1032, USA e-mail:
| |
Collapse
|
7
|
Outside and inside angiotensin. ACTA ACUST UNITED AC 2013; 7:253-5. [DOI: 10.1016/j.jash.2013.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 12/30/2022]
|
8
|
Luo P, Yan M, Frohlich ED, Mehta JL, Hu C. Novel concepts in the genesis of hypertension: role of LOX-1. Cardiovasc Drugs Ther 2012; 25:441-9. [PMID: 21912849 DOI: 10.1007/s10557-011-6337-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hypertension is a common disease and a potent risk factor for cardiovascular disease. Tremendous strides have been made in understanding its genesis in the last 2 decades. Hypertension is often clustered with other cardiovascular risk factors, such as dyslipidemia and diabetes. The state of hypertension is often associated with increased vascular oxidative stress. Oxidative stress promotes proliferation and hypertrophy of vascular smooth muscle cell and collagen deposition, leading to thickening of the vascular media and narrowing of the vascular lumen. Oxidative stress also injures endothelium, impairs endothelium-dependent vascular relaxation and increases vascular contractile activity. Further, oxidative stress also oxidizes LDL-cholesterol. It has been shown that oxidized low-density lipoprotein (ox-LDL) activates renin-angiotensin system (RAS) and angiotensin II via its type 1 receptor activates ox-LDL receptor LOX-1. This mutually facilitative cross-talk between ox-LDL and RAS may be an important component in the development of hypertension. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a receptor for ox-LDL. This review summarizes the role of LOX-1 in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Ping Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha,China
| | | | | | | | | |
Collapse
|
9
|
Chatenet D, Nguyen TTM, Létourneau M, Fournier A. Update on the urotensinergic system: new trends in receptor localization, activation, and drug design. Front Endocrinol (Lausanne) 2012; 3:174. [PMID: 23293631 PMCID: PMC3533682 DOI: 10.3389/fendo.2012.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022] Open
Abstract
The urotensinergic system plays central roles in the physiological regulation of major mammalian organ systems, including the cardiovascular system. As a matter of fact, this system has been linked to numerous pathophysiological states including atherosclerosis, heart failure, hypertension, diabetes as well as psychological, and neurological disorders. The delineation of the (patho)physiological roles of the urotensinergic system has been hampered by the absence of potent and selective antagonists for the urotensin II-receptor (UT). Thus, a more precise definition of the molecular functioning of the urotensinergic system, in normal conditions as well as in a pathological state is still critically needed. The recent discovery of nuclear UT within cardiomyocytes has highlighted the cellular complexity of this system and suggested that UT-associated biological responses are not only initiated at the cell surface but may result from the integration of extracellular and intracellular signaling pathways. Thus, such nuclear-localized receptors, regulating distinct signaling pathways, may represent new therapeutic targets. With the recent observation that urotensin II (UII) and urotensin II-related peptide (URP) exert different biological effects and the postulate that they could also have distinct pathophysiological roles in hypertension, it appears crucial to reassess the recognition process involving UII and URP with UT, and to push forward the development of new analogs of the UT system aimed at discriminating UII- and URP-mediated biological activities. The recent development of such compounds, i.e. urocontrin A and rUII(1-7), is certainly useful to decipher the specific roles of UII and URP in vitro and in vivo. Altogether, these studies, which provide important information regarding the pharmacology of the urotensinergic system and the conformational requirements for binding and activation, will ultimately lead to the development of potent and selective drugs.
Collapse
Affiliation(s)
- David Chatenet
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
- *Correspondence: David Chatenet and Alain Fournier, Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Ville de Laval, QC H7V 1B7, Canada. e-mail: ;
| | - Thi-Tuyet M. Nguyen
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
| | - Myriam Létourneau
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
| | - Alain Fournier
- Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, Ville de LavalQC, Canada
- Laboratoire International Associé Samuel de Champlain (INSERM/INRS-Université de Rouen)France
- *Correspondence: David Chatenet and Alain Fournier, Laboratoire d'études moléculaires et pharmacologiques des peptides, INRS – Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Ville de Laval, QC H7V 1B7, Canada. e-mail: ;
| |
Collapse
|
10
|
Tadevosyan A, Vaniotis G, Allen BG, Hébert TE, Nattel S. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function. J Physiol 2011; 590:1313-30. [PMID: 22183719 DOI: 10.1113/jphysiol.2011.222794] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play key physiological roles in numerous tissues, including the heart, and their dysfunction influences a wide range of cardiovascular diseases. Recently, the notion of nuclear localization and action of GPCRs has become more widely accepted. Nuclear-localized receptors may regulate distinct signalling pathways, suggesting that the biological responses mediated by GPCRs are not solely initiated at the cell surface but may result from the integration of extracellular and intracellular signalling pathways. Many of the observed nuclear effects are not prevented by classical inhibitors that exclusively target cell surface receptors, presumably because of their structures, lipophilic properties, or affinity for nuclear receptors. In this topical review, we discuss specifically how angiotensin-II, endothelin, β-adrenergic and opioid receptors located on the nuclear envelope activate signalling pathways, which convert intracrine stimuli into acute responses such as generation of second messengers and direct genomic effects, and thereby participate in the development of cardiovascular disorders.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
11
|
Cook JL, Re RN. Lessons from in vitro studies and a related intracellular angiotensin II transgenic mouse model. Am J Physiol Regul Integr Comp Physiol 2011; 302:R482-93. [PMID: 22170617 DOI: 10.1152/ajpregu.00493.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the classical renin-angiotensin system, circulating ANG II mediates growth stimulatory and hemodynamic effects through the plasma membrane ANG II type I receptor, AT1. ANG II also exists in the intracellular space in some native cells, and tissues and can be upregulated in diseases, including hypertension and diabetes. Moreover, intracellular AT1 receptors can be found associated with endosomes, nuclei, and mitochondria. Intracellular ANG II can function in a canonical fashion through the native receptor and also in a noncanonical fashion through interaction with alternative proteins. Likewise, the receptor and proteolytic fragments of the receptor can function independently of ANG II. Participation of the receptor and ligand in alternative intracellular pathways may serve to amplify events that are initiated at the plasma membrane. We review historical and current literature relevant to ANG II, compared with other intracrines, in tissue culture and transgenic models. In particular, we describe a new transgenic mouse model, which demonstrates that intracellular ANG II is linked to high blood pressure. Appreciation of the diverse, pleiotropic intracellular effects of components of the renin-angiotensin system should lead to alternative disease treatment targets and new therapies.
Collapse
Affiliation(s)
- Julia L Cook
- Laboratory of Molecular Genetics, Department of Research, New Orleans, LA 70121, USA.
| | | |
Collapse
|
12
|
Jak2-Independent Activation of Stat3 by Intracellular Angiotensin II in Human Mesangial Cells. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:257862. [PMID: 21915376 PMCID: PMC3171157 DOI: 10.1155/2011/257862] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/12/2011] [Accepted: 06/07/2011] [Indexed: 01/13/2023]
Abstract
Ang II is shown to
mediate the stimulatory effect of high glucose
on TGF-b1 and extracellular matrix proteins in
glomerular mesangial cells. Also inhibition of Ang II formation
in cell media (extracellular) and lysates
(intracellular) blocks high-glucose effects on
TGF-b1 and matrix more effectively compared to
inhibition of extracellular Ang II alone. To investigate whether
intracellular Ang II can stimulate TGF-b1 and
matrix independent of extracellular Ang II,
cultured human mesangial cells were transfected
with Ang II to increase intracellular Ang II
levels and its effects on TGF-b1 and matrix
proteins were determined. Prior to transfection,
cells were treated with candesartan to block
extracellular Ang II-induced responses via cell
membrane AT1 receptors. Transfection of cells
with Ang II resulted in increased levels of
intracellular Ang II which was accompanied by
increased production of TGF-b1, collagen IV,
fibronectin, and cell proliferation as well. On
further examination, intracellular Ang II was
found to activate Stat3 transcription factor
including increased Stat3 protein expression,
tyrosine 705 phosphorylation, and DNA-binding
activity. Treatment with AG-490, an inhibitor of
Jak2, did not block intracellular Ang II-induced
Stat3 phosphorylation at tyrosine 705 residue
indicating a Jak2-independent mechanism used by
intracellular Ang II for Stat3 phosphorylation.
In contrast, extracellular Ang II-induced
tyrosine 705 phosphorylation of Stat3 was
inhibited by AG-490 confirming the presence of a
Jak2-dependent pathway. These findings suggest
that intracellular Ang II increases TGF-b1 and
matrix in human mesangial cells and also
activates Stat3 transcription factor without
involvement of the extracellular Ang II
signaling pathway.
Collapse
|
13
|
Harrison-Bernard LM. Trapping intracellular ANG II to the proximal tubule: powerful in vivo effects on sodium handling and blood pressure. Am J Physiol Renal Physiol 2011; 300:F1074-5. [PMID: 21367912 DOI: 10.1152/ajprenal.00115.2011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Shao W, Seth DM, Navar LG. Angiotensin II type 1 receptor-mediated augmentation of urinary excretion of endogenous angiotensin II in Val5-angiotensin II-infused rats. Hypertension 2010; 56:378-83. [PMID: 20625079 DOI: 10.1161/hypertensionaha.110.153106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rats infused chronically with Val(5)-Angiotensin (Ang) II exhibit increased urinary excretion of endogenous Ile(5)-Ang II by the 12th day of infusion, suggesting the stimulation of endogenous Ang II formation by Val(5)-Ang II infusion. The present study determined the time course of increased urinary Ang II excretion and the effects of Ang II type 1 receptor blockade (candesartan, 2 mg/kg per day) on the urinary excretion rates of Ile(5)-Ang II in Val(5)-Ang II-infused (80 ng/min) rats. Ile(5)-Ang II was separated from Val(5)-Ang II by high-performance liquid chromatography and measured by radioimmunoassay. Systolic blood pressure increased progressively (215+/-2 mm Hg) in Val(5)-Ang II-infused rats (n=5), whereas the candesartan-treated group (n=6) remained normotensive (124+/-3 mm Hg). Candesartan treatment significantly increased the level of plasma Ile(5)-Ang II (24.0+/-7.6 versus 156.9+/-24.6 fmol/mL; P<0.01); in contrast, there was a markedly lower intrarenal Ile(5)-Ang II content (357.9+/-76.6 versus 21.1+/-2.8 fmol/g; P<0.01). Urinary Ile(5)-Ang II excretion rates were elevated by day 9 (2185.7+/-283.2 fmol/24 hours) in Val(5)-Ang II-infused rats but not in candesartan-treated rats (740.6+/-110.3 fmol/24 hours). Thus, Ang II type 1 receptor blockade prevents the increase in urinary excretion of endogenous Ang II in rats subjected to chronic Ang II infusion. These data indicate that the increased urinary excretion of endogenous Ang II in Val(5)-Ang II-infused rats is primarily attributed to Ang II type 1 receptor-dependent secretion into and/or de novo formation of Ang II within the tubular lumen.
Collapse
Affiliation(s)
- Weijian Shao
- Department of Physiology, SL39, Tulane University Health Sciences Center, 1430 Tulane Ave, New Orleans, LA 70112.
| | | | | |
Collapse
|
15
|
Abstract
In recent years the actions of intracellular-acting, extracellular signaling proteins/peptides (intracrines) have become increasingly defined. General principles of intracrine action have been proposed. Mitochondria represent one locus of intracrine action, and thus far, angiotensin II, transforming growth factor-beta, growth hormone, atrial natriuretic peptide, Wnt 13, stanniocalcin, other renin-angiotensin system components, and vascular endothelial-derived growth factor, among others, have been shown to be mitochondria-localizing intracrines. The implications of this mitochondrial intracrine biology are discussed.
Collapse
Affiliation(s)
- Richard N Re
- Ochsner Clinic Foundation, 1514 Jefferson Hwy., New Orleans, LA 70121, USA.
| | | |
Collapse
|
16
|
Re RN, Cook JL. Senescence, apoptosis, and stem cell biology: the rationale for an expanded view of intracrine action. Am J Physiol Heart Circ Physiol 2009; 297:H893-901. [PMID: 19592610 PMCID: PMC2755987 DOI: 10.1152/ajpheart.00414.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 07/02/2009] [Indexed: 12/28/2022]
Abstract
Some extracellular-signaling peptides also at times function within the intracellular space. We have termed these peptides intracrines and have argued that intracrine function is associated with a wide variety of peptides/proteins including hormones, growth factors, cytokines, enzymes, and DNA-binding proteins among others. Here we consider the possibility that intracrines participate in the related phenomena of senescence, apoptosis, and stem cell regulation of tissue biology. Based on this analysis, we also suggest that the concept of intracrine action be expanded to include possible regulatory peptide transfer via exosomes/microvesicles and possibly by nanotubes. Moreover, the process of microvesicular and nanotube transfer of peptides and other biologically relevant molecules, which we inclusively term laterality, is explored. These notions have potentially important therapeutic implications, including implications for the therapy of cardiovascular disease.
Collapse
Affiliation(s)
- Richard N Re
- Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| | | |
Collapse
|
17
|
Inhibition of intracellular angiotensin II formation blocks high glucose effect on mesangial matrix. ACTA ACUST UNITED AC 2009; 158:103-9. [PMID: 19712706 DOI: 10.1016/j.regpep.2009.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 08/03/2009] [Accepted: 08/16/2009] [Indexed: 11/21/2022]
Abstract
High glucose causes increased matrix synthesis by glomerular mesangial cells and angiotensin II (Ang II) has been shown to mediate this effect of glucose. These studies investigate whether inhibition of Ang II formation can block high glucose-induced increase in mesangial matrix. Human mesangial cells were incubated with 25 mM glucose (HG) along with captopril, an ACE inhibitor, to block Ang II formation. In other experiments, cells were nucleofected with siRNA to knockdown angiotensinogen (Agt), the precursor of Ang II, and then exposed to high glucose. Captopril blocked high glucose-induced increase in Ang II levels in the cell media (extracellular) but failed to inhibit it in the cell lysate (intracellular). Moreover, captopril treatment did not block the stimulatory effect of high glucose on TGF-beta1 and fibronectin. In contrast, knockdown of the Agt gene prevented high glucose-induced increase in both extracellular and intracellular Ang II levels, and was accompanied by normalization of TGF-beta1 and fibronectin. These data suggest that intracellular Ang II may play an important role in the mediation of the high glucose effect on matrix and that ACE inhibitors may not be effective in blocking intracellular Ang II formation in mesangial cells.
Collapse
|
18
|
Abstract
Hypertension and its sequelae are complex processes. Optimization of the care of the hypertensive patient requires not only attention to the regulation of arterial pressure but also attention to blunting the hypertension-related processes that lead to vascular disease. It is clear that the regulation of these processes is much more complex than previously understood. Here several new insights into the pathogenesis of hypertension-related vascular disease have been explored. While this review is not exhaustive, it does serve to point out the varied nature of the biologic processes that must be taken into account and it points to new avenues for the development of therapeutic agents.
Collapse
Affiliation(s)
- Richard N Re
- Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| |
Collapse
|
19
|
Regulation of Id2 expression in EL4 T lymphoma cells overexpressing growth hormone. Cell Immunol 2009; 255:46-54. [DOI: 10.1016/j.cellimm.2008.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/22/2008] [Accepted: 10/09/2008] [Indexed: 11/23/2022]
|
20
|
Stanton A. Now that we have a direct renin inhibitor, what should we do with it? Curr Hypertens Rep 2008; 10:194-200. [DOI: 10.1007/s11906-008-0037-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Abstract
Intracrine peptides and proteins participate in the regulation of adult and pleuripotential embryonic-like stem cells. Included among these factors are VEGF, dynorphin, the readthrough form of acetylcholinesterase, Oct3/4, Pdx-1, Pax-6, and high-mobility group protein B1, among others. In some cases, the establishment of intracrine feedback loops can be shown to be relevant to this regulation, consistent with previously proposed principles of intracrine action. Here the role of intracrines in stem cell regulation is reviewed, with particular attention to the intracrine regulation of cardiac stem cells. The reprogramming of cells to restore the pleuripotent phenotype and the possible role of stem/progenitor cells in neoplasia are also discussed.
Collapse
Affiliation(s)
- Richard N Re
- Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| | | |
Collapse
|
22
|
Savard M, Barbaz D, Bélanger S, Müller-Esterl W, Bkaily G, D'orléans-Juste P, Coté J, Bovenzi V, Gobeil F. Expression of endogenous nuclear bradykinin B2 receptors mediating signaling in immediate early gene activation. J Cell Physiol 2008; 216:234-44. [PMID: 18264983 DOI: 10.1002/jcp.21398] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bradykinin (BK) represents a pro-inflammatory mediator that partakes in many inflammatory diseases. The mechanism of action of BK is thought to be primarily mediated by specific cell surface membrane B2 receptors (B2Rs). Some evidence has suggested, however, the existence of an intracellular/nuclear B2R population. Whether these receptors are functional and contribute to BK signaling remains to be determined. In this study, by mean of Western blotting, 3D-confocal microscopy, receptor autoradiography and radioligand binding analysis, we showed that plasma membrane and highly purified nuclei from isolated rat hepatocytes contain specific B2R that bind BK. The results depicting B2R nuclear expression in isolated nuclear organelles were reproduced in situ on hepatic sections by immunogold labeling and transmission electron microscopy. Functional tests on single nuclei, by means of confocal microscopy and the calcium-sensitive probe fluo-4AM, showed that BK induces concentration-dependent transitory mobilization of nucleoplasmic calcium; these responses were blocked by B2R antagonist HOE 140, not by the B1R antagonist R954 and, were also found in wild-type C57/Bl6 mice, but not in B2R-KO mice. In isolated nuclei, BK elicited activation/phosphorylation of Akt, acetylation of histone H3 and ensuing pro-inflammatory iNOS gene induction as determined by Western blot and RT-PCR. ChIP assay confirmed binding of acetylated-histone H3 complexes, but not B2R, to promoter region of iNOS gene suggesting that B2R-mediated gene expression is bridged with accessory downstream effectors. This study discloses a previously undescribed mechanism in BK-induced transcriptional events, via intracrine B2R-mediated signaling, occurring in rat autologous hepatic cells.
Collapse
Affiliation(s)
- Martin Savard
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Intracrines are extracellular signaling peptide factors that can act in the intracellular space after either internalization or retention in the cells that synthesize them. They are structurally diverse and include hormones, growth factors, enzymes, DNA-binding proteins, and other peptide moieties. We have suggested principles of intracrine action and have applied those principles to forms of cellular and tissue differentiation, hormonal responsiveness, and memory. Moreover, recent findings make clear that some currently available pharmaceuticals act via the alteration of intracrine function. Thus, the beginnings of an intracrine pharmacology are at hand and we here review principles applicable to the design of such agents. The intracrine pharmacology of the renin-angiotensin system, angiogenesis, and stem cell development is discussed.
Collapse
Affiliation(s)
- Richard N Re
- Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| | | |
Collapse
|
24
|
Re RN, Cook JL. Mechanisms of Disease: intracrine physiology in the cardiovascular system. ACTA ACUST UNITED AC 2007; 4:549-57. [PMID: 17893683 DOI: 10.1038/ncpcardio0985] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 06/14/2007] [Indexed: 01/24/2023]
Abstract
The field of intracrine physiology attempts to codify the biological actions of intracrines--extracellular signaling proteins or peptides that also operate in the intracellular space, either because they are retained in their cells of synthesis or because they have been internalized by a target cell. Intracrines are structurally diverse; hormones, growth factors, DNA-binding proteins and enzymes can all display intracrine functionality. Here, we review the role of intracrines in the heart and vasculature, including the intracrine actions of renin-angiotensin-system components in cardiac pathology, dynorphin B in cardiac development, and a variety of factors in pathologic and therapeutic angiogenesis. We argue that principles of intracrine physiology can inform our understanding of important pathologic processes such as left ventricular hypertrophy, diabetic cardiomyopathy and arrythmogenesis, and can aid the development of more-effective therapeutic interventions in cardiovascular disease.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA 70121, USA.
| | | |
Collapse
|
25
|
Kinsey CG, Bussolati G, Bosco M, Kimura T, Pizzorno MC, Chernin MI, Cassoni P, Novak JF. Constitutive and ligand-induced nuclear localization of oxytocin receptor. J Cell Mol Med 2007; 11:96-110. [PMID: 17367504 PMCID: PMC4401223 DOI: 10.1111/j.1582-4934.2007.00015.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Oxytocin receptor (OTR) is a membrane protein known to mediate oxytocin (OT) effects, in both normal and neoplastic cells. We report here that human osteosarcoma (U2OS, MG63, OS15 and SaOS2), breast cancer (MCF7), and primary human fibroblastic cells (HFF) all exhibit OTR not only on the cell membrane, but also in the various nuclear compartments including the nucleolus. Both an OTR-GFP fusion protein and the native OTR appear to be localized to the nucleus as detected by transfection and/or confocal immunofluorescence, respectively. Treatment with oxytocin causes internalization of OTR and the resulting vesicles accumulate in the vicinity of the nucleus and some of the perinuclear OTR enters the nucleus. Western blots indicate that OTR in the nucleus and on the plasma membrane are likely to be the same biochemical and immunological entities. It appears that OTR is first visible in the nucleoli and subsequently disperses within the nucleus into 4–20 spots while some of the OTR diffuses throughout the nucleoplasm.The behaviour and kinetics of OTR-GFP and OTR are different, indicating interference by GFP in both OTR entrance into the nucleus and subsequent relocalization of OTR within the nucleus. There are important differences among the tested cells, such as the requirement of a ligand for transfer of OTR in nuclei. A constitutive internalization of OTR was found only in osteosarcoma cells, while the nuclear localization in all other tested cells was dependent on ligand binding. The amount of OTR-positive material within and in the vicinity of the nucleus increased following a treatment with oxytocin in both constitutive and ligand-dependent type of cells. The evidence of OTR compartmentalization at the cell nucleus (either ligand-dependent or constitutive) in different cell types suggests still unknown biological functions of this protein or its ligand and adds this G-protein-coupled receptor to other heptahelical receptors displaying this atypical and unexpected nuclear localization.
Collapse
Affiliation(s)
- Conan G Kinsey
- Department of Biology, Bucknell University, Lewisburg, PA, USA
- Present address: University of Rochester Medical School, Rochester, NY, USA
- *Correspondence to: Gianni BUSSOLATI Department of Biomedical Science and Human Oncology, University of Torino, Via Santena 7, 10126 Turin, Italy. E-mail:
| | - Gianni Bussolati
- Department of Biomedical Sciences and Oncology, University of Torino, Torino, Italy
- *Correspondence to: Gianni BUSSOLATI Department of Biomedical Science and Human Oncology, University of Torino, Via Santena 7, 10126 Turin, Italy. E-mail:
| | - Martino Bosco
- Department of Biomedical Sciences and Oncology, University of Torino, Torino, Italy
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | - Paola Cassoni
- Department of Biomedical Sciences and Oncology, University of Torino, Torino, Italy
| | - Josef F Novak
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| |
Collapse
|
26
|
Singh R, Leehey DJ. Effect of ACE inhibitors on angiotensin II in rat mesangial cells cultured in high glucose. Biochem Biophys Res Commun 2007; 357:1040-5. [PMID: 17466950 DOI: 10.1016/j.bbrc.2007.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/08/2007] [Indexed: 12/14/2022]
Abstract
This study investigates whether angiotensin converting enzyme (ACE) inhibitors can block high glucose-induced increase of angiotensin II (Ang II) levels in cultured rat mesangial cells. Incubation of cells with high glucose for 5 days increased Ang II in the cell media (extracellular) and cell lysates (intracellular) by approximately 1.5-fold and approximately 2.2-fold, respectively. Captopril blocked high glucose-induced increase in extracellular Ang II levels but not in intracellular Ang II levels. Since the inability of captopril to inhibit intracellular Ang II in intact cells could be explained by failure of the drug to enter the cells, further studies were performed using lysates from cells pre-treated with high glucose for 5 days. Addition of captopril to cell lysates was indeed able to inhibit Ang I conversion to Ang II but only partially. These findings suggest the involvement of non-ACE mechanisms in Ang II formation from Ang I in mesangial cells.
Collapse
Affiliation(s)
- Rekha Singh
- Veterans Affairs Hospital, Hines, IL 60141, USA.
| | | |
Collapse
|
27
|
Potential therapeutic implications of intracrine angiogenesis. Med Hypotheses 2007; 69:414-21. [PMID: 17320306 DOI: 10.1016/j.mehy.2006.10.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 01/19/2023]
Abstract
Angiogenesis, in most cases, is a requirement for tumor growth beyond a diameter of a few millimeters and is, therefore, a major target for cancer therapy. The intracellular actions of certain extracellular signaling proteins (intracrines) have been reported, and it is clear that intracrines such as vascular endothelial growth factor, basic fibroblast growth factor, angiogenin, angiotensin, and endothelin, among others, are involved in angiogenesis. We have proposed that intracrine networks play an important role in angiogenesis, and have suggested that very similar intracrine networks exist in some tumor cells. These notions have implications for the development of anti-angiogenesis therapies because they suggest that the inhibition of intracellular intracrine trafficking pathways may be an effective therapeutic target. Here the participation and regulation of intracrines in angiogenesis is explored, as are the actions of various anti-angiogenic factors.
Collapse
|
28
|
Farmer JT, Weigent DA. Expression of insulin-like growth factor-2 receptors on EL4 lymphoma cells overexpressing growth hormone. Brain Behav Immun 2007; 21:79-85. [PMID: 16631346 DOI: 10.1016/j.bbi.2006.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/15/2006] [Accepted: 02/24/2006] [Indexed: 11/18/2022] Open
Abstract
In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.
Collapse
Affiliation(s)
- John T Farmer
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | |
Collapse
|
29
|
Gobeil F, Fortier A, Zhu T, Bossolasco M, Leduc M, Grandbois M, Heveker N, Bkaily G, Chemtob S, Barbaz D. G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Can J Physiol Pharmacol 2006; 84:287-97. [PMID: 16902576 DOI: 10.1139/y05-127] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors (GPCRs) comprise a wide family of monomeric heptahelical glycoproteins that recognize a broad array of extracellular mediators including cationic amines, lipids, peptides, proteins, and sensory agents. Thus far, much attention has been given towards the comprehension of intracellular signaling mechanisms activated by cell membrane GPCRs, which convert extracellular hormonal stimuli into acute, non-genomic (e.g., hormone secretion, muscle contraction, and cell metabolism) and delayed, genomic biological responses (e.g., cell division, proliferation, and apoptosis). However, with respect to the latter response, there is compelling evidence for a novel intracrine mode of genomic regulation by GPCRs that implies either the endocytosis and nuclear translocation of peripheral-liganded GPCR and (or) the activation of nuclearly located GPCR by endogenously produced, nonsecreted ligands. A noteworthy example of the last scenario is given by heptahelical receptors that are activated by bioactive lipoids (e.g., PGE(2) and PAF), many of which may be formed from bilayer membranes including those of the nucleus. The experimental evidence for the nuclear localization and signalling of GPCRs will be reviewed. We will also discuss possible molecular mechanisms responsible for the atypical compartmentalization of GPCRs at the cell nucleus, along with their role in gene expression.
Collapse
Affiliation(s)
- Fernand Gobeil
- Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Fleurimont, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gobeil F, Zhu T, Brault S, Geha A, Vazquez-Tello A, Fortier A, Barbaz D, Checchin D, Hou X, Nader M, Bkaily G, Gratton JP, Heveker N, Ribeiro-da-Silva A, Peri K, Bard H, Chorvatova A, D'Orléans-Juste P, Goetzl EJ, Chemtob S. Nitric oxide signaling via nuclearized endothelial nitric-oxide synthase modulates expression of the immediate early genes iNOS and mPGES-1. J Biol Chem 2006; 281:16058-67. [PMID: 16574649 DOI: 10.1074/jbc.m602219200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stimulation of freshly isolated rat hepatocytes with lysophosphatidic acid (LPA) resulted in LPA1 receptor-mediated and nitricoxide-dependent up-regulation of the immediate early genes iNOS (inducible nitric-oxide synthase (NOS)) and mPGES-1 (microsomal prostaglandin E synthase-1). Because LPA is a ligand for both cell surface and intracellular receptor sites and a potent endothelial NOS (eNOS) activator, we hypothesized that NO derived from activated nuclearized eNOS might participate in gene regulation. Herein we show, by confocal microscopy performed on porcine cerebral endothelial cells expressing native LPA1-receptor and eNOS and on HTC4 rat hepatoma cells co-transfected with recombinant human LPA1-receptor and fused eNOS-GFP cDNA, a dynamic eNOS translocation from peripheral to nuclear regions upon stimulation with LPA. Nuclear localization of eNOS and its downstream effector, soluble guanylate cyclase, were demonstrated in situ in rat liver specimens by immunogold labeling using specific antibodies. Stimulation of this nuclear fraction with LPA and the NO donor sodium nitroprusside resulted, respectively, in increased production of nitrite (and eNOS phosphorylation) and cGMP; these separate responses were also correspondingly blocked by NOS inhibitor L-NAME and soluble guanylate cyclase inhibitor ODQ. In addition, sodium nitroprusside evoked a sequential increase in nuclear Ca2+ transients, activation of p42 MAPK, NF-kappaB binding to DNA consensus sequence, and dependent iNOS RNA. This study describes a hitherto unrecognized molecular mechanism by which nuclear eNOS through ensuing NO modulates nuclear calcium homeostasis involved in gene transcription-associated events. Moreover, our findings strongly support the concept of the nucleus as an autonomous signaling compartment.
Collapse
Affiliation(s)
- Fernand Gobeil
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Farmer JT, Weigent DA. TGF-β1 expression in EL4 lymphoma cells overexpressing growth hormone. Cell Immunol 2006; 240:22-30. [PMID: 16839530 DOI: 10.1016/j.cellimm.2006.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 06/01/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.
Collapse
Affiliation(s)
- John T Farmer
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | |
Collapse
|
32
|
Re RN, Cook JL. The intracrine hypothesis: an update. ACTA ACUST UNITED AC 2005; 133:1-9. [PMID: 16226324 DOI: 10.1016/j.regpep.2005.09.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 09/08/2005] [Indexed: 01/17/2023]
Abstract
The intracellular actions of peptide hormones, growth factors, as well as of extracellular-signaling enzymes and DNA-binding proteins, either within target cells or within their cells of synthesis has been called intracrine action. Although these intracrine moieties are structurally diverse, they share certain characteristics of synthesis and function. This has given rise to the development of a theory of intracrine action which permits testable predictions to be made regarding the functioning of these peptides/proteins. Here the intracrine hypothesis is briefly described and then recent experimental findings which bear on predictions made earlier on the basis of the theory are discussed. These findings provide new support for the intracrine hypothesis.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, 1516 Jefferson Highway, New Orleans, LA 70121, USA.
| | | |
Collapse
|
33
|
Weigent DA, Arnold RE. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone. Cell Immunol 2005; 234:54-66. [PMID: 15964559 DOI: 10.1016/j.cellimm.2005.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/15/2005] [Accepted: 04/25/2005] [Indexed: 01/25/2023]
Abstract
Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.
Collapse
Affiliation(s)
- Douglas A Weigent
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 1918 University Blvd. MCLM894, Birmingham, AL 35294-0005, USA.
| | | |
Collapse
|
34
|
|
35
|
Helliwell RJA, Berry EBE, O'Carroll SJ, Mitchell MD. Nuclear prostaglandin receptors: role in pregnancy and parturition? Prostaglandins Leukot Essent Fatty Acids 2004; 70:149-65. [PMID: 14683690 DOI: 10.1016/j.plefa.2003.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The key regulatory role of prostanoids [prostaglandins (PGs) and thromboxanes (TXs)] in the maintenance of pregnancy and initiation of parturition has been established. However, our understanding of how these events are fine-tuned by the recruitment of specific signaling pathways remains unclear. Whereas, initial thoughts were that PGs were lipophilic and would easily cross cell membranes without specific receptors or transport processes, it has since been realized that PG signaling occurs via specific cell surface G-protein coupled receptors (GPCRs) coupled to classical adenylate cyclase or inositol phosphate signaling pathways. Furthermore, specific PG transporters have been identified and cloned adding a further level of complexity to the regulation of paracrine action of these potent bioactive molecules. It is now apparent that PGs also activate nuclear receptors, opening the possibility of novel intracrine signaling mechanisms. The existence of intracrine signaling pathways is further supported by accumulating evidence linking the perinuclear localization of PG synthesizing enzymes with intracellular PG synthesis. This review will focus on the evidence for a role of nuclear actions of PGs in the regulation of pregnancy and parturition.
Collapse
Affiliation(s)
- Rachel J A Helliwell
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
36
|
Abstract
The RAAS is a powerful regulator of vascular tone and intravascular volume and of tissue architecture and a variety of other functions. The recent appreciation of the immunoregulatory role of angiotensin II and its possible involvement in the genesis of atherosclerosis and in plaque rupture all speak to the wide-ranging physiologic and pathophysiologic activities of the peptide. So do its actions in fat cell differentiation and in neuromodulation. The system exists in the circulation, and RAASs, whole or partial, exist in many tissues. These systems are regulated at many levels ranging from the synthesis of renin to the dimerization of angiotensin receptors. Regulation occurs in multiple tissues and, as a result, tissue concentrations of angiotensin II and the concentration of other RAS components and their active metabolites can vary independently of the circulating system in these tissues. An RAS seems also to function within certain cells. Therapeutic interventions involving ACEIs and ARBs seem likely to provide benefit at least in part through the interruption of local systems. It is to be expected that with enhanced understanding of the biology of the multiple RASs, new suggestions for therapeutic interventions will be forthcoming.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA 70121, USA.
| |
Collapse
|
37
|
Gobeil F, Bernier SG, Vazquez-Tello A, Brault S, Beauchamp MH, Quiniou C, Marrache AM, Checchin D, Sennlaub F, Hou X, Nader M, Bkaily G, Ribeiro-da-Silva A, Goetzl EJ, Chemtob S. Modulation of pro-inflammatory gene expression by nuclear lysophosphatidic acid receptor type-1. J Biol Chem 2003; 278:38875-83. [PMID: 12847111 DOI: 10.1074/jbc.m212481200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive molecule involved in inflammation, immunity, wound healing, and neoplasia. Its pleiotropic actions arise presumably by interaction with their cell surface G protein-coupled receptors. Herein, the presence of the specific nuclear lysophosphatidic acid receptor-1 (LPA1R) was revealed in unstimulated porcine cerebral microvascular endothelial cells (pCMVECs), LPA1R stably transfected HTC4 rat hepatoma cells, and rat liver tissue using complementary approaches, including radioligand binding experiments, electron- and cryomicroscopy, cell fractionation, and immunoblotting with three distinct antibodies. Coimmunoprecipitation studies in enriched plasmalemmal fractions of unstimulated pCMVEC showed that LPA1Rs are dually sequestrated in caveolin-1 and clathrin subcompartments, whereas in nuclear fractions LPA1R appeared primarily in caveolae. Immunofluorescent assays using a cell-free isolated nuclear system confirmed LPA1R and caveolin-1 co-localization. In pCMVEC, LPA-stimulated increases in cyclooxygenase-2 and inducible nitric-oxide synthase RNA and protein expression were insensitive to caveolea-disrupting agents but sensitive to LPA-generating phospholipase A2 enzyme and tyrosine kinase inhibitors. Moreover, LPA-induced increases in Ca2+ transients and/or iNOS expression in highly purified rat liver nuclei were prevented by pertussis toxin, phosphoinositide 3-kinase/Akt inhibitor wortmannin and Ca2+ chelator and channel blockers EGTA and SK&F96365, respectively. This study describes for the first time the nucleus as a potential organelle for LPA intracrine signaling in the regulation of pro-inflammatory gene expression.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Animals
- Blotting, Western
- Calcium/metabolism
- Caveolin 1
- Caveolins/metabolism
- Cell Nucleus/metabolism
- Cell-Free System/metabolism
- Cells, Cultured
- Chelating Agents/pharmacology
- Clathrin/metabolism
- Egtazic Acid/pharmacology
- Endothelium, Vascular/cytology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation
- Immunoblotting
- Liver/metabolism
- Microcirculation
- Microscopy, Electron
- Microscopy, Fluorescence
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Pertussis Toxin/pharmacology
- Phosphoinositide-3 Kinase Inhibitors
- Phospholipases A/metabolism
- Phospholipases A2
- Precipitin Tests
- Protein Binding
- Protein-Tyrosine Kinases/metabolism
- Rats
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled
- Receptors, Lysophosphatidic Acid
- Subcellular Fractions/metabolism
- Swine
- Time Factors
- Transfection
- Tumor Cells, Cultured
- Wortmannin
Collapse
Affiliation(s)
- Fernand Gobeil
- Departments of Pediatrics, Ophthalmology and Pharmacology, Research Center of Hôpital Sainte-Justine, Montréal, Québec H3T 1C5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hu B, Wang S, Zhang Y, Feghali CA, Dingman JR, Wright TM. A nuclear target for interleukin-1alpha: interaction with the growth suppressor necdin modulates proliferation and collagen expression. Proc Natl Acad Sci U S A 2003; 100:10008-13. [PMID: 12913118 PMCID: PMC187743 DOI: 10.1073/pnas.1737765100] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is growing evidence for the intracellular role of cytokines and growth factors, but the pathways by which these activities occur remain largely obscure. Previous work from our laboratory identified the constitutive, aberrant expression of the 31-kDa IL-1 alpha precursor (pre-IL-1 alpha) in the nuclei of fibroblasts from the lesional skin of patients with systemic sclerosis (SSc). We established that pre-IL-1 alpha expression was associated with increased fibroblast proliferation and collagen production. Further investigation has led to the identification of a mechanism by which nuclear expression of pre-IL-1 alpha affects fibroblast growth and matrix production. By using a yeast two-hybrid method, we found that pre-IL-1 alpha binds necdin, a nuclear protein with growth suppressor activity. We mapped the region of pre-IL-1 alpha responsible for necdin binding and found it to be localized near the N terminus, a region that is present on pre-IL-1 alpha, but not the mature 17-kDa cytokine. Expression studies demonstrated that pre-IL-1 alpha associates with necdin in the nuclei of mammalian cell lines and regulates cell growth and collagen expression. Our results provide the first evidence, to our knowledge, of a nuclear target for pre-IL-1 alpha. Based on these findings, we propose that the constitutively up-regulated expression of pre-IL-1 alpha in the nuclei of SSc fibroblasts up-regulates proliferation and matrix production of SSc fibroblasts through binding necdin, and by counteracting its effects on cell growth and collagen production.
Collapse
Affiliation(s)
- Bo Hu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Biomedical Science Tower South Wing, 7th Floor, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Edward D Frohlich
- Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA 70121, USA.
| |
Collapse
|
40
|
Licea H, Walters MR, Navar LG. Renal nuclear angiotensin II receptors in normal and hypertensive rats. ACTA PHYSIOLOGICA HUNGARICA 2003; 89:427-38. [PMID: 12489752 DOI: 10.1556/aphysiol.89.2002.4.3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulation of Angiotensin II (Ang II) in the kidneys of hypertensive rats infused chronically with Ang II occurs by AT1 receptor mediated internalization of Ang II, which may interact with intracellular targets, including nuclear binding sites. The aims of this study were to determine if kidney cell nuclei have specific Ang II binding sites and if chronic infusion of Ang II (70 ng/min; n=9) influences the nuclear Ang II binding capacity. Kidneys were harvested from control and Ang II infused rats and the renal cortexes were homogenized to obtain crude membrane preparations and nuclear fractions. Ang II binding sites were measured with a single point assay by incubating each fraction with 10 nM 125I-Sar-Ile-Ang II in the absence (total binding sites) or presence of either 2.5 M Sar-Leu-Ang II or 25 microM losartan to detect specific AT or AT1 binding sites. Both fractions exhibited specific Ang II binding sites that were displaced by both saralasin and losartan. In control rats, crude membrane preparations had 792 +/- 218 and the nuclear fraction had 543 +/- 222 fmol/mg protein AT1 receptors. AT1 receptor levels in membrane (885 +/- 170 fmol/mg protein) and nuclear fractions (610 +/- 198 fmol/mg protein) were not significantly different in Ang II infused rats. These data support the presence of nuclear Ang II receptors predominantly of the AT1 subtype in renal cells. Chronic Ang II infusion did not alter overall Ang II receptor densities.
Collapse
Affiliation(s)
- H Licea
- Department of Physiology, Renal and Hypertension Center of Excellence, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
41
|
Abstract
There is evidence that many peptide growth factors and hormones act in the intracellular space after either internalization or retention in their cells of synthesis. These factors, commonly called intracrines, are structurally diverse while sharing some common functional features. Reports of intracellular peptide hormone binding and action are reviewed here. Also, this laboratory has made proposals regarding the origin and actions of intracrines and these areas are further explored. Intracrine interactions and the relationship of intracrines to transcription factors are discussed. The intracellular/intracrine renin-angiotensin system (iRAS) is reviewed to illustrate the intracrine analogue of a well-established physiological system. The role of intracrine action in metazoan development is also considered.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, 99 1514 Jefferson Highway, New Orleans, LA 70121, USA.
| |
Collapse
|
42
|
|
43
|
Abstract
Since renin catalyses the first and rate-limiting step of the renin-angiotensin system (RAS) cascade, interruption of the generation of angiotensin II (Ang II) by renin inhibitors at this highly specific initial step of the cascade has long been a therapeutic goal. The early development of renin inhibitors was hampered by problems with bioavailability and high costs of synthesis. However, more recently a potent non-peptidic inhibitor of renin, aliskiren, with acceptable oral bioavailability, has been synthesised. Aliskiren effectively reduces Ang II levels in normal volunteers and has been shown to lower blood pressure (BP) in patients with mild-to-moderate hypertension. Renin inhibitors would be expected to have similar, but not identical effects to those of the established RAS antagonists. Due to the lack of effective alternative enzyme pathways, blockade of Ang II production may be more effective with renin inhibition than with angiotensin-converting enzyme (ACE) inhibition. Furthermore, because renin has high specificity for only one substrate, angiotensinogen, side-effects would be expected to be less frequent. It is currently unclear whether blockade of Ang II type 1 (AT1) receptors, leaving other Ang II receptors (AT2, AT3 and AT4) unblocked, is preferable to the reduction in plasma and tissue Ang II levels achieved with either ACE or renin inhibition. Pharmacological suppression of the RAS, through ACE inhibition, or blockade of AT1, beta-adrenoceptor or mineralocorticoid receptors, has been proven to reduce morbidity and mortality in patients with hypertension, diabetes mellitus, atherosclerosis, heart failure and nephropathy. While, to date, aliskiren has only been shown to reduce BP, it appears likely that orally-active renin inhibitors could prove useful in the management of a wide range of cardiovascular pathologies.
Collapse
|
44
|
Abstract
The renin-angiotensin system (RAS) is well recognized for its importance in regulation of BP, electrolyte balance and vascular growth. Pharmacological suppression of the RAS, through ACE inhibition and/or angiotensin receptor blockade, is a proven effective therapeutic approach to the treatment of a range of cardiovascular diseases. Renin is the enzyme that catalyzes the first and rate-limiting step of RAS, the cleavage of angiotensinogen to angiotensin I (A-I). A-I is then further converted by ACE to the biologically active vasoconstrictor, A-II. Interruption of the generation of A-II by renin inhibitors at this highly specific initial step of the cascade would be expected to have similar but not identical effects to those of the already well established RAS antagonists. Due to the lack of effective alternative enzyme pathways, blockade of A-II production may be more effective with renin inhibition than with ACE inhibition, and because of the high specificity of renin for only one substrate, namely angiotensinogen, adverse effects would be expected to be less frequent. It is currently unclear whether blockade of angiotensin II type 1 receptors (AT(1)), leaving other A-II receptors unblocked, is preferable to the reduction in plasma and tissue A-II levels achieved with either ACE or renin inhibition. The development of early peptidic and peptidomimetic renin inhibitors was hampered by problems with oral bioavailability and high costs of synthesis. However recent work has led to the synthesis of a potent non-peptidic inhibitor of renin, aliskiren, which has acceptable oral bioavailability. This renin inhibitor has been shown to effectively reduce A-II levels in normal volunteers and to lower BP in patients with mild to moderate hypertension. It appears likely that aliskiren is the first of a new class of agents that may prove useful in the management of patients with nephropathy, heart failure and atherosclerosis in addition to hypertension.
Collapse
Affiliation(s)
- Alice Stanton
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
45
|
Cook JL, Giardina JF, Zhang Z, Re RN. Intracellular angiotensin II increases the long isoform of PDGF mRNA in rat hepatoma cells. J Mol Cell Cardiol 2002; 34:1525-37. [PMID: 12431451 DOI: 10.1006/jmcc.2002.2106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our recent published studies suggest that angiotensin II (AII), generated and retained intracellularly, enhances growth of H4-II-E-C3 rat hepatoma cells, an average of 33%. Proliferation conferred by introduction of a plasmid [ Ang(-S)Exp/pSVL ] encoding a signal sequence-depleted angiotensinogen [Ang(-S)Exp] into these cells (which we have shown possess ACE and renin mRNAs) is mediated, at least in part, by enhanced PDGF-A chain mRNA production and protein secretion. The mitogenic effect is inhibited by losartan suggesting that it involves AII interaction with an AT(1)-like receptor. Introduction of anti-AII antibodies into the medium of these transfected cells has no effect upon growth of the cells, suggesting that AII is retained by the cells and that intracellular AII is growth stimulatory. In the present study, we sought to further characterize the intracellular localization and mode of action of Ang(-S)Exp. Consistent with our expectations, we now show that a fusion product of Ang(-S)Exp with green fluorescent protein [Ang(-S)Exp/EGFP], generated from an expression plasmid, is abundant and primarily cytoplasmic. Wild-type angiotensinogen/EGFP, in contrast, is only detectable following a cold-block (which acts to enhance folding-kinetics and slow secretion) and is largely restricted to the secretory pathway. We further show, using semi-quantitative RT/PCR that the long isoform of PDGF mRNA is elevated in Ang(-S)Exp transfected cells and in AII-treated naive cells but not in losartan-treated Ang(-S)Exp transfected cells. We identify C-terminal amidation recognition sites within the long-form protein (that are not present in the short-form) and show that these cells possess PAM (amidating enzyme precursor) and carboxypeptidase E mRNAs (the corresponding proteins of which are sufficient for amidation). Inhibitors of amidation inhibit growth of naive and Ang(-S)Cntr/ pSVL -transfected cells (2.6-fold for phenylbutenoic acid and 3.5-fold for disulfiram treatment) but more profoundly inhibit growth of Ang(-S)Exp/pSVL -transfected cells (6.7-fold for phenylbutenoic acid and 13-fold for disulfiram). In conclusion, these data confirm that signal sequence-depleted Ang(-S)Exp is retained within cells and is largely cytoplasmic. Because C-terminal amidation is absolutely required for full biological potency of a number of peptide hormones (including oxytocin, gastrin and calcitonin), we postulate that growth effects of both intracellular AII and exogenous AII can be conferred by PDGF long-form, possibly through an amidation-dependent mechanism.
Collapse
MESH Headings
- Amides/metabolism
- Amino Acid Sequence
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Angiotensin II/physiology
- Animals
- Carboxypeptidase H
- Carboxypeptidases/genetics
- Carboxypeptidases/metabolism
- Cold Temperature
- Disulfiram/pharmacology
- Enzyme Precursors/metabolism
- Fatty Acids, Monounsaturated/pharmacology
- Genes, Reporter
- Green Fluorescent Proteins
- Intracellular Fluid/metabolism
- Liver Neoplasms, Experimental/pathology
- Losartan/pharmacology
- Luminescent Proteins/analysis
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Molecular Sequence Data
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Mutagenesis, Site-Directed
- Neoplasm Proteins/genetics
- Peptide Fragments/genetics
- Peptide Fragments/physiology
- Plasmids/genetics
- Platelet-Derived Growth Factor/biosynthesis
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/physiology
- Protein Folding
- Protein Processing, Post-Translational/drug effects
- Protein Sorting Signals
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- Rats
- Transfection
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- Julia L Cook
- Division of Research, Ochsner Clinic Foundation, 1516 Jefferson Hwy, New Orleans, LA 70121, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
In addition to the effect on arterial pressure, angiotensin II, the effector peptide of the renin-angiotensin system (RAS), exerts mitogenic and growth promoting effects on cardiac myocytes and non-myocytic elements; and both of these effects significantly contribute to the development and progression of hypertensive heart disease (HHD). The traditional concept of the RAS as a systemic, endocrine system has been expanded and the identification of its components in many organs and tissue has been amassed. This paper reviews evidence that supports the concept that the cardiac RAS participate importantly in the development and risk of HHD.
Collapse
Affiliation(s)
- Jasmina Varagic
- Hypertension Research Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | | |
Collapse
|
47
|
Abstract
A growing body of evidence indicates that in some cases, peptide hormones can function in the intracellular space. These findings are reviewed. In addition, this laboratory has made proposals regarding the origin, nature and function of intracrines--that is, intracellularly acting peptide hormones that also function in an autocrine, paracrine or endocrine manner. Here, these hypotheses are developed, and potential implications/applications of this point of view are discussed. Possible implications for cellular differentiation, cellular memory and hormonal responsiveness, as well as for the assumption of novel functions by intracellular regulatory proteins are discussed.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, 1516 Jefferson Highway, New Orleans, LA 70121, USA.
| |
Collapse
|
48
|
Abstract
A growing number of peptide hormones and growth factors have been shown to operate in the intracellular space after either internalization or retention in their cells of synthesis. These factors, called intracrines, in many cases are expressed as multiple isoforms, traffic to nucleus or nucleolus, and regulate gene transcription. Some intracrines are angiogenic. It is here argued that intracrine action is the modern analogue of a biologically ancient mechanism for regulating message translation and ribosome synthesis. The implications of this view for research and therapeutics are discussed.
Collapse
Affiliation(s)
- Richard N Re
- Division of Research, Alton Ochsner Medical Foundation, New Orleans, Louisiana 70121, USA.
| |
Collapse
|
49
|
Abstract
The presence, and in many cases the regulated synthesis, of components of the renin-angiotensin system have been demonstrated in multiple tissues, indicating the existence of tissue angiotensin-generating systems. These vary with respect to which renin-angiotensin system components are synthesized locally and which are taken up from plasma. Enzymes unrelated to the classical renin-angiotensin system may also contribute to tissue angiotensin synthesis. However, based on the available data, the prevailing opinion that kidney-derived renin is in all cases the only physiologically relevant renin in tissues must be revised. Also there is evidence indicating a role for tissue angiotensin systems in the pathogenesis of cardiovascular disease and in cardiovascular structural remodeling. The angiotensin-regulated synthesis of aldosterone in cardiac tissue has been described, suggesting the possibility that a renin-angiotensin-aldosterone system exists in the heart. In addition, intracellular (intracrine) sites of angiotensin action have been reported. Some of these findings have implications for therapeutics and, in particular, for the use of angiotensin converting-enzyme inhibitors and angiotensin receptor blockers. Finally, tissue angiotensin systems outside the cardiovascular system also appear to be physiologically relevant.
Collapse
Affiliation(s)
- R N Re
- Research Division, Alton Ochsner Medical Foundation, New Orleans, Louisiana 70121, USA.
| |
Collapse
|
50
|
Elia G, Ren Y, Lorenzoni P, Zarnegar R, Burger MM, Rusciano D. Mechanisms regulating c-met overexpression in liver-metastatic B16-LS9 melanoma cells. J Cell Biochem 2001; 81:477-87. [PMID: 11255230 DOI: 10.1002/1097-4644(20010601)81:3<477::aid-jcb1061>3.0.co;2-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Liver selected B16-LS9 melanoma cells show a dramatic overexpression of the proto-oncogene c-met, the cellular receptor for hepatocyte growth factor/scatter factor. As a consequence, c-met becomes constitutively active, and the cells become more responsive to hepatocyte growth factor stimulation. We have investigated the molecular mechanisms regulating c-met expression in both the parental line B16-F1, which has low expression levels, and the liver-specific B16-LS9, overexpressing c-met. Overexpression is observed at the protein and mRNA levels, however without further evidence of gene amplification or rearrangement. c-met promoter activity was higher in B16-LS9 than B16-F1 cells, and also a nuclear run-off showed higher transcription levels in B16-LS9 cells. Moreover, we found that c-met mRNA had a longer half-life in B16-LS9 cells, thus indicating also the involvement of post-transcriptional regulation mechanisms. Finally, we found evidence that autonomous activation of the melanocortin receptor-1 (MCR-1) is at least partially responsible for c-met upregulation in B16-LS9 cells, since treatment of the cells with a potent MSH antagonist (the agouti peptide) has strong down-regulatory effects.
Collapse
Affiliation(s)
- G Elia
- Friedrich Miescher Institute, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|