1
|
Khan I, Muneer R, Qazi REM, Salim A. Pharmacological activation of mesenchymal stem cells increases gene expression pattern of cell adhesion molecules and fusion with neonatal cardiomyocytes. Cell Biochem Funct 2024; 42:e4090. [PMID: 38973147 DOI: 10.1002/cbf.4090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Cellular therapy is considered a better option for the treatment of degenerative disorders. Different cell types are being used for tissue regeneration. Despite extensive research in this field, several issues remain to be addressed concerning cell transplantation. One of these issues is the survival and homing of administered cells in the injured tissue, which depends on the ability of these cells to adhere. To enhance cell adherence and survival, Rap1 GTPase was activated in mesenchymal stem cells (MSCs) as well as in cardiomyocytes (CMs) by using 8-pCPT-2'-O-Me-cAMP, and the effect on gene expression dynamics was determined through quantitative reverse transcriptase-polymerase chain reaction analysis. Pharmacological activation of MSCs and CMs resulted in the upregulation of connexin-43 and cell adhesion genes, which increased the cell adhesion ability of MSCs and CMs, and increased the fusion of MSCs with neonatal CMs. Treating stem cells with a pharmacological agent that activates Rap1a before transplantation can enhance their fusion with CMs and increase cellular regeneration.
Collapse
Affiliation(s)
- Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Center for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
- Department of Ophthalmology and Visual Sciences, The Aga Khan University, Karachi, Pakistan
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Rabbia Muneer
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rida-E-Maria Qazi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Center for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Skelin Klemen M, Dolenšek J, Križančić Bombek L, Pohorec V, Gosak M, Slak Rupnik M, Stožer A. The effect of forskolin and the role of Epac2A during activation, activity, and deactivation of beta cell networks. Front Endocrinol (Lausanne) 2023; 14:1225486. [PMID: 37701894 PMCID: PMC10494243 DOI: 10.3389/fendo.2023.1225486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Beta cells couple stimulation by glucose with insulin secretion and impairments in this coupling play a central role in diabetes mellitus. Cyclic adenosine monophosphate (cAMP) amplifies stimulus-secretion coupling via protein kinase A and guanine nucleotide exchange protein 2 (Epac2A). With the present research, we aimed to clarify the influence of cAMP-elevating diterpene forskolin on cytoplasmic calcium dynamics and intercellular network activity, which are two of the crucial elements of normal beta cell stimulus-secretion coupling, and the role of Epac2A under normal and stimulated conditions. To this end, we performed functional multicellular calcium imaging of beta cells in mouse pancreas tissue slices after stimulation with glucose and forskolin in wild-type and Epac2A knock-out mice. Forskolin evoked calcium signals in otherwise substimulatory glucose and beta cells from Epac2A knock-out mice displayed a faster activation. During the plateau phase, beta cells from Epac2A knock-out mice displayed a slightly higher active time in response to glucose compared with wild-type littermates, and stimulation with forskolin increased the active time via an increase in oscillation frequency and a decrease in oscillation duration in both Epac2A knock-out and wild-type mice. Functional network properties during stimulation with glucose did not differ in Epac2A knock-out mice, but the presence of Epac2A was crucial for the protective effect of stimulation with forskolin in preventing a decline in beta cell functional connectivity with time. Finally, stimulation with forskolin prolonged beta cell activity during deactivation, especially in Epac2A knock-out mice.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, European Center Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, European Center Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
3
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
4
|
Yeruva S, Kempf E, Egu DT, Flaswinkel H, Kugelmann D, Waschke J. Adrenergic Signaling-Induced Ultrastructural Strengthening of Intercalated Discs via Plakoglobin Is Crucial for Positive Adhesiotropy in Murine Cardiomyocytes. Front Physiol 2020; 11:430. [PMID: 32508670 PMCID: PMC7253624 DOI: 10.3389/fphys.2020.00430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Abstract
Intercalated discs (ICDs), which connect adjacent cardiomyocytes, are composed of desmosomes, adherens junctions (AJs) and gap junctions (GJs). Previous data demonstrated that adrenergic signaling enhances cardiac myocyte cohesion, referred to as positive adhesiotropy, via PKA-mediated phosphorylation of plakoglobin (PG). However, it was unclear whether positive adhesiotropy caused ultrastructural modifications of ICDs. Therefore, we further investigated the role of PG in adrenergic signaling-mediated ultrastructural changes in the ICD of cardiomyocytes. Quantitative transmission electron microscopy (TEM) analysis of ICD demonstrated that cAMP elevation caused significant elongation of area composita and thickening of the ICD plaque, paralleled by enhanced cardiomyocyte cohesion, in WT but not PG-deficient cardiomyocytes. STED microscopy analysis supported that cAMP elevation ex vivo enhanced overlap of desmoglein-2 (Dsg2) and N-cadherin (N-cad) staining in ICDs of WT but not PG-deficient cardiomyocytes. For dynamic analyses, we utilized HL-1 cardiomyocytes, in which cAMP elevation induced translocation of Dsg2 and PG but not of N-cad to cell junctions. Nevertheless, depletion of N-cad but not of Dsg2 resulted in a decrease in basal cell cohesion whereas positive adhesiotropy was abrogated in monolayers depleted for either Dsg2 or N-cad. In the WT mice, ultrastrutural changes observed after cAMP elevation were paralleled by phosphorylation of PG at serine 665. Our data demonstrate that in murine hearts adrenergic signaling enhanced N-cad and Dsg2 in the ICD paralleled by ultrastrutural strengthening of ICDs and that effects induced by positive adhesiotropy were strictly dependent on Pg.
Collapse
Affiliation(s)
- Sunil Yeruva
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ellen Kempf
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Desalegn Tadesse Egu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | | | - Daniela Kugelmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
5
|
Ali SR, Ahmad W, Naeem N, Salim A, Khan I. Small molecule 2'-deoxycytidine differentiates human umbilical cord-derived MSCs into cardiac progenitors in vitro and their in vivo xeno-transplantation improves cardiac function. Mol Cell Biochem 2020; 470:99-113. [PMID: 32415417 DOI: 10.1007/s11010-020-03750-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Small molecules are widely used to induce stem cell differentiation. 2'-deoxycytidine (2-DC) belongs to the cytidine family. It stimulates the expression of cardiac-specific genes and proteins, and directs mesenchymal stem cells towards cardiomyogenic differentiation. We aim to investigate the role of 2-DC-treated human umbilical cord mesenchymal stem cells (UC-MSCs) into myogenic lineage and explore their application in regeneration of infarcted myocardium. UC-MSCs were treated with 5, 10, 20, and 40 µM 2-DC following optimization by cytotoxicity analysis. Rat model of myocardial infarction (MI) was induced by ligating left anterior descending coronary artery. Normal, and 2-DC treated UC-MSCs were transplanted in the left ventricular wall immediately after ligation. Echocardiographic measurements were performed to assess cardiac function. Tissue architecture of the myocardium was examined by histological analysis to determine fate of the transplanted cells. MSCs were successfully isolated from human umbilical cord tissue. 2-DC treatment did not produce any significant cytotoxic effect in UC-MSCs at all concentrations. qPCR analysis of treated UC-MSCs showed induction of myogenic differentiation, which is more pronounced at 20 μM concentration. Fluorescently labeled 2-DC-treated UC-MSCs showed significant (**P < 0.01) homing in the infarcted myocardium as compared to normal UC-MSCs. Hearts transplanted with 2-DC-treated UC-MSCs significantly (***P < 0.001) improved the cardiac systolic and diastolic functions and pumping ability as compared to normal UC-MSCs and MI groups. Fibrotic area and left ventricular wall thickness were significantly improved (***P < 0.001) in 2-DC-treated group as compared to normal UC-MSCs. Immunohistochemical staining showed co-localization of fluorescently labeled cells and patches of differentiated myocytes which were stained for cardiac proteins in the infarct zone implying that the treated UC-MSCs regenerated cardiomyocytes. We report for the first time that 2-DC induces cardiac differentiation in UC-MSCs. Transplanted cells differentiated into functional cardiomyocytes and significantly improved cardiac performance. These pre-differentiated cardiac progenitors showed better survival, homing, and distribution in the infarcted zone. 2-DC treated cells not only improved cardiac function, but also restored tissue homeostasis, suggesting a better therapeutic option for the regeneration of cardiac tissue in the clinical setup.
Collapse
Affiliation(s)
- Syeda Roohina Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Waqas Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Nadia Naeem
- Dow University of Health Sciences, Ojha Campus, Gulzar-e-Hijri, Suparco Road, KDA Scheme-33, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
6
|
Grandi E, Ripplinger CM. Antiarrhythmic mechanisms of beta blocker therapy. Pharmacol Res 2019; 146:104274. [PMID: 31100336 DOI: 10.1016/j.phrs.2019.104274] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Sympathetic activity plays an important role in modulation of cardiac rhythm. Indeed, while exerting positive tropic effects in response to physiologic and pathologic stressors, β-adrenergic stimulation influences cardiac electrophysiology and can lead to disturbances of the heart rhythm and potentially lethal arrhythmias, particularly in pathological settings. For this reason, β-blockers are widely utilized clinically as antiarrhythmics. In this review, the molecular mechanisms of β-adrenergic action in the heart, the cellular and tissue level cardiac responses to β-adrenergic stimulation, and the clinical use of β-blockers as antiarrhythmic agents are reviewed. We emphasize the complex interaction between cardiomyocyte signaling, contraction, and electrophysiology occurring over multiple time- and spatial-scales during pathophysiological responses to β-adrenergic stimulation. An integrated understanding of this complex system is essential for optimizing therapies aimed at preventing arrhythmias.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, United States.
| | | |
Collapse
|
7
|
Fostok SF, El-Sibai M, El-Sabban M, Talhouk RS. Gap Junctions and Wnt Signaling in the Mammary Gland: a Cross-Talk? J Mammary Gland Biol Neoplasia 2019; 24:17-38. [PMID: 30194659 DOI: 10.1007/s10911-018-9411-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Connexins (Cxs), the building blocks of gap junctions (GJs), exhibit spatiotemporal patterns of expression and regulate the development and differentiation of the mammary gland, acting via channel-dependent and channel-independent mechanisms. Impaired Cx expression and localization are reported in breast cancer, suggesting a tumor suppressive role for Cxs. The signaling events that mediate the role of GJs in the development and tumorigenesis of the mammary gland remain poorly identified. The Wnt pathways, encompassing the canonical or the Wnt/β-catenin pathway and the noncanonical β-catenin-independent pathway, also play important roles in those processes. Indeed, aberrant Wnt signaling is associated with breast cancer. Despite the coincident roles of Cxs and Wnt pathways, the cross-talk in the breast tissue is poorly defined, although this is reported in a number of other tissues. Our previous studies revealed a channel-independent role for Cx43 in inducing differentiation or suppressing tumorigenesis of mammary epithelial cells by acting as a negative regulator of the Wnt/β-catenin pathway. Here, we provide a brief overview of mammary gland development, with emphasis on the role of Cxs in development and tumorigenesis of this tissue. We also discuss the role of Wnt signaling in similar contexts, and review the literature illustrating interplay between Cxs and Wnt pathways.
Collapse
Affiliation(s)
- Sabreen F Fostok
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), P.O. Box: 11-0236, Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| | - Rabih S Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), P.O. Box: 11-0236, Beirut, Lebanon.
| |
Collapse
|
8
|
Farnsworth NL, Walter R, Piscopio RA, Schleicher WE, Benninger RKP. Exendin-4 overcomes cytokine-induced decreases in gap junction coupling via protein kinase A and Epac2 in mouse and human islets. J Physiol 2019; 597:431-447. [PMID: 30412665 PMCID: PMC6332825 DOI: 10.1113/jp276106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS The pancreatic islets of Langerhans maintain glucose homeostasis through insulin secretion, where insulin secretion dynamics are regulated by intracellular Ca2+ signalling and electrical coupling of the insulin producing β-cells in the islet. We have previously shown that cytokines decrease β-cell coupling and that compounds which increase cAMP can increase coupling. In both mouse and human islets exendin-4, which increases cAMP, protected against cytokine-induced decreases in coupling and in mouse islets preserved glucose-stimulated calcium signalling by increasing connexin36 gap junction levels on the plasma membrane. Our data indicate that protein kinase A regulates β-cell coupling through a fast mechanism, such as channel gating or membrane organization, while Epac2 regulates slower mechanisms of regulation, such as gap junction turnover. Increases in β-cell coupling with exendin-4 may protect against cytokine-mediated β-cell death as well as preserve insulin secretion dynamics during the development of diabetes. ABSTRACT The pancreatic islets of Langerhans maintain glucose homeostasis. Insulin secretion from islet β-cells is driven by glucose metabolism, depolarization of the cell membrane and an influx of calcium, which initiates the release of insulin. Gap junctions composed of connexin36 (Cx36) electrically couple β-cells, regulating calcium signalling and insulin secretion dynamics. Cx36 coupling is decreased in pre-diabetic mice, suggesting a role for altered coupling in diabetes. Our previous work has shown that pro-inflammatory cytokines decrease Cx36 coupling and that compounds which increase cAMP can increase Cx36 coupling. The goal of this study was to determine if exendin-4, which increases cAMP, can protect against cytokine-induced decreases in Cx36 coupling and altered islet function. In both mouse and human islets, exendin-4 protected against cytokine-induced decreases in coupling and preserved glucose-stimulated calcium signalling. Exendin-4 also protected against protein kinase Cδ-mediated decreases in Cx36 coupling. Exendin-4 preserved coupling in mouse islets by preserving Cx36 levels on the plasma membrane. Exendin-4 regulated Cx36 coupling via both protein kinase A (PKA)- and Epac2-mediated mechanisms in cytokine-treated islets. In mouse islets, modulating Epac2 had a greater impact in mediating Cx36 coupling, while in human islets modulating PKA had a greater impact on Cx36 coupling. Our data indicate that PKA regulates Cx36 coupling through a fast mechanism, such as channel gating, while Epac2 regulates slower mechanisms of regulation, such as Cx36 turnover in the membrane. Increases in Cx36 coupling with exendin-4 may protect against cytokine-mediated β-cell dysfunction to insulin secretion dynamics during the development of diabetes.
Collapse
Affiliation(s)
- Nikki L. Farnsworth
- Barbara Davis Center for Childhood DiabetesUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| | - Rachelle Walter
- Department of BioengineeringUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| | - Robert A. Piscopio
- Department of BioengineeringUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| | - Wolfgang E. Schleicher
- Department of BioengineeringUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| | - Richard K. P. Benninger
- Barbara Davis Center for Childhood DiabetesUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
- Department of BioengineeringUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| |
Collapse
|
9
|
Nagy JI, Lynn BD. Structural and Intermolecular Associations Between Connexin36 and Protein Components of the Adherens Junction-Neuronal Gap Junction Complex. Neuroscience 2018; 384:241-261. [PMID: 29879437 DOI: 10.1016/j.neuroscience.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
Intimate structural and functional relationships between gap junctions and adherens junctions have been demonstrated in peripheral tissues, but have not been thoroughly examined in the central nervous system, where adherens junctions are often found in close proximity to neuronal gap junctions. Here, we used immunofluorescence approaches to document the localization of various protein components of adherens junctions in relation to those that we have previously reported to occur at electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36). The adherens junction constituents N-cadherin and nectin-1 were frequently found to localize near or overlap with Cx36-containing gap junctions in several brain regions examined. This was also true of the adherens junction-associated proteins α-catenin and β-catenin, as well as the proteins zonula occludens-1 and AF6 (aka, afadin) that were reported constituents of both adherens junctions and gap junctions. The deployment of the protein constituents of these junctions was especially striking at somatic contacts between primary afferent neurons in the mesencephalic trigeminal nucleus (MesV), where the structural components of adherens junctions appeared to be maintained in connexin36 null mice. These results support emerging views concerning the multi-molecular composition of electrical synapses and raise possibilities for various structural and functional protein-protein interactions at what now can be considered the adherens junction-neuronal gap junction complex. Further, the results point to intracellular signaling pathways that could potentially contribute to the assembly, maintenance and turnover of this complex, as well as to the dynamic nature of neuronal communication at electrical synapses.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
10
|
Trexler CL, Odell AT, Jeong MY, Dowell RD, Leinwand LA. Transcriptome and Functional Profile of Cardiac Myocytes Is Influenced by Biological Sex. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001770. [PMID: 29030402 PMCID: PMC5679409 DOI: 10.1161/circgenetics.117.001770] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although cardiovascular disease is the primary killer of women in the United States, women and female animals have traditionally been omitted from research studies. In reports that do include both sexes, significant sexual dimorphisms have been demonstrated in development, presentation, and outcome of cardiovascular disease. However, there is little understanding of the mechanisms underlying these observations. A more thorough understanding of sex-specific cardiovascular differences both at baseline and in disease is required to effectively consider and treat all patients with cardiovascular disease. METHODS AND RESULTS We analyzed contractility in the whole rat heart, adult rat ventricular myocytes (ARVMs), and myofibrils from both sexes of rats and observed functional sex differences at all levels. Hearts and ARVMs from female rats displayed greater fractional shortening than males, and female ARVMs and myofibrils took longer to relax. To define factors underlying these functional differences, we performed an RNA sequencing experiment on ARVMs from male and female rats and identified ≈600 genes were expressed in a sexually dimorphic manner. Further analysis revealed sex-specific enrichment of signaling pathways and key regulators. At the protein level, female ARVMs exhibited higher protein kinase A activity, consistent with pathway enrichment identified through RNA sequencing. In addition, activating the protein kinase A pathway diminished the contractile sexual dimorphisms previously observed. CONCLUSIONS These data support the notion that sex-specific gene expression differences at baseline influence cardiac function, particularly through the protein kinase A pathway, and could potentially be responsible for differences in cardiovascular disease presentation and outcomes.
Collapse
Affiliation(s)
- Christa L Trexler
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Aaron T Odell
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Mark Y Jeong
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Robin D Dowell
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.).
| |
Collapse
|
11
|
Laudette M, Zuo H, Lezoualc'h F, Schmidt M. Epac Function and cAMP Scaffolds in the Heart and Lung. J Cardiovasc Dev Dis 2018; 5:jcdd5010009. [PMID: 29401660 PMCID: PMC5872357 DOI: 10.3390/jcdd5010009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Evidence collected over the last ten years indicates that Epac and cAMP scaffold proteins play a critical role in integrating and transducing multiple signaling pathways at the basis of cardiac and lung physiopathology. Some of the deleterious effects of Epac, such as cardiomyocyte hypertrophy and arrhythmia, initially described in vitro, have been confirmed in genetically modified mice for Epac1 and Epac2. Similar recent findings have been collected in the lung. The following sections will describe how Epac and cAMP signalosomes in different subcellular compartments may contribute to cardiac and lung diseases.
Collapse
Affiliation(s)
- Marion Laudette
- Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III, 31432 Toulouse, France.
| | - Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9713AV Groningen, The Netherlands.
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III, 31432 Toulouse, France.
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9713AV Groningen, The Netherlands.
| |
Collapse
|
12
|
Spadari RC, Cavadas C, de Carvalho AETS, Ortolani D, de Moura AL, Vassalo PF. Role of Beta-adrenergic Receptors and Sirtuin Signaling in the Heart During Aging, Heart Failure, and Adaptation to Stress. Cell Mol Neurobiol 2018; 38:109-120. [PMID: 29063982 DOI: 10.1007/s10571-017-0557-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023]
Abstract
In the heart, catecholamine effects occur by activation of beta-adrenergic receptors (β-ARs), mainly the beta 1 (β1-AR) and beta 2 (β2-AR) subtypes, both of which couple to the Gs protein that activates the adenylyl cyclase signaling pathway. The β2-ARs can also couple to the Gi protein that counterbalances the effect of the Gs protein on cyclic adenosine monophosphate production and activates the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In several cardiovascular disorders, including heart failure, as well as in aging and in animal models of environmental stress, a reduction in the β1/β2-AR ratio and activation of the β2-AR-Gi-PI3K-Akt signaling pathway have been observed. Recent studies have shown that sirtuins modulate certain organic processes, including the cellular stress response, through activation of the PI3K-Akt signaling pathway and of downstream molecules such as p53, Akt, HIF1-α, and nuclear factor-kappa B. In the heart, SIRT1, SIRT3, and β2-ARs are crucial to the regulation of the cardiomyocyte energy metabolism, oxidative stress, reactive oxygen species production, and autophagy. SIRT1 and the β2-AR-Gi complex also control signaling pathways of cell survival and death. Here, we review the role played by β2-ARs and sirtuins during aging, heart failure, and adaptation to stress, focusing on the putative interplay between the two. That relationship, if proven, merits further investigation in the context of cardiac function and dysfunction.
Collapse
Affiliation(s)
- Regina Celia Spadari
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil.
- Departamento de Biociências / Campus Baixada Santista, UNIFESP, Rua Silva Jardim 136, Santos, SP, 11015-020, Brazil.
| | - Claudia Cavadas
- Center for Neurosciences and Cell Biology (CNC) and School of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Elisa T Saturi de Carvalho
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Daniela Ortolani
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
- Department of Physiological Science, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
| | - Andre Luiz de Moura
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Paula Frizera Vassalo
- Department of Physiological Science, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
- University Hospital Cassiano Antônio de Moraes, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
| |
Collapse
|
13
|
Brand T, Schindler R. New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle. Cell Signal 2017; 40:156-165. [PMID: 28939104 PMCID: PMC6562197 DOI: 10.1016/j.cellsig.2017.09.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/16/2023]
Abstract
The cyclic 3′,5′-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Popeye domain containing (POPDC) proteins are novel class of cAMP effector proteins. POPDC proteins control membrane trafficking of interacting proteins. POPDC proteins play a role in cardiac pacemaking and atrioventricular conduction. Mutations of POPDC genes are causing muscular dystrophy.
Collapse
Affiliation(s)
- Thomas Brand
- Developmental Dynamics, Myocardial Function, National Heart and Lung Institute, Imperial College London, United Kingdom.
| | - Roland Schindler
- Developmental Dynamics, Myocardial Function, National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
14
|
Yang Z, Kirton HM, Al-Owais M, Thireau J, Richard S, Peers C, Steele DS. Epac2-Rap1 Signaling Regulates Reactive Oxygen Species Production and Susceptibility to Cardiac Arrhythmias. Antioxid Redox Signal 2017; 27:117-132. [PMID: 27649969 PMCID: PMC5510674 DOI: 10.1089/ars.2015.6485] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
Abstract
AIMS In the heart, β1-adrenergic signaling involves cyclic adenosine monophosphate (cAMP) acting via both protein kinase-A (PKA) and exchange protein directly activated by cAMP (Epac): a guanine nucleotide exchange factor for the small GTPase Rap1. Inhibition of Epac-Rap1 signaling has been proposed as a therapeutic strategy for both cancer and cardiovascular disease. However, previous work suggests that impaired Rap1 signaling may have detrimental effects on cardiac function. The aim of the present study was to investigate the influence of Epac2-Rap1 signaling on the heart using both in vivo and in vitro approaches. RESULTS Inhibition of Epac2 signaling induced early afterdepolarization arrhythmias in ventricular myocytes. The underlying mechanism involved an increase in mitochondrial reactive oxygen species (ROS) and activation of the late sodium current (INalate). Arrhythmias were blocked by inhibition of INalate or the mitochondria-targeted antioxidant, mitoTEMPO. In vivo, inhibition of Epac2 caused ventricular tachycardia, torsades de pointes, and sudden death. The in vitro and in vivo effects of Epac2 inhibition were mimicked by inhibition of geranylgeranyltransferase-1, which blocks interaction of Rap1 with downstream targets. INNOVATION Our findings show for the first time that Rap1 acts as a negative regulator of mitochondrial ROS production in the heart and that impaired Epac2-Rap1 signaling causes arrhythmias due to ROS-dependent activation of INalate. This has implications for the use of chemotherapeutics that target Epac2-Rap1 signaling. However, selective inhibition of INalate provides a promising strategy to prevent arrhythmias caused by impaired Epac2-Rap1 signaling. CONCLUSION Epac2-Rap1 signaling attenuates mitochondrial ROS production and reduces myocardial arrhythmia susceptibility. Antioxid. Redox Signal. 27, 117-132.
Collapse
Affiliation(s)
- Zhaokang Yang
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Hannah M. Kirton
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Moza Al-Owais
- Division of Cardiovascular Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Jérôme Thireau
- PHYMEDEXP, Physiologie et Médecine Expérimentale, Cœur et Muscles, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Sylvain Richard
- PHYMEDEXP, Physiologie et Médecine Expérimentale, Cœur et Muscles, INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Chris Peers
- Division of Cardiovascular Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Derek S. Steele
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Khan I, Ali A, Akhter MA, Naeem N, Chotani MA, Iqbal H, Kabir N, Atiq M, Salim A. Epac-Rap1-activated mesenchymal stem cells improve cardiac function in rat model of myocardial infarction. Cardiovasc Ther 2017; 35. [PMID: 28039940 DOI: 10.1111/1755-5922.12248] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Rap1, a member of Ras superfamily of small GTP-binding proteins, is involved in cardiovascular biology in numerous ways. It is an evolutionary conserved regulator of adhesion, polarity, differentiation and growth. AIMS Our aim was to analyze Rap1-activated rat bone marrow mesenchymal stem cells (MSCs) for their potential role in adhesion and cardiac differentiation. METHODS Myocardial infarction (MI) was produced in Sprague Dawley (SD) rats through occlusion of the left anterior descending coronary artery. MSCs were treated with 8-pCPT-2'-O-Me-cAMP (CPT) to activate Rap1. Normal (untreated) and CPT-treated MSCs were transplanted through intramyocardial injection in respective groups. Cardiac function was assessed by echocardiography at 2 and 4 weeks after cell transplantation. Histological analysis was performed to observe changes at tissue level. RESULTS Homing of CPT-treated MSCs was significantly (***P<.001) higher as compared to normal MSCs in the infarcted hearts. This may be due to increase in the gene expression of some of the cell adhesion molecules as evident by qRT-PCR analysis. Significant (***P<.001) improvement in the restoration of heart function in terms of left ventricular diastolic and systolic internal diameters (LVIDd, LVIDs), % ejection fraction, % fraction shortening and end-systolic and end-diastolic volumes were observed in CPT-treated MSCs as compared to the MI model. Histological analyses showed significant (***P<.001) reduction in scar formation in the CPT-treated group. Differentiation of treated MSCs into functional cardiomyocytes was evident through immunohistochemical staining. LV wall thickness was also preserved significantly (***P<.001). Blood vessel formation was more pronounced in CPT-treated group although both cell therapy groups showed significant increase as compared to MI model. CONCLUSION Our findings showed that pharmacological activation of Epac-Rap1 improves cardiac function through better survival, adhesion and differentiation of transplanted cells. Transplantation of these MSCs in the infarct area restored functional myocardium.
Collapse
Affiliation(s)
- Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Anwar Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Aleem Akhter
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nadia Naeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Maqsood Ahmed Chotani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Center for Cardiovascular & Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Hana'a Iqbal
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Nurul Kabir
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mehnaz Atiq
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
16
|
Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés M, Oliver FJ. Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer 2017; 16:65. [PMID: 28320399 PMCID: PMC5359927 DOI: 10.1186/s12943-017-0631-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Vasculogenic mimicry (VM) is a blood supply system independent of endothelial vessels in tumor cells from different origins. It reflects the plasticity of aggressive tumor cells that express vascular cell markers and line tumor vasculature. The presence of VM is associated with a high tumor grade, short survival, invasion and metastasis. Endothelial cells (ECs) express various members of the cadherin superfamily, in particular vascular endothelial (VE-) cadherin, which is the main adhesion receptor of endothelial adherent junctions. Aberrant extra-vascular expression of VE-cadherin has been observed in certain cancer types associated with VM. In this review we focus on non-endothelial VE-cadherin as a prominent factor involved in the acquisition of tubules-like structures by aggressive tumor cells and we summarize the specific signaling pathways, the association with trans-differentiation and stem-like phenotype and the therapeutic opportunities derived from the in-depth knowledge of the peculiarities of the biology of VE-cadherin and other key components of VM.
Collapse
Affiliation(s)
| | | | | | - F Javier Oliver
- IPBLN, CSIC, CIBERONC, Granada, Spain. .,IPBLN, CSIC, Av. Conocimiento s/n, 18016, Granada, Spain.
| |
Collapse
|
17
|
Schinner C, Vielmuth F, Rötzer V, Hiermaier M, Radeva MY, Co TK, Hartlieb E, Schmidt A, Imhof A, Messoudi A, Horn A, Schlipp A, Spindler V, Waschke J. Adrenergic Signaling Strengthens Cardiac Myocyte Cohesion. Circ Res 2017; 120:1305-1317. [PMID: 28289018 DOI: 10.1161/circresaha.116.309631] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 02/22/2017] [Accepted: 03/10/2017] [Indexed: 01/08/2023]
Abstract
RATIONALE The sympathetic nervous system is a major mediator of heart function. Intercalated discs composed of desmosomes, adherens junctions, and gap junctions provide the structural backbone for coordinated contraction of cardiac myocytes. OBJECTIVE Gap junctions dynamically remodel to adapt to sympathetic signaling. However, it is unknown whether such rapid adaption also occurs for the adhesive function provided by desmosomes and adherens junctions. METHODS AND RESULTS Atomic force microscopy revealed that β-adrenergic signaling enhances both the number of desmoglein 2-specific interactions along cell junctions and the mean desmoglein 2-mediated binding forces, whereas N-cadherin-mediated interactions were not affected. This was accompanied by increased cell cohesion in cardiac myocyte cultures and murine heart slices. Enhanced desmoglein 2-positive contacts and increased junction length as revealed by immunofluorescence and electron microscopy reflected cAMP-induced reorganization of intercellular contacts. The mechanism underlying cAMP-mediated strengthening of desmoglein 2 binding was dependent on expression of the intercalated disc plaque protein plakoglobin (Pg) and direct phosphorylation at S665 by protein kinase A: Pg deficiency as well as overexpression of the phospho-deficient Pg-mutant S665A abrogated both cAMP-mediated junctional remodeling and increase of cohesion. Moreover, Pg knockout hearts failed to functionally adapt to adrenergic stimulation. CONCLUSIONS Taken together, we provide first evidence for positive adhesiotropy as a new cardiac function of sympathetic signaling. Positive adhesiotropy is dependent on Pg phosphorylation at S665 by protein kinase A. This mechanism may be of high medical relevance because loss of junctional Pg is a hallmark of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Camilla Schinner
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Franziska Vielmuth
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Vera Rötzer
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Matthias Hiermaier
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Mariya Y Radeva
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Thu Kim Co
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Eva Hartlieb
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Andreas Schmidt
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Axel Imhof
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Ahmed Messoudi
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Anja Horn
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Angela Schlipp
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Volker Spindler
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany
| | - Jens Waschke
- From the Institute of Anatomy and Cell Biology (C.S., F.V., V.R., M.H., M.Y.R., T.K.C., E.H., A.M., A.H., A. Schlipp, V.S., J.W.) and Biomedical Center and Center for Integrated Protein Sciences Munich (A. Schmidt, A.I.), Ludwig-Maximilians-Universität, Germany.
| |
Collapse
|
18
|
Fujita T, Umemura M, Yokoyama U, Okumura S, Ishikawa Y. The role of Epac in the heart. Cell Mol Life Sci 2017; 74:591-606. [PMID: 27549789 PMCID: PMC11107744 DOI: 10.1007/s00018-016-2336-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 02/08/2023]
Abstract
As one of the most important second messengers, 3',5'-cyclic adenosine monophosphate (cAMP) mediates various extracellular signals including hormones and neurotransmitters, and induces appropriate responses in diverse types of cells. Since cAMP was formerly believed to transmit signals through only two direct target molecules, protein kinase A and the cyclic nucleotide-gated channel, the sensational discovery in 1998 of another novel direct effecter of cAMP [exchange proteins directly activated by cAMP (Epac)] attracted a great deal of scientific interest in cAMP signaling. Numerous studies on Epac have since disclosed its important functions in various tissues in the body. Recently, observations of genetically manipulated mice in various pathogenic models have begun to reveal the in vivo significance of previous in vitro or cellular-level findings. Here, we focused on the function of Epac in the heart. Accumulating evidence has revealed that both Epac1 and Epac2 play important roles in the structure and function of the heart under physiological and pathological conditions. Accordingly, developing the ability to regulate cAMP-mediated signaling through Epac may lead to remarkable new therapies for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
19
|
Lezoualc'h F, Fazal L, Laudette M, Conte C. Cyclic AMP Sensor EPAC Proteins and Their Role in Cardiovascular Function and Disease. Circ Res 2016; 118:881-97. [PMID: 26941424 DOI: 10.1161/circresaha.115.306529] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
cAMP is a universal second messenger that plays central roles in cardiovascular regulation influencing gene expression, cell morphology, and function. A crucial step toward a better understanding of cAMP signaling came 18 years ago with the discovery of the exchange protein directly activated by cAMP (EPAC). The 2 EPAC isoforms, EPAC1 and EPAC2, are guanine-nucleotide exchange factors for the Ras-like GTPases, Rap1 and Rap2, which they activate independently of the classical effector of cAMP, protein kinase A. With the development of EPAC pharmacological modulators, many reports in the literature have demonstrated the critical role of EPAC in the regulation of various cAMP-dependent cardiovascular functions, such as calcium handling and vascular tone. EPAC proteins are coupled to a multitude of effectors into distinct subcellular compartments because of their multidomain architecture. These novel cAMP sensors are not only at the crossroads of different physiological processes but also may represent attractive therapeutic targets for the treatment of several cardiovascular disorders, including cardiac arrhythmia and heart failure.
Collapse
Affiliation(s)
- Frank Lezoualc'h
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.).
| | - Loubina Fazal
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| | - Marion Laudette
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| | - Caroline Conte
- From the Department of Cardiac and Renal Remodeling of the Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-1048, Toulouse, France (F.L., L.F., M.L., C.C.); and Université Toulouse III-Paul Sabatier, Toulouse, France (F.L., L.F., M.L., C.C.)
| |
Collapse
|
20
|
Schindler RF, Scotton C, French V, Ferlini A, Brand T. The Popeye Domain Containing Genes and their Function in Striated Muscle. J Cardiovasc Dev Dis 2016; 3. [PMID: 27347491 PMCID: PMC4918794 DOI: 10.3390/jcdd3020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 01/06/2023] Open
Abstract
The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle.
Collapse
Affiliation(s)
- Roland Fr Schindler
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| | - Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Vanessa French
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Thomas Brand
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| |
Collapse
|
21
|
Yu JL, Deng R, Chung SK, Chan GCF. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion. Stem Cells 2016; 34:948-59. [PMID: 26727165 DOI: 10.1002/stem.2264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/03/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.
Collapse
Affiliation(s)
- Jiao-Le Yu
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China.,Beijing Children's Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ruixia Deng
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China
| | - Sookja K Chung
- Department of Ophthalmology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China.,Center for Cancer Research, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China.,Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, People's Republic of China
| |
Collapse
|
22
|
Boularan C, Gales C. Cardiac cAMP: production, hydrolysis, modulation and detection. Front Pharmacol 2015; 6:203. [PMID: 26483685 PMCID: PMC4589651 DOI: 10.3389/fphar.2015.00203] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/03/2015] [Indexed: 01/04/2023] Open
Abstract
Cyclic adenosine 3′,5′-monophosphate (cAMP) modulates a broad range of biological processes including the regulation of cardiac myocyte contractile function where it constitutes the main second messenger for β-adrenergic receptors' signaling to fulfill positive chronotropic, inotropic and lusitropic effects. A growing number of studies pinpoint the role of spatial organization of the cAMP signaling as an essential mechanism to regulate cAMP outcomes in cardiac physiology. Here, we will briefly discuss the complexity of cAMP synthesis and degradation in the cardiac context, describe the way to detect it and review the main pharmacological arsenal to modulate its availability.
Collapse
Affiliation(s)
- Cédric Boularan
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| | - Céline Gales
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université Toulouse III Paul Sabatier Toulouse, France
| |
Collapse
|
23
|
Lee TM, Chen WT, Chang NC. Dipeptidyl peptidase-4 inhibition attenuates arrhythmias via a protein kinase A-dependent pathway in infarcted hearts. Circ J 2015; 79:2461-70. [PMID: 26399925 DOI: 10.1253/circj.cj-15-0515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effect of dipeptidyl peptidase-4 (DPP-4) inhibitors on arrhythmias remains unknown. The aim of this study was to investigate whether sitagliptin attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression, focusing on cyclic adenosine monophosphate (cAMP) downstream signaling such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). METHODS AND RESULTS Male Wistar rats were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after ligating the coronary artery. Post-infarction was associated with increased oxidative stress. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated rats compared with sham. Compared with the vehicle, infarcted rats treated with sitagliptin had significantly increased cAMP levels, decreased DPP-4 activity, oxidative stress, NGF levels and immunofluorescence-stained sympathetic hyperinnervation. Arrhythmic scores were significantly lower in the sitagliptin-treated infarcted rats than in vehicle. Ex vivo studies showed that sitagliptin increased the phosphorylated cAMP response element-binding protein (CREB), which can be reversed by H-89 (a PKA inhibitor), not brefeldin A (an Epac inhibitor).Heme oxygenase-1(HO-1) expression was increased by a PKA agonist but not by an Epac agonist.HO-1expression was attenuated in KG-501 (a CREB inhibitor)-treated infarcted rats in the presence of a PKA agonist. CONCLUSIONS Sitagliptin protects ventricular arrhythmias by attenuating NGF-induced sympathetic innervation via upregulation ofHO-1expression in a cAMP/PKA/CREB-dependent antioxidant pathway in non-diabetic infarcted rats.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital
| | | | | |
Collapse
|
24
|
Khaksarian M, Mostafavi H, Soleimani M, Karimian SM, Ghahremani MH, Joghataee MT, Khorashadizadeh M, Aligholi H, Attari F, Hassanzadeh G. Regulation of connexin 43 and microRNA expression via β2-adrenoceptor signaling in 1321N1 astrocytoma cells. Mol Med Rep 2015; 12:1941-50. [PMID: 25873300 DOI: 10.3892/mmr.2015.3609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
Connexin 43 (Cx43) is the main gap junction protein in astrocytes and exerts the same effects on growth inhibition in astrocytoma and glioma as microRNA-146a (miR-146a) in glioma. β2-adrenergic receptor (AR) signaling modulates Cx43 expression in myocytes via components downstream of protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). However, it remains to be elucidated how expression of Cx43 is modulated in astrocytes. In the present study, 1321N1 astrocytoma cells were treated with β2-AR signaling agents in order to evaluate the expression of Cx43 and miRNAs. RNA and protein were extracted from the cells for use in reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. The results revealed that clenbuterol increased miR-146a level and upregulated Cx43 expression via cAMP/PKA at the mRNA and protein level. Pre-inhibition of adenyl cyclase decreased expression of Cx43 and miR-146a. PKA activation and overexpression of miR-146a in A-1321N1 cells increased the expression of Cx43. β2-AR stimulation and 6Bnz, a PKA activator, suppressed oncomiRs miR-155 and miR-27a, while 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, an Epac activator, increased their levels. The current findings demonstrated that β2-AR signaling has growth inhibitory effects via modulation of the cAMP/PKA pathway in A-1321N1 cells through increasing the expression level of Cx43 and miR-146a as well as decreasing miR-155 and miR-27a levels. Thus, stimulation of the β2-AR and PKA signaling pathway may be a useful approach for astrocytoma therapy.
Collapse
Affiliation(s)
- Mojtaba Khaksarian
- Department of Physiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad 6814993165, Iran
| | - Hossein Mostafavi
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran 1997775555, Iran
| | - Masoud Soleimani
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran 1997775555, Iran
| | - Seid Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Mohammad Hassan Ghahremani
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417743371, Iran
| | - Mohammad Taghee Joghataee
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mohsen Khorashadizadeh
- Department of Medical Biotechnologies, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417743371, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417743371, Iran
| | - Fatemeh Attari
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417743371, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417743371, Iran
| |
Collapse
|
25
|
Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression. Biochem J 2015; 465:295-303. [PMID: 25339598 DOI: 10.1042/bj20140952] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cAMP signalling pathway plays an essential role in immune functions. In the present study we examined the role of the cAMP/EPAC1 (exchange protein directly activated by cAMP) axis in regulatory T-cell (Treg)-mediated immunosuppression using genetic and pharmacological approaches. Genetic deletion of EPAC1 in Tregs and effector T-cells (Teffs) synergistically attenuated Treg-mediated suppression of Teffs. Mechanistically, EPAC1 inhibition enhanced activation of the transcription factor STAT3 (signal transducer and activator of transcription 3) and up-regulated SMAD7 expression while down-regulating expression of SMAD4. Consequently, CD4+ T-cells were desensitized to transforming growth factor (TGF) β1, a cytokine employed by Tregs to exert a broad inhibitory function within the immune system. Furthermore, deletion of EPAC1 led to production of significant levels of ovalbumin IgG antibodies in a low-dose, oral-tolerance mouse model. These in vivo observations are consistent with the finding that EPAC1 plays an important role in Treg-mediated suppression. More importantly, pharmacological inhibition of EPAC1 using an EPAC-specific inhibitor recapitulates the EPAC1 deletion phenotype both in vivo and in vitro. The results of the present study show that EPAC1 boosts Treg-mediated suppression, and identifies EPAC1 as a target with broad therapeutic potential because Tregs are involved in numerous pathologies, including autoimmunity, infections and a wide range of cancers.
Collapse
|
26
|
Mangmool S, Hemplueksa P, Parichatikanond W, Chattipakorn N. Epac is required for GLP-1R-mediated inhibition of oxidative stress and apoptosis in cardiomyocytes. Mol Endocrinol 2015; 29:583-96. [PMID: 25719403 DOI: 10.1210/me.2014-1346] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although the cardioprotective effects of glucagon-like peptide-1 and its analogs have been reported, the exact mechanisms of the glucagon-like peptide-1 receptor (GLP-1R) signaling pathway in the heart are still unclear. Activation of the GLP-1R has been shown to increase cAMP levels, thus eliciting protein kinase A- and exchange protein activated by cAMP (Epac)-dependent signaling pathways in pancreatic β-cells. However, which pathway plays an important role in the antioxidant and antiapoptotic effects of GLP-1R activation in the heart is not known. In this study, we demonstrated that stimulation of GLP-1Rs with exendin-4 attenuated H2O2-induced reactive oxygen species production and increased the synthesis of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase that is dependent on Epac. Additionally, exendin-4 has an antiapoptotic effect by decreasing a number of apoptotic cells, inhibiting caspase-3 activity, and enhancing the expression of antiapoptotic protein B-cell lymphoma 2, which is mediated through both protein kinase A- and Epac-dependent pathways. These data indicate a critical role for Epac in GLP-1R-mediated cardioprotection.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology (S.M., P.H., W.P.), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; and Cardiac Electrophysiology Research and Training Center (N.C.), Faculty of Medicine, and Excellence Center in Cardiac Electrophysiology (N.C.), Department of Physiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | |
Collapse
|
27
|
Del Rio CL, Clymer BD, Billman GE. Myocardial electrotonic response to submaximal exercise in dogs with healed myocardial infarctions: evidence for β-adrenoceptor mediated enhanced coupling during exercise testing. Front Physiol 2015; 6:25. [PMID: 25698976 PMCID: PMC4318283 DOI: 10.3389/fphys.2015.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/15/2015] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Autonomic neural activation during cardiac stress testing is an established risk-stratification tool in post-myocardial infarction (MI) patients. However, autonomic activation can also modulate myocardial electrotonic coupling, a known factor to contribute to the genesis of arrhythmias. The present study tested the hypothesis that exercise-induced autonomic neural activation modulates electrotonic coupling (as measured by myocardial electrical impedance, MEI) in post-MI animals shown to be susceptible or resistant to ventricular fibrillation (VF). METHODS Dogs (n = 25) with healed MI instrumented for MEI measurements were trained to run on a treadmill and classified based on their susceptibility to VF (12 susceptible, 9 resistant). MEI and ECGs were recorded during 6-stage exercise tests (18 min/test; peak: 6.4 km/h @ 16%) performed under control conditions, and following complete β-adrenoceptor (β-AR) blockade (propranolol); MEI was also measured at rest during escalating β-AR stimulation (isoproterenol) or overdrive-pacing. RESULTS Exercise progressively increased heart rate (HR) and reduced heart rate variability (HRV). In parallel, MEI decreased gradually (enhanced electrotonic coupling) with exercise; at peak exercise, MEI was reduced by 5.3 ± 0.4% (or -23 ± 1.8Ω, P < 0.001). Notably, exercise-mediated electrotonic changes were linearly predicted by the degree of autonomic activation, as indicated by changes in either HR or in HRV (P < 0.001). Indeed, β-AR blockade attenuated the MEI response to exercise while direct β-AR stimulation (at rest) triggered MEI decreases comparable to those observed during exercise; ventricular pacing had no significant effects on MEI. Finally, animals prone to VF had a significantly larger MEI response to exercise. CONCLUSIONS These data suggest that β-AR activation during exercise can acutely enhance electrotonic coupling in the myocardium, particularly in dogs susceptible to ischemia-induced VF.
Collapse
Affiliation(s)
- Carlos L Del Rio
- Department of Physiology and Cell Biology, The Ohio State University Columbus, OH, USA ; Department of Electrical and Computer Engineering, The Ohio State University Columbus, OH, USA ; Safety Pharmacology, QTest Labs Columbus, OH, USA
| | - Bradley D Clymer
- Department of Electrical and Computer Engineering, The Ohio State University Columbus, OH, USA ; Biomedical Engineering, The Ohio State University Columbus, OH, USA
| | - George E Billman
- Department of Physiology and Cell Biology, The Ohio State University Columbus, OH, USA ; Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| |
Collapse
|
28
|
PDE4 inhibition reduces neointima formation and inhibits VCAM-1 expression and histone methylation in an Epac-dependent manner. J Mol Cell Cardiol 2015; 81:23-33. [PMID: 25640159 DOI: 10.1016/j.yjmcc.2015.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023]
Abstract
Phosphodiesterase 4 (PDE4) activity mediates cAMP-dependent smooth muscle cell (SMC) activation following vascular injury. In this study we have investigated the effects of specific PDE4 inhibition with roflumilast on SMC proliferation and inflammatory activation in vitro and neointima formation following guide wire-induced injury of the femoral artery in mice in vivo. In vitro, roflumilast did not affect SMC proliferation, but diminished TNF-α induced expression of the vascular cell adhesion molecule 1 (VCAM-1). Specific activation of the cAMP effector Epac, but not PKA activation mimicked the effects of roflumilast on VCAM-1 expression. Consistently, the reduction of VCAM-1 expression was rescued following inhibition of Epac. TNF-α induced NFκB p65 translocation and VCAM-1 promoter activity were not altered by roflumilast in SMCs. However, roflumilast treatment and Epac activation repressed the induction of the activating epigenetic histone mark H3K4me2 at the VCAM-1 promoter, while PKA activation showed no effect. Furthermore, HDAC inhibition blocked the inhibitory effect of roflumilast on VCAM-1 expression. Both, roflumilast and Epac activation reduced monocyte adhesion to SMCs in vitro. Finally, roflumilast treatment attenuated femoral artery intima-media ratio by more than 50% after 4weeks. In summary, PDE4 inhibition regulates VCAM-1 through a novel Epac-dependent mechanism, which involves regulatory epigenetic components and reduces neointima formation following vascular injury. PDE4 inhibition and Epac activation might represent novel approaches for the treatment of vascular diseases, including atherosclerosis and in-stent restenosis.
Collapse
|
29
|
Xu N, Guan S, Chen Z, Yu Y, Xie J, Pan FY, Zhao NW, Liu L, Yang ZZ, Gao X, Xu B, Li CJ. The alteration of protein prenylation induces cardiomyocyte hypertrophy through Rheb-mTORC1 signalling and leads to chronic heart failure. J Pathol 2015; 235:672-85. [DOI: 10.1002/path.4480] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/25/2014] [Accepted: 11/05/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Na Xu
- Ministry of Education Key Laboratory of Model Animals for Disease Study; Model Animal Research Centre and Medical School of Nanjing University, National Resource Centre for Mutant Mice; Nanjing People's Republic of China
| | - Shan Guan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology; College of Life Science, Nanjing Normal University; Nanjing People's Republic of China
| | - Zhong Chen
- Ministry of Education Key Laboratory of Model Animals for Disease Study; Model Animal Research Centre and Medical School of Nanjing University, National Resource Centre for Mutant Mice; Nanjing People's Republic of China
| | - Yang Yu
- State Key Laboratory of Reproductive Biology; Institute of Zoology/Chinese Academy of Sciences; Beijing People's Republic of China
| | - Jun Xie
- Department of Cardiology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing People's Republic of China
| | - Fei-Yan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology; College of Life Science, Nanjing Normal University; Nanjing People's Republic of China
| | - Ning-Wei Zhao
- Biomedical Research Laboratory; Shimadzu (China) Co. Ltd; Shanghai People's Republic of China
| | - Li Liu
- Department of Geriatrics; First Affiliated Hospital with Nanjing Medical University; Nanjing People's Republic of China
| | - Zhong-Zhou Yang
- Ministry of Education Key Laboratory of Model Animals for Disease Study; Model Animal Research Centre and Medical School of Nanjing University, National Resource Centre for Mutant Mice; Nanjing People's Republic of China
| | - Xiang Gao
- Ministry of Education Key Laboratory of Model Animals for Disease Study; Model Animal Research Centre and Medical School of Nanjing University, National Resource Centre for Mutant Mice; Nanjing People's Republic of China
| | - Biao Xu
- Department of Cardiology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing People's Republic of China
| | - Chao-Jun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study; Model Animal Research Centre and Medical School of Nanjing University, National Resource Centre for Mutant Mice; Nanjing People's Republic of China
| |
Collapse
|
30
|
Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S, Takeuchi H, Hirata M. Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal 2015; 27:532-44. [PMID: 25562427 DOI: 10.1016/j.cellsig.2014.12.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
In addition to providing skeletal support, the bone is an endocrine organ that produces osteocalcin, whose uncarboxylated form (GluOC) increases insulin secretion either directly or indirectly by promoting incretin secretion. We have now investigated the signaling pathway by which GluOC increases expression of adiponectin in adipocytes. Activation of its putative receptor GPRC6A by GluOC induced the intracellular accumulation of cAMP and consequent activation of protein kinase A (PKA) in differentiated 3T3-L1 adipocytes. It also induced phosphorylation of CREB (cAMP response element binding protein), but this effect appeared to be mediated indirectly by extracellular signal-regulated kinase (ERK) rather than directly by PKA, given that it was attenuated by the ERK signaling inhibitor U0126. Activated PKA also induced activation of the tyrosine kinase Src, the small GTPase Rap1, an upstream of ERK and CREB phosphorylation. Activated CREB up-regulated the expression of peroxisome proliferator-activated receptor γ (PPARγ), which in turn led to induction of adiponectin expression. Finally, intermittent oral administration of GluOC in mice reduced the size of gonadal white adipocytes as well as increased the expression of PPARγ and adiponectin in these cells. Our results have thus revealed the signaling pathway by which GluOC induces adiponectin expression in adipocytes.
Collapse
Affiliation(s)
- Takahito Otani
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiko Mizokami
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshikazu Hayashi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihide Mori
- Section of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroshi Takeuchi
- Division of Applied Pharmacology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan.
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
31
|
Ampey BC, Morschauser TJ, Lampe PD, Magness RR. Gap junction regulation of vascular tone: implications of modulatory intercellular communication during gestation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:117-32. [PMID: 25015806 DOI: 10.1007/978-1-4939-1031-1_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the vasculature, gap junctions (GJ) play a multifaceted role by serving as direct conduits for cell-cell intercellular communication via the facilitated diffusion of signaling molecules. GJs are essential for the control of gene expression and coordinated vascular development in addition to vascular function. The coupling of endothelial cells to each other, as well as with vascular smooth muscle cells via GJs, plays a relevant role in the control of vasomotor tone, tissue perfusion and arterial blood pressure. The regulation of cell-signaling is paramount to cardiovascular adaptations of pregnancy. Pregnancy requires highly developed cell-to-cell coupling, which is affected partly through the formation of intercellular GJs by Cx43, a gap junction protein, within adjacent cell membranes to help facilitate the increase of uterine blood flow (UBF) in order to ensure adequate perfusion for nutrient and oxygen delivery to the placenta and thus the fetus. One mode of communication that plays a critical role in regulating Cx43 is the release of endothelial-derived vasodilators such as prostacyclin (PGI2) and nitric oxide (NO) and their respective signaling mechanisms involving second messengers (cAMP and cGMP, respectively) that are likely to be important in maintaining UBF. Therefore, the assertion we present in this review is that GJs play an integral if not a central role in maintaining UBF by controlling rises in vasodilators (PGI2 and NO) via cyclic nucleotides. In this review, we discuss: (1) GJ structure and regulation; (2) second messenger regulation of GJ phosphorylation and formation; (3) pregnancy-induced changes in cell-signaling; and (4) the role of uterine arterial endothelial GJs during gestation. These topics integrate the current knowledge of this scientific field with interpretations and hypotheses regarding the vascular effects that are mediated by GJs and their relationship with vasodilatory vascular adaptations required for modulating the dramatic physiological rises in uteroplacental perfusion and blood flow observed during normal pregnancy.
Collapse
Affiliation(s)
- Bryan C Ampey
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, School Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53715, USA
| | | | | | | |
Collapse
|
32
|
Campbell AS, Johnstone SR, Baillie GS, Smith G. β-Adrenergic modulation of myocardial conduction velocity: Connexins vs. sodium current. J Mol Cell Cardiol 2014; 77:147-54. [DOI: 10.1016/j.yjmcc.2014.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/15/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022]
|
33
|
Farnsworth NL, Hemmati A, Pozzoli M, Benninger RKP. Fluorescence recovery after photobleaching reveals regulation and distribution of connexin36 gap junction coupling within mouse islets of Langerhans. J Physiol 2014; 592:4431-46. [PMID: 25172942 PMCID: PMC4287745 DOI: 10.1113/jphysiol.2014.276733] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/11/2014] [Indexed: 11/08/2022] Open
Abstract
The pancreatic islets are central to the maintenance of glucose homeostasis through insulin secretion. Glucose‐stimulated insulin secretion is tightly linked to electrical activity in β cells within the islet. Gap junctions, composed of connexin36 (Cx36), form intercellular channels between β cells, synchronizing electrical activity and insulin secretion. Loss of gap junction coupling leads to altered insulin secretion dynamics and disrupted glucose homeostasis. Gap junction coupling is known to be disrupted in mouse models of pre‐diabetes. Although approaches to measure gap junction coupling have been devised, they either lack cell specificity, suitable quantification of coupling or spatial resolution, or are invasive. The purpose of this study was to develop fluorescence recovery after photobleaching (FRAP) as a technique to accurately and robustly measure gap junction coupling in the islet. The cationic dye Rhodamine 123 was used with FRAP to quantify dye diffusion between islet β cells as a measure of Cx36 gap junction coupling. Measurements in islets with reduced Cx36 verified the accuracy of this technique in distinguishing between distinct levels of gap junction coupling. Analysis of individual cells revealed that the distribution of coupling across the islet is highly heterogeneous. Analysis of several modulators of gap junction coupling revealed glucose‐ and cAMP‐dependent modulation of gap junction coupling in islets. Finally, FRAP was used to determine cell population specific coupling, where no functional gap junction coupling was observed between α cells and β cells in the islet. The results of this study show FRAP to be a robust technique which provides the cellular resolution to quantify the distribution and regulation of Cx36 gap junction coupling in specific cell populations within the islet. Future studies utilizing this technique may elucidate the role of gap junction coupling in the progression of diabetes and identify mechanisms of gap junction regulation for potential therapies.
Collapse
Affiliation(s)
- Nikki L Farnsworth
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Alireza Hemmati
- Department of Bioengineering, University of Colorado, Aurora, CO, USA
| | - Marina Pozzoli
- Department of Bioengineering, University of Colorado, Aurora, CO, USA
| | - Richard K P Benninger
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA Department of Bioengineering, University of Colorado, Aurora, CO, USA
| |
Collapse
|
34
|
Abstract
3'-5'-cyclic adenosine monophosphate (cAMP) is a second messenger, which plays an important role in the heart. It is generated in response to activation of G-protein-coupled receptors (GPCRs). Initially, it was thought that protein kinase A (PKA) exclusively mediates cAMP-induced cellular responses such as an increase in cardiac contractility, relaxation, and heart rate. With the identification of the exchange factor directly activated by cAMP (EPAC) and hyperpolarizing cyclic nucleotide-gated (HCN) channels as cAMP effector proteins it became clear that a protein network is involved in cAMP signaling. The Popeye domain containing (Popdc) genes encode yet another family of cAMP-binding proteins, which are prominently expressed in the heart. Loss-of-function mutations in mice are associated with cardiac arrhythmia and impaired skeletal muscle regeneration. Interestingly, the cardiac phenotype, which is present in both, Popdc1 and Popdc2 null mutants, is characterized by a stress-induced sinus bradycardia, suggesting that Popdc proteins participate in cAMP signaling in the sinuatrial node. The identification of the two-pore channel TREK-1 and Caveolin 3 as Popdc-interacting proteins represents a first step into understanding the mechanisms of heart rate modulation triggered by Popdc proteins.
Collapse
|
35
|
Mostafavi H, Khaksarian M, Joghataei MT, Soleimani M, Hassanzadeh G, Eftekhari S, Soleimani M, Mousavizadeh K, Estiri H, Ahmadi S, Hadjighassem MR. Selective β2 adrenergic agonist increases Cx43 and miR-451 expression via cAMP-Epac. Mol Med Rep 2014; 9:2405-10. [PMID: 24714982 DOI: 10.3892/mmr.2014.2120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 01/15/2014] [Indexed: 11/05/2022] Open
Abstract
It has been demonstrated that connexin 43 (Cx43) and microRNAs have significant roles in glioma. Cyclic adenosine monophosphate (cAMP) is suggested to be a regulator of connexins and microRNAs. However, it remains elusive whether cAMP and exchange protein directly activated by cAMP (Epac2), have a regulatory effect on Cx43 and microRNA-451 (miR-451) in astrocytoma cells. We treated 1321N1 astrocytoma cells with a selective β2 adrenergic agonist and a selective Epac activator with and without adenyl cyclase and protein kinase A inhibition. Cx43 and miR-451 expression were measured. Next, we evaluated the effect of miR-451 overexpression on Cx43 expression. Cell proliferation was measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results demonstrated that cAMP-Epac2 increased Cx43 and miR-451 expression. However, the alteration of miR-451 expression required a higher dose of drugs. Overexpression of miR-451 had no significant effect on Cx43 expression. The MTT assay showed that cAMP-Epac stimulation and miR-451 overexpression had a synergic inhibitory effect on cell proliferation. These findings may expand our understanding of the molecular biology of glioma and provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Hossein Mostafavi
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mojtaba Khaksarian
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Masoud Soleimani
- Department of Hematology, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Sanaz Eftekhari
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mansooreh Soleimani
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 141775553, Iran
| | - Kazem Mousavizadeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 141775553, Iran
| | - Hajar Estiri
- Stem Cell Technology Research Center, Molecular Biology and Genetic Engineering Department, Tehran 1585636473, Iran
| | - Sedighesadat Ahmadi
- Stem Cell Technology Research Center, Molecular Biology and Genetic Engineering Department, Tehran 1585636473, Iran
| | - Mahmoud Reza Hadjighassem
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| |
Collapse
|
36
|
Farnsworth NL, Benninger RKP. New insights into the role of connexins in pancreatic islet function and diabetes. FEBS Lett 2014; 588:1278-87. [PMID: 24583073 DOI: 10.1016/j.febslet.2014.02.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/22/2022]
Abstract
Multi-cellular systems require complex signaling mechanisms for proper tissue function, to mediate signaling between cells in close proximity and at distances. This holds true for the islets of Langerhans, which are multicellular micro-organs located in the pancreas responsible for glycemic control, through secretion of insulin and other hormones. Coupling of electrical and metabolic signaling between islet β-cells is required for proper insulin secretion and effective glycemic control. β-cell specific coupling is established through gap junctions composed of connexin36, which results in coordinated insulin release across the islet. Islet connexins have been implicated in both Type-1 and Type-2 diabetes; however a clear link remains to be determined. The goal of this review is to discuss recent discoveries regarding the role of connexins in regulating insulin secretion, the regulation of connexins within the islet, and recent studies which support a role for connexins in diabetes. Further studies which investigate the regulation of connexins in the islet and their role in diabetes may lead to novel diabetes therapies which regulate islet function and β-cell survival through modulation of gap junction coupling.
Collapse
Affiliation(s)
- Nikki L Farnsworth
- Barbara Davis center for childhood diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Richard K P Benninger
- Barbara Davis center for childhood diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
37
|
Chen H, Wild C, Zhou X, Ye N, Cheng X, Zhou J. Recent advances in the discovery of small molecules targeting exchange proteins directly activated by cAMP (EPAC). J Med Chem 2013; 57:3651-65. [PMID: 24256330 DOI: 10.1021/jm401425e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
3',5'-Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger that regulates numerous biological processes under physiological and pathological conditions, including cancer, diabetes, heart failure, inflammation, and neurological disorders. In the past, all effects of cAMP were initially believed to be mediated by protein kinase A (PKA) and cyclic nucleotide-regulated ion channels. Since the discovery of exchange proteins directly activated by cyclic adenosine 5'-monophosphate (EPACs) in 1998, accumulating evidence has demonstrated that the net cellular effects of cAMP are also regulated by EPAC. The pursuit of the biological functions of EPAC has benefited from the development and applications of a growing number of pharmacological probes targeting EPACs. In this review, we seek to provide a concise update on recent advances in the development of chemical entities including various membrane-permeable analogues of cAMP and newly discovered EPAC-specific ligands from high throughput assays and hit-to-lead optimizations.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | | | |
Collapse
|
38
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
39
|
Lee TM, Lin SZ, Chang NC. Both PKA and Epac pathways mediate N-acetylcysteine-induced Connexin43 preservation in rats with myocardial infarction. PLoS One 2013; 8:e71878. [PMID: 24015194 PMCID: PMC3756050 DOI: 10.1371/journal.pone.0071878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/11/2013] [Indexed: 12/19/2022] Open
Abstract
Cardiac remodeling was shown to be associated with reduced gap junction expression after myocardial infarction. A reduction in gap junctional proteins between myocytes may trigger ventricular arrhythmia. Therefore, we investigated whether N-acetylcysteine exerted antiarrhythmic effect by preserving connexin43 expression in postinfarcted rats, focusing on cAMP downstream molecules such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). Male Wistar rats after ligating coronary artery were randomized to either vehicle, or N-acetylcysteine for 4 weeks starting 24 hours after operation. Infarct size was similar between two groups. Compared with vehicle, cAMP levels were increased by N-acetylcysteine treatment after infarction. Myocardial connexin43 expression was significantly decreased in vehicle-treated infarcted rats compared with sham operated rats. Attenuated connexin43 expression and function were blunted after administering N-acetylcysteine, assessed by immunofluorescent analysis, dye coupling, Western blotting, and real-time quantitative RT-PCR of connexin43. Arrhythmic scores during programmed stimulation in the N-acetylcysteine-treated rats were significantly lower than those treated with vehicle. In an ex vivo study, enhanced connexin43 levels afforded by N-acetylcysteine were partially blocked by either H-89 (a PKA inhibitor) or brefeldin A (an Epac-signaling inhibitor) and completely blocked when H-89 and brefeldin A were given in combination. Addition of either the PKA specific activator N6Bz or Epac specific activator 8-CPT did not have additional increased connexin43 levels compared with rats treated with lithium chloride alone. These findings suggest that N-acetylcysteine protects ventricular arrhythmias by attenuating reduced connexin43 expression and function via both PKA- and Epac-dependent pathways, which converge through the inactivation of glycogen synthase kinase-3β.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shinn-Zong Lin
- Neuropsychiatry Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, Taina Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Chrzanowska-Wodnicka M. Distinct functions for Rap1 signaling in vascular morphogenesis and dysfunction. Exp Cell Res 2013; 319:2350-9. [PMID: 23911990 DOI: 10.1016/j.yexcr.2013.07.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 01/27/2023]
Abstract
Rap1 signaling is important for both major processes of vessel formation: vasculogenesis, or de novo vessel formation, and angiogenesis, sprouting of new vessels from pre-existing ones. We provide an overview of genetic studies in mice and zebrafish and discuss some of the proposed underlying mechanisms derived from cellular models, with particular emphasis on Rap1's role in angiogenesis, maintenance of endothelial barrier and connection with cerebral cavernous malformation (CCM), a neurological deficit that leads to seizures and lethal stroke. Lastly, we provide a brief summary of studies in cardiac and smooth muscle cells, where the Epac-Rap1 signaling axis is emerging as an important regulator of contractility.
Collapse
|
41
|
Begandt D, Bader A, Gerhard L, Lindner J, Dreyer L, Schlingmann B, Ngezahayo A. Dipyridamole-related enhancement of gap junction coupling in the GM-7373 aortic endothelial cells correlates with an increase in the amount of connexin 43 mRNA and protein as well as gap junction plaques. J Bioenerg Biomembr 2013; 45:409-19. [PMID: 23800832 DOI: 10.1007/s10863-013-9518-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
Previous data showed that dipyridamole enhanced gap junction coupling in vascular endothelial and smooth muscle cell lines by a cAMP-dependent mechanism. The present study investigates the level at which dipyridamole affects gap junction coupling. In the GM-7373 endothelial cell line, scrape loading/dye transfer experiments revealed a rapid increase in gap junction coupling induced during the first 6 h of dipyridamole treatment, followed by a slow increase induced by further incubation. Immunostaining analyses showed that the rapid enhancement of gap junction coupling correlated with an increased amount of Cx43 gap junction plaques and a reduced amount of Cx43 containing vesicles, while the amount of Cx43 mRNA or protein was not changed during this period, as found by semiquantitative RT-PCR and Western blot. Additionally, brefeldin A did not block this short-term-induced enhancement of gap junction coupling. Along with the dipyridamole-induced long-term enhancement of gap junction coupling, the amount of Cx43 mRNA and protein additionally to the amount of Cx43 gap junction plaques were increased. Furthermore, the anti-Cx43 antibody detected only two bands at 42 kDa and 44 kDa in control cells and cells treated with dipyridamole for 6 h, while long-term dipyridamole-treated cells showed a third band at 46 kDa. We propose that a dipyridamole-induced cAMP synthesis increased gap junction coupling in the GM-7373 endothelial cell line at different levels: the short-term effect is related to already oligomerised connexins beyond the Golgi apparatus and the long-term effect involves new expression and synthesis as well as posttranslational modification of Cx43.
Collapse
Affiliation(s)
- Daniela Begandt
- Institute of Biophysics, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Idevall-Hagren O, Jakobsson I, Xu Y, Tengholm A. Spatial control of Epac2 activity by cAMP and Ca2+-mediated activation of Ras in pancreatic β cells. Sci Signal 2013; 6:ra29.1-11, S1-6. [PMID: 23633676 DOI: 10.1126/scisignal.2003932] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cAMP (adenosine 3',5'-monophosphate)-activated guanine nucleotide exchange factor (GEF) Epac2 is an important mediator of cAMP-dependent processes in multiple cell types. We used real-time confocal and total internal reflection fluorescence microscopy to examine the spatiotemporal regulation of Epac2, which is a GEF for the guanosine triphosphatase (GTPase) Rap. We demonstrated that increases in the concentration of cAMP triggered the translocation of Epac2 from the cytoplasm to the plasma membrane in insulin-secreting β cells. Glucose-induced oscillations of the submembrane concentration of cAMP were associated with cyclic translocation of Epac2, and this translocation could be amplified by increases in the cytoplasmic Ca(2+) concentration. Analyses of Epac2 mutants identified the high-affinity cAMP-binding and the Ras association domains as crucial for the translocation. Expression of a dominant-negative Ras mutant reduced Epac2 translocation, and Ca(2+)-dependent oscillations in Ras activity synchronized with Epac2 translocation in single β cells. The cyclic translocation of Epac2 was accompanied by oscillations of Rap GTPase activity at the plasma membrane, and expression of an inactive Rap1B mutant decreased insulin secretion. Thus, Epac2 localization is dynamically controlled by cAMP as well as by Ca(2+)-mediated activation of Ras. These results help to explain how oscillating signals can produce pulses of insulin release from pancreatic β cells.
Collapse
Affiliation(s)
- Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
43
|
Begandt D, Bader A, Dreyer L, Eisert N, Reeck T, Ngezahayo A. Biphasic increase of gap junction coupling induced by dipyridamole in the rat aortic A-10 vascular smooth muscle cell line. J Cell Commun Signal 2013; 7:151-60. [PMID: 23483357 DOI: 10.1007/s12079-013-0196-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/18/2013] [Indexed: 12/11/2022] Open
Abstract
The rat aortic smooth muscle cell line A-10 was used to investigate the effect of dipyridamole on the gap junction coupling of smooth muscle cells. The scrape loading/dye transfer (SL/DT) technique revealed that dipyridamole concentrations between 5 μM and 100 μM significantly increased gap junction coupling. The adenosine receptor antagonist MRS 1754, as well as the PKA inhibitors Rp-cAMPS and H-89 were able to inhibit the dipyridamole-related increase in coupling, while forskolin and Br-cAMP also induced an enhancement of the gap junction coupling. Regarding the time-dependent behaviour of dipyridamole, a short-term effect characterised by an oscillatory reaction was observed for application times of less than 5 h, while applications times of at least 6 h resulted in a long-term effect, characterised by a constant increase of gap junction coupling to its maximum levels. This increase was not altered by prolonged presence of dipyridamole. In parallel, a short application of dipyridamole for at least 15 min was found to be sufficient to evoke the long-term effect measured 6 h after drug washout. We propose that in both the short-term and long-term effect, cAMP-related pathways are activated. The short-term phase could be related to an oscillatory cAMP effect, which might directly affect connexin trafficking, assembly and/or gap junction gating. The long-term effect is most likely related to the new expression and synthesis of connexins. With previous data from a bovine aortic endothelial cell line, the present results show that gap junction coupling of vascular cells is a target for dipyridamole.
Collapse
Affiliation(s)
- Daniela Begandt
- Institute of Biophysics, Leibniz University Hannover, Herrenhäuserstr. 2, 30419, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 2013; 65:670-709. [PMID: 23447132 DOI: 10.1124/pr.110.003707] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
45
|
Ruiz-Hurtado G, Morel E, Domínguez-Rodríguez A, Llach A, Lezoualc'h F, Benitah JP, Gomez AM. Epac in cardiac calcium signaling. J Mol Cell Cardiol 2012; 58:162-71. [PMID: 23220153 DOI: 10.1016/j.yjmcc.2012.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 12/16/2022]
Abstract
Epac, exchange protein directly activated by cAMP, is emerging as a new regulator of cardiac physiopathology. Although its effects are much less known than the classical cAMP effector, PKA, several studies have investigated the cardiac role of Epac, providing evidences that Epac modulates intracellular Ca(2+). In one of the first analyses, it was shown that Epac can increase the frequency of spontaneous Ca(2+) oscillations in cultured rat cardiomyocytes. Later on, in adult cardiomyocytes, it was shown that Epac can induce sarcoplasmic reticulum (SR) Ca(2+) release in a PKA independent manner. The pathway identified involved phospholipase C (PLC) and Ca(2+)/calmodulin kinase II (CaMKII). The latter phosphorylates the ryanodine receptor (RyR), increasing the Ca(2+) spark probability. The RyR, Ca(2+) release channel located in the SR membrane, is a key element in the excitation-contraction coupling. Thus Epac participates in the excitation-contraction coupling. Moreover, by inducing RyR phosphorylation, Epac is arrhythmogenic. A detailed analysis of Ca(2+) mobilization in different microdomains showed that Epac preferently elevated Ca(2+) in the nucleoplasm ([Ca(2+)]n). This effect, besides PLC and CaMKII, required inositol 1,4,5 trisphosphate receptor (IP3R) activation. IP3R is other Ca(2+) release channel located mainly in the perinuclear area in the adult ventricular myocytes, where it has been shown to participate in the excitation-transcription coupling (the process by which Ca(2+) activates transcription). If Epac activation is maintained for some time, the histone deacetylase (HDAC) is translocated out of the nucleus de-repressing the transcription factor myocyte enhancer factor (MEF2). These evidences also pointed to Epac role in activating the excitation-transcription coupling. In fact, it has been shown that Epac induces cardiomyocyte hypertrophy. Epac activation for several hours, even before the cell hypertrophies, induces a profound modulation of the excitation-contraction coupling: increasing the [Ca(2+)]i transient amplitude and cellular contraction. Thus Epac actions are rapid but time and microdomain dependent in the cardiac myocyte. Taken together the results collected indicate that Epac may have an important role in the cardiac response to stress.
Collapse
Affiliation(s)
- Gema Ruiz-Hurtado
- Inserm, U769, Univ. Paris-Sud 11, IFR141, Labex Lermit, Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Suppression of Rap1 impairs cardiac myofibrils and conduction system in zebrafish. PLoS One 2012; 7:e50960. [PMID: 23226434 PMCID: PMC3511394 DOI: 10.1371/journal.pone.0050960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Numerous studies have revealed that Rap1 (Ras-proximate-1 or Ras-related protein 1), a small GTPase protein, plays a crucial role in mediating cAMP signaling in isolated cardiac tissues and cell lines. However, the involvement of Rap1 in the cardiac development in vivo is largely unknown. By injecting anti-sense morpholino oligonucleotides to knock down Rap1a and Rap1b in zebrafish embryos, and in combination with time-lapsed imaging, in situ hybridization, immunohistochemistry and transmission electron microscope techniques, we seek to understand the role of Rap1 in cardiac development and functions. At an optimized low dose of mixed rap1a and rap1b morpholino oligonucleotides, the heart developed essentially normally until cardiac contraction occurred. Morphant hearts showed the myocardium defect phenotypes, most likely due to disrupted myofibril assembly and alignment. In vivo heart electrocardiography revealed prolonged P-R interval and QRS duration, consistent with an adherens junction defect and reduced Connexons in cardiac myocytes of morphants. We conclude that a proper level of Rap1 is crucial for heart morphogenesis and function, and suggest that Rap1 and/or their downstream factor genes are potential candidates for genetic screening for human heart diseases.
Collapse
|
47
|
Lynn BD, Li X, Nagy JI. Under construction: building the macromolecular superstructure and signaling components of an electrical synapse. J Membr Biol 2012; 245:303-17. [PMID: 22722764 PMCID: PMC3506381 DOI: 10.1007/s00232-012-9451-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
A great deal is now known about the protein components of tight junctions and adherens junctions, as well as how these are assembled. Less is known about the molecular framework of gap junctions, but these also have membrane specializations and are subject to regulation of their assembly and turnover. Thus, it is reasonable to consider that these three types of junctions may share macromolecular commonalities. Indeed, the tight junction scaffolding protein zonula occluden-1 (ZO-1) is also present at adherens and gap junctions, including neuronal gap junctions. On the basis of these earlier observations, we more recently found that two additional proteins, AF6 and MUPP1, known to be associated with ZO-1 at tight and adherens junctions, are also components of neuronal gap junctions in rodent brain and directly interact with connexin36 (Cx36) that forms these junctions. Here, we show by immunofluorescence labeling that the cytoskeletal-associated protein cingulin, commonly found at tight junctions, is also localized at neuronal gap junctions throughout the central nervous system. In consideration of known functions related to ZO-1, AF6, MUPP1, and cingulin, our results provide a context in which to examine functional relationships between these proteins at Cx36-containing electrical synapses in brain--specifically, how they may contribute to regulation of transmission at these synapses, and how they may govern gap junction channel assembly and/or disassembly.
Collapse
Affiliation(s)
- B. D. Lynn
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - J. I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
48
|
Abstract
Epacs (exchange proteins directly activated by cAMP) are guanine-nucleotide-exchange factors for the Ras-like small GTPases Rap1 and Rap2. Epacs were discovered in 1998 as new sensors for the second messenger cAMP acting in parallel to PKA (protein kinase A). As cAMP regulates many important physiological functions in brain and heart, the existence of Epacs raises many questions regarding their role in these tissues. The present review focuses on the biological roles and signalling pathways of Epacs in neurons and cardiac myocytes. We discuss the potential involvement of Epacs in the manifestation of cardiac and central diseases such as cardiac hypertrophy and memory disorders.
Collapse
|
49
|
Qin Y, Stokman G, Yan K, Ramaiahgari S, Verbeek F, de Graauw M, van de Water B, Price LS. cAMP signalling protects proximal tubular epithelial cells from cisplatin-induced apoptosis via activation of Epac. Br J Pharmacol 2012; 165:1137-50. [PMID: 21745194 PMCID: PMC3346244 DOI: 10.1111/j.1476-5381.2011.01594.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/03/2011] [Accepted: 06/23/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Nephrotoxicity is the principal dose-limiting factor for cisplatin chemotherapy and is primarily associated with proximal tubular epithelial cells, including disruption of cell adhesions and induction of apoptosis. Cell adhesion and survival is regulated by, amongst other factors, the small GTPase Rap and its activator, the exchange protein directly activated by cAMP (Epac). Epac is particularly enriched in renal tubule epithelium. This study investigates the cytoprotective effects of cAMP-Epac-Rap signalling in a model of cisplatin-induced renal cell injury. EXPERIMENTAL APPROACH The Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP was used to activate the Epac-Rap signalling pathway in proximal tubular epithelial cells. Cells were exposed to cisplatin, in the presence or absence of 8-pCPT-2'-O-Me-cAMP, and nephrotoxicity was determined by monitoring cell-cell junctions and cell apoptosis. KEY RESULTS Activation of Epac-Rap signalling preserves cell-cell junctions and protects against cell apoptosis of mouse proximal tubular cells during cisplatin treatment. Activation with the Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP or receptor-mediated induction of cAMP both induced cytoprotection against cisplatin, whereas a PKA-selective cAMP analogue was not cytoprotective. 8-pCPT-2'-O-Me-cAMP mediated cytoprotection was blocked by RNAi-mediated silencing of Epac-Rap signalling in these cells. In contrast, 8-pCPT-2'-O-Me-cAMP did not protect against cisplatin-induced cell death of cancer cells that lacked Epac1 expression. CONCLUSIONS AND IMPLICATIONS Our study identifies activation of Epac-Rap signalling as a potential strategy for reducing the nephrotoxicity associated with cisplatin treatments and, as a result, broadens the therapeutic window of this chemotherapeutic agent.
Collapse
Affiliation(s)
- Yu Qin
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Geurt Stokman
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Kuan Yan
- Section Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science, Leiden UniversityLeiden, the Netherlands
| | - Sreenivasa Ramaiahgari
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Fons Verbeek
- Section Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science, Leiden UniversityLeiden, the Netherlands
| | - Marjo de Graauw
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Leo S Price
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| |
Collapse
|
50
|
Li X, Lynn BD, Nagy JI. The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain. Eur J Neurosci 2012; 35:166-81. [PMID: 22211808 DOI: 10.1111/j.1460-9568.2011.07947.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) occur in most major structures in the mammalian central nervous system. These synapses link ensembles of neurons and influence their network properties. Little is known about the macromolecular constituents of neuronal gap junctions or how transmission through electrical synapses is regulated at the level of channel conductance or gap junction assembly/disassembly. Such knowledge is a prerequisite to understanding the roles of gap junctions in neuronal circuitry. Gap junctions share similarities with tight and adhesion junctions in that all three reside at close plasma membrane appositions, and therefore may associate with similar structural and regulatory proteins. Previously, we reported that the tight junction-associated protein zonula occludens-1 (ZO-1) interacts with Cx36 and is localized at gap junctions. Here, we demonstrate that two proteins known to be associated with tight and adherens junctions, namely AF6 and MUPP1, are components of neuronal gap junctions in rodent brain. By immunofluorescence, AF6 and MUPP1 were co-localized with Cx36 in many brain areas. Co-immunoprecipitation and pull-down approaches revealed an association of Cx36 with AF6 and MUPP1, which required the C-terminus PDZ domain interaction motif of Cx36 for interaction with the single PDZ domain of AF6 and with the 10th PDZ domain of MUPP1. As AF6 is a target of the cAMP/Epac/Rap1 signalling pathway and MUPP1 is a scaffolding protein that interacts with CaMKII, the present results suggest that AF6 may be a target for cAMP/Epac/Rap1 signalling at electrical synapses, and that MUPP1 may contribute to anchoring CaMKII at these synapses.
Collapse
Affiliation(s)
- X Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave., Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|