1
|
Kuonqui KG, Campbell AC, Pollack BL, Shin J, Sarker A, Brown S, Park HJ, Mehrara BJ, Kataru RP. Regulation of VEGFR3 signaling in lymphatic endothelial cells. Front Cell Dev Biol 2025; 13:1527971. [PMID: 40046235 PMCID: PMC11880633 DOI: 10.3389/fcell.2025.1527971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
The receptor tyrosine kinase vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3) is the principal transmembrane receptor responsible for sensing and coordinating cellular responses to environmental lymphangiogenic stimuli in lymphatic endothelial cells (LECs). VEGFC and D (VEGFC/D) function as the cognate ligands to VEGFR3 by stimulating autophosphorylation of intracellular VEGFR3 tyrosine kinase domains that activate signal cascades involved in lymphatic growth and survival. VEGFR3 primarily promotes downstream signaling through the phosphoinositide 3-kinase (PI3K) and Ras signaling cascades that promote functions including cell proliferation and migration. The importance of VEGFR3 cascades in lymphatic physiology is underscored by identification of dysfunctional VEGFR3 signaling across several lymphatic-related diseases. Recently, our group has shown that intracellular modification of VEGFR3 signaling is a potent means of inducing lymphangiogenesis independent of VEGFC. This is important because long-term treatment with recombinant VEGFC may have deleterious consequences due to off-target effects. A more complete understanding of VEGFR3 signaling pathways may lead to novel drug development strategies. The purpose of this review is to 1) characterize molecular mediators of VEGFC/VEGFR3 downstream signaling activation and their functional roles in LEC physiology and 2) explore molecular regulation of overall VEGFR3 expression and activity within LECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
2
|
Yu X, Wu W, Hao J, Zhou Y, Yu D, Ding W, Zhang X, Liu G, Wang J. Ginger protects against vein graft remodeling by precisely modulating ferroptotic stress in vascular smooth muscle cell dedifferentiation. J Pharm Anal 2025; 15:101053. [PMID: 39974619 PMCID: PMC11835576 DOI: 10.1016/j.jpha.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 02/21/2025] Open
Abstract
Vein graft (VG) failure (VGF) is associated with VG intimal hyperplasia, which is characterized by abnormal accumulation of vascular smooth muscle cells (VSMCs). Most neointimal VSMCs are derived from pre-existing VSMCs via a process of VSMC phenotypic transition, also known as dedifferentiation. There is increasing evidence to suggest that ginger or its bioactive ingredients may block VSMC dedifferentiation, exerting vasoprotective functions; however, the precise mechanisms have not been fully characterized. Therefore, we investigated the effect of ginger on VSMC phenotypic transition in VG remodeling after transplantation. Ginger significantly inhibited neointimal hyperplasia and promoted lumen (L) opening in a 3-month VG, which was primarily achieved by reducing ferroptotic stress. Ferroptotic stress is a pro-ferroptotic state. Contractile VSMCs did not die but instead gained a proliferative capacity and switched to the secretory type, forming neointima (NI) after vein transplantation. Ginger and its two main vasoprotective ingredients (6-gingerol and 6-shogaol) inhibit VSMC dedifferentiation by reducing ferroptotic stress. Network pharmacology analysis revealed that 6-gingerol inhibits ferroptotic stress by targeting P53, while 6-shogaol inhibits ferroptotic stress by targeting 5-lipoxygenase (Alox5), both promoting ferroptosis. Furthermore, both ingredients co-target peroxisome proliferator-activated receptor gamma (PPARγ), decreasing PPARγ-mediated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1) expression. Nox1 promotes intracellular reactive oxygen species (ROS) production and directly induces VSMC dedifferentiation. In addition, Nox1 is a ferroptosis-promoting gene that encourages ferroptotic stress production, indirectly leading to VSMC dedifferentiation. Ginger, a natural multi-targeted ferroptotic stress inhibitor, finely and effectively prevents VSMC phenotypic transition and protects against venous injury remodeling.
Collapse
Affiliation(s)
- Xiaoyu Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Weiwei Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jingjun Hao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuxin Zhou
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Deyang Yu
- Department of Emergency Surgery, Qingdao Central Hospital, Qingdao, Shandong, 266071, China
| | - Wei Ding
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, China
| | - Xuejuan Zhang
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, China
| | - Gaoli Liu
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
3
|
Chang SS, Cheng CC, Chen YR, Chen FW, Cheng YM, Wang JM. Epithelial CEBPD activates fibronectin and enhances macrophage adhesion in renal ischemia-reperfusion injury. Cell Death Discov 2024; 10:328. [PMID: 39025831 PMCID: PMC11258324 DOI: 10.1038/s41420-024-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a cause of acute kidney injury in patients after renal transplantation and leads to high morbidity and mortality. Damaged kidney resident cells release cytokines and chemokines, which rapidly recruit leukocytes. Fibronectin (FN-1) contributes to immune cell migration, adhesion and growth in inflamed tissues. CCAAT/enhancer-binding protein delta is responsive to inflammatory cytokines and stresses and plays functional roles in cell motility, extracellular matrix production and immune responses. We found that the expression of CCAAT/enhancer-binding protein delta was increased in renal epithelial cells in IRI mice compared with sham mice. Following IRI, the colocalization of FN-1 with the macrophage marker F4/80 was increased in renal injury model wild-type mice but was significantly attenuated in Cebpd-deficient mice. Inactivation of CEBPD can repress hypoxia-induced FN-1 expression in HK-2 cells. Moreover, the inactivation of CEBPD and FN-1 also reduces macrophage accumulation in HK-2 cells. These findings suggest that the involvement of CEBPD in macrophage accumulation through the activation of FN-1 expression and the inhibition of CEBPD can protect against renal IRI.
Collapse
Affiliation(s)
- Shen-Shin Chang
- Division of Transplantation, Department of Surgery, National Chung Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chao-Chun Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Ren Chen
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Feng-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Min Cheng
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, 700, Taiwan.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
4
|
Protective role of activating PPARγ in advanced glycation end products-induced impairment of coronary artery vasodilation via inhibiting p38 phosphorylation and reactive oxygen species production. Biomed Pharmacother 2022; 147:112641. [DOI: 10.1016/j.biopha.2022.112641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
|
5
|
Eguez C, Clark MA, O'Connor AT. 15-Deoxy-Δ- 12,14-prostaglandin J2 effects in vascular smooth muscle cells: Implications in vascular smooth muscle cell proliferation and contractility. Prostaglandins Other Lipid Mediat 2021; 156:106583. [PMID: 34332056 DOI: 10.1016/j.prostaglandins.2021.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/04/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
15-Deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) is an endogenous agonist of the ligand dependent transcriptional factor, peroxisome proliferator-activated receptor -gamma (PPAR-γ). Although PPAR-γ mediates some actions of 15d-PGJ2, many actions of 15d-PGJ2 are independent of PPAR-γ. The PPAR-γ signaling pathway has beneficial effects on tumor progression, inflammation, oxidative stress, and angiogenesis in numerous studies. In this review, various studies were analyzed to understand the effects of 15d-PGJ2 in vascular smooth muscle cells (VSMC)s. 15d-PGJ2 inhibits proliferation of VSMCs during vascular remodeling and it alters the expression of contractile proteins and inflammatory components within these cells as well. However, the effects of 15d-PGJ2 as well as its ability to induce PPAR-γ activation remains controversial as contradictory effects of this prostaglandin in VSMCs exist. Understanding the mechanisms by which 15d-PGJ2 elicit beneficial actions whether by PPAR-γ activation or independently, will aid in developing new therapeutic strategies for diseases such as hypertension with an inflammatory component. Although great advances are being made, more research is needed to reach definitive conclusions.
Collapse
Affiliation(s)
- Carl Eguez
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA(1).
| | - Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA(1).
| |
Collapse
|
6
|
Nelson JR, Budoff MJ, Wani OR, Le V, Patel DK, Nelson A, Nemiroff RL. EPA's pleiotropic mechanisms of action: a narrative review. Postgrad Med 2021; 133:651-664. [PMID: 33900135 DOI: 10.1080/00325481.2021.1921491] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment with icosapent ethyl 4 g/day, a highly purified and stable ethyl ester of eicosapentaenoic acid (EPA), demonstrated a significant reduction in atherosclerotic cardiovascular disease (ASCVD) events and death in REDUCE-IT. However, analyses of REDUCE-IT and meta-analyses have suggested that this clinical benefit is greater than can be achieved by triglyceride reduction alone. EPA therefore may have additional pleiotropic effects, including anti-inflammatory and anti-aggregatory mechanisms. EPA competes with arachidonic acid for cyclooxygenase and lipoxygenase, producing anti-inflammatory and anti-aggregatory metabolites rather than the more deleterious metabolites associated with arachidonic acid. Changing the EPA:arachidonic acid ratio may shift metabolic status from pro-inflammatory/pro-aggregatory to anti-inflammatory/anti-aggregatory. EPA also has antioxidant effects and increases synthesis of nitric oxide. Incorporation of EPA into phospholipid bilayers influences membrane structure and may help to prevent cardiac arrhythmias. Clinically, this may translate into improved vascular health, including regression of atherosclerotic plaque. Overall, EPA has a range of pleiotropic effects that contribute to a reduction in ASCVD.
Collapse
Affiliation(s)
- John R Nelson
- California Cardiovascular Institute, Fresno, California, USA
| | - Matthew J Budoff
- Department of Medicine, Lundquist Institute, Torrance, California, USA
| | - Omar R Wani
- Northern Arizona Healthcare Medical Group - Flagstaff, Flagstaff, AZ, USA
| | - Viet Le
- Cardiovascular Research, Intermountain Heart Institute/CV Research, Intermountain Healthcare, Murray, Utah, and Rocky Mountain University of Health Professions, Provo, USA
| | - Dhiren K Patel
- Department of Pharmacy Practice, MCPHS University, Boston, MA, USA
| | - Ashley Nelson
- Department of Internal Medicine, Saint Agnes Medical Center, Fresno, California, USA
| | - Richard L Nemiroff
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Groner J, Goepferich A, Breunig M. Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J Control Release 2021; 333:536-559. [PMID: 33794270 DOI: 10.1016/j.jconrel.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of death in developed countries. The pathogenetic mechanism relies on a macrophage-based immune reaction to low density lipoprotein (LDL) deposition in blood vessels with dysfunctional endothelia. Thus, atherosclerosis is defined as a chronic inflammatory disease. A plethora of cardiovascular drugs have been developed and are on the market, but the major shortcoming of standard medications is that they do not address the root cause of the disease. Statins and thiazolidinediones that have recently been recognized to exert specific anti-atherosclerotic effects represent a potential breakthrough on the horizon. But their whole potential cannot be realized due to insufficient availability at the pathological site and severe off-target effects. The focus of this review will be to elaborate how both groups of drugs could immensely profit from nanoparticulate carriers. This delivery principle would allow for their accumulation in target macrophages and endothelial cells of the atherosclerotic plaque, increasing bioavailability where it is needed most. Based on the analyzed literature we conclude design criteria for the delivery of statins and thiazolidinediones with nanoparticles for anti-atherosclerotic therapy. Nanoparticles need to be below a diameter of 100 nm to accumulate in the atherosclerotic plaque and should be fabricated using biodegradable materials. Further, the thiazolidinediones or statins must be encapsulated into the particle core, because especially for thiazolidindiones the uptake into cells is prerequisite for their mechanism of action. For optimal uptake into targeted macrophages and endothelial cells, the ideal particle should present ligands on its surface which bind specifically to scavenger receptors. The impact of statins on the lectin-type oxidized LDL receptor 1 (LOX1) seems particularly promising because of its outstanding role in the inflammatory process. Using this pioneering concept, it will be possible to promote the impact of statins and thiazolidinediones on macrophages and endothelial cells and significantly enhance their anti-atherosclerotic therapeutic potential.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
8
|
Wang Q, Ozer HG, Wang B, Zhang M, Urabe G, Huang Y, Kent KC, Guo LW. A hierarchical and collaborative BRD4/CEBPD partnership governs vascular smooth muscle cell inflammation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:54-66. [PMID: 33768129 PMCID: PMC7966960 DOI: 10.1016/j.omtm.2021.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Bromodomain protein BRD4 reads histone acetylation (H3K27ac), an epigenomic mark of transcription enhancers. CCAAT enhancer binding protein delta (CEBPD) is a transcription factor typically studied in metabolism. While both are potent effectors and potential therapeutic targets, their relationship was previously unknown. Here we investigated their interplay in vascular smooth muscle cell (SMC) inflammation. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) revealed H3K27ac/BRD4 enrichment at Cebpd in injured rat carotid arteries. While genomic deletion of BRD4-associated enhancer in SMCs in vitro decreased Cebpd transcripts, BRD4 gene silencing also diminished Cebpd mRNA and protein, indicative of a BRD4 control over CEBPD expression. Bromodomain-1, but not bromodomain-2, accounted for this BRD4 function. Moreover, endogenous BRD4 protein co-immunoprecipitated with CEBPD, and both proteins co-immunoprecipitated the Cebpd promoter and enhancer DNA fragments. These co-immunoprecipitations (coIPs) were all abolished by the BRD4-bromodomain blocker JQ1, suggesting a BRD4/CEBPD /promoter/enhancer complex. While BRD4 and CEBPD were both upregulated upon tumor necrosis factor alpha (TNF-α) stimulation of SMC inflammation (increased interleukin [IL]-1b, IL-6, and MCP-1), they mediated this stimulation via preferentially elevated expression of platelet-derived growth factor receptor alpha (PDGFRα, versus PDGFRβ), as indicated by loss- and gain-of-function experiments. Taken together, our study unravels a hierarchical yet collaborative BRD4/CEBPD relationship, a previously unrecognized mechanism that prompts SMC inflammation and may underlie other pathophysiological processes as well.
Collapse
Affiliation(s)
- Qingwei Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Fultang N, Li X, Li T, Chen YH. Myeloid-Derived Suppressor Cell Differentiation in Cancer: Transcriptional Regulators and Enhanceosome-Mediated Mechanisms. Front Immunol 2021; 11:619253. [PMID: 33519825 PMCID: PMC7840597 DOI: 10.3389/fimmu.2020.619253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 01/16/2023] Open
Abstract
Myeloid-derived Suppressor Cells (MDSCs) are a sub-population of leukocytes that are important for carcinogenesis and cancer immunotherapy. During carcinogenesis or severe infections, inflammatory mediators induce MDSCs via aberrant differentiation of myeloid precursors. Although several transcription factors, including C/EBPβ, STAT3, c-Rel, STAT5, and IRF8, have been reported to regulate MDSC differentiation, none of them are specifically expressed in MDSCs. How these lineage-non-specific transcription factors specify MDSC differentiation in a lineage-specific manner is unclear. The recent discovery of the c-Rel-C/EBPβ enhanceosome in MDSCs may help explain these context-dependent roles. In this review, we examine several transcriptional regulators of MDSC differentiation, and discuss the concept of non-modular regulation of MDSC signature gene expression by transcription factors such as c-Rel and C/EBPß.
Collapse
Affiliation(s)
- Norman Fultang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - Youhai H. Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Link JC, Wiese CB, Chen X, Avetisyan R, Ronquillo E, Ma F, Guo X, Yao J, Allison M, Chen YDI, Rotter JI, El -Sayed Moustafa JS, Small KS, Iwase S, Pellegrini M, Vergnes L, Arnold AP, Reue K. X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity. J Clin Invest 2020; 130:5688-5702. [PMID: 32701509 PMCID: PMC7598065 DOI: 10.1172/jci140223] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022] Open
Abstract
Males and females differ in body composition and fat distribution. Using a mouse model that segregates gonadal sex (ovaries and testes) from chromosomal sex (XX and XY), we showed that XX chromosome complement in combination with a high-fat diet led to enhanced weight gain in the presence of male or female gonads. We identified the genomic dosage of Kdm5c, an X chromosome gene that escapes X chromosome inactivation, as a determinant of the X chromosome effect on adiposity. Modulating Kdm5c gene dosage in XX female mice to levels that are normally present in males resulted in reduced body weight, fat content, and food intake to a degree similar to that seen with altering the entire X chromosome dosage. In cultured preadipocytes, the levels of KDM5C histone demethylase influenced chromatin accessibility (ATAC-Seq), gene expression (RNA-Seq), and adipocyte differentiation. Both in vitro and in vivo, Kdm5c dosage influenced gene expression involved in extracellular matrix remodeling, which is critical for adipocyte differentiation and adipose tissue expansion. In humans, adipose tissue KDM5C mRNA levels and KDM5C genetic variants were associated with body mass. These studies demonstrate that the sex-dependent dosage of Kdm5c contributes to male/female differences in adipocyte biology and highlight X-escape genes as a critical component of female physiology.
Collapse
Affiliation(s)
| | | | - Xuqi Chen
- Integrative Biology and Physiology, and
| | | | | | - Feiyang Ma
- Molecular, Cellular and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Matthew Allison
- Division of Preventive Medicine, School of Medicine, UCSD, San Diego, California, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | | | - Kerrin S. Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Shigeki Iwase
- Human Genetics, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Matteo Pellegrini
- Molecular, Cellular and Developmental Biology, UCLA, Los Angeles, California, USA
| | | | | | - Karen Reue
- Molecular Biology Institute
- Human Genetics, David Geffen School of Medicine
| |
Collapse
|
11
|
Słowikowski BK, Drzewiecka H, Malesza M, Mądry I, Sterzyńska K, Jagodziński PP. The influence of conjugated linoleic acid on the expression of peroxisome proliferator-activated receptor-γ and selected apoptotic genes in non-small cell lung cancer. Mol Cell Biochem 2020; 466:65-82. [PMID: 31993929 PMCID: PMC7028827 DOI: 10.1007/s11010-020-03689-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
In recent years, peroxisome proliferator-activated receptor-γ (PPARγ) has been intensively studied. Because its activation is often associated with changes in the expression level of various apoptotic genes, many studies have emphasized the role of PPARγ as an important anticancer agent. However, in different types of cancer, different genes are influenced by PPARγ action. Previous studies showed that conjugated linoleic acid (CLA) was able to induce apoptosis, upregulate PPARG gene expression and activate PPARγ protein in certain human cancer cell lines. Moreover, some PPARγ agonists inhibited the growth of human lung cancer cells through the induction of apoptosis. Nevertheless, the impact of CLA on PPARγ mRNA and protein levels in non-small cell lung cancer (NSCLC) cell lines has not been investigated thus far. Therefore, in our study, we analysed the influence of the c9,t11 linoleic acid isomer on the expression of PPARG and other genes involved in the apoptotic response (BCL-2, BAX, and CDKN1A) in two NSCLC cell lines of different histological origin (A549 and Calu-1) and in normal human bronchial epithelial Beas-2B cells. Cells were treated with several doses of c9,t11 CLA, followed by RNA and protein isolation, cDNA synthesis, real-time quantitative PCR (RT-qPCR) and Western blot analysis. We showed that the investigated CLA isomer was able to enhance the expression of PPARγ in the examined cell lines and alter the mRNA and protein levels of genes involved in apoptosis. Fluorescent staining and MMT assay revealed the antiproliferative potential of CLA as well as its ability to activate pathways that lead to cell death.
Collapse
Affiliation(s)
- Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznan, Poland.
| | - Hanna Drzewiecka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznan, Poland
| | - Michał Malesza
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznan, Poland
| | - Ida Mądry
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznan, Poland
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznan, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznan, Poland
| |
Collapse
|
12
|
Wang W, Xia X, Mao L, Wang S. The CCAAT/Enhancer-Binding Protein Family: Its Roles in MDSC Expansion and Function. Front Immunol 2019; 10:1804. [PMID: 31417568 PMCID: PMC6684943 DOI: 10.3389/fimmu.2019.01804] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Immunosuppressive cells have been highlighted in research due to their roles in tumor progression and treatment failure. Myeloid-derived suppressor cells (MDSCs) are among the major immunosuppressive cell populations in the tumor microenvironment, and transcription factors (TFs) are likely involved in MDSC expansion and activation. As key regulatory TFs, members of the CCAAT/enhancer-binding protein (C/EBP) family possibly modulate many biological processes, including cell growth, differentiation, metabolism, and death. Current evidence suggests that C/EBPs maintain critical regulation of MDSCs and are involved in the differentiation and function of MDSCs within the tumor microenvironment. To better understand the MDSC-associated transcriptional network and identify new therapy targets, we herein review recent findings about the C/EBP family regarding their participation in the expansion and function of MDSCs.
Collapse
Affiliation(s)
- Wenxin Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Chen H, Zhen J, Wu Z, Li X, Liu S, Tang Z, Sun Z. Grape seed extract and chromium nicotinate reduce impacts of heat stress in Simmental × Qinchuan steers. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To assess the impacts of grape seed extract (GSE) fed with or without chromium nicotinate (CN) on beef steers under heat stress conditions, 40 Simmental × Qinchuan steers (400 ± 10 days old; 410 ± 8.0 kg) were randomly assigned to one of four diets (n = 10 per group): basal diet (CON group); basal diet + 33 mg/day CN (CN group); basal diet + 65 mg/kg DM GSE (GSE group); and basal diet + 33 mg/day CN + 65 mg/kg DM GSE (CN + GSE group). This study was conducted in summer and the steers were housed in outdoor shaded pens (10 steers/pen) and fed individually. The experiment lasted for 35 days, the first 7 days for diet and housing condition adaptation. The amount of feed intake was recorded daily; individual bodyweight was recorded on Days 8, 22, and 36. On Day 36 before feeding, six steers per group were slaughtered for collection of blood and tissue samples. Average daily liveweight gain and dry matter intake of steers were increased by the GSE, CN, and CN + GSE treatments (P < 0.05). Dietary treatments increased the activities of glutathione peroxidase and total superoxide dismutase in plasma (P < 0.05) and plasma concentration of interleukin 10 on Days 22 and 36 (P < 0.05), whereas decreased plasma concentration of tumour necrosis factor-α on Day 22 (P < 0.05). Overall, supplementation of GSE alone or with CN had positive effects on the growth performance of steers under heat stress conditions.
Collapse
|
14
|
Lee YB, Choi KM. Diet-Modulated Lipoprotein Metabolism and Vascular Inflammation Evaluated by 18F-fluorodeoxyglucose Positron Emission Tomography. Nutrients 2018; 10:nu10101382. [PMID: 30274193 PMCID: PMC6212959 DOI: 10.3390/nu10101382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular inflammation plays a central role in atherosclerosis, from initiation and progression to acute thrombotic complications. Modified low-density lipoproteins (LDLs) and apoB-containing particles stimulate plaque inflammation by interacting with macrophages. Loss of function of high-density lipoprotein (HDL) for preventing LDL particles from oxidative modification in dyslipidemic states may amplify modified LDL actions, accelerating plaque inflammation. Diets are one of the most important factors that can affect these processes of lipoprotein oxidation and vascular inflammation. Recently, 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has emerged as a reliable noninvasive imaging modality for identifying and quantifying vascular inflammation within atherosclerotic lesions based on the high glycolytic activity of macrophages infiltrating active atherosclerotic plaques. Vascular inflammation evaluated by FDG PET has been positively related to metabolic syndrome components and traditional risk factors of cardiovascular disease, including high-sensitivity C-reactive protein, body mass index, and insulin resistance. A positive association of vascular inflammation with endothelial dysfunction, resistin levels, pericardial adipose tissue, and visceral fat area has also been reported. In contrast, HDL cholesterol and adiponectin have been inversely related to vascular inflammation detected by FDG PET. Because of its reproducibility, serial FDG PET shows potential for tracking the effects of dietary interventions and other systemic and local antiatherosclerotic therapies for plaque inflammation.
Collapse
Affiliation(s)
- You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea.
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea.
| |
Collapse
|
15
|
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor family and plays an important role in adipocyte differentiation, glucose homeostasis, and insulin sensitivity. Thiazolidinediones (TZDs), synthetic ligands of PPARγ, have been used for the treatment of diabetes mellitus for two decades. TZDs were expected to be amazing drugs not only for type 2 diabetes but also for metabolic syndrome and atherosclerotic vascular disease because they can reduce both insulin resistance and inflammation in experimental studies. However, serious unwanted effects pushed TZDs back to an optional second-tier drug for type 2 diabetes. Nevertheless, PPARγ is still one of the most important targets for the treatment of insulin resistance and diabetes mellitus, and novel strategies to modulate PPARγ activity to enhance its beneficial effects and reduce unwanted adverse effects are anticipated. Recent studies showed that post-translational modification (PTM) of PPARγ regulates PPARγ activity or stability and may be a novel way to optimize PPARγ activity with reduced adverse effects. In this review, we will focus on recent advances in PTM of PPARγ and the mechanisms regulating PPARγ function as well as in the development of PPARγ modulators or agonists.
Collapse
Affiliation(s)
- Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sung Soo Chung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
Lai HY, Hsu LW, Tsai HH, Lo YC, Yang SH, Liu PY, Wang JM. CCAAT/enhancer-binding protein delta promotes intracellular lipid accumulation in M1 macrophages of vascular lesions. Cardiovasc Res 2018; 113:1376-1388. [PMID: 28859294 DOI: 10.1093/cvr/cvx134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/09/2017] [Indexed: 12/15/2022] Open
Abstract
Aims Lipid homeostasis is reprogrammed in the presence of inflammation, which results in excessive lipid accumulation in macrophages, and leads to the formation of lipid-laden foam cells. We aimed to link an inflammation-responsive transcription factor CCAAT/enhancer-binding protein delta (CEBPD) with polarized macrophages and dissect its contribution to lipid accumulation. Methods and results We found that CEBPD protein colocalized with macrophages in human and mouse (C57BL/6, Apoe-/-) atherosclerotic plaques and that Cebpd deficiency in bone marrow cells suppressed atherosclerotic lesions in hyperlipidemic Apoe-/- mice. CEBPD was responsive to modified low-density lipoprotein (LDL) via the p38MAPK/CREB pathway, and it promoted lipid accumulation in M1 macrophages but not in M2 macrophages. CEBPD up-regulated pentraxin 3 (PTX3), which promoted the macropinocytosis of LDL, and down-regulated ATP-binding cassette subfamily A member 1 (ABCA1), which impaired the intracellular cholesterol efflux in M1 macrophages. We further found that simvastatin (a HMG-CoA reductase inhibitor) could target CEBPD to block lipid accumulation in a manner not directly related to its cholesterol-lowering effect in M1 macrophages. Conclusion This study underscores how CEBPD functions at the junction of inflammation and lipid accumulation in M1 macrophages. Therefore, CEBPD-mediated lipid accumulation in M1 macrophages could represent a new therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hong-Yue Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Wei Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Hwa Tsai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Molecular Inflammation Research, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Bortezomib-induced miRNAs direct epigenetic silencing of locus genes and trigger apoptosis in leukemia. Cell Death Dis 2017; 8:e3167. [PMID: 29120412 PMCID: PMC5775404 DOI: 10.1038/cddis.2017.520] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) have been suggested to repress transcription via binding the 3′-untranslated regions of mRNAs. However, the involvement and details of miRNA-mediated epigenetic regulation, particularly in targeting genomic DNA and mediating epigenetic regulation, remain largely uninvestigated. In the present study, transcription factor CCAAT/enhancer binding protein delta (CEBPD) was responsive to the anticancer drug bortezomib, a clinical and highly selective drug for leukemia treatment, and contributed to bortezomib-induced cell death. Interestingly, following the identification of CEBPD-induced miRNAs, we found that miR-744, miR-3154 and miR-3162 could target CpG islands in the 5′-flanking region of the CEBPD gene. We previously demonstrated that the Yin Yang 1 (YY1)/polycomb group (PcG) protein/DNA methyltransferase (DNMT) complex is important for CCAAT/enhancer binding protein delta (CEBPD) gene inactivation; we further found that Argonaute 2 (Ago2) interacts with YY1 and binds to the CEBPD promoter. The miRNA/Ago2/YY1/PcG group protein/DNMT complex linked the inactivation of CEBPD and genes adjacent to its 5′-flanking region, including protein kinase DNA-activated catalytic polypeptide (PRKDC), minichromosome maintenance-deficient 4 (MCM4) and ubiquitin-conjugating enzyme E2 variant 2 (UBE2V2), upon bortezomib treatment. Moreover, we revealed that miRNA binding is necessary for YY1/PcG group protein/DNMT complex-mediated epigenetic gene silencing and is associated with bortezomib-induced methylation on genomic DNA. The present study successfully characterized the interactions of the miRNA/Ago2/YY1/PcG group protein/DNMT complex and provided new insights for miRNA-mediated epigenetic regulation in bortezomib-induced leukemic cell arrest and cell death.
Collapse
|
18
|
Hilbert T, Dornbusch K, Baumgarten G, Hoeft A, Frede S, Klaschik S. Pulmonary vascular inflammation: effect of TLR signalling on angiopoietin/TIE regulation. Clin Exp Pharmacol Physiol 2017; 44:123-131. [PMID: 27712004 DOI: 10.1111/1440-1681.12680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 12/27/2022]
Abstract
Increased pulmonary vascular resistance is a critical complication in sepsis. Toll-like receptor (TLR) as well as angiopoietin (ANG) signalling both contribute to the emergence of pulmonary arterial hypertension. We hypothesized that TLR stimulation by bacterial ligands directly affects expression and secretion of ligands and receptors of the angiopoietin/TIE axis. Microvascular endothelial (HPMEC) and smooth muscle cells (SMC) of pulmonary origin were incubated with thrombin and with ligands for TLR2, -4, -5, and -9. Expression and secretion of ANG1, -2, TIE2 and IL-8 were determined using quantitative real-time PCR and ELISA. TLR stimulation had no impact either on the expression of ANG2 and TIE2 in HPMEC or on that of ANG1 in SMC. However, overall levels of both released ANG1 and -2 were halved upon stimulation with the TLR9 ligand CpG, and ANG2 release was significantly enhanced by TLR4 activation when initially provoked by sequentially performed stimulation. Furthermore, enhanced ANG2 activity increased endothelial permeability, as demonstrated in an in vitro transwell assay. We conclude that sole TLR stimulation by bacterial ligands plays no significant role for altered expression and secretion of ANG1, -2 and TIE2 in human pulmonary vascular cells. The interplay between various stimuli is required to induce imbalances between ANG1 and -2.
Collapse
Affiliation(s)
- Tobias Hilbert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Kathrin Dornbusch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, Johanniter Hospital Bonn, Bonn, Germany
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Klaschik
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
19
|
Kooman JP, Dekker MJ, Usvyat LA, Kotanko P, van der Sande FM, Schalkwijk CG, Shiels PG, Stenvinkel P. Inflammation and premature aging in advanced chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F938-F950. [PMID: 28701312 DOI: 10.1152/ajprenal.00256.2017] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
Systemic inflammation in end-stage renal disease is an established risk factor for mortality and a catalyst for other complications, which are related to a premature aging phenotype, including muscle wasting, vascular calcification, and other forms of premature vascular disease, depression, osteoporosis, and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have a direct effect on cellular and tissue function. In addition to uremia-specific causes, such as abnormalities in the phosphate-Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect, are abnormal or misplaced protein structures, as well as abnormalities in tissue homeostasis, which evoke danger signals through damage-associated molecular patterns, as well as the senescence-associated secretory phenotype. Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserves, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relationship between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences, are discussed.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Maastricht University Medical Center, Maastricht, Netherlands;
| | | | - Len A Usvyat
- Fresenius Medical Care North America, Waltham, Massachusetts
| | - Peter Kotanko
- Renal Research Institute, New York, New York.,Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Peter Stenvinkel
- Divsion of Renal Medicine, Department of Clinical Science Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Hogan NT, Whalen MB, Stolze LK, Hadeli NK, Lam MT, Springstead JR, Glass CK, Romanoski CE. Transcriptional networks specifying homeostatic and inflammatory programs of gene expression in human aortic endothelial cells. eLife 2017; 6. [PMID: 28585919 PMCID: PMC5461113 DOI: 10.7554/elife.22536] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (ECs) are critical determinants of vascular homeostasis and inflammation, but transcriptional mechanisms specifying their identities and functional states remain poorly understood. Here, we report a genome-wide assessment of regulatory landscapes of primary human aortic endothelial cells (HAECs) under basal and activated conditions, enabling inference of transcription factor networks that direct homeostatic and pro-inflammatory programs. We demonstrate that 43% of detected enhancers are EC-specific and contain SNPs associated to cardiovascular disease and hypertension. We provide evidence that AP1, ETS, and GATA transcription factors play key roles in HAEC transcription by co-binding enhancers associated with EC-specific genes. We further demonstrate that exposure of HAECs to oxidized phospholipids or pro-inflammatory cytokines results in signal-specific alterations in enhancer landscapes and associate with coordinated binding of CEBPD, IRF1, and NFκB. Collectively, these findings identify cis-regulatory elements and corresponding trans-acting factors that contribute to EC identity and their specific responses to pro-inflammatory stimuli. DOI:http://dx.doi.org/10.7554/eLife.22536.001
Collapse
Affiliation(s)
- Nicholas T Hogan
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Michael B Whalen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Lindsey K Stolze
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Nizar K Hadeli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Michael T Lam
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - James R Springstead
- Department of Chemical and Paper Engineering, University of Western Michigan, Kalamazoo, United States
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| |
Collapse
|
21
|
Calvier L, Chouvarine P, Legchenko E, Hoffmann N, Geldner J, Borchert P, Jonigk D, Mozes MM, Hansmann G. PPARγ Links BMP2 and TGFβ1 Pathways in Vascular Smooth Muscle Cells, Regulating Cell Proliferation and Glucose Metabolism. Cell Metab 2017; 25:1118-1134.e7. [PMID: 28467929 DOI: 10.1016/j.cmet.2017.03.011] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 01/24/2023]
Abstract
BMP2 and TGFβ1 are functional antagonists of pathological remodeling in the arteries, heart, and lung; however, the mechanisms in VSMCs, and their disturbance in pulmonary arterial hypertension (PAH), are unclear. We found a pro-proliferative TGFβ1-Stat3-FoxO1 axis in VSMCs, and PPARγ as inhibitory regulator of TGFβ1-Stat3-FoxO1 and TGFβ1-Smad3/4, by physically interacting with Stat3 and Smad3. TGFβ1 induces fibrosis-related genes and miR-130a/301b, suppressing PPARγ. Conversely, PPARγ inhibits TGFβ1-induced mitochondrial activation and VSMC proliferation, and regulates two glucose metabolism-related enzymes, platelet isoform of phosphofructokinase (PFKP, a PPARγ target, via miR-331-5p) and protein phosphatase 1 regulatory subunit 3G (PPP1R3G, a Smad3 target). PPARγ knockdown/deletion in VSMCs activates TGFβ1 signaling. The PPARγ agonist pioglitazone reverses PAH and inhibits the TGFβ1-Stat3-FoxO1 axis in TGFβ1-overexpressing mice. We identified PPARγ as a missing link between BMP2 and TGFβ1 pathways in VSMCs. PPARγ activation can be beneficial in TGFβ1-associated diseases, such as PAH, parenchymal lung diseases, and Marfan's syndrome.
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Nadine Hoffmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Jonas Geldner
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Paul Borchert
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover 30625, Germany
| | - Miklos M Mozes
- Department of Pathophysiology, Semmelweis University, Budapest 1089, Hungary
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
22
|
Min Y, Li J, Qu P, Lin PC. C/EBP-δ positively regulates MDSC expansion and endothelial VEGFR2 expression in tumor development. Oncotarget 2017; 8:50582-50593. [PMID: 28881585 PMCID: PMC5584171 DOI: 10.18632/oncotarget.16410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/12/2017] [Indexed: 12/29/2022] Open
Abstract
Vascular endothelial cells and Gr-1+CD11b+ myeloid derived suppressor cells (MDSCs) are two important components that constitute the tumor microenvironment. Targeting these cells offers the potential to halt tumor growth. In this study, we report a common mediator in C/EBP-δ that regulates both components and aids in tumor development. C/EBP-δ is elevated in tumor derived MDSCs. Interestingly, genetic deletion of C/EBP-δ in mice significantly impaired MDSC expansion in response to tumor progression, but it had no effect on Gr-1+CD11b+ cell production in normal development. It suggests a specific role of C/EBP-δ in emergency myelopoiesis under tumor conditions. Consistent with the pro tumor functions of MDSCs, loss of C/EBP-δ resulted in reduced tumor angiogenesis and tumor growth. Moreover, we found expression of C/EBP-δ in vascular endothelial cells. C/EBP-δ regulated cell motility, endothelial network formation and vascular sprouting. Notably, inactivation of C/EBP-δ in endothelial cells specifically inhibited the expression of VEGFR2 but not VEGFR1. Ectopic expression of C/EBP-δ increased and knockdown of the gene decreased VEGFR2 expression. C/EBP-δ is recruited to the promoter region of VEGFR2, indicative of transcriptional regulation. Collectively, this study has identified a positive mediator in C/EBP-δ, which regulates tumor induced MDSC expansion and VEGFR2 expression in endothelium. Considering the importance of MDSCs and endothelial cells in tumor progression, targeting C/EBP-δ may provide an interesting means for cancer therapy, killing two birds with one stone.
Collapse
Affiliation(s)
- Yongfen Min
- Center for Cancer Research, National Cancer Institutes, Frederick, MD 21702, USA
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637007, Sichuan, China.,Hepatobiliary, Pancreatic and Intestinal Diseases Research Institute, North Sichuan Medical College, Nanchong 637007, Sichuan, China
| | - Peng Qu
- Center for Cancer Research, National Cancer Institutes, Frederick, MD 21702, USA
| | - P Charles Lin
- Center for Cancer Research, National Cancer Institutes, Frederick, MD 21702, USA
| |
Collapse
|
23
|
Bhat OM, Uday Kumar P, Harishankar N, Ravichandaran L, Bhatia A, Dhawan V. Interleukin-18-induced cell adhesion molecule expression is associated with feedback regulation by PPAR-γ and NF-κB in Apo E-/- mice. Mol Cell Biochem 2017; 428:119-128. [PMID: 28176248 DOI: 10.1007/s11010-016-2922-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Focal recruitment of monocytes and lymphocytes is one of the earliest detectable cellular responses in atherosclerotic lesion formation. Endothelium may regulate leukocyte recruitment by expressing specific adhesion molecules. Interleukin-18 is a proinflammatory cytokine that plays an important role in vascular pathologies. The present study highlights the modulation of adhesion molecules and PPAR-γ by IL-18 and proposes a novel feedback mechanism by which PPAR-γ may regulate IL-18 expression. Three groups of normal chow diet-fed, male Apo E-/- mice, aged 12 weeks (n = 6/group) were employed: Gp I, phosphate-buffered saline (PBS) (2 mo): Gp II, recombinant IL-18 (rIL-18) (1 mo) followed by PBS (1 mo); Gp III, rIL-18 (1 mo) followed by pyrrolidine dithiocarbamate (PDTC) (1 mo). Significantly augmented mRNA expression of ICAM-1 (~5.7-fold), VCAM-1 (~3.6-fold), and NF-κB (~7-fold) was observed in Gp II mice as compared to Gp I, whereas PPAR-γ expression was not altered. PDTC treatment caused a significant downregulation of ICAM-1 (~4.2-fold), VCAM-1(~2-fold), and NF-κB (~4.5-fold) and upregulation of PPAR-γ expression (~5-fold) in Gp III mice. A similar trend was observed in protein expression. In vivo imaging results demonstrated a marked increase in probe (CF750 dye conjugated to VCAM-1 antibody) fluorescence intensity for VCAM-1 expression in Gp II mice, whereas it was moderately decreased in Gp III. PPAR-γ was found to significantly downregulate both IL-18 levels and IL-18-induced adhesion molecules. The underlying mechanism was found to be via inhibition of NF-κB activity by PDTC, thereby leading to decreased adherence of monocytes to the activated endothelial cells and a step to halt the progression and development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Owais Mohammad Bhat
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.,Department of Pharmacology and Toxicology, Virginia Common Wealth University, Richmond, VA, USA
| | - P Uday Kumar
- Department of Histopathology, National Centre for Laboratory Animal Sciences (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - N Harishankar
- Department of Histopathology, National Centre for Laboratory Animal Sciences (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - L Ravichandaran
- Department of Histopathology, National Centre for Laboratory Animal Sciences (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - A Bhatia
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Research Block-B, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
24
|
Kukida M, Mogi M, Ohshima K, Nakaoka H, Iwanami J, Kanno H, Tsukuda K, Chisaka T, Min LJ, Wang XL, Bai HY, Shan BS, Higaki A, Yamauchi T, Okura T, Higaki J, Horiuchi M. Angiotensin II Type 2 Receptor Inhibits Vascular Intimal Proliferation With Activation of PPARγ. Am J Hypertens 2016; 29:727-36. [PMID: 26471325 DOI: 10.1093/ajh/hpv168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Angiotensin II type 2 (AT2) receptor stimulation could exert beneficial effects on vascular remodeling. Previously, we reported that AT2 receptor stimulation ameliorated insulin resistance in diabetic mice accompanied by PPARγ activation which also plays a variety of crucial roles in the vasculature. Therefore, this study aimed to investigate the vascular protective effect of the AT2 receptor with activation of PPARγ involving AT2 receptor-interacting protein (ATIP). METHODS AND RESULTS Vascular injury was induced by polyethylene-cuff placement around the femoral artery in C57BL/6J mice. Treatment with compound 21 (C21), an AT2 receptor agonist, decreased neointimal formation, cell proliferation, and the mRNA levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF)-α, and interleukin-1β, and phosphorylation of nuclear factor-kappa B, and increased PPARγ DNA-binding activity in the injured artery, whereas these inhibitory effects of C21 were attenuated by co-treatment with a PPARγ antagonist, GW9662. Treatment of vascular smooth muscle cells (VSMC) with C21 prepared from smAT2 transgenic mice, which highly express the AT2 receptor in VSMC, increased both PPARγ activity and its DNA-binding activity determined by dual-luciferase assay and electrophoresis mobility shift assay (EMSA), respectively. We observed that ATIP was involved in PPARγ complex formation, and that transfection of siRNA of ATIP1 attenuated the AT2 receptor-mediated increase in PPARγ activity in VSMC. In response to AT2 receptor stimulation, ATIP was translocated from the plasma membrane to the nucleus. CONCLUSIONS Our results suggest a new mechanism by which AT2 receptor stimulation activates PPARγ, thereby resulting in amelioration of vascular intimal proliferation, and that ATIP plays an important role in AT2 receptor-mediated PPARγ activation.
Collapse
Affiliation(s)
- Masayoshi Kukida
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan; Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan;
| | - Kousei Ohshima
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan; Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Harumi Kanno
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Toshiyuki Chisaka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan; Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan; Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Toshifumi Yamauchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan; Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Takafumi Okura
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Jitsuo Higaki
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, Japan
| |
Collapse
|
25
|
van de Vyver M, Niesler C, Myburgh KH, Ferris WF. Delayed wound healing and dysregulation of IL6/STAT3 signalling in MSCs derived from pre-diabetic obese mice. Mol Cell Endocrinol 2016; 426:1-10. [PMID: 26868449 DOI: 10.1016/j.mce.2016.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 12/29/2022]
Abstract
Metabolic dysfunction that occurs in obesity and Type 2 diabetes results in a low-level inflammatory state which impacts on mesenchymal stem cells (MSCs) capacity to promote wound healing. The ability of either recombinant Interleukin-6 (rIL6) or pioglitazone to modulate MSC migration, essential for wound healing, by targeting the inflammation-modulated IL6/STAT3 signalling pathway was therefore investigated in bone marrow-derived MSCs from control (C57BL/6J) and pre-diabetic obese mice (B6. Cg-Lepob/J). The population doubling time, in vitro wound closure and mRNA expression profile of 84 genes involved in the IL6/STAT3 signalling pathway were assessed. IL6/STAT3 signalling dysregulation, caused by IL6 deficiency, resulted in skewing of the immune modulatory properties of MSCs to favour a pro-inflammatory profile. This could be nullified by addition of either rIL6 or conventional diabetes treatment. Therapies to improve diabetic wound healing should therefore focus on the cellular changes induced by the pathological inflammatory micro-environment.
Collapse
Affiliation(s)
- M van de Vyver
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| | - C Niesler
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.
| | - K H Myburgh
- Department of Physiological Sciences, Stellenbosch University, South Africa.
| | - W F Ferris
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
26
|
Dutzmann J, Daniel JM, Bauersachs J, Hilfiker-Kleiner D, Sedding DG. Emerging translational approaches to target STAT3 signalling and its impact on vascular disease. Cardiovasc Res 2015; 106:365-74. [PMID: 25784694 PMCID: PMC4431663 DOI: 10.1093/cvr/cvv103] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/05/2015] [Indexed: 12/30/2022] Open
Abstract
Acute and chronic inflammation responses characterize the vascular remodelling processes in atherosclerosis, restenosis, pulmonary arterial hypertension, and angiogenesis. The functional and phenotypic changes in diverse vascular cell types are mediated by complex signalling cascades that initiate and control genetic reprogramming. The signalling molecule's signal transducer and activator of transcription 3 (STAT3) plays a key role in the initiation and continuation of these pathophysiological changes. This review highlights the pivotal involvement of STAT3 in pathological vascular remodelling processes and discusses potential translational therapies, which target STAT3 signalling, to prevent and treat cardiovascular diseases. Moreover, current clinical trials using highly effective and selective inhibitors of STAT3 signalling for distinct diseases, such as myelofibrosis and rheumatoid arthritis, are discussed with regard to their vascular (side-) effects and their potential to pave the way for a direct use of these molecules for the prevention or treatment of vascular diseases.
Collapse
Affiliation(s)
- Jochen Dutzmann
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Jan-Marcus Daniel
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Johann Bauersachs
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Denise Hilfiker-Kleiner
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Daniel G Sedding
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| |
Collapse
|
27
|
Ko CY, Chang WC, Wang JM. Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J Biomed Sci 2015; 22:6. [PMID: 25591788 PMCID: PMC4318212 DOI: 10.1186/s12929-014-0110-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/25/2014] [Indexed: 01/13/2023] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD) belongs to the CCAAT/enhancer-binding protein family, and these proteins function as transcription factors in many biological processes, including cell differentiation, motility, growth arrest, proliferation, cell death, metabolism and immune responses. The functional diversity of CEBPD depends, in part, on the cell type and cellular context, which indicates that CEBPD could interpret a variety of cues to adjust cellular responses in specific situations. Here, we review the regulation of the CEBPD gene and its function in response to inflammatory stimuli. We also address its effects in inflammation-related diseases through a discussion of its recently discovered downstream targets. Regarding to the previous discoveries and new insights in inflammation-associated diseases, suggesting CEBPD could also be a central gene in inflammation. Importantly, the results of this study indicate that the investigation of CEBPD could open a new avenue to help better understand the inflammatory response.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Ju-Ming Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Molecular Inflammation, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
28
|
Lv M, Wang L. Comprehensive analysis of genes, pathways, and TFs in nonsmoking Taiwan females with lung cancer. Exp Lung Res 2014; 41:74-83. [DOI: 10.3109/01902148.2014.971472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Increase of zinc finger protein 179 in response to CCAAT/enhancer binding protein delta conferring an antiapoptotic effect in astrocytes of Alzheimer's disease. Mol Neurobiol 2014; 51:370-82. [PMID: 24788683 PMCID: PMC4309906 DOI: 10.1007/s12035-014-8714-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/10/2014] [Indexed: 01/27/2023]
Abstract
Reactive astrogliosis is a cellular manifestation of neuroinflammation and occurs in response to all forms and severities of the central nervous system (CNS)'s injury and disease. Both astroglial proliferation and antiapoptotic processes are aspects of astrogliosis. However, the underlying mechanism of this response remains poorly understood. In addition, little is known about why activated astrocytes are more resistant to stress and inflammation. CCAAT/enhancer binding protein delta (CEBPD) is a transcription factor found in activated astrocytes that surround β-amyloid plaques. In this study, we found that astrocytes activation was attenuated in the cortex and hippocampus of APPswe/PS1 E9 (AppTg)/Cebpd (-/-)mice. Furthermore, an increase in apoptotic astrocytes was observed in AppTg/Cebpd (-/-)mice, suggesting that CEBPD plays a functional role in enhancing the antiapoptotic ability of astrocytes. We found that Zinc Finger Protein 179 (ZNF179) was a CEBPD-regulated gene that played an antiapoptotic, but not proliferative, role in astrocytes. The transcriptions of the proapoptotic genes, insulin-like growth factor binding protein 3 (IGFBP3) and BCL2-interacting killer (BIK), were suppressed by ZNF179 via its interaction with the promyelocytic leukemia zinc finger (PLZF) protein in astrocytes. This study provides the first evidence that ZNF179, PLZF, IGFBP3, and BIK contributed to the novel CEBPD-induced antiapoptotic feature of astrocytes.
Collapse
|
30
|
Pawar SA, Shao L, Chang J, Wang W, Pathak R, Zhu X, Wang J, Hendrickson H, Boerma M, Sterneck E, Zhou D, Hauer-Jensen M. C/EBPδ deficiency sensitizes mice to ionizing radiation-induced hematopoietic and intestinal injury. PLoS One 2014; 9:e94967. [PMID: 24747529 PMCID: PMC3991713 DOI: 10.1371/journal.pone.0094967] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022] Open
Abstract
Knowledge of the mechanisms involved in the radiation response is critical for developing interventions to mitigate radiation-induced injury to normal tissues. Exposure to radiation leads to increased oxidative stress, DNA-damage, genomic instability and inflammation. The transcription factor CCAAT/enhancer binding protein delta (Cebpd; C/EBPδ is implicated in regulation of these same processes, but its role in radiation response is not known. We investigated the role of C/EBPδ in radiation-induced hematopoietic and intestinal injury using a Cebpd knockout mouse model. Cebpd−/− mice showed increased lethality at 7.4 and 8.5 Gy total-body irradiation (TBI), compared to Cebpd+/+ mice. Two weeks after a 6 Gy dose of TBI, Cebpd−/− mice showed decreased recovery of white blood cells, neutrophils, platelets, myeloid cells and bone marrow mononuclear cells, decreased colony-forming ability of bone marrow progenitor cells, and increased apoptosis of hematopoietic progenitor and stem cells compared to Cebpd+/+ controls. Cebpd−/− mice exhibited a significant dose-dependent decrease in intestinal crypt survival and in plasma citrulline levels compared to Cebpd+/+ mice after exposure to radiation. This was accompanied by significantly decreased expression of γ-H2AX in Cebpd−/− intestinal crypts and villi at 1 h post-TBI, increased mitotic index at 24 h post-TBI, and increase in apoptosis in intestinal crypts and stromal cells of Cebpd−/− compared to Cebpd+/+ mice at 4 h post-irradiation. This study uncovers a novel biological function for C/EBPδ in promoting the response to radiation-induced DNA-damage and in protecting hematopoietic and intestinal tissues from radiation-induced injury.
Collapse
Affiliation(s)
- Snehalata A. Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Wenze Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Xiaoyan Zhu
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Junru Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Howard Hendrickson
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Esta Sterneck
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| |
Collapse
|
31
|
Wan J, Xiao Z, Chao S, Xiong S, Gan X, Qiu X, Xu C, Ma Y, Tu X. Pioglitazone modulates the proliferation and apoptosis of vascular smooth muscle cells via peroxisome proliferators-activated receptor-gamma. Diabetol Metab Syndr 2014; 6:101. [PMID: 25302079 PMCID: PMC4190377 DOI: 10.1186/1758-5996-6-101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 08/10/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND PPARγ is a member of the nuclear hormone receptor superfamily. It has been considered as a mediator regulating metabolism, anti-inflammation, and pro-proliferation in the Vascular Smooth Muscle Cells (VSMCs). Thiazolidinediones (TZDs), synthetic ligands of PPARγ, have anti-proliferative and pro-apoptotic effects on VSMCs, which prevent the formation and progression of atherosclerosis and restenosis following percutaneous coronary intervention (PCI). However, the underlying mechanism remains elusive. This present study therefore aimed to investigate the signaling pathway by which pioglitazone, one of TZDs, inhibits proliferation and induces apoptosis of VSMCs. METHODS The effects of pioglitazone on VSMC proliferation and apoptosis were studied. Cell proliferation was determined using BrdU incorporation assay. Cell apoptosis was monitored with Hoechst and Annexin V staining. The expression of caspases and cyclins was determined using real-time PCR and Western blot. RESULTS Pioglitazone treatment and PPARγ overexpression inhibited proliferation and induced apoptosis of VSMCs, whereas blocking by antagonist or silencing by siRNA of PPARγ significantly attenuated pioglitazone's effect. Furthermore, pioglitazone treatment or PPARγ overexpression increased caspase 3 and caspase 9 expression, and decreased the expression of cyclin B1 and cyclin D1 in VSMCs. CONCLUSIONS Pioglitazone inhibits VSMCs proliferation and promotes apoptosis of VSMCs through a PPARγ signaling pathway. Up-regulation of caspase 3 and down-regulation of cyclins mediates pioglitazone's anti-proliferative and pro-apoptotic effects. Our results imply that pioglitazone prevents the VSMCs proliferation via modulation of caspase and cyclin signaling pathways in a PPARγ-dependent manner.
Collapse
Affiliation(s)
- Jing Wan
- />Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Zhichao Xiao
- />Department of Cardiology, Tongji Medical College of Huazhong University of Science and Technology affiliated Tongji Hospital, Wuhan, Hubei China
| | - Shengping Chao
- />Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Shixi Xiong
- />Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Xuedong Gan
- />Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei China
| | - Xuguang Qiu
- />Department of Cardiology, Tongji Medical College of Huazhong University of Science and Technology affiliated Tongji Hospital, Wuhan, Hubei China
| | - Chang Xu
- />Department of Cardiology, Tongji Medical College of Huazhong University of Science and Technology affiliated Tongji Hospital, Wuhan, Hubei China
| | - Yexin Ma
- />Department of Cardiology, Tongji Medical College of Huazhong University of Science and Technology affiliated Tongji Hospital, Wuhan, Hubei China
| | - Xin Tu
- />Cardiovascular Research, Life Science and Technology College, Human Genome Research Center, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
32
|
Cheang WS, Fang X, Tian XY. Pleiotropic effects of peroxisome proliferator-activated receptor γ and δ in vascular diseases. Circ J 2013; 77:2664-71. [PMID: 24107399 DOI: 10.1253/circj.cj-13-0647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxisome proliferator-activated receptors gamma (PPARγ) and delta (PPARδ) are nuclear receptors that have significant physiological effects on glucose and lipid metabolism. Experimental studies in animal models of metabolic disease have demonstrated their effects on improving lipid profile, insulin sensitivity, and reducing inflammatory responses. PPARγ and -δ are also expressed in the vasculature and their beneficial effects have been examined in various cardiovascular disease models such as atherosclerosis, hypertension, diabetic vascular complications, etc. using pharmacological ligands or genetic tools including viral vectors and transgenic mice. These studies suggest that PPARγ and δ are antiinflammatory, antiatherogenic, antioxidant, and antifibrotic against vascular diseases. Several signaling pathways, effector molecules, as well as coactivators/repressors have been identified as responsible for the protective effects of PPARγ and -δ in the vasculature. We discuss the pleiotropic effect of PPARγ and δ in vascular dysfunction, including atherosclerosis, hypertension, vascular remodeling, vascular injury, and diabetic vasculopathy, in various animal models, and the major underlying mechanisms. We also compare the phenotypes of several endothelial cell/vascular smooth muscle-specific PPARγ and -δ knockout and overexpressing transgenic mice in various disease models, and the implications underlying the functional importance of vascular PPARγ and δ in regulating whole-body homeostasis.
Collapse
Affiliation(s)
- Wai San Cheang
- Institute of Vascular Medicine and School of Biomedical Sciences, Chinese University of Hong Kong
| | | | | |
Collapse
|
33
|
Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci 2013; 9:917-33. [PMID: 24155666 PMCID: PMC3805898 DOI: 10.7150/ijbs.7224] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ) is a transcription factor that modulates many biological processes including cell differentiation, motility, growth arrest, proliferation, and cell death. The diversity of C/EBPδ's functions depends in part on the cell type and cellular context and can have opposing outcomes. For example, C/EBPδ promotes inflammatory signaling, but it can also inhibit pro-inflammatory pathways, and in a mouse model of mammary tumorigenesis, C/EBPδ reduces tumor incidence but promotes tumor metastasis. This review highlights the multifaceted nature of C/EBPδ's functions, with an emphasis on pathways that are relevant for cancer and inflammation, and illustrates how C/EBPδ emerged from the shadow of its family members as a fascinating “jack of all trades.” Our current knowledge on C/EBPδ indicates that, rather than being essential for a specific cellular process, C/EBPδ helps to interpret a variety of cues in a cell-type and context-dependent manner, to adjust cellular functions to specific situations. Therefore, insights into the roles and mechanisms of C/EBPδ signaling can lead to a better understanding of how the integration of different signaling pathways dictates normal and pathological cell functions and physiology.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD-21702-1201, U.S.A
| | | |
Collapse
|
34
|
Huang X, Gong R, Li X, Virtue A, Yang F, Yang IH, Tran AH, Yang XF, Wang H. Identification of novel pretranslational regulatory mechanisms for NF-κB activation. J Biol Chem 2013; 288:15628-40. [PMID: 23515310 DOI: 10.1074/jbc.m113.460626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-κB-controlled transcriptional regulation plays a central role in inflammatory and immune responses. Currently, understanding about NF-κB activation mechanism emphasizes IκB-tethered complex inactivation in the cytoplasm. In the case of NF-κB activation, IκB phosphorylation leads to its degradation, followed by NF-κB relocation to the nucleus and trans-activation of NF-κB-targeted genes. Pretranslational mechanism mediated NF-κB activation remains poorly understood. In this study, we investigated NF-κB pretranslational regulation by performing a series of database mining analyses and using six large national experimental databases (National Center of Biotechnology Information UniGene expressed sequence tag profile database, Gene Expression Omnibus database, Transcription Element Search System database, AceView database, and Epigenomics database) and TargetScan software. We reported the following findings: 1) NF-κB-signaling genes are differentially expressed in human and mouse tissues; 2) heart and vessels are the inflammation-privileged tissues and less easy to be inflamed because lacking in key NF-κB-signaling molecular expression; 3) NF-κB-signaling genes are induced by cardiovascular disease risk factors oxidized phospholipids and proinflammatory cytokines in endothelial cells; 4) transcription factors CCAAT/enhancer-binding proteins and NF-κB have higher binding site frequencies in the promoters of proinflammatory cytokine-induced NF-κB genes; 5) most NF-κB-signaling genes have multiple alternative promoters and alternatively spliced isoforms; 6) NF-κB family genes can be regulated by DNA methylation; and 7) 27 of 38 NF-κB-signaling genes can be regulated by microRNAs. Our findings provide important insight into the mechanism of NF-κB activation, which may contribute to cardiovascular disease, inflammatory diseases, and immunological disorders.
Collapse
Affiliation(s)
- Xiao Huang
- Cardiovascular Research Center, Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Alba G, Reyes ME, Santa-María C, Ramírez R, Geniz I, Jiménez J, Martín-Nieto J, Pintado E, Sobrino F. Transcription of liver X receptor is down-regulated by 15-deoxy-Δ(12,14)-prostaglandin J(2) through oxidative stress in human neutrophils. PLoS One 2012; 7:e42195. [PMID: 23115616 PMCID: PMC3480349 DOI: 10.1371/journal.pone.0042195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/04/2012] [Indexed: 01/04/2023] Open
Abstract
Liver X receptors (LXRs) are ligand-activated transcription factors of the nuclear receptor superfamily. They play important roles in controlling cholesterol homeostasis and as regulators of inflammatory gene expression and innate immunity, by blunting the induction of classical pro-inflammatory genes. However, opposite data have also been reported on the consequences of LXR activation by oxysterols, resulting in the specific production of potent pro-inflammatory cytokines and reactive oxygen species (ROS). The effect of the inflammatory state on the expression of LXRs has not been studied in human cells, and constitutes the main aim of the present work. Our data show that when human neutrophils are triggered with synthetic ligands, the synthesis of LXRα mRNA became activated together with transcription of the LXR target genes ABCA1, ABCG1 and SREBP1c. An inflammatory mediator, 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), hindered T0901317-promoted induction of LXRα mRNA expression together with transcription of its target genes in both neutrophils and human macrophages. This down-regulatory effect was dependent on the release of reactive oxygen species elicited by 15dPGJ2, since it was enhanced by pro-oxidant treatment and reversed by antioxidants, and was also mediated by ERK1/2 activation. Present data also support that the 15dPGJ2-induced serine phosphorylation of the LXRα molecule is mediated by ERK1/2. These results allow to postulate that down-regulation of LXR cellular levels by pro-inflammatory stimuli might be involved in the development of different vascular diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Gonzalo Alba
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - María Edith Reyes
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - Consuelo Santa-María
- Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - Remedios Ramírez
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - Isabel Geniz
- Distrito Sanitario Sevilla Norte, Servicio Andaluz de Salud, Sevilla, Spain
| | - Juan Jiménez
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - José Martín-Nieto
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Elízabeth Pintado
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - Francisco Sobrino
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
36
|
Chang LH, Huang HS, Wu PT, Jou IM, Pan MH, Chang WC, Wang DDH, Wang JM. Role of macrophage CCAAT/enhancer binding protein delta in the pathogenesis of rheumatoid arthritis in collagen-induced arthritic mice. PLoS One 2012; 7:e45378. [PMID: 23028973 PMCID: PMC3454428 DOI: 10.1371/journal.pone.0045378] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/17/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The up-regulation of CCAAT/enhancer binding protein delta (CEBPD) has frequently been observed in macrophages in age-associated disorders, including rheumatoid arthritis (RA). However, the role of macrophage CEBPD in the pathogenesis of RA is unclear. METHODOLOGY AND PRINCIPAL FINDINGS We found that the collagen-induced arthritis (CIA) score and the number of affected paws in Cebpd(-/-) mice were significantly decreased compared with the wild-type (WT) mice. The histological analysis revealed an attenuated CIA in Cebpd(-/-) mice, as shown by reduced pannus formation and greater integrity of joint architecture in affected paws of Cebpd(-/-) mice compared with WT mice. In addition, immunohistochemistry analysis revealed decreased pannus proliferation and angiogenesis in Cebpd(-/-) mice compared with WT mice. CEBPD activated in macrophages played a functional role in promoting the tube formation of endothelial cells and the migration and proliferation of synoviocytes. In vivo DNA binding assays and reporter assays showed that CEBPD up-regulated CCL20, CXCL1, IL23A and TNFAIP6 transcripts through direct binding to their promoter regions. CCL20, IL23A, CXCL1 and TNFAIP6 contributed to the migration and proliferation of synoviocytes, and the latter two proteins were involved in tube formation of endothelial cells. Finally, two anti-inflammatory chemicals, inotilone and rosmanol, reduced the expression of CEBPD and its downstream targets and mitigated the above phenomena. CONCLUSIONS AND SIGNIFICANCE Collectively, our findings suggest that CEBPD and its downstream effectors could be biomarkers for the diagnosis of RA and potentially serve as therapeutic targets for RA therapy.
Collapse
Affiliation(s)
- Ling-Hua Chang
- Institute of Basic Medical Sciences, College of Medicine, Tainan, Taiwan
| | - Huei-Sheng Huang
- Institute of Basic Medical Sciences, College of Medicine, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Tainan, Taiwan
| | - Po-Ting Wu
- Orthopedics Department of National Cheng Kung University Hospital, Tainan, Taiwan
| | - I-Ming Jou
- Orthopedics Department of National Cheng Kung University Hospital, Tainan, Taiwan
| | - Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Dennis Ding Hwa Wang
- Department of Biological Chemistry, UC Irvine School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
- Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Vucic E, Dickson SD, Calcagno C, Rudd JHF, Moshier E, Hayashi K, Mounessa JS, Roytman M, Moon MJ, Lin J, Tsimikas S, Fisher EA, Nicolay K, Fuster V, Fayad ZA. Pioglitazone modulates vascular inflammation in atherosclerotic rabbits noninvasive assessment with FDG-PET-CT and dynamic contrast-enhanced MR imaging. JACC Cardiovasc Imaging 2012; 4:1100-9. [PMID: 21999870 DOI: 10.1016/j.jcmg.2011.04.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/22/2011] [Accepted: 04/22/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We sought to determine the antiatherosclerotic properties of pioglitazone using multimethod noninvasive imaging techniques. BACKGROUND Inflammation is an essential component of vulnerable or high-risk atheromas. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, possesses potent anti-inflammatory properties. We aimed to quantify noninvasively the anti-inflammatory effects of pioglitazone on atheroma using (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET)/computed tomography (CT) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). METHODS Atherosclerotic plaques were induced in the aorta of 15 New Zealand white rabbits by a combination of a hyperlipidemic diet and 2 balloon endothelial denudations. Nine rabbits continued the same diet, whereas 6 rabbits received pioglitazone (10 mg/kg orally) in addition to the diet. Twelve animals underwent (18)F-FDG-PET/CT, and 15 animals underwent DCE-MRI at baseline, 1 month, and 3 months after treatment initiation. Concomitantly, serum metabolic parameters were monitored. After imaging was completed, aortic histologic analysis and correlation analysis were performed. RESULTS The (18)F-FDG-PET/CT imaging detected an increase in average standardized uptake value in the control group (p < 0.01), indicating progressive inflammation, whereas stable standardized uptake values were observed in the treatment group, indicating no progression. The DCE-MRI analysis detected a significant decrease in the area under the curve for the pioglitazone group (p < 0.01). Immunohistologic examination of the aortas demonstrated a significant decrease in macrophage and oxidized phospholipid immunoreactivity in the pioglitazone group (p = 0.04 and p = 0.01, respectively) with respect to control animals, underlining the imaging results. Serum metabolic parameters showed no difference between groups. Strong positive correlations between standardized uptake value and macrophage density and between area under the curve and neovessels were detected (r(2) = 0.86 and p < 0.0001, and r(2) = 0.66 and p = 0.004, respectively). CONCLUSIONS Both (18)F-FDG-PET/CT and DCE-MRI demonstrate noninvasively the anti-inflammatory effects of pioglitazone on atheroma. Both imaging methods seem suited to monitor inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Esad Vucic
- Translational and Molecular Imaging Institute, Imaging Science Laboratories, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Corthals AP. Multiple sclerosis is not a disease of the immune system. QUARTERLY REVIEW OF BIOLOGY 2012; 86:287-321. [PMID: 22384749 DOI: 10.1086/662453] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multiple sclerosis is a complex neurodegenerative disease, thought to arise through autoimmunity against antigens of the central nervous system. The autoimmunity hypothesis fails to explain why genetic and environmental risk factors linked to the disease in one population tend to be unimportant in other populations. Despite great advances in documenting the cell and molecular mechanisms underlying MS pathophysiology, the autoimmunity framework has also been unable to develop a comprehensive explanation of the etiology of the disease. I propose a new framework for understanding MS as a dysfunction of the metabolism of lipids. Specifically, the homeostasis of lipid metabolism collapses during acute-phase inflammatory response triggered by a pathogen, trauma, or stress, starting a feedback loop of increased oxidative stress, inflammatory response, and proliferation of cytoxic foam cells that cross the blood brain barrier and both catabolize myelin and prevent remyelination. Understanding MS as a chronic metabolic disorder illuminates four aspects of disease onset and progression: 1) its pathophysiology; 2) genetic susceptibility; 3) environmental and pathogen triggers; and 4) the skewed sex ratio of patients. It also suggests new avenues for treatment.
Collapse
Affiliation(s)
- Angelique P Corthals
- Department of Sciences, John Jay College of Criminal Justice, City University of New York New York, New York 10019, USA.
| |
Collapse
|
39
|
Magri CJ, Gatt N, Xuereb RG, Fava S. Peroxisome proliferator-activated receptor-γ and the endothelium: implications in cardiovascular disease. Expert Rev Cardiovasc Ther 2012; 9:1279-94. [PMID: 21985541 DOI: 10.1586/erc.11.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxisome proliferator-activated receptors-γ (PPARγs) are ligand-activated transcription factors that play a crucial regulatory role in the transcription of a large number of genes involved in lipid metabolism and inflammation. In addition to physiological ligands, synthetic ligands (the thiazoledinediones) have been developed. In spite of the much publicized adverse cardiovascular effects of one such thiazoledinedione (rosiglitazone), PPARγ activation may have beneficial cardiovascular effects. In this article we review the effects of PPARγ activation on the endothelium with special emphasis on the possible implications in cardiovascular disease. We discuss its possible role in inflammation, vasomotor function, thrombosis, angiogenesis, vascular aging and vascular rhythm. We also briefly review the clinical implications of these lines of research.
Collapse
Affiliation(s)
- Caroline Jane Magri
- Department of Cardiac Services, Mater Dei Hospital, Tal-Qroqq, Msida MSD 2090, Malta
| | | | | | | |
Collapse
|
40
|
Demyanets S, Huber K, Wojta J. Vascular effects of glycoprotein130 ligands--part II: biomarkers and therapeutic targets. Vascul Pharmacol 2012; 57:29-40. [PMID: 22245786 DOI: 10.1016/j.vph.2011.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/15/2011] [Accepted: 12/25/2011] [Indexed: 12/13/2022]
Abstract
Glycoprotein130 (gp130) ligands are defined by the use of the common receptor subunit gp130 and comprise interleukin (IL)-6, oncostatin M (OSM), IL-11, leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC), ciliary neurotrophic factor (CNTF), IL-27 and neuropoietin (NP). In part I of this review we addressed the pathophysiological functions of gp130 ligands with respect to the vascular wall. In part II of this review on the vascular effects of gp130 ligands we will discuss data about possible use of these molecules as biomarkers to predict development or progression of cardiovascular diseases. Furthermore, the possibility to modulate circulating levels of gp130 ligands or their tissue expression by specific antibodies, soluble gp130 protein, renin-angiotensin-aldosterone system (RASS) inhibitors, statins, agonists of peroxisome proliferator-activated receptors (PPAR), hormone replacement therapy, nonsteroidal anti-inflammatory drugs (NSAID) or lifestyle modulating strategies are presented. Recent knowledge about the application of recombinant cytokines from the gp130 cytokine family as therapeutic agents in obesity or atherosclerosis is also summarized. Thus the purpose of this review is to cover a possible usefulness of gp130 ligands as biomarkers and targets for therapy in cardiovascular pathologies.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
41
|
Zhang LL, Gao CY, Fang CQ, Wang YJ, Gao D, Yao GE, Xiang J, Wang JZ, Li JC. PPAR attenuates intimal hyperplasia by inhibiting TLR4-mediated inflammation in vascular smooth muscle cells. Cardiovasc Res 2011; 92:484-493. [DOI: 10.1093/cvr/cvr238] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
42
|
Lu YL, Ye TT, Chen Y, Yu J, Zhao LJ, Wang NJ, Jiang BR, Qiao J, Yang LZ. Rosiglitazone protects diabetic rats from liver destruction. J Endocrinol Invest 2011; 34:775-80. [PMID: 21791967 DOI: 10.3275/7873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS To investigate whether rosiglitazone (ROS) protects diabetic rats from destructive changes in the liver. METHODS Twenty-four Sprague Dawley rats were randomly divided into 3 groups: control (NC) group (no.=8), streptozocin (STZ)-treated diabetic (DM) group (no.=8), and STZ+ROStreated diabetic (RSG) group (no.=8). After 8 weeks, the liver structure was observed by light microscopy and transmission electron microscopy. Apoptosis was detected by TUNEL, and apoptosis index was calculated. The Fas ligand (FasL) mRNA expression of apoptosis-promoting gene and cyclooxygenase- 2 (COX-2) mRNA in the liver were detected by RTPCR. COX-2 protein in the liver was tested via immunohistochemical staining. RESULTS Compared to NC group, DM group showed a visible fatty degeneration and inflammatory cell infiltration in the liver under microscopy. Obvious hepatocyte swelling with atrophic mitochondria was observed, and the central zone of cholangiole was severely outstretched. Meanwhile, in RSG group, the hepatocyte steatosis and inflammatory cell infiltration decreased, and the hepatic ultra-structure was markedly improved. Hepatocyte apoptosis (p<0.05) and the expression levels for hepatic COX-2 mRNA (p<0.05), FasL mRNA (p<0.01), and COX-2 protein (p<0.05) were higher in DM group compared to the NC group, while the expression level of hepatic COX-2 mRNA (p<0.05), FasL mRNA (p<0.01), COX-2 protein (p<0.05), and hepatocyte apoptosis (p<0.05) in RSG group were decreased compared to DM group. CONCLUSION Diabetes causes severe liver injury and ROS can protect diabetic rats from liver destruction, which may be related to inhibition of the expression of COX-2 and the hepatocyte apoptosis induced by FasL gene over expression.
Collapse
Affiliation(s)
- Y-L Lu
- Division of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China 200011.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
C/EBP-δ regulates VEGF-C autocrine signaling in lymphangiogenesis and metastasis of lung cancer through HIF-1α. Oncogene 2011; 30:4901-9. [PMID: 21666710 PMCID: PMC3175299 DOI: 10.1038/onc.2011.187] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CCAAT/enhancer-binding protein-δ (C/EBP-δ), a transcription factor, is elevated in carcinoma compared with that in normal tissue. This study reports a novel function of C/EBP-δ in lymphangiogenesis and tumor metastasis. Genetic deletion of C/EBP-δ in mice resulted in a significant reduction of lymphangiogenesis and pulmonary metastases, with a dramatic reduction of vascular endothelial growth factor-C (VEGF-C) and its cognate receptor VEGF receptor-3 (VEGFR3) in lymphatic endothelial cells (LECs). By contrast, no difference of VEGF-C in tumor tissues and bone marrow was observed between null and wild-type mice. Consistently, forced expression of C/EBP-δ increased VEGF-C and VEGFR3 expression in cultured LECs. These findings suggest a specific and important role of C/EBP-δ in the regulation of VEGFR3 signaling in LECs. Furthermore, expression of C/EBP-δ in cultured LECs significantly increased cell motility, and knockdown of C/EBP-δ inhibited cell motility and lymphatic vascular network formation in vitro. Forced expression of VEGF-C, but not recombinant VEGF-C, rescued the knockdown of C/EBP-δ-induced cell apoptosis, indicative of autonomous VEGF-C autocrine signaling essential for LEC survival. Moreover, hypoxia induces C/EBP-δ expression and C/EBP-δ regulates HIF-1α expression. Blocking HIF-1α activity totally blocked CEBP-δ-induced VEGF-C and VEGFR3 expression in LECs. Together, these findings uncover a new function of CEBP-δ in lymphangiogenesis through regulation of VEGFR3 signaling in LECs.
Collapse
|
45
|
CCAAT/enhancer binding protein delta (CEBPD) elevating PTX3 expression inhibits macrophage-mediated phagocytosis of dying neuron cells. Neurobiol Aging 2010; 33:422.e11-25. [PMID: 21112127 DOI: 10.1016/j.neurobiolaging.2010.09.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 10/18/2022]
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ, NF-IL6β) is induced in many inflammation-related diseases, suggesting that CEBPD and its downstream targets may play central roles in these conditions. Neuropathological studies show that a neuroinflammatory response parallels the early stages of Alzheimer's disease (AD). However, the precise mechanistic correlation between inflammation and AD pathogenesis remains unclear. CEBPD is upregulated in the astrocytes of AD patients. Therefore, we asked if activation of astrocytic CEBPD could contribute to AD pathogenesis. In this report, a novel role of CEBPD in attenuating macrophage-mediated phagocytosis of damaged neuron cells was found. By global gene expression profiling, we identified the inflammatory marker pentraxin-3 (PTX3, TNFAIP5, TSG-14) as a CEBPD target in astrocytes. Furthermore, we demonstrate that PTX3 participates in the attenuation of macrophage-mediated phagocytosis of damaged neuron cells. This study provides the first demonstration of a role for astrocytic CEBPD and the CEBPD-regulated molecule PTX3 in the accumulation of damaged neurons, which is a hallmark of AD pathogenesis.
Collapse
|
46
|
Zhu MJ, Ma Y, Long NM, Du M, Ford SP. Maternal obesity markedly increases placental fatty acid transporter expression and fetal blood triglycerides at midgestation in the ewe. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1224-31. [PMID: 20844260 DOI: 10.1152/ajpregu.00309.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity of women at conception is increasing, a condition associated with offspring obesity. We hypothesized that maternal obesity increases placental fatty acid transporter (FATP) expression, enhancing delivery of fatty acids to their fetuses. Sheep are a commonly utilized biomedical model for pregnancy studies. Nonpregnant ewes were randomly assigned to a control group [100% of National Research Council (NRC) recommendations] or obese group (OB, 150% of NRC) from 60 days before conception to 75 or 135 days of gestation (dG; term = 150 dG), when placental cotyledonary tissue was collected for analysis. Fetuses of OB ewes were markedly heavier (P < 0.05) on 75 dG than fetuses from control ewes, but this difference disappeared by 135 dG. Maternal obesity markedly increased (P < 0.05) cholesterol and triglyceride concentrations of both maternal and fetal blood. There is no difference in lipoprotein lipase mRNA expression between control and OB group at either gestational age. On 75 dG, the mRNA expression of FATP1 (P < 0.05), FATP4 (P = 0.08), and fatty acid translocase CD (cluster of differentiation) 36 (P < 0.05) proteins were more enhanced in cotyledonary tissue from OB than control ewes; consistently, protein expression of FATP1 and FATP4 was increased (P < 0.05). Similarly, on 135 dG, the mRNA levels of FATP1, FATP4, and CD36 were all higher (P < 0.05), but only FATP4 protein content was enhanced (P < 0.05) in OB cotyledonary tissue. Peroxisome proliferator-activated receptor (PPAR)-γ regulates the expression of FATPs. Both the mRNA expression and protein content of PPARγ were increased in OB cotyledonary in the midgestation. In conclusion, maternal obesity enhances the mRNA expression and protein content of FATPs in cotyledonary in the midgestation, which is associated with higher PPARγ content in cotyledonary.
Collapse
Affiliation(s)
- Mei J Zhu
- Dept. of Animal Science, Univ. of Wyoming, Laramie, WY 82071, USA.
| | | | | | | | | |
Collapse
|
47
|
Huang W, Glass CK. Nuclear receptors and inflammation control: molecular mechanisms and pathophysiological relevance. Arterioscler Thromb Vasc Biol 2010; 30:1542-9. [PMID: 20631355 DOI: 10.1161/atvbaha.109.191189] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tissue inflammation is a tightly regulated process that normally serves to recruit the immune system to sites of infection and injury and to facilitate tissue repair processes. When an inflammatory state is excessive or prolonged, local and systemic damage to host tissues can result in loss of normal physiological functions. Here, we briefly review recent studies that advance our understanding of signaling pathways involved in initiation of inflammatory responses at the level of transcription and counterregulation of these pathways by selected members of the nuclear receptor superfamily. Studies of the intersection of nuclear receptors and inflammation have revealed mechanisms of positive and negative transcriptional control that may provide new targets for pharmacological intervention in chronic diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Wendy Huang
- Department of Cellular and Molecular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
48
|
Hansmann G, Zamanian RT. PPARgamma activation: a potential treatment for pulmonary hypertension. Sci Transl Med 2010; 1:12ps14. [PMID: 20371457 DOI: 10.1126/scitranslmed.3000267] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathobiology of pulmonary arterial hypertension (PAH) involves multiple molecular pathways and environmental modifiers and is characterized by progressive obliteration of pulmonary arterioles, leading to increased pulmonary vascular resistance (PVR), right heart failure, and death in approximately 40 to 60% of patients 5 years after diagnosis. There is emerging evidence that many key genes involved in PAH development are targets of the insulin-sensitizing transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), and that pharmacological PPARgamma activation would lead to their beneficial induction or repression and subsequent antiproliferative, anti-inflammatory, proapoptotic, and direct vasodilatory effects in the vasculature. PPARgamma acts downstream of bone morphogenetic protein receptor II (BMP-RII), which is the cell surface receptor that is mutated or dysfunctional in many forms of PAH. Because our recent clinical observations indicate that insulin resistance may be an environmental risk factor or disease modifier ("second hit"), we suggest that PPARgamma-activating agents might be beneficial in the future treatment of both insulin-resistant and insulin-sensitive PAH patients with or without BMP-RII mutations.
Collapse
Affiliation(s)
- Georg Hansmann
- Department of Cardiology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
49
|
Abdul-Hussien H, Hanemaaijer R, Kleemann R, Verhaaren BF, van Bockel JH, Lindeman JH. The pathophysiology of abdominal aortic aneurysm growth: Corresponding and discordant inflammatory and proteolytic processes in abdominal aortic and popliteal artery aneurysms. J Vasc Surg 2010; 51:1479-87. [DOI: 10.1016/j.jvs.2010.01.057] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 01/12/2010] [Accepted: 01/19/2010] [Indexed: 01/28/2023]
|
50
|
Eder K, Ringseis R. Metabolism and actions of conjugated linoleic acids on atherosclerosis-related events in vascular endothelial cells and smooth muscle cells. Mol Nutr Food Res 2010; 54:17-36. [PMID: 19760681 DOI: 10.1002/mnfr.200900042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Conjugated linoleic acids (CLAs) are biologically highly active lipid compounds that have attracted great scientific interest due to their ability to cause either inhibition of atherosclerotic plaque development or even regression of pre-established atherosclerotic plaques in mice, hamsters and rabbits. The underlying mechanisms of action, however, are only poorly understood. Since cell culture experiments are appropriate to gain insight into the mechanisms of action of a compound, the present review summarizes data from cell culture studies about the metabolism and the actions of CLAs on atherosclerosis-related events in endothelial cells (ECs) and smooth muscle cells (SMCs), which are important cells contributing to atherosclerotic lesion development. Based on these studies, it can be concluded that CLAs exert several beneficial actions including inhibition of inflammatory and vasoactive mediator release from ECs and SMCs, which may help explain the anti-atherogenic effect of CLAs observed in vivo. The observation that significant levels of CLA metabolites, which have been reported to have significant biological activities, are well detectable in ECs and SMCs indicates that the anti-atherogenic effects observed with CLAs are presumably mediated not only by CLAs themselves but also by their metabolites.
Collapse
Affiliation(s)
- Klaus Eder
- Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | | |
Collapse
|