1
|
Conaway S, Huang W, Hernandez-Lara MA, Kane MA, Penn RB, Deshpande DA. Molecular mechanism of bitter taste receptor agonist-mediated relaxation of airway smooth muscle. FASEB J 2024; 38:e23842. [PMID: 39037554 PMCID: PMC11299423 DOI: 10.1096/fj.202400452r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
G-protein-coupled receptors (GPCRs) belonging to the type 2 taste receptors (TAS2Rs) family are predominantly present in taste cells to allow the perception of bitter-tasting compounds. TAS2Rs have also been shown to be expressed in human airway smooth muscle (ASM), and TAS2R agonists relax ASM cells and bronchodilate airways despite elevating intracellular calcium. This calcium "paradox" (calcium mediates contraction by pro-contractile Gq-coupled GPCRs) and the mechanisms by which TAS2R agonists relax ASM remain poorly understood. To gain insight into pro-relaxant mechanisms effected by TAS2Rs, we employed an unbiased phosphoproteomic approach involving dual-mass spectrometry to determine differences in the phosphorylation of contractile-related proteins in ASM following the stimulation of cells with TAS2R agonists, histamine (an agonist of the Gq-coupled H1 histamine receptor) or isoproterenol (an agonist of the Gs-coupled β2-adrenoceptor) alone or in combination. Our study identified differential phosphorylation of proteins regulating contraction, including A-kinase anchoring protein (AKAP)2, AKAP12, and RhoA guanine nucleotide exchange factor (ARHGEF)12. Subsequent signaling analyses revealed RhoA and the T853 residue on myosin light chain phosphatase (MYPT)1 as points of mechanistic divergence between TAS2R and Gs-coupled GPCR pathways. Unlike Gs-coupled receptor signaling, which inhibits histamine-induced myosin light chain (MLC)20 phosphorylation via protein kinase A (PKA)-dependent inhibition of intracellular calcium mobilization, HSP20 and ERK1/2 activity, TAS2Rs are shown to inhibit histamine-induced pMLC20 via inhibition of RhoA activity and MYPT1 phosphorylation at the T853 residue. These findings provide insight into the TAS2R signaling in ASM by defining a distinct signaling mechanism modulating inhibition of pMLC20 to relax contracted ASM.
Collapse
Affiliation(s)
- Stanley Conaway
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, U.S.A., 21201
| | - Miguel A. Hernandez-Lara
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, U.S.A., 21201
| | - Raymond B. Penn
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| | - Deepak A. Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, U.S.A., 19107
| |
Collapse
|
2
|
Akamine T, Terabayashi T, Sasaki T, Hayashi R, Abe I, Hirayama F, Nureki SI, Ikawa M, Miyata H, Tokunaga A, Kobayashi T, Hanada K, Thumkeo D, Narumiya S, Ishizaki T. Conditional deficiency of Rho-associated kinases disrupts endothelial cell junctions and impairs respiratory function in adult mice. FEBS Open Bio 2024; 14:906-921. [PMID: 38604990 PMCID: PMC11148122 DOI: 10.1002/2211-5463.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The Ras homology (Rho) family of GTPases serves various functions, including promotion of cell migration, adhesion, and transcription, through activation of effector molecule targets. One such pair of effectors, the Rho-associated coiled-coil kinases (ROCK1 and ROCK2), induce reorganization of actin cytoskeleton and focal adhesion through substrate phosphorylation. Studies on ROCK knockout mice have confirmed that ROCK proteins are essential for embryonic development, but their physiological functions in adult mice remain unknown. In this study, we aimed to examine the roles of ROCK1 and ROCK2 proteins in normal adult mice. Tamoxifen (TAM)-inducible ROCK1 and ROCK2 single and double knockout mice (ROCK1flox/flox and/or ROCK2flox/flox;Ubc-CreERT2) were generated and administered a 5-day course of TAM. No deaths occurred in either of the single knockout strains, whereas all of the ROCK1/ROCK2 double conditional knockout mice (DcKO) had died by Day 11 following the TAM course. DcKO mice exhibited increased lung tissue vascular permeability, thickening of alveolar walls, and a decrease in percutaneous oxygen saturation compared with noninducible ROCK1/ROCK2 double-floxed control mice. On Day 3 post-TAM, there was a decrease in phalloidin staining in the lungs in DcKO mice. On Day 5 post-TAM, immunohistochemical analysis also revealed reduced staining for vascular endothelial (VE)-cadherin, β-catenin, and p120-catenin at cell-cell contact sites in vascular endothelial cells in DcKO mice. Additionally, VE-cadherin/β-catenin complexes were decreased in DcKO mice, indicating that ROCK proteins play a crucial role in maintaining lung function by regulating cell-cell adhesion.
Collapse
Affiliation(s)
- Takahiro Akamine
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takako Sasaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Riku Hayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ichitaro Abe
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu, Japan
| | - Fumihiro Hirayama
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shin-Ichi Nureki
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masahito Ikawa
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Suita, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Suita, Japan
| | - Akinori Tokunaga
- Division of Laboratory Animal Resources, Life Science Research Laboratory, University of Fukui, Eiheiji-cho, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
3
|
Han YS, Bandi R, Fogarty MJ, Sieck GC, Brozovich FV. Aging related decreases in NM myosin expression and contractility in a resistance vessel. Front Physiol 2024; 15:1411420. [PMID: 38808359 PMCID: PMC11130448 DOI: 10.3389/fphys.2024.1411420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction: Vasodilatation in response to NO is a fundamental response of the vasculature, and during aging, the vasculature is characterized by an increase in stiffness and decrease in sensitivity to NO mediated vasodilatation. Vascular tone is regulated by the activation of smooth muscle and nonmuscle (NM) myosin, which are regulated by the activities of myosin light chain kinase (MLCK) and MLC phosphatase. MLC phosphatase is a trimeric enzyme with a catalytic subunit, myosin targeting subunit (MYPT1) and 20 kDa subunit of unknown function. Alternative mRNA splicing produces LZ+/LZ- MYPT1 isoforms and the relative expression of LZ+/LZ- MYPT1 determines the sensitivity to NO mediated vasodilatation. This study tested the hypothesis that aging is associated with changes in LZ+ MYPT1 and NM myosin expression, which alter vascular reactivity. Methods: We determined MYPT1 and NM myosin expression, force and the sensitivity of both endothelial dependent and endothelial independent relaxation in tertiary mesenteric arteries of young (6mo) and elderly (24mo) Fischer344 rats. Results: The data demonstrate that aging is associated with a decrease in both the expression of NM myosin and force, but LZ+ MYPT expression and the sensitivity to both endothelial dependent and independent vasodilatation did not change. Further, smooth muscle cell hypertrophy increases the thickness of the medial layer of smooth muscle with aging. Discussion: The reduction of NM myosin may represent an aging associated compensatory mechanism to normalize the stiffness of resistance vessels in response to the increase in media thickness observed during aging.
Collapse
Affiliation(s)
- Young Soo Han
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Rishiraj Bandi
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Matthew J Fogarty
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Frank V Brozovich
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Lamb FS, Choi H, Miller MR, Stark RJ. Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels. Hypertension 2024; 81:752-763. [PMID: 38174563 PMCID: PMC10954410 DOI: 10.1161/hypertensionaha.123.19434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
Collapse
Affiliation(s)
- Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Liu J, Wu J. The Pathogenesis and Impact of Arterial Stiffening in Hypertension: The 2023 John H. Laragh Research Award. Am J Hypertens 2024; 37:241-247. [PMID: 38214376 PMCID: PMC11484606 DOI: 10.1093/ajh/hpae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
Fifty years ago, Dr. John Laragh brought forward the "vasoconstriction-volume hypothesis" of hypertension. This is Ohm's Law in blood pressure regulation, explicating hypertension as a consequence of increased peripheral vascular resistance, cardiac output, or both. Resistance vessels, those of a diameter less than 200 μm, determines mean arterial pressure by controlling peripheral vascular resistance. In comparison, large capacitance arteries, particularly the aorta, confines the systolic and diastolic blood pressure in physiological range through the "windkessel effect." Loss of this cushioning function results in aortic stiffening and isolated systolic hypertension, both of which are independently associated with increased risk for coronary, cerebral, and renal diseases. Aortic stiffening is both a cause and a consequence of hypertension. On one hand, aortic stiffness precedes the onset of hypertension in populations and experimental models, and hemodynamic derangements related to aortic stiffening contributes to the development of hypertension by promoting renal dysfunction. On the other hand, the vasculature itself is a hypertensive target organ and hypertensive mechanical stretch directly induces the pathogenesis of aortic adventitial remodeling. Various cell types, including bone marrow-derived circulating fibrocytes, vascular stem cell antigen-1 positive progenitors, and endothelial to mesenchymal transition, and to a lesser extent resident fibroblasts, contribute to adventitial matrix deposition and aortic stiffening in hypertension. Vascular smooth muscle stiffness is another important contributor of aortic stiffening. Understanding the roles of immune components and specific signal pathways in the pathogenesis aortic stiffening paves the path to novel antihypertensive and anti-fibrosis therapies.
Collapse
Affiliation(s)
- Jing Liu
- Division of Nephrology, Department of Medicine, School of Medicine & Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Jing Wu
- Division of Nephrology, Department of Medicine, School of Medicine & Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pharmacology & Physiology, School of Medicine & Dentistry, University of Rochester, Rochester, NY 14642, USA
- Environmental Health Science Center, Institute of Human Health and the Environment, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Huang Y, Wang S, Zhang X, Yang C, Wang S, Cheng H, Ke A, Gao C, Guo K. Identification of Fasudil as a collaborator to promote the anti-tumor effect of lenvatinib in hepatocellular carcinoma by inhibiting GLI2-mediated hedgehog signaling pathway. Pharmacol Res 2024; 200:107082. [PMID: 38280440 DOI: 10.1016/j.phrs.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Lenvatinib is a frontline tyrosine kinase inhibitor for patients with advanced hepatocellular carcinoma (HCC). However, just 25% of patients benefit from the treatment, and acquired resistance always develops. To date, there are neither effective medications to combat lenvatinib resistance nor accurate markers that might predict how well a patient would respond to the lenvatinib treatment. Thus, novel strategies to recognize and deal with lenvatinib resistance are desperately needed. In the current study, a robust Lenvatinib Resistance index (LRi) model to predict lenvatinib response status in HCC was first established. Subsequently, five candidate drugs (Mercaptopurine, AACOCF3, NU1025, Fasudil, and Exisulind) that were capable of reversing lenvatinib resistance signature were initially selected by performing the connectivity map (CMap) analysis, and fasudil finally stood out by conducting a series of cellular functional assays in vitro and xenograft mouse model. Transcriptomics revealed that the co-administration of lenvatinib and fasudil overcame lenvatinib resistance by remodeling the hedgehog signaling pathway. Mechanistically, the feedback activation of EGFR by lenvatinib led to the activation of the GLI2-ABCC1 pathway, which supported the HCC cell's survival and proliferation. Notably, co-administration of lenvatinib and fasudil significantly inhibited IHH, the upstream switch of the hedgehog pathway, to counteract GLI2 activation and finally enhance the effectiveness of lenvatinib. These findings elucidated a novel EGFR-mediated mechanism of lenvatinib resistance and provided a practical approach to overcoming drug resistance in HCC through meaningful drug repurposing strategies.
Collapse
Affiliation(s)
- Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Siwei Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China; Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojun Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Hongxia Cheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China
| | - Aiwu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, China.
| |
Collapse
|
7
|
Soh JEC, Shimizu A, Sato A, Ogita H. Novel cardiovascular protective effects of RhoA signaling and its therapeutic implications. Biochem Pharmacol 2023; 218:115899. [PMID: 37907138 DOI: 10.1016/j.bcp.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Ras homolog gene family member A (RhoA) belongs to the Rho GTPase superfamily, which was first studied in cancers as one of the essential regulators controlling cellular function. RhoA has long attracted attention as a key molecule involved in cell signaling and gene transcription, through which it affects cellular processes. A series of studies have demonstrated that RhoA plays crucial roles under both physiological states and pathological conditions in cardiovascular diseases. RhoA has been identified as an important regulator in cardiac remodeling by regulating actin stress fiber dynamics and cytoskeleton formation. However, its underlying mechanisms remain poorly understood, preventing definitive conclusions being drawn about its protective role in the cardiovascular system. In this review, we outline the characteristics of RhoA and its related signaling molecules, and present an overview of RhoA classical function and the corresponding cellular responses of RhoA under physiological and pathological conditions. Overall, we provide an update on the novel signaling under RhoA in the cardiovascular system and its potential clinical and therapeutic targets in cardiovascular medicine.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
8
|
Gutiérrez A, Gómez Del Val A, Contreras C, Olmos L, Sánchez A, Prieto D. Calcium handling coupled to the endothelin ET A and ET B receptor-mediated vasoconstriction in resistance arteries: Differential regulation by PI3K, PKC and RhoK. Eur J Pharmacol 2023; 956:175948. [PMID: 37541372 DOI: 10.1016/j.ejphar.2023.175948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Abnormal endothelin-1 (ET-1) activity is involved in the pathogenesis of vascular diseases such as essential and pulmonary arterial hypertension, coronary artery disease, and cerebrovascular disease, blockade of ET receptors having shown efficacy in clinical assays and experimental models of hypertension. Augmented Ca2+ influx and changes in Ca2+ sensitization associated with arterial vasoconstriction underlie increased systemic vascular resistance in hypertension. Since peripheral resistance arteries play a key role in blood pressure regulation, we aimed to determine here the specific Ca2+ signaling mechanisms linked to the ET receptor-mediated vasoconstriction in resistance arteries and their selective regulation by protein kinase C (PKC), Rho kinase (RhoK), the phosphatidylinositol 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK). ET-1-induced contraction was mediated by the endothelin ETA receptor with a minor contribution of vascular smooth muscle (VSM) endothelin ETB receptors. ET receptor activation elicited Ca2+ mobilization from intracellular stores, extracellular Ca2+ influx and Ca2+ sensitization associated with contraction in resistance arteries. Vasoconstriction induced by ET-1 was largely dependent on activation of canonical transient receptor potential channel 3 (TRPC3) and extracellular Ca2+ influx through nifedipine-sensitive voltage-dependent Ca2+ channels. PI3K inhibition reduced intracellular Ca2+ mobilization and Ca2+ entry without altering vasoconstriction elicited by ET-1, while PKC has dual opposite actions by enhancing Ca2+ influx associated with contraction, and by inhibiting Ca2+ release from intracellular stores. RhoK was a major determinant of the enhanced sensitivity of the contractile filaments underlying ET-1 vasoconstriction, with also a modulatory positive action on Ca2+ influx and intracellular Ca2+ release. Augmented RhoK and PKC activities are involved in vascular dysfunction in hypertension and vascular complications of insulin-resistant states, and these kinases are thus potential pharmacological targets in vascular diseases in which the ET pathway is impaired.
Collapse
Affiliation(s)
- Alejandro Gutiérrez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Alfonso Gómez Del Val
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Lucia Olmos
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
11
|
Choi H, Miller MR, Nguyen HN, Rohrbough JC, Koch SR, Boatwright N, Yarboro MT, Sah R, McDonald WH, Reese JJ, Stark RJ, Lamb FS. LRRC8A anion channels modulate vascular reactivity via association with myosin phosphatase rho interacting protein. FASEB J 2023; 37:e23028. [PMID: 37310356 PMCID: PMC10591482 DOI: 10.1096/fj.202300561r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Leucine-rich repeat containing 8A (LRRC8A) volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A associates with NADPH oxidase 1 (Nox1) and supports extracellular superoxide production. We tested the hypothesis that VRACs modulate TNFα signaling and vasomotor function in mice lacking LRRC8A exclusively in vascular smooth muscle cells (VSMCs, Sm22α-Cre, Knockout). Knockout (KO) mesenteric vessels contracted normally but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). Forty-eight hours of ex vivo exposure to TNFα (10 ng/mL) enhanced contraction to norepinephrine (NE) and markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 μM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 33 proteins that interacted with LRRC8A. Among them, the myosin phosphatase rho-interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots. siLRRC8A or CBX treatment decreased RhoA activity in VSMCs, and MYPT1 phosphorylation was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Interaction of LRRC8A with MPRIP may allow redox regulation of the cytoskeleton by linking Nox1 activation to impaired vasodilation. This identifies VRACs as potential targets for treatment or prevention of vascular disease.
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hong-Ngan Nguyen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey C Rohrbough
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen R Koch
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naoko Boatwright
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael T Yarboro
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - J Jeffrey Reese
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
St Paul A, Corbett C, Peluzzo A, Kelemen S, Okune R, Haines DS, Preston K, Eguchi S, Autieri MV. FXR1 regulates vascular smooth muscle cell cytoskeleton, VSMC contractility, and blood pressure by multiple mechanisms. Cell Rep 2023; 42:112381. [PMID: 37043351 PMCID: PMC10564969 DOI: 10.1016/j.celrep.2023.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Appropriate cytoskeletal organization is essential for vascular smooth muscle cell (VSMC) conditions such as hypertension. This study identifies FXR1 as a key protein linking cytoskeletal dynamics with mRNA stability. RNA immunoprecipitation sequencing (RIP-seq) in human VSMCs identifies that FXR1 binds to mRNA associated with cytoskeletal dynamics, and FXR1 depletion decreases their mRNA stability. FXR1 binds and regulates actin polymerization. Mass spectrometry identifies that FXR1 interacts with cytoskeletal proteins, particularly Arp2, a protein crucial for VSMC contraction, and CYFIP1, a WASP family verprolin-homologous protein (WAVE) regulatory complex (WRC) protein that links mRNA processing with actin polymerization. Depletion of FXR1 decreases the cytoskeletal processes of adhesion, migration, contraction, and GTPase activation. Using telemetry, conditional FXR1SMC/SMC mice have decreased blood pressure and an abundance of cytoskeletal-associated transcripts. This indicates that FXR1 is a muscle-enhanced WRC modulatory protein that regulates VSMC cytoskeletal dynamics by regulation of cytoskeletal mRNA stability and actin polymerization and cytoskeletal protein-protein interactions, which can regulate blood pressure.
Collapse
Affiliation(s)
- Amanda St Paul
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Cali Corbett
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Amanda Peluzzo
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Sheri Kelemen
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Rachael Okune
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dale S Haines
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kyle Preston
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
13
|
Choi H, Miller MR, Nguyen HN, Rohrbough JC, Koch SR, Boatwright N, Yarboro MT, Sah R, McDonald WH, Reese JJ, Stark RJ, Lamb FS. LRRC8A anion channels modulate vasodilation via association with Myosin Phosphatase Rho Interacting Protein (MPRIP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531807. [PMID: 36945623 PMCID: PMC10028897 DOI: 10.1101/2023.03.08.531807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND In vascular smooth muscle cells (VSMCs), LRRC8A volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A physically associates with NADPH oxidase 1 (Nox1) and supports its production of extracellular superoxide (O 2 -• ). METHODS AND RESULTS Mice lacking LRRC8A exclusively in VSMCs (Sm22α-Cre, KO) were used to assess the role of VRACs in TNFα signaling and vasomotor function. KO mesenteric vessels contracted normally to KCl and phenylephrine, but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). 48 hours of ex vivo exposure to TNFα (10ng/ml) markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 μM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 35 proteins that interacted with LRRC8A. Pathway analysis revealed actin cytoskeletal regulation as the most closely associated function of these proteins. Among these proteins, the Myosin Phosphatase Rho-Interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots which revealed LRRC8A binding at the second Pleckstrin Homology domain of MPRIP. siLRRC8A or CBX treatment decreased RhoA activity in cultured VSMCs, and MYPT1 phosphorylation at T853 was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. CONCLUSIONS Interaction of Nox1/LRRC8A with MPRIP/RhoA/MYPT1/actin may allow redox regulation of the cytoskeleton and link Nox1 activation to both inflammation and vascular contractility.
Collapse
|
14
|
Mukohda M, Mizuno R, Saito F, Matsui T, Ozaki H. Hypertension is linked to enhanced lymphatic contractile response via RGS16/RhoA/ROCK pathway. Am J Physiol Heart Circ Physiol 2022; 323:H1118-H1129. [PMID: 36306212 DOI: 10.1152/ajpheart.00496.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lymph capillary network can be expected to alter blood pressure via regulating interstitial electrolyte and volume balance. However, the pathophysiology of lymphatic vessel in hypertension is poorly understood. In this study, we examined lymph vessel function focusing on contractile response in hypertensive rats. It was found that thoracic ducts isolated from adult (10-14 wk old) spontaneously hypertensive rats (SHRs) exhibited increased agonist-mediated contraction compared with age-matched Wistar-Kyoto (WKY) rats, whereas lymphatic contractions in younger (4 wk old) SHRs, exhibiting normal blood pressure, were no different compared with age-matched control rats. Tight regulation of blood pressure with antihypertensive drugs (hydrochlorothiazide/hydralazine) did not prevent the augmented lymphatic contraction in adult SHRs; however, treatment of SHRs with angiotensin II (ANG II) type 1 receptor blocker (losartan) for 6 wk abolished the augmentation of lymphatic contractions. In addition, ANG II infusion in Wistar rat caused augmented lymphatic contractile responses in the thoracic duct. The augmented contractions in adult SHRs were diminished by a ROCK inhibitor (Y-27632). Consistently, the thoracic ducts in SHRs showed significantly higher phosphorylation of myosin phosphatase targeting protein-1 than WKY rats. Furthermore, gene expression profiling of adult SHR lymphatics showed marked loss of regulator of G-protein signaling 16 (RGS16) mRNA, which was confirmed by the real-time PCR. Treatment with the RGS inhibitor CCG-63808 enhanced contractions in thoracic ducts from Wistar rats, which were abolished by the ROCK inhibitor. It is concluded that lymphatic contractile function was enhanced in hypertensive model rats, which could be mediated by dysregulation of the ROCK pathway possibly through RGS16.NEW & NOTEWORTHY Lymph capillary controls interstitial electrolyte and volume balance, which may blunt increased blood pressure. However, the function of lymphatic vessel in hypertension is poorly understood. Our study showed that the lymphatic smooth muscle contractility is hyperreactive in two different hypertensive models. The lymphatic dysfunction could be mediated by dysregulation of ROCK pathway possibly through RGS16. The present finding supports a new concept showing the functional relationship between lymphatic contractile activity and hypertension.
Collapse
Affiliation(s)
- Masashi Mukohda
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Risuke Mizuno
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Fumiyo Saito
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Toshiyasu Matsui
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Hiroshi Ozaki
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| |
Collapse
|
15
|
Role of Translationally Controlled Tumor Protein (TCTP) in the Development of Hypertension and Related Diseases in Mouse Models. Biomedicines 2022; 10:biomedicines10112722. [DOI: 10.3390/biomedicines10112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a multifunctional protein that plays a wide variety of physiological and pathological roles, including as a cytoplasmic repressor of Na,K-ATPase, an enzyme pivotal in maintaining Na+ and K+ ion gradients across the plasma membrane, by binding to and inhibiting Na,K-ATPase. Studies with transgenic mice overexpressing TCTP (TCTP-TG) revealed the pathophysiological significance of TCTP in the development of systemic arterial hypertension. Overexpression of TCTP and inhibition of Na,K-ATPase result in the elevation of cytoplasmic Ca2+ levels, which increases the vascular contractility in the mice, leading to hypertension. Furthermore, studies using an animal model constructed by multiple mating of TCTP-TG with apolipoprotein E knockout mice (ApoE KO) indicated that TCTP-induced hypertension facilitates the severity of atherosclerotic lesions in vivo. This review attempts to discuss the mechanisms underlying TCTP-induced hypertension and related diseases gleaned from studies using genetically altered animal models and the potential of TCTP as a target in the therapy of hypertension-related pathological conditions.
Collapse
|
16
|
Wang X, Xu X, Zhu Q, Han Y, Zhang W. Hypoxia-induced miR-182-5p regulates vascular smooth muscle cell phenotypic switch by targeting RGS5. Cell Biol Int 2022; 46:1864-1875. [PMID: 35946384 DOI: 10.1002/cbin.11883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022]
Abstract
In response to vascular injury or alterations in the local environment, such as hypoxia and hypertension, contractile vascular smooth muscle cells (VSMCs) are able to switch to a synthetic phenotype characterized by increased extracellular matrix synthesis with decreased expression of contractile markers. miR-182-5p has recently been reported to play a regulatory role in VSMCs proliferation. However, little is known about its target genes and related pathways in VSMCs phenotypic switch. Here, we investigated the function of miR-182-5p in VSMCs phenotypic switch. The results showed that upregulation of miR-182-5p promoted the switching of VSMCs from a contractile to a synthetic phenotype under hypoxic conditions. Mechanistically, hypoxia elevated miR-182-5p, leading to a reduction in expression of contractile markers and weakened RhoA signaling. Using bioinformatics analysis, dual-luciferase reporter assays and rescue assays, we demonstrated that miR-182-5p suppressed RhoA signaling by targeting RGS5. Collectively, the results from the present study indicated that miR-182-5p/RGS5/RhoA axis regulated hypoxia-induced VSMCs phenotypic switch.
Collapse
Affiliation(s)
- Xiaozhou Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China.,Department of Hypertension, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai, China
| | - Xiaolong Xu
- Department of Hypertension, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China.,Department of Endocrinology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Ying Han
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China.,Key Laboratory for High Altitude Medicine, Ministry of Education, Xining, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine in Qinghai Province, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
17
|
Salvador J, Iruela-Arispe ML. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Front Cell Dev Biol 2022; 10:905927. [PMID: 35784481 PMCID: PMC9247619 DOI: 10.3389/fcell.2022.905927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular cells are constantly subjected to physical forces associated with the rhythmic activities of the heart, which combined with the individual geometry of vessels further imposes oscillatory, turbulent, or laminar shear stresses on vascular cells. These hemodynamic forces play an important role in regulating the transcriptional program and phenotype of endothelial and smooth muscle cells in different regions of the vascular tree. Within the aorta, the lesser curvature of the arch is characterized by disturbed, oscillatory flow. There, endothelial cells become activated, adopting pro-inflammatory and athero-prone phenotypes. This contrasts the descending aorta where flow is laminar and endothelial cells maintain a quiescent and atheroprotective phenotype. While still unclear, the specific mechanisms involved in mechanosensing flow patterns and their molecular mechanotransduction directly impact the nucleus with consequences to transcriptional and epigenetic states. The linker of nucleoskeleton and cytoskeleton (LINC) protein complex transmits both internal and external forces, including shear stress, through the cytoskeleton to the nucleus. These forces can ultimately lead to changes in nuclear integrity, chromatin organization, and gene expression that significantly impact emergence of pathology such as the high incidence of atherosclerosis in progeria. Therefore, there is strong motivation to understand how endothelial nuclei can sense and respond to physical signals and how abnormal responses to mechanical cues can lead to disease. Here, we review the evidence for a critical role of the nucleus as a mechanosensor and the importance of maintaining nuclear integrity in response to continuous biophysical forces, specifically shear stress, for proper vascular function and stability.
Collapse
Affiliation(s)
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
18
|
Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology. Hypertens Res 2022; 45:40-52. [PMID: 34616031 DOI: 10.1038/s41440-021-00733-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023]
Abstract
The regulation of muscle contraction is a critical function in the cardiovascular system, and abnormalities may be life-threatening or cause illness. The common basic mechanism in muscle contraction is the interaction between the protein filaments myosin and actin. Although this interaction is primarily regulated by intracellular Ca2+, the primary targets and intracellular signaling pathways differ in vascular smooth muscle and cardiac muscle. Phosphorylation of the myosin regulatory light chain (RLC) is a primary molecular switch for smooth muscle contraction. The equilibrium between phosphorylated and unphosphorylated RLC is dynamically achieved through two enzymes, myosin light chain kinase, a Ca2+-dependent enzyme, and myosin phosphatase, which modifies the Ca2+ sensitivity of contractions. In cardiac muscle, the primary target protein for Ca2+ is troponin C on thin filaments; however, RLC phosphorylation also plays a modulatory role in contraction. This review summarizes recent advances in our understanding of the regulation, physiological function, and pathophysiological involvement of RLC phosphorylation in smooth and cardiac muscles.
Collapse
|
19
|
Using weighted gene co-expression network analysis (WGCNA) to identify the hub genes related to hypoxic adaptation in yak (Bos grunniens). Genes Genomics 2021; 43:1231-1246. [PMID: 34338989 DOI: 10.1007/s13258-021-01137-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND As a mammal living at the highest altitude in the world, the yak has strong adaptability to the harsh natural environment (such as low temperature, scarce food, especially low oxygen) of Qinghai-Tibet Plateau (QTP) after a long process of natural selection. OBJECTIVE Here, we used Weighted Correlation Network Analysis (WGCNA), a systematic biology method, to identify hypoxic adaptation-related modules and hub genes. The research of the adaptability of yak against hypoxia is of great significance to identify the genetic characteristics and yak breeding. METHODS Based on the transcriptome sequencing data (PRJNA362606), the R package DESeq2 and WGCNA were conducted to analyze differentially expressed genes (DEGs) and construct the gene co-expression network. The module hub genes were identified and characterized by the correlation of gene and trait, module membership (kME). In addition, GO and KEGG enrichment analyses were used to explore the functions of hub genes. RESULTS Our results revealed that 1098, 1429, and 1645 DEGs were identified in muscle, spleen, and lung, respectively. Besides, a total of 13 gene co-expression modules were detected, of which two hypoxic adaptation-related modules (saddlebrown and turquoise) were found. We identified 39 and 150 hub genes in these two modules. Functional enrichment analyses showed that 12 GO terms and 18 KEGG pathways were enriched in the saddlebrown module while 85 GO terms and 22 KEGG pathways were enriched in the turquoise module. The significant pathways related to hypoxia adaptation include FoxO signaling pathway, Thermogenesis pathway, and Retrograde endocannabinoid signaling pathway, etc. CONCLUSIONS: In this study, we obtained two hypoxia-related specific modules and identified hub genes based on the connectivity by constructing a weighted gene co-expression network. Function enrichment analysis of two modules revealed mitochondrion is the most important organelle for hypoxia adaptation. Moreover, the insulin-related pathways and thermogenic-related pathways played a major role. The results of this study provide theoretical guidance for further understanding the molecular mechanism of yak adaptation to hypoxia.
Collapse
|
20
|
Cadmium-induced hypertension is associated with renal myosin light chain phosphatase inhibition via increased T697 phosphorylation and p44 mitogen-activated protein kinase levels. Hypertens Res 2021; 44:941-954. [PMID: 33972751 DOI: 10.1038/s41440-021-00662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Dietary intake of the heavy metal cadmium (Cd2+) is implicated in hypertension, but potassium supplementation reportedly mitigates hypertension. This study aims to elucidate the hypertensive mechanism of Cd2+. Vascular reactivity and protein expression were assessed in Cd2+-exposed rats for 8 weeks to determine the calcium-handling effect of Cd2+ and the possible signaling pathways and mechanisms involved. Cd2+ induced hypertension in vivo by significantly (p < 0.001) elevating systolic blood pressure (160 ± 2 and 155 ± 1 vs 120 ± 1 mm Hg), diastolic blood pressure (119 ± 2 and 110 ± 1 vs 81 ± 1 mm Hg), and mean arterial pressure (133 ± 2 and 125 ± 1 vs 94 ± 1 mm Hg) (SBP, DBP, and MAP, respectively), while potassium supplementation protected against elevation of these parameters. The mechanism involved augmentation of the phosphorylation of renal myosin light chain phosphatase targeting subunit 1 (MYPT1) at threonine 697 (T697) (2.58 ± 0.36 vs 1 ± 0) and the expression of p44 mitogen-activated protein kinase (MAPK) (1.78 ± 0.20 vs 1 ± 0). While acetylcholine (ACh)-induced relaxation was unaffected, 5 mg/kg b.w. Cd2+ significantly (p < 0.001) attenuated phenylephrine (Phe)-induced contraction of the aorta, and 2.5 mg/kg b.w. Cd2+ significantly (p < 0.05) augmented sodium nitroprusside (SNP)-induced relaxation of the aorta. These results support the vital role of the kidney in regulating blood pressure changes after Cd2+ exposure, which may be a key drug target for hypertension management. Given the differential response to Cd2+, it is apparent that its hypertensive effects could be mediated by myosin light chain phosphatase (MLCP) inhibition via phosphorylation of renal MYPT1-T697 and p44 MAPK. Further investigation of small arteries and the Rho-kinase/MYPT1 interaction is recommended.
Collapse
|
21
|
Wu M, Wu X, Cheng Y, Shen Z, Chen X, Xie Q, Chu J, Li J, Liu L, Wei L, Long L, Cai Q, Peng J, Shen A. Qingda Granule Attenuates Angiotensin II-Induced Blood Pressure and Inhibits Ca 2+/ERK Signaling Pathway. Front Pharmacol 2021; 12:688877. [PMID: 34393778 PMCID: PMC8358933 DOI: 10.3389/fphar.2021.688877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: As a well-known traditional Chinese medicine formula prescribed by academician Ke-ji Chen, Qingda granule (QDG) lowered the blood pressure of spontaneously hypertensive rats and attenuated hypertensive cardiac remodeling and inflammation. However, its functional role and underlying mechanisms on hypertensive vascular function remain largely unclear. This study aims to assess the effects of QDG treatment on Angiotensin II- (AngII-) induced hypertension and vascular function and explore its underlying mechanisms both in vitro and in vivo. Methods: In an in vivo study, 25 male C57BL/6 mice were randomly divided into five groups, including Control, AngII, AngII + QDG-L, AngII + QDG-M, and AngII + QDG-H groups (n = 5 for each group). Mice in AngII and AngII + QDG-L/-M/-H groups were infused with AngII (500 ng/kg/min), while in the Control group, they were infused with saline. Mice in AngII + QDG were intragastrically given different concentrations of QDG (0.5725, 1.145, or 2.29 g/kg/day), while in Control and AngII groups, they were intragastrically given equal volumes of double distilled water for 2 weeks. Blood pressure was determined at 0, 1, and 2 weeks of treatment. Ultrasound was used to detect the pulse wave velocity (PWV) and HE staining to detect the pathological change of the abdominal aorta. RNA sequencing (RNA-seq) was performed to identify the differentially expressed transcripts (DETs) and related signaling pathways. IHC was used to detect the expression of p-ERK in the abdominal aorta. Primary isolated rat vascular smooth muscle cells (VSMCs) were used to assess the cellular Ca2+ release and activation of the ERK pathway by confocal microscope and western blotting analysis, respectively. Results: QDG treatment significantly alleviated the elevated blood pressure, the PWV, and the thickness of the abdominal aorta in AngII-induced hypertensive mice. RNA-seq and KEGG analyses identified 1,505 DETs and multiple enriched pathways (including vascular contraction and calcium signaling pathway) after QDG treatment. Furthermore, confocal microscope showed that QDG treatment partially attenuated the increase of Ca2+ release with the stimulation of AngII in cultured VSMCs. In addition, IHC and western blotting indicated that QDG treatment also partially alleviated the increase of phospho-ERK levels in abdominal aorta tissues of mice and cultured VSMCs after the infusion or stimulation of AngII. Conclusion: QDG treatment attenuated the elevation of blood pressure, abdominal aorta dysfunction, pathological changes, Ca2+ release, and activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Meizhu Wu
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liya Liu
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Linzi Long
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoyan Cai
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jun Peng
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Aling Shen
- Academy of Integrative Medicine, Fuzhou, China.,Chen Keji Academic Thought Inheritance Studio, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
22
|
Terada Y, Yayama K. Angiotensin II-Induced Vasoconstriction via Rho Kinase Activation in Pressure-Overloaded Rat Thoracic Aortas. Biomolecules 2021; 11:biom11081076. [PMID: 34439742 PMCID: PMC8391281 DOI: 10.3390/biom11081076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 01/25/2023] Open
Abstract
Angiotensin II (Ang II) induces vasoconstriction through myosin light chain (MLC) kinase activation and MLC phosphatase inactivation via phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) by Rho kinase. However, the detailed mechanism underlying Rho kinase activation by Ang II is still unknown. We investigated the mechanism of Ang II-induced vasoconstriction mediated by Rho kinase in pressure-overloaded rat thoracic aortas. Pressure-overloaded rats were produced by coarctation of the suprarenal abdominal aorta in four-week-old male Wistar rats. The contractile response to Ang II was significantly enhanced in the pressure-overloaded rats. Ang II-induced vasoconstriction was attenuated by inhibitors of Rho kinase, extracellular signal-regulated kinase 1 and 2 (Erk1/2), and epidermal growth factor receptor (EGFR) in both the sham-operated and pressure-overloaded rats. The Ang II-induced vasoconstriction was attenuated by a Janus kinase 2 (JAK2) inhibitor in only the pressure-overloaded rats. The protein levels of MYPT1 and JAK2 increased only in the pressure-overloaded rat thoracic aortas. These results suggested that Ang II-induced contraction is mediated by Rho kinase activation via EGFR, Erk1/2, and JAK2 in pressure-overloaded rat thoracic aortas. Moreover, Ang II-induced contraction was enhanced in pressure-overloaded rats probably because the protein levels of MYPT1 and JAK2 increased in the thoracic aortas.
Collapse
|
23
|
Yang Q, Hori M. Characterization of Contractile Machinery of Vascular Smooth Muscles in Hypertension. Life (Basel) 2021; 11:life11070702. [PMID: 34357074 PMCID: PMC8304034 DOI: 10.3390/life11070702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension is a key risk factor for cardiovascular disease and it is a growing public health problem worldwide. The pathophysiological mechanisms of vascular smooth muscle (VSM) contraction contribute to the development of hypertension. Calcium (Ca2+)-dependent and -independent signaling mechanisms regulate the balance of the myosin light chain kinase and myosin light chain phosphatase to induce myosin phosphorylation, which activates VSM contraction to control blood pressure (BP). Here, we discuss the mechanism of the contractile machinery in VSM, especially RhoA/Rho kinase and PKC/CPI-17 of Ca2+ sensitization pathway in hypertension. The two signaling pathways affect BP in physiological and pathophysiological conditions and are highlighted in pulmonary, pregnancy, and salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qunhui Yang
- Correspondence: ; Tel.: +81-3-5841-7940; Fax: +81-3-5841-8183
| | | |
Collapse
|
24
|
The role of leukemia inhibitory factor in pathogenesis of pre-eclampsia: molecular and cell signaling approach. J Mol Histol 2021; 52:635-642. [PMID: 34076833 DOI: 10.1007/s10735-021-09989-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Endothelial dysfunction is considered as the main hallmark of Preeclampsia (PE). Despite the unknown pathogenesis of PE, different possible causes have been suggested in various studies. In this review, we first studied the Leukemia inhibitory factor (LIF) role in the related pathways to the PE pathogenesis, such as inflammation, endothelial dysfunction and hypertension. LIF can increase the expression of ICAM-1 and VCAM-1 via the JAK/STAT3 pathway, thereby inducing inflammatory responses and endothelial dysfunction. It can also be involved in the vascular vasoconstriction and hypertension by reducing the nitric oxide (NO) synthesis. Identifying the link between LIF and pathways associated with PE pathogenesis could be effective to achieve an effective PE treatment in the future.
Collapse
|
25
|
Miotto DS, Dionizio A, Jacomini AM, Zago AS, Buzalaf MAR, Amaral SL. Identification of Aortic Proteins Involved in Arterial Stiffness in Spontaneously Hypertensive Rats Treated With Perindopril:A Proteomic Approach. Front Physiol 2021; 12:624515. [PMID: 33679438 PMCID: PMC7928294 DOI: 10.3389/fphys.2021.624515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Arterial stiffness, frequently associated with hypertension, is associated with disorganization of the vascular wall and has been recognized as an independent predictor of all-cause mortality. The identification of the molecular mechanisms involved in aortic stiffness would be an emerging target for hypertension therapeutic intervention. This study evaluated the effects of perindopril on pulse wave velocity (PWV) and on the differentially expressed proteins in aorta of spontaneously hypertensive rats (SHR), using a proteomic approach. SHR and Wistar rats were treated with perindopril (SHRP) or water (SHRc and Wistar rats) for 8 weeks. At the end, SHRC presented higher systolic blood pressure (SBP, +70%) and PWV (+31%) compared with Wistar rats. SHRP had higher values of nitrite concentration and lower PWV compared with SHRC. From 21 upregulated proteins in the aortic wall from SHRC, most of them were involved with the actin cytoskeleton organization, like Tropomyosin and Cofilin-1. After perindopril treatment, there was an upregulation of the GDP dissociation inhibitors (GDIs), which normally inhibits the RhoA/Rho-kinase/cofilin-1 pathway and may contribute to decreased arterial stiffening. In conclusion, the results of the present study revealed that treatment with perindopril reduced SBP and PWV in SHR. In addition, the proteomic analysis in aorta suggested, for the first time, that the RhoA/Rho-kinase/Cofilin-1 pathway may be inhibited by perindopril-induced upregulation of GDIs or increases in NO bioavailability in SHR. Therefore, we may propose that activation of GDIs or inhibition of RhoA/Rho-kinase pathway could be a possible strategy to treat arterial stiffness.
Collapse
Affiliation(s)
- Danyelle S Miotto
- Joint Graduate Program in Physiological Sciences, Federal University of Sao Carlos and São Paulo State University, UFSCar/UNESP, São Carlos, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - André M Jacomini
- Post-Graduate Program in Movement Sciences, São Paulo State University, Bauru, Brazil
| | - Anderson S Zago
- Post-Graduate Program in Movement Sciences, São Paulo State University, Bauru, Brazil.,Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
| | | | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, Federal University of Sao Carlos and São Paulo State University, UFSCar/UNESP, São Carlos, Brazil.,Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
| |
Collapse
|
26
|
Liu Z, Xiao M, Du Z, Li M, Guo H, Yao M, Wan X, Xie Z. Dietary supplementation of Huangshan Maofeng green tea preventing hypertension of older C57BL/6 mice induced by desoxycorticosterone acetate and salt. J Nutr Biochem 2021; 88:108530. [PMID: 33080347 DOI: 10.1016/j.jnutbio.2020.108530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 01/12/2023]
Abstract
Senile hypertension affects the life quality of aged population. Dietary intervention plays a pivotal role in the prevention of hypertension. There are few reports concerning the effects and mechanisms of green tea supplementation preventing age related hypertension. The current study investigated the effect and mechanism of dietary supplement of Huangshan Maofeng green tea (HSMF) on prevention of hypertension induced by deoxycorticosterone acetate (DOCA) and salt in old C57BL/6 mice. Our results showed that HSMF dose-dependently prevented the increase of systolic blood pressure and diastolic blood pressure induced by DOCA plus salt (DS) at 51-week-old mice. And HSMF significantly reduced the agonists' stimulated contraction of mesenteric arteries isolated from the old mice. The expression of vasoconstrictor genes and inflammatory cytokines in aorta were suppressed observably by HSMF supplementation compared with DS group. The protein expression of PKCα in the aorta was dose-dependently decreased by HSMF compared to DS group. The phosphorylation level of MYPT1, CPI-17and MLC20 was also restrained by HSMF in the aorta. Furthermore, HSMF protected kidney by maintaining integrity of glomeruli and tubules and remarkably decreased the NGAL level in plasma. HSMF also suppressed the kidney inflammation by decreasing inflammatory cytokines expression and the macrophage infiltration. Our results proved that dietary supplement of HSMF remarkably improved the vascular functions and protected kidney injury, and thus prevented hypertension induced by DS in older C57BL/6 mice. Our data indicated that the dietary supplement of HSMF may potentially be used as a food additive for preventing hypertension for aged people.
Collapse
Affiliation(s)
- Zenghui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China; Anhui Academy of Medical Science, Hefei, China
| | - Mengchao Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaofeng Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Mengwan Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China
| | - Huimin Guo
- Center for Biotechnology, Anhui Agricultural University, Hefei, China
| | - Min Yao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
27
|
EPAC in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21145160. [PMID: 32708284 PMCID: PMC7404248 DOI: 10.3390/ijms21145160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.
Collapse
|
28
|
Bryson TD, Pandrangi TS, Khan SZ, Xu J, Pavlov TS, Ortiz PA, Peterson E, Harding P. The deleterious role of the prostaglandin E 2 EP 3 receptor in angiotensin II hypertension. Am J Physiol Heart Circ Physiol 2020; 318:H867-H882. [PMID: 32142358 DOI: 10.1152/ajpheart.00538.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiotensin II (ANG II) plays a key role in regulating blood pressure and inflammation. Prostaglandin E2 (PGE2) signals through four different G protein-coupled receptors, eliciting a variety of effects. We reported that activation of the EP3 receptor reduces cardiac contractility. More recently, we have shown that overexpression of the EP4 receptor is protective in a mouse myocardial infarction model. We hypothesize in this study that the relative abundance of EP3 and EP4 receptors is a major determinant of end-organ damage in the diseased heart. Thus EP3 is detrimental to cardiac function and promotes inflammation, whereas antagonism of the EP3 receptor is protective in an ANG II hypertension (HTN) model. To test our hypothesis, male 10- to 12-wk-old C57BL/6 mice were anesthetized with isoflurane and osmotic minipumps containing ANG II were implanted subcutaneously for 2 wk. We found that antagonism of the EP3 receptor using L798,106 significantly attenuated the increase in blood pressure with ANG II infusion. Moreover, antagonism of the EP3 receptor prevented a decline in cardiac function after ANG II treatment. We also found that 10- to 12-wk-old EP3-transgenic mice, which overexpress EP3 in the cardiomyocytes, have worsened cardiac function. In conclusion, activation or overexpression of EP3 exacerbates end-organ damage in ANG II HTN. In contrast, antagonism of the EP3 receptor is beneficial and reduces cardiac dysfunction, inflammation, and HTN.NEW & NOTEWORTHY This study is the first to show that systemic treatment with an EP3 receptor antagonist (L798,106) attenuates the angiotensin II-induced increase in blood pressure in mice. The results from this project could complement existing hypertension therapies by combining blockade of the EP3 receptor with antihypertensive drugs.
Collapse
Affiliation(s)
- Timothy D Bryson
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Teja S Pandrangi
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Safa Z Khan
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Tengis S Pavlov
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Edward Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
29
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
30
|
Yoon GE, Jung JK, Lee YH, Jang BC, In Kim J. Histone deacetylase inhibitor CG200745 ameliorates high-fat diet-induced hypertension via inhibition of angiotensin II production. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:491-500. [PMID: 31655853 PMCID: PMC7280340 DOI: 10.1007/s00210-019-01749-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Obesity is growing rapidly worldwide due to consumption of westernized diet and lack of exercise. Obesity is one of the major risk factors of hypertension. The novel histone deacetylase (HDAC) inhibitor CG200745 was originally developed to treat various cancers. Previous studies showed that CG200745 attenuated hypertension through inhibition of cardiac hypertrophy and fibrosis in deoxycorticosterone acetate-induced hypertensive rat. The purpose of this study is to investigate the role and underlying mechanism of CG200745 in high-fat diet (HFD)-induced hypertension. Nine-week old C57BL/6 mice were fed a normal diet (ND) or HFD for 17 weeks. Each group of mice was treated with vehicle or CG200745 by intraperitoneal injection for 9 days. HFD group showed higher body weight, blood pressure (BP), HDAC activities, angiotensinogen and renin expressions in kidney, angiotensin-converting enzyme (ACE) expression in the lung, serum angiotensin II (Ang II) concentration, and myosin light chain20 (MLC20) phosphorylation in mesenteric artery compared with ND group. CG200745 lowered BP, HDAC activity, renin and angiotensinogen in the kidney, ACE in the lung, serum Ang II level, and phosphorylation of MLC20 in HFD group. In conclusion, CG200745 ameliorated HFD-induced hypertension through inhibition of HDAC/Ang II/vascular contraction axis. Our results offer CG200745 as a novel therapeutic option for HFD-induced hypertension.
Collapse
Affiliation(s)
- Ga-Eun Yoon
- Department of Molecular Medicine and Medical Research Center, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Jin Ki Jung
- Department of Molecular Medicine and Medical Research Center, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Yun-Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine and Medical Research Center, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
31
|
Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, Montezano AC. Vascular smooth muscle contraction in hypertension. Cardiovasc Res 2019; 114:529-539. [PMID: 29394331 PMCID: PMC5852517 DOI: 10.1093/cvr/cvy023] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Hypertension is a major risk factor for many common chronic diseases, such as heart failure, myocardial infarction, stroke, vascular dementia, and chronic kidney disease. Pathophysiological mechanisms contributing to the development of hypertension include increased vascular resistance, determined in large part by reduced vascular diameter due to increased vascular contraction and arterial remodelling. These processes are regulated by complex-interacting systems such as the renin-angiotensin-aldosterone system, sympathetic nervous system, immune activation, and oxidative stress, which influence vascular smooth muscle function. Vascular smooth muscle cells are highly plastic and in pathological conditions undergo phenotypic changes from a contractile to a proliferative state. Vascular smooth muscle contraction is triggered by an increase in intracellular free calcium concentration ([Ca2+]i), promoting actin–myosin cross-bridge formation. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase, protein Kinase C and mitogen-activated protein kinase signalling, reactive oxygen species, and reorganization of the actin cytoskeleton. Activation of immune/inflammatory pathways and non-coding RNAs are also emerging as important regulators of vascular function. Vascular smooth muscle cell [Ca2+]i not only determines the contractile state but also influences activity of many calcium-dependent transcription factors and proteins thereby impacting the cellular phenotype and function. Perturbations in vascular smooth muscle cell signalling and altered function influence vascular reactivity and tone, important determinants of vascular resistance and blood pressure. Here, we discuss mechanisms regulating vascular reactivity and contraction in physiological and pathophysiological conditions and highlight some new advances in the field, focusing specifically on hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rheure Alves-Lopes
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Francisco J Rios
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Livia L Camargo
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Aikaterini Anagnostopoulou
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Augusto C Montezano
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
32
|
Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V. RhoGTPase in Vascular Disease. Cells 2019; 8:E551. [PMID: 31174369 PMCID: PMC6627336 DOI: 10.3390/cells8060551] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
Ras-homologous (Rho)A/Rho-kinase pathway plays an essential role in many cellular functions, including contraction, motility, proliferation, and apoptosis, inflammation, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Given its role in many physiological and pathological functions, targeting can result in adverse effects and limit its use for therapy. In this review, we have summarized the role of RhoGTPases with an emphasis on RhoA in vascular disease and its impact on endothelial, smooth muscle, and heart and lung fibroblasts. It is clear from the various studies that understanding the regulation of RhoGTPases and their regulators in physiology and pathological conditions is required for effective targeting of Rho.
Collapse
Affiliation(s)
- Derek Strassheim
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - David Irwin
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Edward C Dempsey
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA.
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
33
|
Amin F, Ahmed A, Feroz A, Khaki PSS, Khan MS, Tabrez S, Zaidi SK, Abdulaal WH, Shamsi A, Khan W, Bano B. An Update on the Association of Protein Kinases with Cardiovascular Diseases. Curr Pharm Des 2019; 25:174-183. [DOI: 10.2174/1381612825666190312115140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Background:
Protein kinases are the enzymes involved in phosphorylation of different proteins which
leads to functional changes in those proteins. They belong to serine-threonine kinases family and are classified
into the AGC (Protein kinase A/ Protein kinase G/ Protein kinase C) families of protein and Rho-associated
kinase protein (ROCK). The AGC family of kinases are involved in G-protein stimuli, muscle contraction, platelet
biology and lipid signaling. On the other hand, ROCK regulates actin cytoskeleton which is involved in the
development of stress fibres. Inflammation is the main signal in all ROCK-mediated disease. It triggers the cascade
of a reaction involving various proinflammatory cytokine molecules.
Methods:
Two ROCK isoforms are found in mammals and invertebrates. The first isoforms are present mainly in
the kidney, lung, spleen, liver, and testis. The second one is mainly distributed in the brain and heart.
Results:
ROCK proteins are ubiquitously present in all tissues and are involved in many ailments that include
hypertension, stroke, atherosclerosis, pulmonary hypertension, vasospasm, ischemia-reperfusion injury and heart
failure. Several ROCK inhibitors have shown positive results in the treatment of various disease including cardiovascular
diseases.
Conclusion:
ROCK inhibitors, fasudil and Y27632, have been reported for significant efficiency in dropping
vascular smooth muscle cell hyper-contraction, vascular inflammatory cell recruitment, cardiac remodelling and
endothelial dysfunction which highlight ROCK role in cardiovascular diseases.
Collapse
Affiliation(s)
- Fakhra Amin
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Anna Feroz
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | | | - Mohd Shahnwaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Wajihullah Khan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| |
Collapse
|
34
|
Zhao Y, Ma R, Yu X, Li N, Zhao X, Yu J. AHU377+Valsartan (LCZ696) Modulates Renin-Angiotensin System (RAS) in the Cardiac of Female Spontaneously Hypertensive Rats Compared With Valsartan. J Cardiovasc Pharmacol Ther 2019; 24:450-459. [PMID: 31023080 DOI: 10.1177/1074248419838503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hypertension is a major cause of death and morbidity worldwide and is increasing in prevalence. The Renin-angiotensin system (RAS) is the most common mechanism involved in the pathophysiology of hypertension. Understanding the mechanism of the pathophysiologic processes will help direct potential therapeutic strategies to treat hypertension and improve cardiac function. Recently, a novel drug LCZ696 containing both an angiotensin receptor blocker valsartan and a neprilysin inhibitor (AHU377) has shown a promising effect on the treatment of hypertension. However, the effects of LCZ696 on the expression of main components of RAS, namely, angiotensin-converting enzyme (ACE), angiotensin-converting enzyme 2 (ACE2), angiotensin II type 1 receptor (AT1 R), angiotensin II type 2 receptor (AT2 R), and angiotensin (1-7) receptor/Mas receptor (MasR) remain unclear. The aim of the present study was to evaluate the effects of LCZ696 on the protective arms of RAS in the cardiac tissue when compared with valsartan under the equal inhibition of AT1 R. We hypothesized that the superior effects of LCZ696 may contribute to its greater effect on the RAS than valsartan. MATERIALS AND METHODS Sixteen-week-old female spontaneously hypertensive rats (SHRs) were used in this study. Wistar-Kyoto (WKY) rats were used as controls. All rats were randomly divided into LCZ696 (n = 10), valsartan (n = 10), SHR (n = 10), and WKY (n = 10) groups under a 12-hour dark and 12-hour light cycle and provided with regular chow diet and water. The tail-cuff method was performed to measure blood pressure. Cardiac function was assessed by echocardiography. RESULTS The blood pressure value was lower in LCZ696 than valsartan in SHR after 12 weeks of treatment. Further, LCZ696 inhibits the ACE and AT1 R protein expression in the cardiac of SHR and significantly upregulate the protective axis of RAS components, including ACE2, MasR, and AT2 R. Left ventricular AT2 R messenger RNA (mRNA) expression was higher in the LCZ696+SHR group compared with valsartan. In addition, real-time polymerase chain reaction analysis revealed that LCZ696 enhanced the mRNA expression of antihypertensive components AT2 R, ACE2, and MasR and decreased the expression of AT1 R. However, only AT2 R and ACE2 mRNA expressions have a statistical difference between the LCZ696 and valsartan groups. No difference was observed in the mRNA expression of ACE and MasR. The stronger positive signal of transforming growth factor β in the left ventricle was inhibited in each administrated group compared with SHR groups. CONCLUSIONS LCZ696 ameliorates the vasoconstrictor axis of the RAS AT1 R and stimulate the protective arm effectors, ACE2 and AT2 R, as well as reverses the compensatory upregulation of neuronal nitric oxide synthase and endothelial nitric oxide synthase in SHR. These findings suggest the mechanistic insight of the cardiac-protective and greater hypotensive effects of LCZ696.
Collapse
Affiliation(s)
- Yang Zhao
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ruixin Ma
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaorong Yu
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ningyin Li
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xu Zhao
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jing Yu
- 1 Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
35
|
Effects of High Salt-Low Potassium Diet on Blood Pressure and Vascular Reactivity in Male Sprague Dawley Rats. J Cardiovasc Pharmacol 2019; 71:340-346. [PMID: 29554004 DOI: 10.1097/fjc.0000000000000578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sodium (Na) intake increases vascular reactivity. Whether low potassium (K) intake affects vascular reactivity-associated blood pressure (BP) changes is uncertain. This study aimed to determine whether Na-induced increases in BP and vascular reactivity are altered by low K intake. Male Sprague Dawley rats were assigned to 3 dietary groups for 6 weeks: a standard Na-K diet (control, n = 12), a high Na-normal K diet (HS-NormK, n = 12), and a high Na-low K diet (HS-LowK, n = 12). BP was measured at baseline and after the dietary intervention. Na and K excretions and vascular reactivity were measured after the dietary intervention. The Na/K ratio was significantly higher in the HS-LowK compared with the other groups. Systolic and diastolic BPs increased significantly in the HS-NormK and HS-LowK groups. In mesenteric arteries, the dose-response curves for phenylephrine-induced contractions shifted to the left and the EC50 (mean ± SD) was significantly lower in the HS-NormK (0.51 ± 0.17 μM, P = 0.003) and HS-LowK (0.69 ± 0.14 μM, P = 0.005) groups compared with the control (3.24 ± 0.79 μM). Systolic (r = -0.58 P = 0.002) and diastolic (r = -0.61 P = 0.001) BPs were associated with the EC50 of phenylephrine-induced contraction in mesenteric arteries. High Na intake induces increased alpha-1 receptor responsiveness in mesenteric arteries, which may be responsible for the increase in BP and is not affected by low dietary K intake.
Collapse
|
36
|
Kai Y, Motegi M, Suzuki Y, Takeuchi H, Harada Y, Sato F, Chiba Y, Kamei J, Sakai H. Up-regulation of Rac1 in the bronchial smooth muscle of murine experimental asthma. Basic Clin Pharmacol Toxicol 2019; 125:8-15. [PMID: 30697954 DOI: 10.1111/bcpt.13204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/16/2019] [Indexed: 01/19/2023]
Abstract
There has been considerable research on the involvement of RhoA/Rho kinase signalling in smooth muscle contractions. However, only a few reports have addressed the specific role of Rac1, which is a member of the Rho GTPase superfamily. Therefore, this study investigated the role of Rac1-related pathways in bronchial smooth muscle (BSM) contractions. Bronchial rings isolated from mice were suspended in an organ bath, and the isometric contractions of circular smooth muscles were monitored. The phosphorylation of myosin light chains (MLCs) was analysed by immunoblotting. The Rac1 inhibitor EHT1864 inhibited carbachol (CCh)-induced BSM contractions, although high K+ depolarization-induced BSM contractions were not significantly attenuated by EHT1864. Moreover, high K+ - and phorbol 12,13-dibutyrate (PDBu; PKC activator)-induced contractions were not attenuated by Rac1 inhibition, whereas sodium fluoride (NaF)-induced force development was inhibited by EHT1864. The gene and protein expression of Rac1 was increased in the BSM of a murine model with antigen-induced airway hyper-responsiveness (AHR). In addition, an increased force of the BSM contractions in AHR was suppressed by EHT1864 treatment, suggesting that the up-regulation of Rac1 is involved in AHR. These findings suggest that an increase in Rac1-mediated signalling is involved in the augmented contractions of BSMs in antigen-induced AHR mice.
Collapse
Affiliation(s)
- Yuki Kai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Momoko Motegi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Yuta Suzuki
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Hiroto Takeuchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Yui Harada
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Fumiaki Sato
- Department of Analytical Pathophysiology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| |
Collapse
|
37
|
Mondaca-Ruff D, Riquelme JA, Quiroga C, Norambuena-Soto I, Sanhueza-Olivares F, Villar-Fincheira P, Hernández-Díaz T, Cancino-Arenas N, San Martin A, García L, Lavandero S, Chiong M. Angiotensin II-Regulated Autophagy Is Required for Vascular Smooth Muscle Cell Hypertrophy. Front Pharmacol 2019; 9:1553. [PMID: 30804791 PMCID: PMC6371839 DOI: 10.3389/fphar.2018.01553] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Hypertension is a disease associated to increased plasma levels of angiotensin II (Ang II). Ang II can regulate proliferation, migration, ROS production and hypertrophy of vascular smooth muscle cells (VSMCs). However, the mechanisms by which Ang II can affect VSMCs remain to be fully elucidated. In this context, autophagy, a process involved in self-digestion of proteins and organelles, has been described to regulate vascular remodeling. Therefore, we sought to investigate if Ang II regulates VSMC hypertrophy through an autophagy-dependent mechanism. To test this, we stimulated A7r5 cell line and primary rat aortic smooth muscle cells with Ang II 100 nM and measured autophagic markers at 24 h by Western blot. Autophagosomes were quantified by visualizing fluorescently labeled LC3 using confocal microscopy. The results showed that treatment with Ang II increases Beclin-1, Vps34, Atg-12-Atg5, Atg4 and Atg7 protein levels, Beclin-1 phosphorylation, as well as the number of autophagic vesicles, suggesting that this peptide induces autophagy by activating phagophore initiation and elongation. These findings were confirmed by the assessment of autophagic flux by co-administering Ang II together with chloroquine (30 μM). Pharmacological antagonism of the angiotensin type 1 receptor (AT1R) with losartan and RhoA/Rho Kinase inhibition prevented Ang II-induced autophagy. Moreover, Ang II-induced A7r5 hypertrophy, evaluated by α-SMA expression and cell size, was prevented upon autophagy inhibition. Taking together, our results suggest that the induction of autophagy by an AT1R/RhoA/Rho Kinase-dependent mechanism contributes to Ang II-induced hypertrophy in VSMC.
Collapse
Affiliation(s)
- David Mondaca-Ruff
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Paulina Villar-Fincheira
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Tomás Hernández-Díaz
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Nicole Cancino-Arenas
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Alejandra San Martin
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
38
|
Lang JA, Krajek AC. Age-related differences in the cutaneous vascular response to exogenous angiotensin II. Am J Physiol Heart Circ Physiol 2018; 316:H516-H521. [PMID: 30499715 DOI: 10.1152/ajpheart.00509.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) is locally produced in human skin and contributes to the reflex vasoconstriction (VC) response in aged but not young skin. We hypothesized that the exogenous ANG II-mediated VC response would be greater in older adults and would be affected by inhibition of adrenoreceptor or ANG II type II receptor (AT2R) pathways. Three microdialysis (MD) fibers were placed in the forearm skin of 11 young (26 ± 3 yr) and 11 older (68 ± 4 yr) individuals for perfusion of 1) Ringer solution (control), 2) adrenoreceptor blockade with yohimbine + propranolol, and 3) AT2R inhibition with PD-123319. ANG II was then added to the perfusates at eight graded dose concentrations ranging from 10-10 to 10-3 M. Laser Doppler flux was measured at each MD site, and cutaneous vascular conductance (CVC) was calculated as CVC = laser Doppler flux/mean arterial pressure and normalized to baseline CVC values collected before ANG II perfusion (%ΔCVCbaseline). At the control site, older adults (-34 ± 4%ΔCVCbaseline) exhibited a greater peak VC compared with young adults (-22 ± 2%ΔCVCbaseline, P < 0.05), which was attenuated with adrenoreceptor blockade. Young skin exhibited a vasodilation in response to lower ANG II doses that was inhibited with AT2R inhibition. AT2R inhibition also increased the VC response to higher ANG II doses such that young skin responded similarly to older skin. These results indicate that ANG II has a greater VC influence in older than young individuals. Furthermore, ANG II may be affecting multiple targets, including adrenergic and AT2R pathways. NEW & NOTEWORTHY Intradermal perfusion of successive doses of angiotensin II (ANG II) revealed a role for ANG II type II receptors and dose-dependent, ANG II-mediated vasodilation in young but not older adults. In contrast, older adults exhibited greater vasoconstriction for a given dose of ANG II. The increased vasoconstriction in older adults was subsequently blunted with adrenoreceptor blockade, which indicates an interaction between ANG II and adrenergic signaling pathways in the cutaneous microcirculation.
Collapse
Affiliation(s)
- James A Lang
- Department of Kinesiology, Iowa State University , Ames, Iowa.,Department of Physical Therapy, Des Moines University , Des Moines, Iowa
| | - Alex C Krajek
- Department of Physical Therapy, Des Moines University , Des Moines, Iowa
| |
Collapse
|
39
|
Gonzalez L, Novoa U, Moya J, Gabrielli L, Jalil JE, García L, Chiong M, Lavandero S, Ocaranza MP. Angiotensin-(1-9) reduces cardiovascular and renal inflammation in experimental renin-independent hypertension. Biochem Pharmacol 2018; 156:357-370. [PMID: 30179588 DOI: 10.1016/j.bcp.2018.08.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
Hypertension-induced cardiovascular and renal damage can be mediated by activation of the renin-angiotensin-aldosterone system. There are different factors beyond renin-angiotensin-aldosterone system involved in hypertension and renal damage. Inflammation has emerged as an important mediator of hypertension and cardiovascular and kidney damage. Angiotensin-(1-9), a peptide of the renin-angiotensin system, counter-regulates both the physiological and pathological actions of angiotensin II. Recent data has shown that angiotensin-(1-9) protects the heart and blood vessels from adverse cardiovascular remodeling in experimental models of hypertension and/or heart failure and reduces cardiac fibrosis in stroke-prone, spontaneously hypertensive rats. These effects are mediated by the angiotensin II type 2 receptor (AT2R). However, it remains unknown whether angiotensin-(1-9) also has an anti-inflammatory effect. In the present study, we investigate whether angiotensin-(1-9) reduces inflammation and fibrosis in the heart, arteries, and kidney in a DOCA-salt hypertensive model and explore the mechanisms underlying the amelioration of end-organ damage. DOCA-salt hypertensive rats received: a) vehicle, b) angiotensin-(1-9), c) PD123319 (AT2R blocker), d) angiotensin-(1-9) plus A779 (a Mas receptor blocker) or e) angiotensin-(1-9) plus PD123319, and sham rats were used as a control. Our results showed that angiotensin-(1-9) decreased hypertension and increased vasodilation in DOCA-salt hypertensive rats. These actions were partially inhibited by PD123319. Moreover, angiotensin-(1-9) decreased diuresis, fibrosis, and inflammation. These beneficial effects were not mediated by Mas or AT2R blockers. We concluded that angiotensin-(1-9) protects against volume overload-induced hypertensive cardiovascular and kidney damage by decreasing inflammation in the heart, aortic wall, and kidney, through mechanisms independent of the Mas or AT2R.
Collapse
Affiliation(s)
- Leticia Gonzalez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia, Universidad Catolica de Chile, Santiago 8330024, Chile; Division Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Ulises Novoa
- Departmento de Ciencias Basicas Biomedicas, Facultad de Ciencias de la Salud, Universidad de Talca, Chile
| | - Jackeline Moya
- Division Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Luigi Gabrielli
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia, Universidad Catolica de Chile, Santiago 8330024, Chile; Division Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Jorge E Jalil
- Division Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDiS) & Centro de Estudios en Ejercicio, Metabolismo y Cancer (CEMC), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS) & Centro de Estudios en Ejercicio, Metabolismo y Cancer (CEMC), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS) & Centro de Estudios en Ejercicio, Metabolismo y Cancer (CEMC), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia, Universidad Catolica de Chile, Santiago 8330024, Chile; Division Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
40
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Anjum I. Calcium sensitization mechanisms in detrusor smooth muscles. J Basic Clin Physiol Pharmacol 2018; 29:227-235. [PMID: 29306925 DOI: 10.1515/jbcpp-2017-0071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
The contraction of detrusor smooth muscles depends on the increase in intracellular calcium. The influx of calcium from the plasma membrane calcium channels and calcium release from the sarcoplasmic reticulum give rise to intracellular calcium. Under the pathophysiological conditions, the increased sensitivity of regulatory and contractile proteins to calcium also plays an important role in maintaining the spontaneous detrusor smooth muscle activity. Many proteins have been identified to play a role in calcium sensitization. Both the protein kinase C (PKC) and Rho-kinase (ROCK) signaling pathways are responsible for the induction of calcium sensitization in the detrusor smooth muscles. The balance between the myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) regulates the intracellular calcium-contractile force relationship. The inhibition of MLCP by PKC-mediated phosphatase inhibitor (CPI-17) and myosin phosphatase target subunit (MYPT-1) phosphorylation by both the PKC and ROCK are responsible for calcium sensitization in the detrusor smooth muscles. However, the ROCK pathway predominantly participates in the calcium sensitization induction under pathophysiological situations. Many kinases are well known nowadays to play a role in calcium sensitization. This review aims to enlighten the current understanding of the regulatory mechanisms of calcium sensitization with special reference to the PKC and ROCK pathways in the detrusor smooth muscles. It will also aid in the development of new pharmacological strategies to prevent and treat bladder diseases.
Collapse
Affiliation(s)
- Irfan Anjum
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| |
Collapse
|
42
|
Elrashidy RA, Zhang J, Liu G. Long-term consumption of Western diet contributes to endothelial dysfunction and aortic remodeling in rats: Implication of Rho-kinase signaling. Clin Exp Hypertens 2018; 41:174-180. [DOI: 10.1080/10641963.2018.1462375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Rania A. Elrashidy
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Jing Zhang
- Department of Hyperbaric Oxygen, Capital Medical University Beijing Chao-Yang Hospital, Beijing, China
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
43
|
Yang Q, Fujii W, Kaji N, Kakuta S, Kada K, Kuwahara M, Tsubone H, Ozaki H, Hori M. The essential role of phospho‐T38 CPI‐17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J 2018; 32:2095-2109. [DOI: 10.1096/fj.201700794r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Qunhui Yang
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Shigeru Kakuta
- Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Kodai Kada
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Hirokazu Tsubone
- Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Laboratory of Applied Genetics, Department of Biomedical Science, Department of Veterinary Pathophysiology and Animal Health, and Research Center for Food SafetyGraduate School of Agriculture and Life Sciences, The University of TokyoTokyoJapan
| |
Collapse
|
44
|
Lin L, Xu C, Carraway MS, Piantadosi CA, Whorton AR, Li S. RhoA inactivation by S-nitrosylation regulates vascular smooth muscle contractive signaling. Nitric Oxide 2018; 74:56-64. [DOI: 10.1016/j.niox.2018.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/19/2023]
|
45
|
Bruche S, Zaccolo M. FRET-ting about RhoA signalling in heart and vasculature: a new tool in our cardiovascular toolbox. Cardiovasc Res 2018; 114:e25-e27. [DOI: 10.1093/cvr/cvy032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Susann Bruche
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
46
|
Vascular dysfunction in obese diabetic db/db mice involves the interplay between aldosterone/mineralocorticoid receptor and Rho kinase signaling. Sci Rep 2018; 8:2952. [PMID: 29440699 PMCID: PMC5811612 DOI: 10.1038/s41598-018-21087-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Activation of aldosterone/mineralocorticoid receptors (MR) has been implicated in vascular dysfunction of diabetes. Underlying mechanisms are elusive. Therefore, we investigated the role of Rho kinase (ROCK) in aldosterone/MR signaling and vascular dysfunction in a model of diabetes. Diabetic obese mice (db/db) and control counterparts (db/+) were treated with MR antagonist (MRA, potassium canrenoate, 30 mg/kg/day, 4 weeks) or ROCK inhibitor, fasudil (30 mg/kg/day, 3 weeks). Plasma aldosterone was increased in db/db versus db/+. This was associated with enhanced vascular MR signaling. Norepinephrine (NE)-induced contraction was increased in arteries from db/db mice. These responses were attenuated in mice treated with canrenoate or fasudil. Db/db mice displayed hypertrophic remodeling and increased arterial stiffness, improved by MR blockade. Vascular calcium sensitivity was similar between depolarized arteries from db/+ and db/db. Vascular hypercontractility in db/db mice was associated with increased myosin light chain phosphorylation and reduced expression of PKG-1α. Vascular RhoA/ROCK signaling and expression of pro-inflammatory and pro-fibrotic markers were exaggerated in db/db mice, effects that were attenuated by MRA. Fasudil, but not MRA, improved vascular insulin sensitivity in db/db mice, evidenced by normalization of Irs1 phosphorylation. Our data identify novel pathways involving MR-RhoA/ROCK-PKG-1 that underlie vascular dysfunction and injury in diabetic mice.
Collapse
|
47
|
Arnold C, Demirel E, Feldner A, Genové G, Zhang H, Sticht C, Wieland T, Hecker M, Heximer S, Korff T. Hypertension‐evoked RhoA activity in vascular smooth muscle cells requires RGS5. FASEB J 2018; 32:2021-2035. [DOI: 10.1096/fj.201700384rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Eda Demirel
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Anja Feldner
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Guillem Genové
- Center of Medical ResearchHeidelberg UniversityHeidelbergGermany
| | - Hangjun Zhang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
| | - Carsten Sticht
- Integrated Cardiometabolic CenterKarolinska InstituteHuddingeSweden
| | - Thomas Wieland
- Department of Physiology, Heart and Stroke Richard Lewar Centre of Excellence for Cardiovascular ResearchUniversity of TorontoTorontoOntarioCanada
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| | - Scott Heximer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityHeidelbergGermany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and PathophysiologyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
48
|
Taglietti V, Angelini G, Mura G, Bonfanti C, Caruso E, Monteverde S, Le Carrou G, Tajbakhsh S, Relaix F, Messina G. RhoA and ERK signalling regulate the expression of the myogenic transcription factor Nfix. Development 2018; 145:dev.163956. [DOI: 10.1242/dev.163956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
Abstract
The transcription factor Nfix belongs to the nuclear factor one family and has an essential role in prenatal skeletal muscle development, where it is a master regulator of the transition from embryonic to foetal myogenesis. Recently, Nfix was shown to be involved in adult muscle regeneration and in muscular dystrophies. Here, we investigated the signalling that regulates Nfix expression, and show that JunB, a member of the AP-1 family, is an activator of Nfix, which then leads to foetal myogenesis. Moreover, we demonstrate that their expression is regulated through the RhoA/ROCK axis, which maintains embryonic myogenesis. Specifically, RhoA and ROCK repress ERK kinase activity, which promotes JunB and Nfix expression. Notably, the role of ERK in the activation of Nfix is conserved post-natally in satellite cells, which represent the canonical myogenic stem cells of adult muscle. As lack of Nfix in muscular dystrophies rescues the dystrophic phenotype, the identification of this pathway provides an opportunity to pharmacologically target Nfix in muscular dystrophies.
Collapse
Affiliation(s)
- Valentina Taglietti
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
- Biology of the Neuromuscular System, INSERM IMRB U955-E10, UPEC, ENVA, EFS, Creteil 94000, France
| | - Giuseppe Angelini
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Enrico Caruso
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Stefania Monteverde
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Gilles Le Carrou
- Stem Cells & Development, Dept. of Developmental & Stem Cell Biology, Institut Pasteur, Paris, 75015 France
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Dept. of Developmental & Stem Cell Biology, Institut Pasteur, Paris, 75015 France
- CNRS UMR 3738, Institut Pasteur, Paris, 75015 France
| | - Frédéric Relaix
- Biology of the Neuromuscular System, INSERM IMRB U955-E10, UPEC, ENVA, EFS, Creteil 94000, France
| | - Graziella Messina
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
49
|
Yang S, Zhao Y, Tian Y, Chen Y, Zhao X, Li Y, Zhao H, Chen X, Zhu L, Fang Z, Yao Y, Hu Z, Shen C. Common variants of ROCKs and the risk of hypertension, and stroke: Two case-control studies and a follow-up study in Chinese Han population. Biochim Biophys Acta Mol Basis Dis 2017; 1864:778-783. [PMID: 29246448 DOI: 10.1016/j.bbadis.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/06/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022]
Abstract
The Rho kinases (ROCKs) are recognized as a critical regulator of vascular functions in cardiovascular disorders. It is crucial to illustrate the association of ROCKs genetic variation and hypertension and/or stroke events. Herein we aimed at investigating the association of ROCK1 and ROCK2 with hypertension and stroke in Chinese Han population. Seven tagSNPs at ROCK1 and ROCK2 were genotyped in a community-based case-control study consisting of 2012 hypertension cases and 2210 normotensive controls and 4128 subjects were further followed up. In stroke case-control study, 1471 ischemic stroke (IS) inpatients and 607 hemorrhagic stroke (HS) inpatients were collected, and 2443 age-matched controls were selected from the follow-up population. Risks were estimated as odds ratio (OR) and hazard ratio (HR) by logistic and Cox regression. The community-based case-control study didn't identify any significant tagSNPs associated with hypertension even after adjustment for covariates. The follow-up analysis showed that rs1481280 of ROCK1 significantly associated with incident hypertension (HR=1.130, P=0.048) after adjusting for covariates. rs7589629 and rs978906 of ROCK2 were significantly associated with incident IS (HR=1.373, P=0.004; HR=1.284, P=0.026) respectively. In stroke case-control study, rs288980, rs1481280 and rs7237677 were significantly associated with IS and the adjusted ORs (P values) of additive model were 0.879 (0.010), 0.895 (0.036) and 0.857 (0.002) respectively. Furthermore, rs288980, rs7237677 and rs978906 were significantly associated with HS and the adjusted ORs (P values) of additive model were 0.857 (0.025), 0.848 (0.018) and 0.856 (0.027) respectively. Our findings suggest that ROCK1 and ROCK2 contribute to the genetic susceptibility of hypertension and stroke.
Collapse
Affiliation(s)
- Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Yanping Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Yuanrui Tian
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Ying Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hailong Zhao
- Experimental Center, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Xiaotian Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lijun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - Zhengmei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - YingShui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - Zhibing Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
50
|
Chan SL, Cipolla MJ. Treatment with low dose fasudil for acute ischemic stroke in chronic hypertension. J Cereb Blood Flow Metab 2017; 37:3262-3270. [PMID: 28665172 PMCID: PMC5584704 DOI: 10.1177/0271678x17718665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effect of Rho kinase inhibition on changes in cerebral blood flow (CBF), brain injury and vascular function after ischemic stroke in spontaneously hypertensive rats (SHR). Changes in core MCA and collateral perfusion were measured by a validated laser Doppler method. Animals underwent 2 h tMCAO and 2 h reperfusion. Fasudil (0.1 mg/kg, i.v.) or vehicle was given at 30 min ischemia (n = 9/group; mean (SD)). Brain injury was determined by 2,3,5-triphenyltetrazolium chloride staining. To determine the effect of fasudil on vascular function, fasudil was given 10 min before reperfusion and parenchymal arterioles studied isolated (n = 6/group; mean(SD)). Collateral perfusion was low in vehicle-treated SHR (-8(32)%) that changed minimally with fasudil (6(24)%, p > 0.05, effect size: 0.47;95% CI-0.49-1.39). Reperfusion CBF was below baseline in vehicle (-27(26)%) and fasudil (-32(25)%, p > 0.05, effect size: 0.19; 95% CI-0.74-1.11) groups, suggesting incomplete reperfusion in both groups. Fasudil had little effect on brain injury volume (28(13)% vs. 36(7)% in vehicle, p > 0.05, effect size: 0.75; 95% CI-0.24-1.66). In isolated parenchymal arterioles, myogenic tone was similar between groups (37(6)% vs. 38(10)% in vehicle, p > 0.05, effect size: 0.09; 95% CI-1.05-1.21). There were no differences with fasudil treatment vs. vehicle in perfusion, brain injury and vascular function that may be related to the low dose that had minimal blood pressure lowering effect.
Collapse
Affiliation(s)
- Siu-Lung Chan
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, Larner, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Marilyn J Cipolla
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, Larner, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|