1
|
Histological and transcriptomic analysis of adipose and muscle of dairy calves supplemented with 5-hydroxytryptophan. Sci Rep 2021; 11:9665. [PMID: 33958639 PMCID: PMC8102591 DOI: 10.1038/s41598-021-88443-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, peripheral serotonin is involved in regulating energy balance. Herein, we characterized the transcriptomic profile and microstructure of adipose and muscle in pre-weaned calves with increased circulating serotonin. Holstein bull calves (21 ± 2 days old) were fed milk replacer supplemented with saline (CON, 8 mL/day n = 4) or 5-hydroxytryptophan (5-HTP, 90 mg/day, n = 4) for 10 consecutive days. Calves were euthanized on d10 to harvest adipose and muscle for RNA-Sequencing and histological analyses. Twenty-two genes were differentially expressed in adipose, and 33 in muscle. Notably, Interferon gamma inducible protein-47 was highly expressed and upregulated in muscle and adipose (avg. log FC = 6.5). Enriched pathways in adipose tissue revealed serotonin’s participation in lipid metabolism and PPAR signaling. In muscle, enriched pathways were related to histone acetyltransferase binding, Jak-STAT signaling, PI3K-Akt signaling and cell proliferation. Supplementation of 5-HTP increased cell proliferation and total cell number in adipose and muscle. Adipocyte surface area was smaller and muscle fiber area was not different in the 5-HTP group. Manipulating the serotonin pathway, through oral supplementation of 5-HTP, influences signaling pathways and cellular processes in adipose and muscle related to endocrine and metabolic functions which might translate into improvements in calf growth and development.
Collapse
|
2
|
Shuai J, Gao Y, Chen L, Wang Z. Role of serotonin in regulation of pancreatic and mesenteric arterial function in diabetic mice. Eur J Pharmacol 2021; 901:174070. [PMID: 33798598 DOI: 10.1016/j.ejphar.2021.174070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the reaction of pancreatic and mesenteric artery to 5-hydroxytryptamine (5-HT, serotonin) and the mechanism of nitric oxide in diabetes. Diabetic mice were induced by streptozotocin through intraperitoneal injection. The vascular tension of the pancreatic, mesenteric and brain basilar arteries in diabetic and control mice were measured by myograph in the applications of angiotensin II, 5-HT, 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI), 5-HT1B/1D receptor agonist sumatriptan, 5-HT2B receptor agonist BW723C86, 5-HT1D receptor antagonist Palonosetron and 5-HT2 receptor antagonist Sarpogrelate. The effect of 5-HT on arteries pretreated with L-NAME and sodium nitroprusside (SNP) on arteries pretreated with norepinephrine were measured. The mRNA expressions of eNOS, 5-HT1B, 5-HT1D, 5-HT2A and 5-HT2B in pancreatic and mesenteric arteries were measured by Real-time PCR. The concentration of 5-HT in plasma and eNOS in pancreatic and mesenteric arteries were tested. Our results showed that the tension of pancreatic and mesenteric arteries in diabetic mice impaired to 5-HT, but not Ang II, and to DOI and sumatriptan, but normalized by incubation with L-NAME. Pancreatic and mesenteric arteries showed no differences to SNP after pretreated with NE between diabetic and control mice. The mRNA of eNOS and 5-HT receptors in pancreatic and mesenteric artery showed no difference between control and diabetic mice. We conclude that the effect of 5-HT on the tension of pancreatic and mesenteric arteries decrease in diabetic mice. It may due to the decreased activity of 5-HT receptors and the activation of eNOS, which causes nitric oxide to release more and makes the tension of vessels decreased.
Collapse
Affiliation(s)
- Jian Shuai
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Yufang Gao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ling Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Zhongli Wang
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, 430071, China.
| |
Collapse
|
3
|
Liu B, Wang D, Luo E, Hou J, Qiao Y, Yan G, Wang Q, Tang C. Role of TG2-Mediated SERCA2 Serotonylation on Hypoxic Pulmonary Vein Remodeling. Front Pharmacol 2020; 10:1611. [PMID: 32116663 PMCID: PMC7026497 DOI: 10.3389/fphar.2019.01611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pumps take up Ca2+ from the cytoplasm to maintain the balance of intracellular Ca2+. A decline in expression or activity of SERCA results in persistent store-operated calcium entry (SOCE). In cardiomyocytes as well as vascular smooth muscle cells (SMCs), SERCA2 acts as an important regulator of calcium cycling. The purpose of this study is to identify and better understand the role of transglutaminases2 (TG2) as a key factor involved in SERCA2 serotonination (s-SERCA2) and to elucidate the underlying mechanism of action. Human pulmonary venous smooth muscle cell in normal pulmonary lobe were isolated and cultured in vitro. Establishment of hypoxic pulmonary hypertension model in wild type and TG2 knockout mice. SERCA2 serotonylation was analyzed by co-(immunoprecipitation) IP when the TG2 gene silenced or overexpressed under normoxia and hypoxia in vivo and in vitro. Intracellular calcium ion was measured by using Fluo-4AM probe under normoxia and hypoxia. Real-time (RT)-PCR and Western blot analyzed expression of TG2, TRPC1, and TRPC6 under normoxia and hypoxia. Bioactivity of cells were analyzed by using Cell Counting Kit (CCK)-8, flow cytometry, wound healing, RT-PCR, and Western blot under PST-2744 and cyclopiazonic acid. We confirmed that 1) hypoxia enhanced the expression and activity of TG2, and 2) hypoxia increased the basal intracellular Ca2+ concentration ([Ca2+]i) and SOCE through activating TRPC6 on human pulmonary vein smooth muscle cells (hPVSMC). Then, we investigated the effects of overexpression and downregulation of the TG2 gene on the activity of SERCA2, s-SERCA2, basal [Ca2+]i, and SOCE under normoxia and hypoxia in vitro, and investigated the activity of SERCA2 and s-SERCA2 in vivo, respectively. We confirmed that SERCA2 serotonylation inhibited the activity of SERCA2 and increased the Ca2+ influx, and that hypoxia induced TG2-mediated SERCA2 serotonylation both in vivo and in vitro. Furthermore, we investigated the effect of TG2 activity on the biological behavior of hPVSMC by using an inhibitor and agonist of SERCA2, respectively. Finally, we confirmed that chronic hypoxia cannot increase vessel wall thickness, the right ventricular systolic pressure (RVSP), and right ventricular hypertrophy index (RVHI) of vascular smooth muscle-specific Tgm2−/− mice. These results indicated that hypoxia promoted TG2-mediated SERCA2 serotonylation, thereby leading to inhibition of SERCA2 activity, which further increased the calcium influx through the TRPC6 channel. Furthermore, tissue-specific conditional TG2 knockout mice prevents the development of pulmonary hypertension caused by hypoxia. In summary, we uncovered a new target (TG2) for treatment of chronic hypoxic pulmonary hypertension (CHPH).
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Erfei Luo
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jiantong Hou
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Qingjie Wang
- Department of Cardiology, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Peng G, Xu J, Liu R, Fu Z, Li S, Hong W, Chen J, Li B, Ran P. Isolation, culture and identification of pulmonary arterial smooth muscle cells from rat distal pulmonary arteries. Cytotechnology 2017; 69:831-840. [PMID: 28321780 DOI: 10.1007/s10616-017-0081-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 11/28/2022] Open
Abstract
The culture of pulmonary arterial smooth muscle cells (PASMCs) is one of the most powerful tools for exploring the mechanisms of pulmonary hypertension (PH). Both pulmonary vasoconstriction and remodeling occur predominantly in distal pulmonary arteries (PA). In this study, we provide our detailed and standardized protocol for easy isolation and culture of PASMCs from rat distal PA to supply every investigator with a simple, economical and useful method in studying PH. The protocol can be divided into four stages: isolation of distal PA, isolation of cells, growth in culture and passage of cells. Rat distal PASMCs were characterized by morphological activity and by immunostaining for smooth muscle α-actin and smooth muscle myosin heavy chain, but not for CD90/Thy-1 or von Willebrand factor. Furthermore, functional assessments were performed, confirming the presence of voltage-dependent Ca2+ channels and physiological characteristic of response to hypoxia. In conclusion, we have developed a detailed and simple protocol for obtaining rat distal PASMCs. These PASMCs exhibit features consistent with vascular smooth muscle cells, and they could subsequently be used to further explore the pathophysiological mechanisms of PH.
Collapse
Affiliation(s)
- Gongyong Peng
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Juan Xu
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Rongmin Liu
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zhenli Fu
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Shaoxing Li
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Intensive Care Unit, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Wei Hong
- The Research Center of Experiment Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jinglong Chen
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Bing Li
- The Research Center of Experiment Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Pixin Ran
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Tissue transglutaminase promotes serotonin-induced AKT signaling and mitogenesis in pulmonary vascular smooth muscle cells. Cell Signal 2014; 26:2818-25. [PMID: 25218191 DOI: 10.1016/j.cellsig.2014.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/02/2014] [Indexed: 01/06/2023]
Abstract
Tissue transglutaminase 2 (TG2) is a multifunctional enzyme that cross-links proteins with monoamines such as serotonin (5-hydroxytryptamine, 5-HT) via a transglutamidation reaction, and is associated with pathophysiologic vascular responses. 5-HT is a mitogen for pulmonary artery smooth muscle cells (PASMCs) that has been linked to pulmonary vascular remodeling underlying pulmonary hypertension development. We previously reported that 5-HT-induced PASMC proliferation is inhibited by the TG2 inhibitor monodansylcadaverine (MDC); however, the mechanisms are poorly understood. In the present study we hypothesized that TG2 contributes to 5-HT-induced signaling pathways of PASMCs. Pre-treatment of bovine distal PASMCs with varying concentrations of the inhibitor MDC led to differential inhibition of 5-HT-stimulated AKT and ROCK activation, while p-P38 was unaffected. Concentration response studies showed significant inhibition of AKT activation at 50 μM MDC, along with inhibition of the AKT downstream targets mTOR, p-S6 kinase and p-S6. Furthermore, TG2 depletion by siRNA led to reduced 5-HT-induced AKT activation. Immunoprecipitation studies showed that 5-HT treatment led to increased levels of serotonylated AKT and increased TG2-AKT complex formations which were inhibited by MDC. Overexpression of TG2 point mutant cDNAs in PASMCs showed that the TG2 C277V transamidation mutant blunted 5-HT-induced AKT activation and 5-HT-induced PASMC mitogenesis. Finally, 5-HT-induced AKT activation was blunted in SERT genetic knock-out rat cells, but not in their wild-type counterpart. The SERT inhibitor imipramine similarly blocked AKT activation. These results indicate that TG2 contributes to 5-HT-induced distal PASMC proliferation via promotion of AKT signaling, likely via its serotonylation. Taken together, these results provide new insight into how TG2 may participate in vascular smooth muscle remodeling.
Collapse
|
6
|
El Chami H, Hassoun PM. Inflammatory mechanisms in the pathogenesis of pulmonary arterial hypertension. Compr Physiol 2013; 1:1929-41. [PMID: 23733693 DOI: 10.1002/cphy.c100028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is a prominent feature of human and experimental pulmonary hypertension (PH) as suggested by infiltration of various inflammatory cells and increased expression of certain cytokines in remodeled pulmonary vessels. Macrophages, T and B lymphocytes, and dendritic cells are found in the vascular lesions of idiopathic pulmonary arterial hypertension (PAH) as well as in PAH associated with connective tissue diseases or infectious etiologies such as HIV. In addition, PAH is often characterized by the presence of circulating chemokines and cytokines, increased expression of growth (such as VEGF and PDGF) and transcriptional (e.g., nuclear factor of activated T cells or NFAT) factors, and viral protein components (e.g., HIV-1 Nef), which directly contribute to further recruitment of inflammatory cells and the pulmonary vascular remodeling process. These inflammatory pathways may thus serve as potential specific therapeutic targets. This article provides an overview of inflammatory pathways involving chemokines and cytokines as well as growth factors, highlighting their potential role in pulmonary vascular remodeling and the possibility of future targeted therapy.
Collapse
Affiliation(s)
- Hala El Chami
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
7
|
Aggarwal S, Gross CM, Sharma S, Fineman JR, Black SM. Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol 2013; 3:1011-34. [PMID: 23897679 DOI: 10.1002/cphy.c120024] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress, and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the antioxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting cofactor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|
8
|
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:295-317. [PMID: 23737174 DOI: 10.1002/cphy.c100026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension is a multifactorial disease characterized by sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). Central to the pathobiology of this disease is the process of vascular remodelling. This process involves structural and functional changes to the normal architecture of the walls of pulmonary arteries (PAs) that lead to increased muscularization of the muscular PAs, muscularization of the peripheral, previously nonmuscular, arteries of the respiratory acinus, formation of neointima, and formation of plexiform lesions. Underlying or contributing to the development of these lesions is hypertrophy, proliferation, migration, and resistance to apoptosis of medial cells and this article is concerned with the cellular and molecular mechanisms of these processes. In the first part of the article we focus on the concept of smooth muscle cell phenotype and the difficulties surrounding the identification and characterization of the cell/cells involved in the remodelling of the vessel media and we review the general mechanisms of cell hypertrophy, proliferation, migration and apoptosis. Then, in the larger part of the article, we review the factors identified thus far to be involved in PH intiation and/or progression and review and discuss their effects on pulmonary artery smooth muscle cells (PASMCs) the predominant cells in the tunica media of PAs.
Collapse
Affiliation(s)
- Tamara Tajsic
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Li RWS, Yang C, Kwan YW, Chan SW, Lee SMY, Leung GPH. Involvement of organic cation transporter-3 and plasma membrane monoamine transporter in serotonin uptake in human brain vascular smooth muscle cells. Front Pharmacol 2013; 4:14. [PMID: 23407616 PMCID: PMC3569667 DOI: 10.3389/fphar.2013.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/25/2013] [Indexed: 02/01/2023] Open
Abstract
The serotonin (5-HT) uptake system is supposed to play a crucial part in vascular functions by “fine-tuning” the local concentration of 5-HT in the vicinity of 5-HT2 receptors in vascular smooth muscle cells. In this study, the mechanism of 5-HT uptake in human brain vascular smooth muscle cells (HBVSMCs) was investigated. [3H]5-HT uptake in HBVSMCs was Na+-independent. Kinetic analyses of [3H]5-HT uptake in HBVSMCs revealed a Km of 50.36 ± 10.2 mM and a Vmax of 1033.61 ± 98.86 pmol/mg protein/min. The specific serotonin re-uptake transporter (SERT) inhibitor citalopram, the specific norepinephrine transporter (NET) inhibitor desipramine, and the dopamine transporter (DAT) inhibitor GBR12935 inhibited 5-HT uptake in HBVSMCs with IC50 values of 97.03 ± 40.10, 10.49 ± 5.98, and 2.80 ± 1.04 μM, respectively. These IC50 values were 100-fold higher than data reported by other authors, suggesting that those inhibitors were not blocking their corresponding transporters. Reverse transcription-polymerase chain reaction results demonstrated the presence of mRNA for organic cation transporter (OCT)-3 and plasma membrane monoamine transporter (PMAT), but the absence of OCT-1, OCT-2, SERT, NET, and DAT. siRNA knockdown of OCT-3 and PMAT specifically attenuated 5-HT uptake in HBVSMCs. It is concluded that 5-HT uptake in HBVSMCs was mediated predominantly by a low-affinity and Na+-independent mechanism. The most probable candidates are OCT-3 and PMAT, but not the SERT.
Collapse
Affiliation(s)
- Rachel W S Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Altered immunity and inflammation are increasingly recognized features of pulmonary arterial hypertension (PAH). This is suggested by infiltration of various inflammatory cells (e.g., macrophages, T and B lymphocytes), increased cytokine and growth factor (e.g., VEGF and PDGF) expression in remodeled pulmonary vessels, and the presence of circulating chemokines and cytokines. In certain diseases associated with PAH, increased expression of growth and transcriptional (e.g., nuclear factor of activated T cells or NFAT) factors, and viral protein components (e.g., HIV-1 Nef), appear to contribute directly to recruitment of inflammatory cells in remodeled vessels, and may potentially serve as specific therapeutic targets. This section provides an overview of inflammatory pathways highlighting their potential role in pulmonary vascular remodeling in PAH and the possibility of future targeted therapy.
Collapse
Affiliation(s)
- Hala El Chami
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
11
|
Gairhe S, Bauer NN, Gebb SA, McMurtry IF. Serotonin passes through myoendothelial gap junctions to promote pulmonary arterial smooth muscle cell differentiation. Am J Physiol Lung Cell Mol Physiol 2012; 303:L767-77. [PMID: 22923644 DOI: 10.1152/ajplung.00183.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myoendothelial gap junctional signaling mediates pulmonary arterial endothelial cell (PAEC)-induced activation of latent TGF-β and differentiation of cocultured pulmonary arterial smooth muscle cells (PASMCs), but the nature of the signal passing from PAECs to PASMCs through the gap junctions is unknown. Because PAECs but not PASMCs synthesize serotonin, and serotonin can pass through gap junctions, we hypothesized that the monoamine is the intercellular signal. We aimed to determine whether PAEC-derived serotonin mediates PAEC-induced myoendothelial gap junction-dependent activation of TGF-β signaling and differentiation of PASMCs. Rat PAECs and PASMCs were monocultured or cocultured with (touch) or without (no-touch) direct cell-cell contact. In all cases, tryptophan hydroxylase 1 (Tph1) transcripts were expressed predominantly in PAECs. Serotonin was detected by immunostaining in both PAECs and PASMCs in PAEC/PASMC touch coculture but was not found in PASMCs in either PAEC/PASMC no-touch coculture or in PASMC/PASMC touch coculture. Furthermore, inhibition of gap junctions but not of the serotonin transporter in PAEC/PASMC touch coculture prevented serotonin transfer from PAECs to PASMCs. Inhibition of serotonin synthesis pharmacologically or by small interfering RNAs to Tph1 in PAECs inhibited the PAEC-induced activation of TGF-β signaling and differentiation of PASMCs. We concluded that serotonin synthesized by PAECs is transferred through myoendothelial gap junctions into PASMCs, where it activates TGF-β signaling and induces a more differentiated phenotype. This finding suggests a novel role of gap junction-mediated intercellular serotonin signaling in regulation of PASMC phenotype.
Collapse
Affiliation(s)
- Salina Gairhe
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | | | | | | |
Collapse
|
12
|
Abid S, Houssaini A, Chevarin C, Marcos E, Tissot CM, Gary-Bobo G, Wan F, Mouraret N, Amsellem V, Dubois-Randé JL, Hamon M, Adnot S. Inhibition of gut- and lung-derived serotonin attenuates pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol 2012; 303:L500-8. [PMID: 22797248 DOI: 10.1152/ajplung.00049.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Decreasing the bioavailability of serotonin (5-HT) by inhibiting its biosynthesis may represent a useful adjunctive treatment of pulmonary hypertension (PH). We assessed this hypothesis using LP533401, which inhibits the rate-limiting enzyme tryptophan hydroxylase 1 (Tph1) expressed in the gut and lung, without inhibiting Tph2 expressed in neurons. Mice treated repeatedly with LP533401 (30-250 mg/kg per day) exhibited marked 5-HT content reductions in the gut, lungs, and blood, but not in the brain. After a single LP533401 dose (250 mg/kg), lung and gut 5-HT contents decreased by 50%, whereas blood 5-HT levels remained unchanged, suggesting gut and lung 5-HT synthesis. Treatment with the 5-HT transporter (5-HTT) inhibitor citalopram decreased 5-HT contents in the blood and lungs but not in the gut. In transgenic SM22-5-HTT+ mice, which overexpress 5-HTT in smooth muscle cells and spontaneously develop PH, 250 mg/kg per day LP533401 or 10 mg/kg per day citalopram for 21 days markedly reduced lung and blood 5-HT levels, right ventricular (RV) systolic pressure, RV hypertrophy, distal pulmonary artery muscularization, and vascular Ki67-positive cells (P < 0.001). Combined treatment with both drugs was more effective in improving PH-related hemodynamic parameters than either drug alone. LP533401 or citalopram treatment partially prevented PH development in wild-type mice exposed to chronic hypoxia. Lung and blood 5-HT levels were lower in hypoxic than in normoxic mice and decreased further after LP533401 or citalopram treatment. These results provide proof of concept that inhibiting Tph1 may represent a new therapeutic strategy for human PH.
Collapse
Affiliation(s)
- Shariq Abid
- INSERM U955 Team 8 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, Créteil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Morecroft I, White K, Caruso P, Nilsen M, Loughlin L, Alba R, Reynolds PN, Danilov SM, Baker AH, Maclean MR. Gene therapy by targeted adenovirus-mediated knockdown of pulmonary endothelial Tph1 attenuates hypoxia-induced pulmonary hypertension. Mol Ther 2012; 20:1516-28. [PMID: 22525513 DOI: 10.1038/mt.2012.70] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted.
Collapse
Affiliation(s)
- Ian Morecroft
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wei L, Warburton RR, Preston IR, Roberts KE, Comhair SAA, Erzurum SC, Hill NS, Fanburg BL. Serotonylated fibronectin is elevated in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1273-9. [PMID: 22523280 DOI: 10.1152/ajplung.00082.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT) and fibronectin (FN) have been associated with pulmonary hypertension (PH). We previously reported that FN is posttranslationally modified by tissue transglutaminase (TGase) to form serotonylated FN (s-FN) in pulmonary artery smooth muscle cells and that serotonylation stimulates their proliferation and migration, hallmarks of PH. We hypothesized that s-FN and its binding to TGase are elevated in human and experimental PH. To assess this hypothesis, FN isolation and electrophoretic, immunoblotting, and densitometric techniques were used. Mean ratio of serum s-FN to total FN level (s-FN/FN) was elevated in 19 consecutive pulmonary arterial hypertension (PAH) patients compared with 25 controls (0.3 ± 0.18 vs. 0.05 ± 0.07, P < 0.001). s-FN/FN also was increased in lungs of mice and rats with hypoxia-induced PH and in rats with monocrotaline-induced PH. In mice, the increase was detected at 1 wk of hypoxia, preceding the development of PH. Hypoxic rats had elevated serum s-FN/FN. Enhanced binding of TGase to its substrate FN occurred in serum from patients with PAH (mean 0.50 ± 0.51 vs. 0.063 ± 0.11, P = 0.002) and s-FN/FN and TGase-bound FN were highly correlated (R(2) = 0.77). TGase-bound FN also was increased in experimental PH. We conclude that increased serotonylation of FN occurs in human and experimental PH and may provide a biomarker for the disease.
Collapse
Affiliation(s)
- Lin Wei
- Tufts University School of Medicine, Tufts Medical Center, Tupper Research Institute, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Baloira A, Núñez M, Cifrian J, Vilariño C, Ojeda M, Valverde D. Polimorfismos en el gen de la proteína transportadora de serotonina (SERT) en pacientes con hipertensión arterial pulmonar. Arch Bronconeumol 2012; 48:77-80. [DOI: 10.1016/j.arbres.2011.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/17/2011] [Accepted: 10/19/2011] [Indexed: 10/14/2022]
|
16
|
Kajiwara I, Soejima H, Miyamoto S, Ogawa H. Effects of additional treatment of sarpogrelate to aspirin therapy on platelet aggregation and plasma plasminogen activator inhibitor activity in patients with stable effort angina. Thromb Res 2011; 128:547-51. [DOI: 10.1016/j.thromres.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 10/17/2022]
|
17
|
Iwabayashi M, Taniyama Y, Sanada F, Azuma J, Iekushi K, Kusunoki H, Chatterjee A, Okayama K, Rakugi H, Morishita R. Role of serotonin in angiogenesis: induction of angiogenesis by sarpogrelate via endothelial 5-HT1B/Akt/eNOS pathway in diabetic mice. Atherosclerosis 2011; 220:337-42. [PMID: 22172591 DOI: 10.1016/j.atherosclerosis.2011.10.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 09/30/2011] [Accepted: 10/31/2011] [Indexed: 01/06/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) plays a crucial role in peripheral artery disease (PAD) and diabetes mellitus (DM). In these conditions, the balance between the 5-HT2A receptor in smooth muscle cells and the 5-HT1B receptor in endothelial cells (ECs) regulates vascular tonus. In the present study, we focused on the role of 5-HT in endothelial dysfunction using a selective 5-HT2A receptor blocker, sarpogrelate. In human EC, 5-HT markedly stimulated eNOS expression and the phosphorylation of eNOS, Akt and ERK1/2. In addition, a dose-dependent increase in tubule-formation on Matrigel was observed after 5-HT treatment. In contrast, high glucose significantly inhibited tubule formation and eNOS expression through inactivation of Akt, while 5-HT significantly attenuated these actions of high glucose (P<0.01). These results indicate that 5-HT stimulated angiogenesis through activation of Akt in ECs. However, in clinical situations, 5-HT seems to act as the "devil". To examine the role of 5-HT in diabetic PAD, a hindlimb ischemia model was created in diabetic mice. The blood flow ratio of the ischemic to non-ischemic limb was significantly lower in DM mice than in normal mice, while sarpogrelate significantly attenuated the decrease in the blood flow ratio compared to control (P<0.01). Consistently, the decrease in eNOS expression and Akt activity in DM mice was significantly attenuated by sarpogrelate. Overall, the present study demonstrated that selective inhibition of 5-HT2A by sarpogrelate significantly restored ischemic limb blood perfusion in a severe diabetic mouse model through stimulation of the eNOS/Akt pathway via the endothelial 5-HT1B receptor. Enhancement of vasodilation and angiogenesis by sarpogrelate might provide a unique treatment for PAD and DM patients.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/pharmacology
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Angiopathies/drug therapy
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Dose-Response Relationship, Drug
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelial Cells/pathology
- Enzyme Activation
- Hindlimb
- Humans
- Ischemia/drug therapy
- Ischemia/enzymology
- Ischemia/pathology
- Ischemia/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/blood supply
- Neovascularization, Physiologic/drug effects
- Nitric Oxide Synthase Type III/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Serotonin, 5-HT1B/drug effects
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Regional Blood Flow/drug effects
- Serotonin/metabolism
- Serotonin Antagonists/pharmacology
- Signal Transduction/drug effects
- Succinates/pharmacology
- Time Factors
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Masaaki Iwabayashi
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zopf DA, das Neves LAA, Nikula KJ, Huang J, Senese PB, Gralinski MR. C-122, a novel antagonist of serotonin receptor 5-HT2B, prevents monocrotaline-induced pulmonary arterial hypertension in rats. Eur J Pharmacol 2011; 670:195-203. [PMID: 21914448 DOI: 10.1016/j.ejphar.2011.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/22/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by sustained elevation of pulmonary arterial pressure that leads to right ventricle failure and death. Pulmonary resistance arterioles in PAH undergo progressive narrowing and/or occlusion. Currently approved therapies for PAH are directed primarily at relief of symptoms by interfering with vasoconstrictive signals, but do not halt the microvascular cytoproliferative process. In this study we show that C-122 (2-amino-N-(2-{4-[3-(2-trifluoromethyl-phenothiazin-10-yl)-propyl]-piperazin-1-yl}-ethyl)-acetamide trihydrochloride, a novel antagonist of serotonin receptor 5-HT(2B) (Ki=5.2 nM, IC(50)=6.9 nM), when administered to rats for three weeks in daily oral 10mg/kg doses, prevents not only monocrotaline (MCT)-induced elevations in pressure in the pulmonary arterial circuit (19 ± 0.9 mmHg vs. 28 ± 2 mmHg in MCT-vehicle group, P<0.05) and hypertrophy of the right ventricle (right ventricular wt./body wt. ratio 0.52 ± 0.02 vs. 0.64 ± 0.04 in MCT-vehicle group, P<0.05), but also muscularization of pulmonary arterioles (23% vs. 56% fully muscularized in MCT-vehicle group, P<0.05), and perivascular fibrosis in the lung. C-122 is orally absorbed in the rat, and partitions strongly into multiple tissues, including heart and lung. C-122 has significant off-target antagonist activity for histamine H-1 and several dopamine receptors, but shows no evidence of crossing the blood-brain barrier after a single 10mg/kg oral dose in rats. We conclude that C-122 can prevent microvascular remodeling and associated elevated pressures in the rat MCT model for PAH, and offers promise as a new therapeutic entity to suppress vascular smooth muscle cell proliferation in PAH patients.
Collapse
|
19
|
Wideman RF, Hamal KR. Idiopathic pulmonary arterial hypertension: an avian model for plexogenic arteriopathy and serotonergic vasoconstriction. J Pharmacol Toxicol Methods 2011; 63:283-95. [PMID: 21277983 DOI: 10.1016/j.vascn.2011.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 01/18/2011] [Indexed: 01/15/2023]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a disease of unknown cause that is characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance attributable to vasoconstriction and vascular remodeling of small pulmonary arteries. Vascular remodeling includes hypertrophy and hyperplasia of smooth muscle (medial hypertrophy) accompanied in up to 80% of the cases by the formation of occlusive plexiform lesions (plexogenic arteriopathy). Patients tend to be unresponsive to vasodilator therapy and have a poor prognosis for survival when plexogenic arteriopathy progressively obstructs their pulmonary arteries. Research is needed to understand and treat plexogenic arteriopathy, but advances have been hindered by the absence of spontaneously developing lesions in existing laboratory animal models. Young domestic fowl bred for meat production (broiler chickens, broilers) spontaneously develop IPAH accompanied by semi-occlusive endothelial proliferation that progresses into fully developed plexiform lesions. Plexiform lesions develop in both female and male broilers, and lesion incidences (lung sections with lesions/lung sections examined) averaged approximately 40% in 8 to 52 week old birds. Plexiform lesions formed distal to branch points in muscular interparabronchial pulmonary arteries, and were associated with perivascular mononuclear cell infiltrates. Serotonin (5-hydroxytryptamine, 5-HT) is a potent vasoconstrictor and mitogen known to stimulate vascular endothelial and smooth muscle cell proliferation. Serotonin has been directly linked to the pathogenesis of IPAH in humans, including IPAH linked to serotonergic anorexigens that trigger the formation of plexiform lesions indistinguishable from those observed in primary IPAH triggered by other causes. Serotonin also plays a major role in the susceptibility of broilers to IPAH. This avian model of spontaneous IPAH constitutes a new animal model for biomedical research focused on the pathogenesis of IPAH and plexogenic arteriopathy.
Collapse
Affiliation(s)
- Robert F Wideman
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
20
|
Ren W, Watts SW, Fanburg BL. Serotonin transporter interacts with the PDGFβ receptor in PDGF-BB-induced signaling and mitogenesis in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2010; 300:L486-97. [PMID: 21186266 DOI: 10.1152/ajplung.00237.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The serotonin transporter (SERT) and the platelet-derived growth factor receptor (PDGFR) have been implicated in both clinical and experimental pulmonary hypertension (PH) and the facilitation of pulmonary artery smooth muscle cell (PASMC) growth. To gain a better understanding of the possible relationship of these two cell surface molecules we have explored interactions between SERT and PDGFR. We have previously demonstrated that SERT transactivates PDGFRβ in serotonin-stimulated PASMC proliferation. We now provide evidence for a role for SERT in PDGF-BB signaling and PASMC proliferation by using pharmacological inhibitors, genetic ablation, and construct overexpression of SERT. The results show that four tested SERT blockers dose dependently inhibit PDGF-stimulated human and bovine PASMC proliferation with comparable efficacy to that of PDGFR inhibitors, whereas 5-HT1B or 5-HT2A receptor inhibitors had no effect. Combinations of the SERT and PDGFR inhibitors led to synergistic/additive inhibition. Similarly, PDGF-induced PASMC proliferation was attenuated by small interfering RNA downregulation of SERT. Inhibition of SERT in PASMCs attenuated PDGF-induced phosphorylation of PDGFRβ, Akt, and p38 but not Erk. Overexpression of SERT in HEK293 cells led to enhanced Akt phosphorylation by PDGF, which was blunted by a SERT PDZ motif mutant, indicating the mechanistic need for the PDZ motif of SERT in PDGF signaling. Furthermore, coimmunoprecipitation experiments showed that SERT and PDGFRβ become physically associated upon PDGF stimulation. In total, the data show for the first time an important interactive relationship between SERT and the PDGFRβ in the production of PASMC proliferation triggered by PDGF that may be important in PH.
Collapse
Affiliation(s)
- Wenying Ren
- Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
21
|
Chung HH, Dai ZK, Wu BN, Yeh JL, Chai CY, Chu KS, Liu CP, Chen IJ. KMUP-1 inhibits pulmonary artery proliferation by targeting serotonin receptors/transporter and NO synthase, inactivating RhoA and suppressing AKT/ERK phosphorylation. Vascul Pharmacol 2010; 53:239-49. [DOI: 10.1016/j.vph.2010.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/10/2010] [Accepted: 09/17/2010] [Indexed: 11/24/2022]
|
22
|
Serotonin-producing cells in human gastric mucosa--immunohistochemical and electron microscopic study. Folia Med (Plovdiv) 2010; 52:31-7. [PMID: 20836394 DOI: 10.2478/v10153-010-0044-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The great many hormones released by the endocrine cells of the glands and lining epithelium of gastric mucosa determine its significance for the processes in the gastrointestinal tract. One of these hormones, serotonin, plays an important role in the regulation of the motility, secretion and sensation in the gastrointestinal tract. The aim of the present study was to conduct immunohistochemical and electron microscopic studies of serotonin-producing EC cell of gastric mucosa. MATERIAL AND METHODS Gastric mucosa biopsies were obtained and studied immunihistochemically for serotonin expression in the mucosa endocrine cells. Electron microscopic study was performed to specify the processes of synthesis, accumulation and release of secretory product by those cells. RESULTS The immunohistochemical study revealed a considerable number of serotonin-containing EC cells scattered in the lining epithelium and between the glands in the corpus and pyloric region of the stomach. The electron microscopic study followed the stages of formation of the secretory granules from the initial accumulation of granular substance, its membrane packing and formation of mature granules to their disintegration in the secretory process. CONCLUSIONS Serotonin as a neurotransmitter and gastrointestinal hormone appears to be a key to understanding a number of symptoms of gastrointestinal disorders like nausea, vomiting, pain, diarrhea and constipation. A detailed study of serotonin functions in the gastrointestinal tract realised through different types of receptors, and of the development of specific antagonists and agonists to these receptors would open up new opportunities for a more efficient treatment of gastrointestinal disorders.
Collapse
|
23
|
Monassier L, Laplante MA, Ayadi T, Doly S, Maroteaux L. Contribution of gene-modified mice and rats to our understanding of the cardiovascular pharmacology of serotonin. Pharmacol Ther 2010; 128:559-67. [PMID: 20828585 DOI: 10.1016/j.pharmthera.2010.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This review focuses on new insights provided by gene-modified animals into the cardiovascular pharmacology of serotonin. During their development, mice mutant for tryptophan hydroxylase 1 and lacking peripheral serotonin, or mutant for 5-HT(2B) receptors, display cardiac defects and dilated cardiomyopathy. The 5-HT(4) receptor is important for the maturation of cardiac conduction. In fact, transgenic approaches have revealed that adult cardiac status is strongly influenced by maternal serotonin. Serotonin has long been known to be a vasoconstrictor in adult physiology. Analysis of animals knocked-out for the serotonin transporter suggested a role in blood pressure control and revealed an effect of 5-HT(2B) receptor antagonists in hypertension. In the lung vasculature, mice lacking the 5-HT(2B) receptor gene that are exposed to chronic hypoxia are resistant to pulmonary hypertension, while 5-HT(1B) receptor and serotonin transporter mutant animals show partial resistance. In platelets, mutant mice revealed that serotonin transporter regulates not only the mechanisms by which serotonin is packaged and secreted but also platelet aggregation. Studies looking at adult cardiac remodeling showed that mice lacking the 5-HT(2B) receptor gene were protected from cardiac hypertrophy. Their fibroblasts were unable to secrete cytokines. Crossing these animals with mice overexpressing the receptor in cardiomyocytes revealed the contribution of cardiac fibroblasts and 5-HT(2B) receptors to cardiac hypertrophy. In mice lacking the monoamine oxidase-A gene, the role of serotonin degradation in cardiac hypertrophy was confirmed. Works with gene-modified animals has contributed strongly to the re-evaluation of the influence of serotonin on cardiovascular regulation, though several unknowns remain to be investigated.
Collapse
Affiliation(s)
- Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Physiopathologie et Médecine Translationnelle EA 4438, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg, France.
| | | | | | | | | |
Collapse
|
24
|
Bear MD, Li M, Liu Y, Giel-Moloney MA, Fanburg BL, Toksoz D. The Lbc Rho guanine nucleotide exchange factor α-catulin axis functions in serotonin-induced vascular smooth muscle cell mitogenesis and RhoA/ROCK activation. J Biol Chem 2010; 285:32919-32926. [PMID: 20696764 DOI: 10.1074/jbc.m109.062513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is mitogenic for several cell types including pulmonary arterial smooth muscle cells (PASMC), and is associated with the abnormal vascular smooth muscle remodeling that occurs in pulmonary arterial hypertension. RhoA/Rho kinase (ROCK) function is required for 5-HT-induced PASMC mitogenesis, and 5-HT activates RhoA; however, the signaling steps are poorly defined. Rho guanine nucleotide exchange factors (Rho GEFs) transduce extracellular signals to Rho, and we found that 5-HT treatment of PASMC led to increased membrane-associated Lbc Rho GEF, suggesting modulation by 5-HT. Lbc knockdown by siRNA attenuated 5-HT-induced thymidine uptake in PASMC, indicating a role in PASMC mitogenesis. 5-HT triggered Rho-dependent serum response factor-mediated reporter activation in PASMC, and this was reduced by Lbc depletion. Lbc knockdown reduced 5-HT-induced RhoA/ROCK activation, but not p42/44 ERK MAP kinase activation, suggesting that Lbc is an intermediary between 5-HT and RhoA/ROCK, but not ERK. 5-HT stimulation of PASMC led to increased association between Lbc, RhoA, and the α-catulin scaffold. Furthermore, α-catulin knockdown attenuated 5-HT-induced PASMC thymidine uptake. 5-HT-induced PASMC mitogenesis was reduced by dominant-negative G(q) protein, suggesting cooperation with Lbc/α-catulin. These results for the first time define a Rho GEF involved in vascular smooth muscle cell growth and serotonin signaling, and suggest that Lbc Rho GEF family members play distinct roles. Thus, the Lbc/α-catulin axis participates in 5-HT-induced PASMC mitogenesis and RhoA/ROCK signaling, and may be an interventional target in diseases involving vascular smooth muscle remodeling.
Collapse
Affiliation(s)
- Michael D Bear
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Min Li
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Yinglin Liu
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Maryann A Giel-Moloney
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Barry L Fanburg
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Deniz Toksoz
- From the Division of Pulmonary and Critical Care, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111.
| |
Collapse
|
25
|
Liu Y, Wei L, Laskin DL, Fanburg BL. Role of protein transamidation in serotonin-induced proliferation and migration of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 2010; 44:548-55. [PMID: 20558776 DOI: 10.1165/rcmb.2010-0078oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary hypertension is characterized by elevated pulmonary artery pressure and pulmonary artery smooth muscle cell (SMC) proliferation and migration. Clinical and experimental evidence suggests that serotonin (5-HT) is important in these responses. We previously demonstrated the participation of the 5-HT transporter and intracellular 5-HT (5-HTi) in the pulmonary vascular SMC-proliferative response to 5-HT. However, the mechanism underlying the intracellular actions of 5-HT is unknown. We speculated that 5-HTi activates SMC growth by post-translational transamidation of proteins via transglutaminase (TGase) activity, a process referred to as serotonylation. To test this hypothesis, serotonylation of pulmonary artery SMC proteins, and their role in 5-HT-induced proliferative and migratory responses, were assessed. 5-HT caused dose- and time-dependent increase in serotonylation of multiple proteins in both bovine and rat pulmonary artery SMCs. Inhibition of TGase with dansylcadaverin blocked this activity, as well as SMC-proliferative and migratory responses to 5-HT. Serotonylation of proteins also was blocked by 5-HT transporter inhibitors, and was enhanced by inhibition of monoamine oxidase, an enzyme known to degrade 5-HTi, indicating that 5-HTi levels regulate serotonylation. Immunoprecipitation assays and HPLC-mass spectral peptide sequencing revealed that a major protein serotonylated by TGase was fibronectin (FN). 5-HT-stimulated SMC serotonylation and proliferation were blocked by FN small interfering (si) RNA. These findings, together with previous observations that FN expression in the lung strongly correlates with the progression of pulmonary hypertension in both experimental animals and humans, suggest an important role of FN serotonylation in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Yinglin Liu
- Rutgers University, Piscataway, New Jersey, USA
| | | | | | | |
Collapse
|
26
|
Karaman MG, Atalay F, Tufan AE, Erdogan A. Pulmonary arterial hypertension in an adolescent treated with methylphenidate. J Child Adolesc Psychopharmacol 2010; 20:229-31. [PMID: 20578938 DOI: 10.1089/cap.2009.0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mehmet Goksin Karaman
- Zonguldak Karaelmas University Medical Faculty, Department of Child and Adolescent Psychiatry, Zonguldak, Turkey
| | - Figen Atalay
- Zonguldak Karaelmas University Medical Faculty, Department of Child and Adolescent Psychiatry, Zonguldak, Turkey
| | - Ali Evren Tufan
- Department of Child and Adolescent Psychiatry, Elazig Hospital for Mental Disorders, Elazig, Turkey
| | - Ayten Erdogan
- Zonguldak Karaelmas University Medical Faculty, Department of Child and Adolescent Psychiatry, Zonguldak, Turkey
| |
Collapse
|
27
|
Wong CM, Marcocci L, Liu L, Suzuki YJ. Cell signaling by protein carbonylation and decarbonylation. Antioxid Redox Signal 2010; 12:393-404. [PMID: 19686045 PMCID: PMC2823370 DOI: 10.1089/ars.2009.2805] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 08/16/2009] [Accepted: 08/17/2009] [Indexed: 02/02/2023]
Abstract
Reactive oxygen species (ROS) serve as mediators of signal transduction. However, mechanisms of how ROS influence the target molecules to elicit signaling event have not been defined. Our laboratory recently accumulated evidence for the role of protein carbonylation in the mechanism of ROS signaling. This concept originated from experiments in which pulmonary artery smooth muscle cells were treated with endothelin-1 to understand the mechanism of cell growth. Endothelin-1 was found to promote protein carbonylation in an endothelin receptor- and Fenton reaction-dependent manner. Mass spectrometry identified proteins that are carbonylated in response to endothelin-1, including annexin A1. Our experiments generated a hypothesis that endothelin-1-mediated carbonylation and subsequent degradation of annexin A1 promote cell growth. This mechanism was found also to occur in response to other signaling activators such as serotonin and platelet-derived growth factor in smooth muscle cells of pulmonary circulation, systemic circulation, and the airway, as well as in cardiac muscle cells, suggesting the universal role of this pathway. We also discovered a process of decarbonylation that defines transient kinetics of carbonylation signals in certain conditions. We propose that protein carbonylation and decarbonylation serve as a mechanism of signal transduction.
Collapse
Affiliation(s)
- Chi Ming Wong
- Department of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia
| | - Lucia Marcocci
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza, University of Rome, Rome, Italy
| | - Lingling Liu
- Department of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia
| | - Yuichiro J. Suzuki
- Department of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
28
|
Sakao S, Tatsumi K, Voelkel NF. Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir Res 2009; 10:95. [PMID: 19825167 PMCID: PMC2768704 DOI: 10.1186/1465-9921-10-95] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 10/13/2009] [Indexed: 12/18/2022] Open
Abstract
Severe pulmonary arterial hypertension, whether idiopathic or secondary, is characterized by structural alterations of microscopically small pulmonary arterioles. The vascular lesions in this group of pulmonary hypertensive diseases show actively proliferating endothelial cells without evidence of apoptosis. In this article, we review pathogenetic concepts of severe pulmonary arterial hypertension and explain the term "complex vascular lesion ", commonly named "plexiform lesion", with endothelial cell dysfunction, i.e., apoptosis, proliferation, interaction with smooth muscle cells and transdifferentiation.
Collapse
Affiliation(s)
- Seiichiro Sakao
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | |
Collapse
|
29
|
Austin ED, Loyd JE, Phillips JA. Genetics of pulmonary arterial hypertension. Semin Respir Crit Care Med 2009; 30:386-98. [PMID: 19634078 DOI: 10.1055/s-0029-1233308] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tremendous progress has been made in understanding the genetics of hereditable pulmonary arterial hypertension (HPAH) since its description in the 1950s. Germline mutations in the gene coding bone morphogenetic receptor type 2 ( BMPR2) are detectable in the majority of cases of HPAH, and in a small proportion of cases of idiopathic pulmonary arterial hypertension (IPAH). HPAH is an autosomal dominant disease characterized by reduced penetrance, variable expressivity, female predominance, and genetic anticipation. These characteristics suggest that endogenous and exogenous factors modify disease expression and areas of emphasis for future investigation. The variable clinical expression makes genetic counseling complex because the majority of carriers of a BMPR2 mutation will not be diagnosed with the disease. This issue will become increasingly important, as clinical testing for BMPR2 mutations is now available for the evaluation of patients and family members with HPAH and IPAH.
Collapse
Affiliation(s)
- Eric D Austin
- Department of Pediatrics, Division of Pulmonary, Allergy, and Immunology Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2578, USA
| | | | | |
Collapse
|
30
|
|
31
|
Morrell NW, Adnot S, Archer SL, Dupuis J, Lloyd Jones P, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JXJ, Weir EK. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54:S20-S31. [PMID: 19555855 PMCID: PMC2790324 DOI: 10.1016/j.jacc.2009.04.018] [Citation(s) in RCA: 613] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/15/2009] [Indexed: 11/15/2022]
Abstract
Pulmonary arterial hypertension (PAH) is caused by functional and structural changes in the pulmonary vasculature, leading to increased pulmonary vascular resistance. The process of pulmonary vascular remodeling is accompanied by endothelial dysfunction, activation of fibroblasts and smooth muscle cells, crosstalk between cells within the vascular wall, and recruitment of circulating progenitor cells. Recent findings have reestablished the role of chronic vasoconstriction in the remodeling process. Although the pathology of PAH in the lung is well known, this article is concerned with the cellular and molecular processes involved. In particular, we focus on the role of the Rho family guanosine triphosphatases in endothelial function and vasoconstriction. The crosstalk between endothelium and vascular smooth muscle is explored in the context of mutations in the bone morphogenetic protein type II receptor, alterations in angiopoietin-1/TIE2 signaling, and the serotonin pathway. We also review the role of voltage-gated K(+) channels and transient receptor potential channels in the regulation of cytosolic [Ca(2+)] and [K(+)], vasoconstriction, proliferation, and cell survival. We highlight the importance of the extracellular matrix as an active regulator of cell behavior and phenotype and evaluate the contribution of the glycoprotein tenascin-c as a key mediator of smooth muscle cell growth and survival. Finally, we discuss the origins of a cell type critical to the process of pulmonary vascular remodeling, the myofibroblast, and review the evidence supporting a contribution for the involvement of endothelial-mesenchymal transition and recruitment of circulating mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Pulmonary Vascular Diseases Unit, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom.
| | - Serge Adnot
- Medical School of Créteil, Hôpital Henri Mondor, Créteil, France
| | | | - Jocelyn Dupuis
- Research Center of the Montreal Heart Institute, Department of Medicine, University of Montreal, Montreal, Québec, Canada
| | - Peter Lloyd Jones
- University of Pennsylvania, Penn/CMREF Center for Pulmonary Arterial Hypertension Research, Philadelphia, Pennsylvania
| | - Margaret R MacLean
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Ivan F McMurtry
- Departments of Pharmacology and Medicine and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Kurt R Stenmark
- Developmental Lung Biology Laboratory and Pediatric Critical Care Medicine, University of Colorado at Denver and Health Sciences Center, Denver, Colorado
| | | | - Norbert Weissmann
- University of Giessen Lung Center, Department of Internal Medicine II/V, Justus-Liebig-University, Giessen, Germany
| | - Jason X-J Yuan
- Department of Medicine, University of California San Diego, La Jolla, California
| | - E Kenneth Weir
- University of Minnesota, Veterans Affairs Medical Center, Minneapolis, Minnesota
| |
Collapse
|
32
|
Liu Y, Ren W, Warburton R, Toksoz D, Fanburg BL. Serotonin induces Rho/ROCK-dependent activation of Smads 1/5/8 in pulmonary artery smooth muscle cells. FASEB J 2009; 23:2299-306. [PMID: 19244313 DOI: 10.1096/fj.08-127910] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serotonin (5-HT) stimulates pulmonary artery smooth muscle cell proliferation and has been associated with pulmonary arterial hypertension (PAH). Bone morphogenetic protein receptor 2 (BMPR2) mutations similarly have been linked to PAH. However, possible crosstalk between 5-HT and BMPR signaling remains poorly characterized. We report here that 5-HT activates Smads 1/5/8 in bovine and human pulmonary artery smooth muscle cells (SMCs) and causes translocation of these Smads from cytoplasm to the nucleus. DN BMPR1A blocked 5-HT activation of Smads 1/5/8 by 5-HT and BMPR1A overexpression enhanced it. Activation of Smads by 5-HT occurred through the 5-HT 1B/1D receptor as it was blocked with the inhibitor GR 55562 but unaffected by inhibitors of the 5-HT transporter and a variety of 5-HT receptors. Activation of the Smads by 5-HT depended on Rho/Rho kinase signaling as it was blocked by Y27632, but unaffected by inhibitors of PI3K or MAPK. Transfection of cells with BMPR1A and ligation of the BMP receptor with BMP-2 also activated GTP-Rho A of these SMCs, while DN BMPR1A blocked the activation. 5-HT stimulated an increase in serine/threonine phosphorylation of BMPR1A, supporting the activation of BMPR1A by 5-HT in SMCs. Infusion of 5-HT into mice with miniosmotic infusion pumps caused activation of Smads 1/5/8 in lung tissue, demonstrating the effect in vivo. The studies support a unique concept that 5-HT transactivates the serine kinase receptor, BMPR 1A, to activate Smads 1/5/8 via Rho and Rho kinase in pulmonary artery SMCs. Rho and Rho kinase also participate in the activation of Smads by BMP.
Collapse
Affiliation(s)
- Yinglin Liu
- Tufts Medical Center, Pulmonary, Critical Care, and Sleep Division, Tupper Research Institute, 750 Washington Street, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
33
|
Roberts KE, Fallon MB, Krowka MJ, Benza RL, Knowles JA, Badesch DB, Brown RS, Taichman DB, Trotter J, Zacks S, Horn EM, Kawut SM. Serotonin transporter polymorphisms in patients with portopulmonary hypertension. Chest 2009; 135:1470-1475. [PMID: 19141529 DOI: 10.1378/chest.08-1909] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The long allele of a functional promoter polymorphism in the serotonin transporter (SERT) is associated with an increased risk of some forms of pulmonary arterial hypertension. We hypothesized that the long allele or other polymorphisms in SERT would be associated with an increased risk of portopulmonary hypertension (PPHTN) in patients with advanced liver disease. METHODS We performed a multicenter case-control study. Subjects undergoing liver transplant evaluation at seven centers were prospectively screened for the presence of PPHTN using transthoracic echocardiography. PPHTN was confirmed by right heart catheterization using standard criteria. RESULTS The study sample included 30 case patients with PPHTN and 109 control subjects with advanced liver disease. There was no significant association between the long allele and case status in an adjusted additive model (odds ratio, 0.63; 95% confidence interval, 0.33 to 1.21; p = 0.17). If anything, LL genotype tended to be associated with a lower risk of PPHTN. There were no associations between other SERT polymorphisms and PPHTN. CONCLUSIONS SERT polymorphisms are not associated with the risk of PPHTN in patients with advanced liver disease. Other clinical or genetic risk factors may play a role in this complication of portal hypertension.
Collapse
Affiliation(s)
- Kari E Roberts
- Department of Medicine, Tufts Medical Center, Boston, MA
| | | | | | - Raymond L Benza
- Department of Medicine, University of Alabama, Birmingham, AL
| | - James A Knowles
- Department of Psychiatry, University of Southern California, Los Angeles, CA
| | | | - Robert S Brown
- the Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Darren B Taichman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James Trotter
- Department of Medicine, University of Colorado, Denver, CO
| | - Steven Zacks
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Evelyn M Horn
- the Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Steven M Kawut
- Department of Medicine, University of Pennsylvania, Philadelphia, PA.
| | | |
Collapse
|
34
|
Liu L, Marcocci L, Wong CM, Park AM, Suzuki YJ. Serotonin-mediated protein carbonylation in the right heart. Free Radic Biol Med 2008; 45:847-54. [PMID: 18616998 PMCID: PMC2574542 DOI: 10.1016/j.freeradbiomed.2008.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 05/15/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
Pulmonary hypertension is a devastating disease, which leads to right heart failure. Serotonin (5-HT) plays important roles in the pathogenesis of pulmonary hypertension and pulmonary vascular remodeling. The role of 5-HT in right heart failure, however, is unknown. Since oxidative stress may mediate heart failure, the present study examined the effects of 5-HT on protein oxidation in the adult rat right heart ventricle. Treatment of perfused isolated hearts with 5-HT resulted in the promotion of protein carbonylation, specifically in the right ventricle, but not in the left. While no differences between right and left ventricular antioxidant enzymes and 5-HT receptors/transporter were detected, monoamine oxidase A (MAO-A) expression and activity were found to be lower in the right ventricle compared to the left. These results indicate that differences in neither the reactive oxygen species (ROS) scavenging ability, 5-HT membrane signaling capacity, nor MAO-dependent production of hydrogen peroxide are responsible for varied 5-HT-mediated protein carbonylation in right and left ventricles. Rather, lower MAO-A in the right heart might preserve cytosolic 5-HT which triggers other mechanisms for ROS production. Consistently, inhibition of MAO-A resulted in the promotion of protein carbonylation. We propose that low MAO-A, thus reduced degradation of 5-HT, increases the intracellular 5-HT activity in the right ventricle, leading to the promotion of protein carbonylation.
Collapse
Affiliation(s)
- Lingling Liu
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057
| | - Lucia Marcocci
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Chi Ming Wong
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057
| | - Ah-Mee Park
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057
| | - Yuichiro J. Suzuki
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057
- To whom correspondence should be addressed: Dr. Yuichiro J. Suzuki, Department of Pharmacology, Georgetown University Medical Center, NW403 Medical-Dental Building, 3900 Reservoir Road NW, Washington, DC 20057 USA, TEL: (202) 687-8090, FAX: (202) 687-8825, e-mail:
| |
Collapse
|
35
|
Humbert M, Montani D, Perros F, Dorfmüller P, Adnot S, Eddahibi S. Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension. Vascul Pharmacol 2008; 49:113-8. [PMID: 18606248 DOI: 10.1016/j.vph.2008.06.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/20/2008] [Accepted: 06/13/2008] [Indexed: 11/17/2022]
Abstract
The pathogenesis of pulmonary arterial hypertension (PAH) involves a complex and multifactorial process in which endothelial cell dysfunction appears to play an integral role in mediating the structural changes in the pulmonary vasculature. Disordered endothelial cell proliferation along with concurrent neoangiogenesis, when exuberant, results in the formation of glomeruloid structures known as the plexiform lesions, which are common pathological features of the pulmonary vessels of patients with PAH. In addition, an altered production of various endothelial vasoactive mediators, such as nitric oxide, prostacyclin, endothelin-1, serotonin, chemokines and thromboxane, has been increasingly recognized in patients with PAH. Because most of these mediators affect the growth of the smooth muscle cells, an alteration in their production may facilitate the development of pulmonary vascular hypertrophy and structural remodeling characteristic of PAH. It is conceivable that the beneficial effects of many of the treatments currently available for PAH, such as the use of prostacyclin, nitric oxide, and endothelin receptor antagonists, result at least in part from restoring the balance between these mediators. A greater understanding of the role of the endothelium in PAH will presumably facilitate the evolution of newer, targeted therapies.
Collapse
MESH Headings
- Animals
- Cell Communication/physiology
- Chemokines/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Serotonin/metabolism
Collapse
Affiliation(s)
- Marc Humbert
- Université Paris-Sud 11, Centre National de Référence de l'Hypertension Artérielle Pulmonaire, Service de Pneumologie et Réanimation Respiratoire, Hôpital Antoine-Béclère, Assistance Publique des Hôpitaux de Paris, Clamart, France.
| | | | | | | | | | | |
Collapse
|
36
|
Tamura A, Watanabe T, Shinozaki K, Kotoku M, Yano S, Kadota J. Comparison of sarpogrelate and ticlopidine in bare metal coronary stent implantation. Int J Cardiol 2008; 126:79-83. [PMID: 17507105 DOI: 10.1016/j.ijcard.2007.03.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 02/19/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND The efficacy and safety of sarpogrelate, a selective 5-hydroxytryptamine receptor subtype 2A antagonist, have not yet been established in bare metal coronary stenting. Accordingly, we sought to clarify whether treatment with sarpogrelate is clinically useful in bare metal coronary stenting. METHODS A total of 450 patients who underwent successfully planned or unplanned bare metal coronary stenting were randomly divided into the following 2 groups: the sarpogrelate (300 mg/day) plus aspirin (100 mg/day) group (group S, n=225) and the ticlopidine (200 mg/day) plus aspirin (100 mg/day) group (group T, n=225). Either sarpogrelate or ticlopidine was administered for at least 4 weeks after the procedure. Follow-up coronary arteriography was performed at 6 months after the procedure. The primary endpoints were the incidence of adverse drug reactions requiring a withdrawal of treatment and the rate of binary restenosis. The secondary endpoint was the incidence of stent thrombosis. RESULTS The incidence of adverse drug reactions requiring a withdrawal of treatment was significantly lower in group S than in group T (0.44% vs 8%, p=0.002). The rate of binary restenosis did not differ significantly between groups S and T (16.9% vs 18.2%). In addition, the incidence of subacute stent thrombosis did not differ between groups S and T (0.44% vs 0.44%). CONCLUSIONS The incidence of adverse drug reactions requiring a withdrawal of treatment was significantly lower with sarpogrelate use than with ticlopidine use. The rate of binary restenosis and the incidence of subacute stent thrombosis did not differ between both drug groups.
Collapse
Affiliation(s)
- Akira Tamura
- Second Department of Internal Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu, Oita 879-5593, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Chapman ME, Taylor RL, Wideman RF. Analysis of plasma serotonin levels and hemodynamic responses following chronic serotonin infusion in broilers challenged with bacterial lipopolysaccharide and microparticles. Poult Sci 2008; 87:116-24. [PMID: 18079460 DOI: 10.3382/ps.2007-00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There has been extensive interest in the role of serotonin (5-hydoxytryptamine, 5-HT) in the pathogenesis of pulmonary hypertension because episodes of pulmonary arterial hypertension in humans have been linked to serotoninergic appetite-suppressant drugs. In this study, we investigated the role of serotonin in the development of pulmonary hypertension induced by intravenously injecting bacterial lipopolysaccharide (LPS, endotoxin) and cellulose microparticles. In experiment 1, we used a 5-HT ELISA kit for the in vitro quantitative determination of 5-HT in plasma during the development of pulmonary hypertension induced by injecting LPS and cellulose microparticles i.v. in broilers. In experiment 2, broilers were either chronically infused with 5-HT via surgically implanted osmotic pumps or received sham surgery as a control. After a period of 10 d, the pulmonary arterial pressure was recorded during challenge with injected LPS or microparticles. Microparticles elicited 5-HT plasma levels more than 2-fold greater than those elicited by LPS from 15 to 45 min postinjection. This indicates that 5-HT is an important mediator in the pulmonary hypertensive response of broilers to microparticles, but may not play a prominent role in the pulmonary hypertensive response to LPS. Furthermore, chronic 5-HT infusion via osmotic pumps caused an increase in the duration of the pulmonary hypertensive response of broilers to microparticles, indicating that the infused 5-HT was sequestered by circulating thrombocytes and then released upon microparticle-mediated thrombocyte activation. Serotonin appears to play a less prominent role in the pulmonary hypertensive response of broilers to LPS, indicating that other mediators within the innate response to inflammatory stimuli may also be involved. These results are consistent with our hypothesis that pulmonary arterial hypertension ensues when vasoconstrictors such as 5-HT overwhelm the dilatory affects of vasodilators such as nitric oxide, thereby effectively reducing the pulmonary vascular capacity of pulmonary arterial hypertension-susceptible broilers.
Collapse
Affiliation(s)
- M E Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | |
Collapse
|
38
|
Esteve JM, Launay JM, Kellermann O, Maroteaux L. Functions of serotonin in hypoxic pulmonary vascular remodeling. Cell Biochem Biophys 2008; 47:33-44. [PMID: 17406058 DOI: 10.1385/cbb:47:1:33] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
In lung vasculature, reversible constriction of smooth muscle cells exists in response to acute decrease in oxygen levels (hypoxia). Progressive and irreversible structural remodeling that reduces blood vessel lumen takes place in response to chronic hypoxia and results in pulmonary hypertension. Several studies have shown a role of serotonin in regulating acute and chronic hypoxic responses. In this review the contribution of serotonin, its receptors and transporter in lung hypoxic responses is discussed. Hypoxic conditions modify plasma levels of serotonin, serotonin transporter activity, and expression of 5-HT1B and 5-HT2B receptors. These appear to be required for pulmonary vascular cell proliferation, which depends on the ratio between reactive oxygen species and nitric oxide. A heterozygous mutation was identified in the 5-HT2B receptor gene of a patient who developed pulmonary hypertension after fenfluramines anorexigen treatment. This C-terminus truncated 5-HT2B mutant receptor presents lower nitric oxide coupling, and higher cell proliferation capacity than the wild-type receptor. Under low oxygen tension, cells increase the transcription of specific genes via stabilization of the transcription factor hypoxia-inducible factor (HIF)-1. Factors such as angiotensin II or thrombin that can also control HIF-1 pathway contribute to pulmonary vascular remodeling. The 5-HT2B receptor via phosphatidylinositol-3 kinase/Akt activates nuclear factor-kappaB, which is involved in the regulation of HIF-1 expression. Acontrol of HIF- 1 by 5-HT2B receptors explains why expression of pulmonary vascular remodeling factors, such as endothelin-1 or transforming growth factor-beta, which is HIF-1-alpha regulated, is not modified in hypoxic 5-HT2B receptor mutant mice. Understanding the detailed mechanisms involved in lung hypoxic responses may provide general insight into pulmonary hypertension pathogenesis.
Collapse
|
39
|
Sulaiman P, Joseph B, Kaimal SB, Paulose CS. Decreased Hepatic 5-HT1A Receptors During Liver Regeneration and Neoplasia in Rats. Neurochem Res 2007; 33:444-9. [PMID: 17721726 DOI: 10.1007/s11064-007-9452-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/20/2007] [Indexed: 11/25/2022]
Abstract
In the present study we investigated the role of 5-hydroxytryptamine (5-HT) and 5-HT1A receptor during liver regeneration after partial hepatectomy (PH) and N-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in male Wistar rats. 5-HT content was significantly increased during liver regeneration after PH and NDEA induced hepatocellular carcinoma. Scatchard analysis using 8-OH-DPAT, a 5-HT1A specific agonist showed a decreased receptor during liver regeneration after PH and NDEA induced hepatocellular carcinoma. 5-HT when added alone to primary hepatocyte culture did not increase DNA synthesis but was able to increase the EGF mediated DNA synthesis and inhibit the TGF beta 1 mediated DNA synthesis suppression in vitro. This confirmed the co-mitogenic activity of 5-HT. 8-OH-DPAT at a concentration of 10(-4) M inhibited the basal and EGF-mediated DNA synthesis in primary hepatocyte cultures. It also suppressed the TGF beta 1-mediated DNA synthesis suppression. This clearly showed that activated 5-HT1A receptor inhibited hepatocyte DNA synthesis. Our results suggest that decreased hepatic 5-HT1A receptor function during hepatocyte regeneration and neoplasia has clinical significance in the control of cell proliferation.
Collapse
Affiliation(s)
- Pyroja Sulaiman
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala 682 022, India
| | | | | | | |
Collapse
|
40
|
Farahani RMZ, Sadr K, Rad JS, Mesgari M. Fluoxetine enhances cutaneous wound healing in chronically stressed Wistar rats. Adv Skin Wound Care 2007; 20:157-65. [PMID: 17473722 DOI: 10.1097/01.asw.0000262710.59293.6b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate the histologic and clinical effects of fluoxetine administration on wound healing in chronically stressed and nonstressed Wistar rats. STUDY DESIGN Full-thickness incisional wounds were created on the lower back of 72 female Wistar rats. Animals were divided into 2 stress and nonstress groups according to application of stress regimen and 3 subdivisions based on placebo, acute, or chronic administration of fluoxetine. Wound length, width, and linear healing rate based on wound area were measured for 2 weeks postwounding. Biopsies of 3 rats from each group were taken at days 1, 4, 7, and 14 to perform histomorphometric measurements by light microscopy. Analysis of covariance and analysis of variance were used to analyze wound length and other variables, respectively. RESULTS Fluoxetine treatment significantly reduced mean wound length and healing period (P<.01). Although stress decreased the linear healing rate by 48%, fluoxetine treatment increased it by 68% and 31% in stressed and nonstressed rats, respectively. Stress significantly diminished infiltration of neutrophils and monocytes (P<.01), disrupted spatial organization of fibroblasts, and delayed neovascularization. Fluoxetine precluded these effects successfully. CONCLUSION Fluoxetine significantly improves healing of cutaneous wounds in stressed and, to a lesser extent, in nonstressed animals.
Collapse
Affiliation(s)
- Ramin Mostofi Zadeh Farahani
- Department of Biology, School of Dentistry/Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
41
|
Sakao S, Taraseviciene-Stewart L, Cool CD, Tada Y, Kasahara Y, Kurosu K, Tanabe N, Takiguchi Y, Tatsumi K, Kuriyama T, Voelkel NF. VEGF-R blockade causes endothelial cell apoptosis, expansion of surviving CD34+ precursor cells and transdifferentiation to smooth muscle-like and neuronal-like cells. FASEB J 2007; 21:3640-52. [PMID: 17567571 DOI: 10.1096/fj.07-8432com] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Severe pulmonary hypertension (PH) is characterized by complex precapillary arteriolar lesions, which contain phenotypically altered smooth muscle (SM) and endothelial cells (EC). We have demonstrated that VEGF receptor blockade by SU5416 {3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-indolin 2-one} in combination with chronic hypoxia causes severe angioproliferative PH associated with arterial occlusion in rats. We postulate that endothelial-mesenchymal transdifferentiation can take place in the occlusive lesions and that endothelium-derived mesenchymal cells can further differentiate toward a SM phenotype. To examine this hypothesis, we incubated human pulmonary microvascular endothelial cells (HPMVEC) with SU5416 and analyzed these cells utilizing quantitative-PCR, immunofluorescent staining and flow cytometry analysis. In vitro studies in HPMVEC demonstrated that SU5416 suppressed PGI2S gene expression while potently inducing COX-2, VEGF, and TGF-beta1 expression; and caused transdifferentiation of mature vascular endothelial cells (defined by Dil-ac-LDL, Lectin and Factor VIII) to SM-like (as defined by expression of alpha-SM actin) "transitional" cells, coexpressing both endothelial and SM markers. SU5416 expanded the number of CD34 and/or c-kit positive cells and caused transdifferentiation of CD34 positive cells but not negative cells. In conclusion, our data show that SU5416 generated a selection pressure that killed some EC and expanded progenitor-like cells to transdifferentiate to SM-like and neuronal-like cells.
Collapse
Affiliation(s)
- Seiichiro Sakao
- Pulmonary Hypertension Center, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li M, Liu Y, Dutt P, Fanburg BL, Toksoz D. Inhibition of serotonin-induced mitogenesis, migration, and ERK MAPK nuclear translocation in vascular smooth muscle cells by atorvastatin. Am J Physiol Lung Cell Mol Physiol 2007; 293:L463-71. [PMID: 17545489 DOI: 10.1152/ajplung.00133.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The HMG-CoA reductase inhibitors, statins, have pleiotropic effects which may include interference with the isoprenylation of Ras and Rho small GTPases. Statins have beneficial effects in animal models of pulmonary hypertension, although their mechanisms of action remain to be determined. Serotonin [5-hydroxytryptamine (5-HT)] is implicated in the process of pulmonary artery smooth muscle (PASM) remodeling as part of the pathophysiology of pulmonary hypertension. We examined the effect of atorvastatin on 5-HT-induced PASM cell responses. Atorvastatin dose dependently inhibits 5-HT-induced mitogenesis and migration of cultured bovine PASM cells. Inhibition by atorvastatin was reversed by mevalonate and geranylgeranylpyrophosphate (GGPP) supplement, suggesting that the statin targets a geranylgeranylated protein such as Rho. Concordantly, atorvastatin inhibits 5-HT-induced cellular RhoA activation, membrane localization, and Rho kinase-mediated phosphorylation of myosin phosphatase-1 subunit. Atorvastatin reduced activated RhoA-induced serum response factor-mediated reporter activity in HEK293 cells, indicating that atorvastatin inhibits Rho signaling, and this was reversed by GGPP. While 5-HT-induced ERK MAP and Akt kinase activation were unaffected by atorvastatin, 5-HT-induced ERK nuclear translocation was attenuated in a GGPP-dependent fashion. These studies suggest that atorvastatin inhibits 5-HT-induced PASM cell mitogenesis and migration through targeting isoprenylation which may, in part, attenuate the Rho pathway, a mechanism that may apply to statin effects on in vivo models of pulmonary hypertension.
Collapse
Affiliation(s)
- Min Li
- Pulmonary and Critical Care Division, Tupper Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
43
|
Suzuki YJ, Nagase H, Wong CM, Kumar SV, Jain V, Park AM, Day RM. Regulation of Bcl-xL expression in lung vascular smooth muscle. Am J Respir Cell Mol Biol 2007; 36:678-87. [PMID: 17272823 PMCID: PMC1868666 DOI: 10.1165/rcmb.2006-0359oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 01/03/2007] [Indexed: 11/24/2022] Open
Abstract
Pulmonary hypertension is characterized by thickened pulmonary arterial walls due to increased number of pulmonary artery smooth muscle cells (PASMC). Apoptosis of PASMC may play an important role in regulating the PASMC number and may be useful for reducing pulmonary vascular thickening. The present study examined the regulation of an anti-apoptotic protein Bcl-x(L). Bcl-x(L) expression was found to be increased in the pulmonary artery of chronic hypoxia-treated rats with pulmonary vascular remodeling. Adenovirus-mediated gene transfer of Bcl-x(L) indeed showed that this protein has anti-apoptotic activities in PASMC. Treatment of remodeled pulmonary artery with sodium nitroprusside (SNP) reduced Bcl-x(L) expression by targeting the bcl-x(L) promoter. The bcl-x(L) promoter contains two GATA elements, and SNP decreases the GATA-4 DNA-binding activity. Overexpression of GATA-4 attenuated the SNP-mediated suppression of Bcl-x(L) expression, providing direct evidence for the role of GATA-4 in Bcl-x(L) gene transcription. We established that SNP targets the 250 proximal region of the gata4 promoter and suppresses its gene transcription. Thus, inducers of pulmonary hypertension enhance anti-apoptotic Bcl-x(L) gene transcription, which can be suppressed by targeting gata4 gene transcription.
Collapse
Affiliation(s)
- Yuichiro J Suzuki
- Department of Pharmacology, Georgetown University Medical Center, NW403 Medical-Dental Building, 3900 Reservoir Road NW, Washington, DC 20057, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Liu Y, Li M, Warburton RR, Hill NS, Fanburg BL. The 5-HT transporter transactivates the PDGFbeta receptor in pulmonary artery smooth muscle cells. FASEB J 2007; 21:2725-34. [PMID: 17504974 DOI: 10.1096/fj.06-8058com] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serotonin (5-HT) stimulates smooth muscle cell growth through 5-HT receptors and the 5-HT transporter (5-HTT), and has been associated with pulmonary hypertension (PH). Platelet-derived growth factor receptors (PDGFR) have also been associated with PH. We present evidence for the first time that 5-HT transactivates PDGFRbeta through the 5-HTT in pulmonary artery (PA) SMCs. Inhibition of PDGFR kinase with imatinib or AG1296 blocks 5-HT-stimulated PDGFRbeta phosphorylation. 5-HTT inhibitors and the Na+/K+-ATPase inhibitor ouabain, but not 5-HT2 and 5-HT1B/1D receptor inhibitors, block PDGFRbeta activation by 5-HT. Notably, 5-HTT binds the PDGFRbeta upon 5-HT stimulation and the 5-HTT inhibitor fluoxetine blocks both the binding and PDGDRbeta activation. Activation of PDGFRbeta may occur through oxidation of a catalytic cysteine of tyrosine phosphatase. 5-HT-activated PDGFRbeta phosphorylation is blocked by the antioxidant N-acetyl-L-cysteine and the NADPH oxidase inhibitor, DPI. Inhibition of PDGFR kinase with imatinib or AG1296 significantly inhibits SMC proliferation and migration induced by 5-HT in vitro. Infusion of 5-HT by miniosmotic pumps enhances PDGFRbeta activation in mouse lung in vivo. In summary, these results demonstrate that 5-HT transactivates PDGFRbeta in PASMCs leading to SMC proliferation and migration, and may be an important signaling pathway in the production of PH in vivo.
Collapse
Affiliation(s)
- Yinglin Liu
- Pulmonary, Critical Care and Sleep Division, Tufts-New England Medical Center, 750 Washington St., Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon disorder of the pulmonary vasculature characterized by remodeling of the smallest pulmonary arteries, leading to a progressive increase in pulmonary vascular resistance. Various forms of PAH exist, including familial (FPAH) and idiopathic (IPAH) forms and associated conditions. FPAH transmits as an autosomal dominant trait that exhibits genetic anticipation but also markedly reduced penetrance (20%). The primary genetic defect of FPAH, identifiable in more than 70% of cases of FPAH, is a mutation in the gene encoding bone morphogenetic protein receptor type 2 (BMPR2), a member of the transforming growth factor beta superfamily. The true prevalence of BMPR2 mutations in IPAH is unknown, with reports ranging from 10% to 40% of patients. The cause of the variable phenotypic expression of PAH among carriers of mutated BMPR2 genes and patients is unclear, and likely related to environmental and genetic modifiers of disease not yet fully elucidated. Although BMPR2-related pathways seem to be pivotal, many other mediator pathways participate in the pathogenesis of different forms of PAH and are being actively investigated, both independently and in combination. As understanding of the molecular basis of this devastating disease improves, opportunities for earlier diagnosis, additional therapeutic regimens, and perhaps disease prevention will emerge.
Collapse
Affiliation(s)
- Eric D Austin
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, T-1217 Medical Center North, Nashville, TN 37232-2650, USA.
| | | |
Collapse
|
46
|
Levin M, Buznikov GA, Lauder JM. Of minds and embryos: left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Dev Neurosci 2006; 28:171-85. [PMID: 16679764 DOI: 10.1159/000091915] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 01/22/2023] Open
Abstract
Serotonin is a clinically important neurotransmitter regulating diverse aspects of cognitive function, sleep, mood, and appetite. Increasingly, it is becoming appreciated that serotonin signaling among non-neuronal cells is a novel patterning mechanism existing throughout diverse phyla. Here, we review the evidence implicating serotonergic signaling in embryonic morphogenesis, including gastrulation, craniofacial and bone patterning, and the generation of left-right asymmetry. We propose two models suggesting movement of neurotransmitter molecules as a novel mechanism for how bioelectrical events may couple to downstream signaling cascades and gene activation networks. The discovery of serotonin-dependent patterning events occurring long before the development of the nervous system opens exciting new avenues for future research in evolutionary, developmental, and clinical biology.
Collapse
Affiliation(s)
- Michael Levin
- The Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | | | |
Collapse
|
47
|
Saini HK, Takeda N, Goyal RK, Kumamoto H, Arneja AS, Dhalla NS. Therapeutic Potentials of Sarpogrelate in Cardiovascular Disease*. ACTA ACUST UNITED AC 2006; 22:27-54. [PMID: 14978517 DOI: 10.1111/j.1527-3466.2004.tb00130.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In view of the pivotal role of serotonin (5-HT) in a wide variety of cardiovascular disorders, extensive effort has been made to develop different types of 5-HT receptor antagonists for therapeutic use. On the basis of experimental studies, this article is focused on the potentials of sarpogrelate, a specific 5-HT2A receptor antagonist as an antiplatelet, antithrombotic, antiatherosclerotic and antianginal agent. The major effects of sarpogrelate are due to the inhibition of 5-HT-induced platelet aggregation and smooth muscle cell proliferation. This agent was found to attenuate the 5-HT-mediated increase in intracellular Ca2+ and ischemia-reperfusion injury in the heart. Sarpogrelate has been found to have beneficial effects in peripheral vascular disease, restenosis after coronary stenting, pulmonary hypertension, acute and chronic myocardial infarction.
Collapse
Affiliation(s)
- Harjot K Saini
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, University of Manitoba, 351 Tache Avenue, Winnipeg, Manitoba R2H 2A6, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Fukumoto T, Blakely R, Levin M. Serotonin transporter function is an early step in left-right patterning in chick and frog embryos. Dev Neurosci 2006; 27:349-63. [PMID: 16280633 DOI: 10.1159/000088451] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/22/2005] [Indexed: 01/03/2023] Open
Abstract
The neurotransmitter serotonin has been shown to regulate a number of embryonic patterning events in addition to its crucial role in the nervous system. Here, we examine the role of two serotonin transporters, the plasma membrane serotonin transporter (SERT) and the vesicular monoamine transporter (VMAT), in embryonic left-right asymmetry. Pharmacological or genetic inhibitors of either SERT or VMAT specifically randomized the laterality of the heart and viscera in Xenopus embryos. This effect takes place during cleavage stages, and is upstream of the left-sided gene XNR-1. Targeted microinjection of an SERT-dominant negative construct confirmed the necessity for SERT function in embryonic laterality and revealed that the descendants of the right ventral blastomere are the most dependent upon SERT signaling in left-right patterning. Moreover, the importance of SERT and VMAT in laterality is conserved in chick embryos, being upstream of the early left-sided gene Shh. Endogenous transcripts of SERT and VMAT are expressed from the initiation of the primitive streak in chick and are asymmetrically expressed in Hensen's node. Taken together our data characterize two new right-sided markers in chick gastrulation, identify a novel, early component of the left-right pathway in two vertebrate species, and reveal a new biological role for serotonin transport.
Collapse
Affiliation(s)
- Takahiro Fukumoto
- Cytokine Biology Department, The Forsyth Institute, Harvard Medical School, Boston, Mass. 02115, USA
| | | | | |
Collapse
|
49
|
Day RM, Agyeman AS, Segel MJ, Chévere RD, Angelosanto JM, Suzuki YJ, Fanburg BL. Serotonin induces pulmonary artery smooth muscle cell migration. Biochem Pharmacol 2006; 71:386-97. [PMID: 16316635 PMCID: PMC1831537 DOI: 10.1016/j.bcp.2005.10.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/14/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
The chronic phase of pulmonary arterial hypertension (PAH) is associated with vascular remodeling, especially thickening of the smooth muscle layer of large pulmonary arteries and muscularization of small pulmonary vessels, which normally have no associated smooth muscle. Serotonin (5-hydroxytryptamine, 5-HT) has been shown to induce proliferation and hypertrophy of pulmonary artery smooth muscle cells (PASMC), and may be important for in vivo pulmonary vascular remodeling. Here, we show that 5-HT stimulates migration of pulmonary artery PASMC. Treatment with 5-HT for 16h increased migration of PASMC up to four-fold as monitored in a modified Boyden chamber assay. Increased migratory responses were associated with cellular morphological changes and reorganization of the actin cytoskeleton. 5-HT-induced alterations in morphology were previously shown in our laboratory to require cAMP [Lee SL, Fanburg BL. Serotonin produces a configurational change of cultured smooth muscle cells that is associated with elevation of intracellular cAMP. J Cell Phys 1992;150(2):396-405], and the 5-HT4 receptor was pharmacologically determined to be the primary activator of cAMP in bovine PASMC [Becker BN, Gettys TW, Middleton JP, Olsen CL, Albers FJ, Lee SL, et al. 8-Hydroxy-2-(di-n-propylamino)tetralin-responsive 5-hydroxytryptamine4-like receptor expressed in bovine pulmonary artery smooth muscle cells. Mol Pharmacol 1992;42(5):817-25]. We examined the role of the 5-HT4 receptor and cAMP in 5-HT-induced bovine PASMC migration. PASMC express 5-HT4 receptor mRNA, and a 5-HT4 receptor antagonist and a cAMP antagonist completely blocked 5-HT-induced cellular migration. Consistent with our previous report that a cAMP-dependent Cl(-) channel is required for 5-HT-induced morphological changes in PASMC, phenylanthranilic acid, a Cl(-) channel blocker, inhibited actin cytoskeletal reorganization and migration produced by 5-HT. We conclude that 5-HT stimulates PASMC migration and associated cytoskeletal reorganization through the 5-HT4 receptor and cAMP activation of a chloride channel.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cattle
- Cell Movement/drug effects
- Cells, Cultured
- Cyclic AMP/antagonists & inhibitors
- Cyclic AMP/biosynthesis
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Receptors, Serotonin, 5-HT4/biosynthesis
- Serotonin/pharmacology
- Serotonin 5-HT4 Receptor Antagonists
Collapse
Affiliation(s)
- Regina M Day
- Department of Pharmacology, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Day RM, Lee YH, Park AM, Suzuki YJ. Retinoic acid inhibits airway smooth muscle cell migration. Am J Respir Cell Mol Biol 2006; 34:695-703. [PMID: 16456186 PMCID: PMC1831536 DOI: 10.1165/rcmb.2005-0306oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway remodeling in chronic asthma is characterized by increased smooth muscle mass that is associated with the reduction of the bronchial lumen as well as airway hyperresponsiveness. The development of agents that inhibit smooth muscle growth is therefore of interest for therapy to prevent asthma-associated airway remodeling. All-trans retinoic acid (ATRA) suppresses growth of vascular smooth muscle cells (SMCs) from the systemic and pulmonary circulation. The present study investigated the effects of ATRA on human bronchial (airway) SMCs. Human bronchial SMCs were found to express mRNAs for retinoic acid receptor (RAR)-alpha, -beta, -gamma, and retinoid X receptor (RXR)-alpha, -beta, but not RXR-gamma. Although ATRA was not effective in inhibiting proliferation or in inducing apoptosis in airway SMCs, we found that ATRA (0.2-2 microM) inhibited the SMC migration in response to platelet-derived growth factor (PDGF), as determined in a modified Boyden chamber assay. Both RAR and RXR agonists also blocked PDGF-induced airway SMC migration. ATRA also inhibited PDGF-induced actin reorganization associated with migration. PDGF-induced actin reorganization and migration were blocked by inhibitors of phosphatidylinositol 3 kinase (PI3K) and Akt. However, migration was blocked by inhibitors of the MEK/ERK pathway, with no effect on cytoskeletal reorganization. ATRA suppressed PDGF-induced Akt activation without influencing ERK activation. RAR was found to form protein-protein interactions with the p85 PI3K subunit. These results suggest that retinoic acid inhibits airway SMC migration through the modulation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Regina M Day
- Department of Pharmacology, Georgetown University Medical Center, NW403 Medical-Dental Building, Washington, DC 20057, USA
| | | | | | | |
Collapse
|