1
|
Dienel A, Hong SH, Zeineddine HA, Thomas S, M SC, Jose DA, Torres K, Guzman J, Dunn A, T PK, Rao GN, Blackburn SL, McBride DW. 12/15-Lipooxygenase Inhibition Reduces Microvessel Constriction and Microthrombi After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2024:10.1007/s12975-024-01295-0. [PMID: 39294532 DOI: 10.1007/s12975-024-01295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus, 12/15-LOX is an important target to prevent delayed cerebral ischemia. SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day 5 to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. In SAH mice, 12/15-LOX was upregulated in brain vascular cells, and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| | - Sung Ha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Hussein A Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Sithara Thomas
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Shafeeque C M
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Dania A Jose
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - P Kumar T
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77459, USA.
| |
Collapse
|
2
|
Dienel A, Hong SH, Zeineddine HA, Thomas S, Shafeeque CM, Jose DA, Torres K, Guzman J, Dunn A, P Kumar T, Rao GN, Blackburn SL, McBride DW. 12/15-Lipooxygenase Inhibition Reduces Microvessel Constriction and Microthrombi after Subarachnoid Hemorrhage in Mice. RESEARCH SQUARE 2024:rs.3.rs-4468292. [PMID: 38947083 PMCID: PMC11213206 DOI: 10.21203/rs.3.rs-4468292/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background and Purpose Impaired cerebral circulation, induced by blood vessel constrictions and microthrombi, leads to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). 12/15-Lipooxygenase (12/15-LOX) overexpression has been implicated in worsening early brain injury outcomes following SAH. However, it is unknown if 12/15-LOX is important in delayed pathophysiological events after SAH. Since 12/15-LOX produces metabolites that induce inflammation and vasoconstriction, we hypothesized that 12/15-LOX leads to microvessel constriction and microthrombi formation after SAH, and thus 12/15-LOX is an important target to prevent delayed cerebral ischemia. Methods SAH was induced in C57BL/6 and 12/15-LOX-/- mice of both sexes by endovascular perforation. Expression of 12/15-LOX was assessed in brain tissue slices and in vitro. C57BL/6 mice were administered either ML351 (12/15-LOX inhibitor) or vehicle. Mice were evaluated for daily neuroscore and euthanized on day five to assess cerebral 12/15-LOX expression, vessel constrictions, platelet activation, microthrombi, neurodegeneration, infarction, cortical perfusion, and for development of delayed deficits. Finally, the effect of 12/15-LOX inhibition on platelet activation was assessed in SAH patient samples using a platelet spreading assay. Results In SAH mice, 12/15-LOX was upregulated in brain vascular cells and there was an increase in 12-S-HETE. Inhibition of 12/15-LOX improved brain perfusion on days 4-5 and attenuated delayed pathophysiological events, including microvessel constrictions, microthrombi, neuronal degeneration, and infarction. Additionally, 12/15-LOX inhibition reduced platelet activation in human and mouse blood samples. Conclusions Cerebrovascular 12/15-LOX overexpression plays a major role in brain dysfunction after SAH by triggering microvessel constrictions and microthrombi formation, which reduces brain perfusion. Inhibiting 12/15-LOX may be a therapeutic target to improve outcomes after SAH.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Sung Ha Hong
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - Sithara Thomas
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - C M Shafeeque
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Dania A Jose
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Kiara Torres
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Jose Guzman
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - T P Kumar
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | | | - Spiros L Blackburn
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| | - Devin W McBride
- The Vivian L. Smith, The University of Texas Health Science Center at Houston
| |
Collapse
|
3
|
Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1949-1967. [DOI: 10.1016/j.bbadis.2018.11.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
|
4
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
5
|
Joshi YB, Giannopoulos PF, Praticò D. The 12/15-lipoxygenase as an emerging therapeutic target for Alzheimer's disease. Trends Pharmacol Sci 2015; 36:181-186. [PMID: 25708815 PMCID: PMC4355395 DOI: 10.1016/j.tips.2015.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative condition characterized by progressive memory loss. Mutations in genes involved in the production of amyloid-β (Aβ) are linked to the early-onset variant of AD. However, the most common form, sporadic AD, is considered to be the result of an interaction between environmental risk factors and various genes. Among them, recent work has highlighted the potential role that the 12/15-lipoxygenase (12/15LO) pathway may play in AD pathogenesis. 12/15LO is widely distributed in the central nervous system, and its levels are upregulated in patients with AD or mild cognitive impairments. Studies using animal models have implicated 12/15LO in the molecular pathology of AD, including the metabolism of Aβ and tau, synaptic integrity, and cognitive functions. We provide an overview of this pathway and its relevance to AD pathogenesis, discuss the mechanism(s) involved, and provide an assessment of how targeting 12/15LO could lead to novel AD therapeutics.
Collapse
Affiliation(s)
- Yash B Joshi
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| | - Phillip F Giannopoulos
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| | - Domenico Praticò
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
6
|
Alleviation of glutamate mediated neuronal insult by piroxicam in rodent model of focal cerebral ischemia: a possible mechanism of GABA agonism. J Physiol Biochem 2014; 70:901-13. [DOI: 10.1007/s13105-014-0358-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
|
7
|
Bhattacharya P, Pandey AK, Paul S, Patnaik R, Yavagal DR. Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rodents. PLoS One 2013; 8:e73481. [PMID: 24023878 PMCID: PMC3762750 DOI: 10.1371/journal.pone.0073481] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/22/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Aquaporin-4(AQP4) is an abundant water channel protein in brain that regulates water transport to maintain homeostasis. Cerebral edema resulting from AQP4 over expression is considered to be one of the major determinants for progressive neuronal insult during cerebral ischemia. Although, both upregulation and downregulation of AQP4 expression is associated with brain pathology, over expression of AQP4 is one of the chief contributors of water imbalance in brain during ischemic pathology. We have found that Piroxicam binds to AQP4 with optimal binding energy value. Thus, we hypothesized that Piroxicam is neuroprotective in the rodent cerebral ischemic model by mitigating cerebral edema via AQP4 regulation. METHODS Rats were treated with Piroxicam OR placebo at 30 min prior, 2 h post and 4 h post 60 minutes of MCAO followed by 24 hour reperfusion. Rats were evaluated for neurological deficits and motor function just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, RT-PCR and western blot experiments. RESULTS Piroxicam pretreatment thirty minutes prior to ischemia and four hour post reperfusion afforded neuroprotection as evident through significant reduction in cerebral infarct volume, improvement in motor behavior, neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde were also found to be significantly reduced in ischemic brain regions in treated animals. This neuroprotection was found to be associated with inhibition of acid mediated rise in intracellular calcium levels and also downregulated AQP4 expression. CONCLUSIONS Findings of the present study provide significant evidence that Piroxicam acts as a potent AQP4 regulator and renders neuroprotection in focal cerebral ischemia. Piroxicam could be clinically exploited for the treatment of brain stroke along with other anti-stroke therapeutics in future.
Collapse
Affiliation(s)
- Pallab Bhattacharya
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, (U.P.), India
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Anand Kumar Pandey
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, (U.P.), India
| | - Sudip Paul
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, (U.P.), India
- Department of Biomedical Engineering, North Eastern Hill University (NEHU), Shillong, Meghalaya, India
| | - Ranjana Patnaik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, (U.P.), India
| | - Dileep R. Yavagal
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
8
|
López-Villodres JA, De La Cruz JP, Muñoz-Marin J, Guerrero A, Reyes JJ, González-Correa JA. Lack of enantiomeric influence on the brain cytoprotective effect of ibuprofen and flurbiprofen. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:177-83. [PMID: 21713382 DOI: 10.1007/s00210-011-0661-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/01/2011] [Indexed: 01/23/2023]
Abstract
R(-) enantiomers of the 2-arylpropionic acid derivatives ibuprofen and flurbiprofen weakly inhibit cyclooxygenase (COX) activity. However, a possible cytoprotective effect has been proposed. The aim of the study is to investigate the possible mechanism of this effect. An in vitro hypoxia-reoxygenation model in rat brain slices was used (n=6 rats per group). After reoxygenation, we measured LDH efflux (neuronal death), brain prostaglandin E(2) (PGE(2)) concentration, interleukins (IL)-1β and 10, oxidative and nitrosative stress (lipid peroxides, glutathione, 3-nitrotyrosine, and nitrites/nitrates). Anti-COX activity was measured in human whole blood. Racemic, R(-), and S(+) enantiomers of ibuprofen and flurbiprofen were tested. All compounds had a cytoprotective effect with IC(50) values in the range of 10(-5) M. R(-) enantiomers did not significantly inhibit brain PGE(2). The concentration of IL-1β was reduced by 53.1% by the racemic form, 30.6% by the S(+) and 43.2% by the R(-) enantiomer of ibuprofen. The IL-10 concentration increased significantly only with S(+)-flurbiprofen (33.1%) and R(-)-flurbiprofen (26.1%). Lipid peroxidation was significantly reduced by all three forms of flurbiprofen. Nitrite + nitrate concentrations were reduced by racemic, S(+), and R(-)-flurbiprofen. Peroxynitrite formation (3-nitrotyrosine) was significantly reduced by racemic and S(+)-ibuprofen. COX inhibition is not the main mechanism of cytoprotection for these compounds. Their influence on inflammatory mediators and oxidative and nitrosative stress could account for the potential cytoprotective effect of R(-) enantiomers.
Collapse
Affiliation(s)
- J A López-Villodres
- Laboratorio de Investigaciones Antitrombóticas e Isquemia Tisular (LIAIT), Department of Pharmacology and Therapeutics, School of Medicine, University of Malaga, Campus de Teatinos s/n, Malaga, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Hugyecz M, Mracskó E, Hertelendy P, Farkas E, Domoki F, Bari F. Hydrogen supplemented air inhalation reduces changes of prooxidant enzyme and gap junction protein levels after transient global cerebral ischemia in the rat hippocampus. Brain Res 2011; 1404:31-8. [PMID: 21718970 DOI: 10.1016/j.brainres.2011.05.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 01/23/2023]
Abstract
Transient global cerebral ischemia (TGCI) occurs during acute severe hypotension depriving the brain of oxygen and glucose for a short period of time. During reperfusion, several mechanisms can induce secondary neuronal damage, including the increased production of reactive oxygen species (ROS). Hydrogen gas-enriched air inhalation is a neuroprotective approach with proven antioxidant potential, which has not yet been examined in TGCI. Accordingly, we set out to describe the effect of inhalation of 2.1% hydrogen supplemented room air (H(2)-RA) in comparison with a well studied neuroprotective agent, rosiglitazone (RSG) in a TGCI rat model. Male Wistar rats were exposed to TGCI (n=26) or sham operation (n=26), while a third group served as intact control (naive, n=5). The operated groups were further divided into non-treated, H(2)-RA, RSG (6 mg/kg i.v.) and vehicle treated animals. Tissue samples from the hippocampus and frontal cortex were taken 3 days following surgery. Western blot analysis was applied to determine the expressions of cyclooxygenase-2 (COX-2), neuronal and endothelial nitric oxide synthase (nNOS and eNOS, respectively), manganese superoxide dismutase (MnSOD) and glial connexin proteins: connexin 30 and connexin 43. The expressions of COX-2, and connexin proteins were upregulated, while nNOS was downregulated 3 days after TGCI. Both RSG and H(2)-RA prevented the changes of enzyme and connexin levels. Considering the lack of harmful side effects, inhalation of H(2)-RA can be a promising approach to reduce neuronal damage after TGCI.
Collapse
Affiliation(s)
- Marietta Hugyecz
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Dóm tér 10, H-6720, Hungary
| | | | | | | | | | | |
Collapse
|
10
|
Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 2010; 50:115-31. [PMID: 20970452 DOI: 10.1016/j.plipres.2010.10.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 12/25/2022]
Abstract
The 12/15-lipoxygenase enzymes react with fatty acids producing active lipid metabolites that are involved in a number of significant disease states. The latter include type 1 and type 2 diabetes (and associated complications), cardiovascular disease, hypertension, renal disease, and the neurological conditions Alzheimer's disease and Parkinson's disease. A number of elegant studies over the last thirty years have contributed to unraveling the role that lipoxygenases play in chronic inflammation. The development of animal models with targeted gene deletions has led to a better understanding of the role that lipoxygenases play in various conditions. Selective inhibitors of the different lipoxygenase isoforms are an active area of investigation, and will be both an important research tool and a promising therapeutic target for treating a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Anca D Dobrian
- Eastern Virginia Medical School, Department of Physiological Sciences, Lewis Hall, Room 2027, 700 W. Olney Road, Norfolk, VA 23507, United States.
| | | | | | | | | | | |
Collapse
|
11
|
Mracskó É, Hugyecz M, Institóris Á, Farkas E, Bari F. Changes in pro-oxidant and antioxidant enzyme levels during cerebral hypoperfusion in rats. Brain Res 2010; 1321:13-9. [DOI: 10.1016/j.brainres.2009.11.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/28/2009] [Accepted: 11/27/2009] [Indexed: 10/20/2022]
|
12
|
9. References. Acta Neurol Scand 2009. [DOI: 10.1111/j.1600-0404.1993.tb04165.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
|
14
|
Taylor AL, Bonventre JV, Uliasz TF, Hewett JA, Hewett SJ. Cytosolic phospholipase A2 alpha inhibition prevents neuronal NMDA receptor-stimulated arachidonic acid mobilization and prostaglandin production but not subsequent cell death. J Neurochem 2008; 106:1828-40. [PMID: 18564366 DOI: 10.1111/j.1471-4159.2008.05527.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phospholipase A(2) (PLA(2)) enzymes encompass a superfamily of at least 13 extracellular and intracellular esterases that hydrolyze the sn-2 fatty acyl bonds of phospholipids to yield fatty acids and lysophospholipids. The purpose of this study was to characterize which phospholipase paralog regulates NMDA receptor-mediated arachidonic acid (AA) release. Using mixed cortical cell cultures containing both neurons and astrocytes, we found that [(3)H]-AA released into the extracellular medium following NMDA receptor stimulation (100 microM) increased with time and was completely prevented by the addition of the NMDA receptor antagonist MK-801 (10 microM) or by removal of extracellular Ca(2+). Neither diacylglycerol lipase inhibition (RHC-80267; 10 microM) nor selective inhibition of Ca(2+)-independent PLA(2) [bromoenol lactone (BEL); 10 microM] alone had an effect on NMDA receptor-stimulated release of [(3)H]-AA. Release was prevented by methyl arachidonyl fluorophosphonate (MAFP) (5 microM) and AACOCF(3) (1 microM), inhibitors of both cytosolic PLA(2) (cPLA(2)) and Ca(2+)-independent PLA(2) isozymes. This inhibition effectively translated to block of NMDA-induced prostaglandin (PG) production. An inhibitor of p38MAPK, SB 203580 (7.5 microM), also significantly reduced NMDA-induced PG production providing suggestive evidence for the role of cPLA(2)alpha. Its involvement in release was confirmed using cultures derived from mice deficient in cPLA(2)alpha, which failed to produce PGs in response to NMDA receptor stimulation. Interestingly, neither MAFP, AACOCF(3) nor cultures derived from cPLA(2)alpha null mutant animals showed any protection against NMDA-mediated neurotoxicity, indicating that inhibition of this enzyme may not be a viable protective strategy in disorders of the cortex involving over-activation of the NMDA receptor.
Collapse
Affiliation(s)
- Ava L Taylor
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | | | | | | | | |
Collapse
|
15
|
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. ACTA ACUST UNITED AC 2006; 52:201-43. [PMID: 16647138 DOI: 10.1016/j.brainresrev.2006.02.002] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
Three enzyme systems, cyclooxygenases that generate prostaglandins, lipoxygenases that form hydroxy derivatives and leukotrienes, and epoxygenases that give rise to epoxyeicosatrienoic products, metabolize arachidonic acid after its release from neural membrane phospholipids by the action of phospholipase A(2). Lysophospholipids, the other products of phospholipase A(2) reactions, are either reacylated or metabolized to platelet-activating factor. Under normal conditions, these metabolites play important roles in synaptic function, cerebral blood flow regulation, apoptosis, angiogenesis, and gene expression. Increased activities of cyclooxygenases, lipoxygenases, and epoxygenases under pathological situations such as ischemia, epilepsy, Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease produce neuroinflammation involving vasodilation and vasoconstriction, platelet aggregation, leukocyte chemotaxis and release of cytokines, and oxidative stress. These are closely associated with the neural cell injury which occurs in these neurological conditions. The metabolic products of docosahexaenoic acid, through these enzymes, generate a new class of lipid mediators, namely docosatrienes and resolvins. These metabolites antagonize the effect of metabolites derived from arachidonic acid. Recent studies provide insight into how these arachidonic acid metabolites interact with each other and other bioactive mediators such as platelet-activating factor, endocannabinoids, and docosatrienes under normal and pathological conditions. Here, we review present knowledge of the functions of cyclooxygenases, lipoxygenases, and epoxygenases in brain and their association with neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
16
|
Cao D, Zhou C, Sun L, Xue R, Xu J, Liu Z. Chronic administration of ethyl docosahexaenoate reduces gerbil brain eicosanoid productions following ischemia and reperfusion. J Nutr Biochem 2006; 17:234-41. [PMID: 16098734 DOI: 10.1016/j.jnutbio.2005.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 04/23/2005] [Accepted: 04/23/2005] [Indexed: 11/16/2022]
Abstract
Arachidonic acid (AA) and its vasoactive metabolites have been implicated in the pathogenesis of brain damage induced by cerebral ischemia. The membrane AA concentrations can be reduced by changes in dietary fatty acid intake. The purpose of the present study was to investigate the effects of chronic ethyl docosahexaenoate (E-DHA) administration on the generation of eicosanoids of AA metabolism during the period of reperfusion after ischemia in gerbils. Weanling male gerbils were orally pretreated with either E-DHA (100, 200 mg/kg) or vehicle, once a day, for 10 weeks, and subjected to transient forebrain ischemia by bilateral common carotid occlusion for 10 min. E-DHA (200 mg/kg) pretreatment significantly decreased the content of brain lipid AA at the termination of treatment, prevented postischemic impaired regional cerebral blood flow (rCBF) and reduced the levels of brain prostaglandin (PG) PGF(2alpha) and 6-keto-PGF(1alpha), and thromboxane B(2) (TXB(2)), as well as leukotriene (LT) LTB(4) and LTC(4) at 30 and 60 min of reperfusion compared with the vehicle, which was well associated with the attenuated cerebral edema in the E-DHA-treated brain after 48 h of reperfusion. These data suggest that the E-DHA (200 mg/kg) pretreatment reduces the postischemic eicosanoid productions, which may be due to its reduction of the brain lipid AA content.
Collapse
Affiliation(s)
- Dehua Cao
- Department of Biology, School of Life Sciences, Nanjing University, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Cao D, Li M, Xue R, Zheng W, Liu Z, Wang X. Chronic administration of ethyl docosahexaenoate decreases mortality and cerebral edema in ischemic gerbils. Life Sci 2005; 78:74-81. [PMID: 16214179 DOI: 10.1016/j.lfs.2005.04.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 04/08/2005] [Indexed: 11/25/2022]
Abstract
Dietary docosahexaenoic acid (DHA) intake can decrease the level of membrane arachidonic acid (AA), which is liberated during cerebral ischemia and implicated in the pathogenesis of brain damage. Therefore, in the present study, we investigated the effects of chronic ethyl docosahexaenoate (E-DHA) administration on mortality and cerebral edema induced by transient forebrain ischemia in gerbils. Male Mongolian gerbils were orally pretreated with either E-DHA (100, 150 mg/kg) or vehicle, once a day, for 4 weeks and were subjected to transient forebrain ischemia by bilateral common carotid occlusion for 30 min. The content of brain lipid AA at the termination of treatment, the survival ratio, change of regional cerebral blood flow (rCBF), brain free AA level, thromboxane B(2) (TXB(2)) production and cerebral edema formation following ischemia and reperfusion were evaluated. E-DHA (150 mg/kg) pretreatment significantly increased survival ratio, prevented post-ischemic hypoperfusion and attenuated cerebral edema after reperfusion compared with vehicle, which was well associated with the reduced levels of AA and TXB(2) in the E-DHA treated brain. These data suggest that the effects of E-DHA pretreatment on ischemic mortality and cerebral edema could be due to reduction of free AA liberation and accumulation, and its metabolite synthesis after ischemia and reperfusion by decreasing the content of membrane AA.
Collapse
Affiliation(s)
- Dehua Cao
- Department of Biology, Nanjing University, 22 Hankou Road, Jiangsu 210093, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Zhang Y, Wang H, Li J, Jimenez DA, Levitan ES, Aizenman E, Rosenberg PA. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci 2005; 24:10616-27. [PMID: 15564577 PMCID: PMC2945223 DOI: 10.1523/jneurosci.2469-04.2004] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peroxynitrite toxicity is a major cause of neuronal injury in stroke and neurodegenerative disorders. The mechanisms underlying the neurotoxicity induced by peroxynitrite are still unclear. In this study, we observed that TPEN [N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine], a zinc chelator, protected against neurotoxicity induced by exogenous as well as endogenous (coadministration of NMDA and a nitric oxide donor, diethylenetriamine NONOate) peroxynitrite. Two different approaches to detecting intracellular zinc release demonstrated the liberation of zinc from intracellular stores by peroxynitrite. In addition, we found that peroxynitrite toxicity was blocked by inhibitors of 12-lipoxygenase (12-LOX), p38 mitogen-activated protein kinase (MAPK), and caspase-3 and was associated with mitochondrial membrane depolarization. Inhibition of 12-LOX blocked the activation of p38 MAPK and caspase-3. Zinc itself induced the activation of 12-LOX, generation of reactive oxygen species (ROS), and activation of p38 MAPK and caspase-3. These data suggest a cell death pathway triggered by peroxynitrite in which intracellular zinc release leads to activation of 12-LOX, ROS accumulation, p38 activation, and caspase-3 activation. Therefore, therapies aimed at maintaining intracellular zinc homeostasis or blocking activation of 12-LOX may provide a novel avenue for the treatment of inflammation, stroke, and neurodegenerative diseases in which the formation of peroxynitrite is thought to be one of the important causes of cell death.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Neurology and Program in Neuroscience, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kitagawa K, Matsumoto M, Hori M. Cerebral ischemia in 5-lipoxygenase knockout mice. Brain Res 2004; 1004:198-202. [PMID: 15033436 DOI: 10.1016/j.brainres.2004.01.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 11/21/2022]
Abstract
Cerebral ischemia induces 5-lipoxygenase translocation and leukotriene production in the brain. We tried to clarify the pathological significance of 5-lipoxygenase on cerebral ischemia using 5-lipoxygenase knockout mice. No significant difference was observed in the infarct size following permanent and transient ischemia for 60 min between both types of mice. The present study did not support the idea that leukotriene production is involved in infarct expansion in focal cerebral ischemia.
Collapse
Affiliation(s)
- Kazuo Kitagawa
- Division of Strokology, Department of Internal Medicine and Therapeutics (A8), Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
20
|
Silakova JM, Hewett JA, Hewett SJ. Naproxen reduces excitotoxic neurodegeneration in vivo with an extended therapeutic window. J Pharmacol Exp Ther 2004; 309:1060-6. [PMID: 14769833 DOI: 10.1124/jpet.103.063867] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the optimal dose and therapeutic window of opportunity of the nonsteroidal anti-inflammatory drug naproxen in an animal model of excitotoxic neuronal injury. Injection of N-methyl-D-aspartate (NMDA; 18-20 nmol) into the CA1 region of the left hippocampus resulted in significant brain edema as measured by the percentage of total forebrain water content that occurred 24 h after intrahippocampal microinjection of NMDA with approximately 50% loss of CA1 neurons assessed 72 h later. Naproxen pretreatment (20 mg/kg) resulted in significantly less brain edema. Ten, 15, or 20 mg/kg naproxen, administered systemically 1 day (b.i.d.) before and for 3 days after (b.i.d.) NMDA injection, attenuated the neuronal damage by 27.2 +/- 7.8, 39.6 +/- 11.1, and 57.0 +/- 5.2%, respectively. By comparison, a single dose of MK-801 (2 mg/kg i.p.) given 20 min before NMDA injection inhibited subsequent hippocampal injury by 65.6 +/- 8.8%. Most importantly, neuroprotection was still evident when naproxen treatment (20 mg/kg i.p.) was initiated 6 h after NMDA microinjection. Protection was lost if administration of naproxen was delayed for 20 h. These findings demonstrate that naproxen can prevent excitotoxic neuronal injury in vivo, that it is nearly as effective as direct NMDA receptor antagonism, and that it has an extended therapeutic time window. As such, naproxen may be a particularly promising pharmaceutical for the treatment of neurological diseases associated with overactivation of NMDA receptors.
Collapse
Affiliation(s)
- Janna M Silakova
- University of Connecticut School of Medicine, Department of Neuroscience, Farmington, CT 06030-3401, USA
| | | | | |
Collapse
|
21
|
Phillis JW, O'Regan MH. A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. ACTA ACUST UNITED AC 2004; 44:13-47. [PMID: 14739001 DOI: 10.1016/j.brainresrev.2003.10.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phospholipases are a diverse group of enzymes whose activation may be responsible for the development of injury following insult to the brain. Amongst the numerous isoforms of phospholipase proteins expressed in mammals are 19 different phospholipase A2's (PLA2s), classified functionally as either secretory, calcium dependent, or calcium independent, 11 isozymes belonging to three structural groups of PLC, and 3 PLD gene products. Many of these phospholipases have been identified in selected brain regions. Under normal conditions, these enzymes regulate the turnover of free fatty acids (FFAs) in membrane phospholipids affecting membrane stability, fluidity, and transport processes. The measurement of free fatty acids thus provides a convenient method to follow phospholipase activity and their regulation. Phospholipase activity is also responsible for the generation of an extensive list of intracellular messengers including arachidonic acid metabolites. Phospholipases are regulated by many factors including selective phosphorylation, intracellular calcium and pH. However, under abnormal conditions, excessive phospholipase activation, along with a decreased ability to resynthesize membrane phospholipids, can lead to the generation of free radicals, excitotoxicity, mitochondrial dysfunction, and apoptosis/necrosis. This review evaluates the critical contribution of the various phospholipases to brain injury following ischemia and trauma and in neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, Wayne State University School of Medicine, 5374 Scott Hall, 540 E. Canfield, Detroit, MI 48201-1928, USA.
| | | |
Collapse
|
22
|
Candelario-Jalil E, González-Falcón A, García-Cabrera M, Álvarez D, Al-Dalain S, Martínez G, Sonia León O, Springer JE. Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. J Neurochem 2003; 86:545-55. [PMID: 12859668 PMCID: PMC1636020 DOI: 10.1046/j.1471-4159.2003.01812.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the relative contribution of COX-1 and/or COX-2 to oxidative damage, prostaglandin E2 (PGE2) production and hippocampal CA1 neuronal loss in a model of 5 min transient global cerebral ischemia in gerbils. Our results revealed a biphasic and significant increase in PGE2 levels after 2 and 24-48 h of reperfusion. The late increase in PGE2 levels (24 h) was more potently reduced by the highly selective COX-2 inhibitor rofecoxib (20 mg/kg) relative to the COX-1 inhibitor valeryl salicylate (20 mg/kg). The delayed rise in COX catalytic activity preceded the onset of histopathological changes in the CA1 subfield of the hippocampus. Post-ischemia treatment with rofecoxib (starting 6 h after restoration of blood flow) significantly reduced measures of oxidative damage (glutathione depletion and lipid peroxidation) seen at 48 h after the initial ischemic episode, indicating that the late increase in COX-2 activity is involved in the delayed occurrence of oxidative damage in the hippocampus after global ischemia. Interestingly, either selective inhibition of COX-2 with rofecoxib or inhibition of COX-1 with valeryl salicylate significantly increased the number of healthy neurons in the hippocampal CA1 sector even when the treatment began 6 h after ischemia. These results provide the first evidence that both COX isoforms are involved in the progression of neuronal damage following global cerebral ischemia, and have important implications for the potential therapeutic use of COX inhibitors in cerebral ischemia.
Collapse
Affiliation(s)
| | - Armando González-Falcón
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Michel García-Cabrera
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Dalia Álvarez
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Said Al-Dalain
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Gregorio Martínez
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Olga Sonia León
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Joe E. Springer
- Department of Anatomy and Neurobiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA
| |
Collapse
|
23
|
Katsuta K, Umemura K, Ueyama N, Matsuoka N. Pharmacological evidence for a correlation between hippocampal CA1 cell damage and hyperlocomotion following global cerebral ischemia in gerbils. Eur J Pharmacol 2003; 467:103-9. [PMID: 12706462 DOI: 10.1016/s0014-2999(03)01573-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Global ischemia, induced in Mongolian gerbils by bilateral occlusion of the carotid arteries for 5 min, produced a significant increase in locomotor activity at 1 day post-occlusion and a severe loss of hippocampal CA1 neurons at 4 days post-occlusion. To explore the pharmacological relationship between ischemia-induced hypermotility and CA1 cell death in the hippocampus, we evaluated the efficacy of diverse classes of putative neuroprotective agents for preventing hypermotility and delayed neuronal death. Administration of any drug 30 min before global ischemia dose-dependently, and with similar potency, ameliorated both hippocampal delayed neuronal death and locomotor hyperactivity, with a rank order: tacrolimus (FK506)>nizofenone>clonindine>dizocilpine (MK-801)>6-(1H-imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K)>phencyclidine>pentobarbital>2-(4-(p-fluorobenzoyl)-piperidin-1-yl)-2'-acetonaphthone hydrochloride (E-2001)>cis-(+/-)-4-phosphonomethyl-2-piperidine carboxylic acid (CGS19755)>3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide (U-50,488H)>piroxicam>eliprodil>vinpocetine. Furthermore, potencies of the protective effect on delayed neuronal death and inhibitory effects on hypermotility were closely correlated (r=0.98). These results suggest that post-ischemic CA1 injury and hypermotility share common mechanisms, and further imply that it is possible to predict the neuroprotective efficacy of drugs more easily by examining the inhibitory effects on post-ischemic hypermotility in global ischemia model in gerbils.
Collapse
Affiliation(s)
- Kiyotaka Katsuta
- Department of Neuroscience, Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6 Kashima, Yodogawa, Osaka 532-8514, Japan
| | | | | | | |
Collapse
|
24
|
Takakura K. Research progress in the last quarter of the 20th century at the University of Tokyo and Tokyo Women's Medical University. Neurosurgery 2003; 52:424-33; discussion 433-4. [PMID: 12535374 DOI: 10.1227/01.neu.0000044563.60999.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2002] [Accepted: 08/13/2002] [Indexed: 11/19/2022] Open
Abstract
Professor Keiji Sano described the history of neurosurgery in Japan until 1975. After World War II, not only neurosurgery but all fields of medicine were devastated in Japan. Professor Sano contributed greatly to the reform and modernization of neurosurgery during that very difficult era in Japan. He performed much research by himself and also as a leader of research groups on stereotactic and functional neurosurgery, cerebrovascular diseases, head injuries, and brain tumors. He organized the Fifth International Congress of Neurological Surgery in Tokyo in 1973. I succeeded in the chairmanship of the Department of Neurosurgery of the University of Tokyo in 1981. We have performed research on the treatment of brain tumors and cerebrovascular diseases. To obtain the best results for brain tumor treatment, we have introduced several new radiotherapeutic methods, such as the gamma knife, heavy-particle irradiation, and the photon radiosurgery system. To improve surgical treatment, we have energetically engaged in medical engineering research on computer-assisted surgical systems (intraoperative monitoring and navigation systems). We have also performed much research on chemotherapy and immunotherapy. In the field of cerebrovascular diseases, the main research projects have been focused on the mechanism and treatment of vasospasm and brain edema after subarachnoid hemorrhage. I summarize the results of our research performed in the Department of Neurosurgery of the University of Tokyo until 1992 and at Tokyo Women's Medical University after 1992, in the last quarter of the 20th century.
Collapse
|
25
|
Candelario-Jalil E, Alvarez D, Castañeda JM, Al-Dalain SM, Martínez-Sánchez G, Merino N, León OS. The highly selective cyclooxygenase-2 inhibitor DFU is neuroprotective when given several hours after transient cerebral ischemia in gerbils. Brain Res 2002; 927:212-5. [PMID: 11821016 DOI: 10.1016/s0006-8993(01)03358-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several studies suggest that cyclooxygenase-2 contributes to the delayed progression of ischemic brain damage. In this study we examined whether the highly selective cyclooxygenase-2 inhibitor DFU reduces neuronal damage when administered several hours after 5 min of transient forebrain ischemia in gerbils. The extent of ischemic injury was assessed behaviorally by measuring the increases in locomotor activity and by histopathological evaluation of the extent of CA1 hippocampal pyramidal cell injury 7 days after ischemia. DFU treatment (10 mg/kg, p.o.) significantly reduced hippocampal neuronal damage even if the treatment is delayed until 12 h after ischemia. These results suggest that selective cyclooxygenase-2 inhibitors may be a valuable therapeutic strategy for ischemic brain injury.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba.
| | | | | | | | | | | | | |
Collapse
|
26
|
Reid MS, Ho LB, Hsu K, Fox L, Tolliver BK, Adams JU, Franco A, Berger SP. Evidence for the involvement of cyclooxygenase activity in the development of cocaine sensitization. Pharmacol Biochem Behav 2002; 71:37-54. [PMID: 11812506 DOI: 10.1016/s0091-3057(01)00614-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phospholipase A2 (PLA(2)) activation generates the release of arachidonic acid (AA) and platelet-activating factor (PAF), two compounds which may be involved in neuroplasticity. In previous studies, we found that PLA(2) activation is involved in the development of stimulant sensitization. In the present study, we have examined the roles of AA and PAF in the development of stimulant sensitization using agonists and antagonists selective for PAF receptors or the induction of various AA cascade-mediated eicosanoids. Sprague-Dawley rats were treated for 5 days with cocaine (30 mg/kg) or D-amphetamine (1 mg/kg) preceded 15 min earlier by various antagonists, and then tested following a 10-day withdrawal period for cocaine (15 mg/kg) or D-amphetamine (0.5 mg/kg)-induced locomotion. Consistent with our earlier work, pretreatment with the PLA(2) inhibitor quinacrine (25 mg/kg) blocked the development of cocaine and amphetamine sensitization. The lipoxygenase (LOX) inhibitors nordihydroguaiaretic acid (NDGA) (5-10 mg/kg) and MK-886 (1 mg/kg) had no effect on cocaine sensitization. The PAF receptor antagonist WEB 2086 (5-10 mg/kg) reduced the development of cocaine sensitization. The cyclooxygenase (COX) inhibitors indomethacin (1-2 mg/kg), piroxicam (0.5-1 mg/kg), 6-methoxy-2-napthylacetic acid (6-MNA; 0.5-1 mg/kg), and NS-398 (0.5-1 mg/kg) blocked the development of cocaine sensitization. The COX inhibitors indomethacin (2 mg/kg) and 6-MNA (1 mg/kg) also reduced the development of amphetamine sensitization. Rats were administered bilateral intraventral tegmental area (VTA) injections of D-amphetamine (5 microg/side) or saline coadministered with indomethacin (0.5 microg/side) or vehicle three times over 5 days and were then tested after a 10-day withdrawal for D-amphetamine (0.5 mg/kg ip)-induced locomotion. Intra-VTA amphetamine induced a robust form of amphetamine sensitization, which was blocked by coadministration of indomethacin. Unilateral intra-VTA injections of PAF (1 microg) did not significantly alter cocaine (15 mg/kg ip)-induced locomotion when tested after a 3-day withdrawal. These findings suggest that COX, and possibly PAF, activity is involved in the development of stimulant sensitization. Neuroanatomical studies demonstrate that this may occur at the level of the VTA.
Collapse
Affiliation(s)
- Malcolm S Reid
- Department of Psychiatry, New York University School of Medicine, Psychiatry Research 116A, New York Veterans Affairs Medical Center, 423 East 23rd Street, New York, NY 10010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Vartiainen N, Huang CY, Salminen A, Goldsteins G, Chan PH, Koistinaho J. Piroxicam and NS-398 rescue neurones from hypoxia/reoxygenation damage by a mechanism independent of cyclo-oxygenase inhibition. J Neurochem 2001; 76:480-9. [PMID: 11208911 DOI: 10.1046/j.1471-4159.2001.00065.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied whether NS-398, a selective cyclo-oxygenase-2 (COX-2) enzyme inhibitor, and piroxicam, an inhibitor of COX-2 and the constitutively expressed COX-1, protect neurones against hypoxia/reoxygenation injury. Rat spinal cord cultures were exposed to hypoxia for 20 h followed by reoxygenation. Hypoxia/reoxygenation increased lactate dehydrogenase (LDH) release, which was inhibited by piroxicam (180-270 microM) and NS-398 (30 microM). Cell counts confirmed the neuroprotection. Western blotting revealed no COX-1 or COX-2 proteins even after hypoxia/reoxygenation. Production of prostaglandin E2 (PGE2), a marker of COX activity, was barely measurable and piroxicam and NS-398 had no effect on the negligible PGE2 production. Hypoxia/reoxygenation increased nuclear factor-kappa B (NF-kappaB) binding activity, which was inhibited by piroxicam but not by NS-398. AP-1 binding activity after hypoxia/reoxygenation was inhibited by piroxicam but strongly enhanced by NS-398. However, both COX inhibitors induced activation of extracellular signal-regulated kinase (ERK) in neurones and phosphorylation of heavy molecular weight neurofilaments, cytoskeletal substrates of ERK. It is concluded that piroxicam and NS-398 protect neurones against hypoxia/reperfusion. The protection is independent of COX activity and not solely explained by modulation of NF-kappaB and AP-1 binding activity. Instead, piroxicam and NS-398-induced phosphorylation through ERK pathway may contribute to the increased neuronal survival.
Collapse
Affiliation(s)
- N Vartiainen
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
28
|
Okubo A, Kinouchi H, Owada Y, Kunizuka H, Itoh H, Izaki K, Kondo H, Tashima Y, Yoshimoto T, Mizoi K. Simultaneous induction of mitochondrial heat shock protein mRNAs in rat forebrain ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 84:127-34. [PMID: 11113539 DOI: 10.1016/s0169-328x(00)00200-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Several investigations have postulated evidence of the involvement of apoptosis in delayed neuronal death following brief periods of global cerebral ischemia. Apoptosis may be closely linked to mitochondrial dysfunction. Heat shock protein (HSP) 60 and HSP10 are mitochondrial matrix proteins induced by stress and form the chaperonin complex that is implicated in protein folding and assembly within the mitochondria. This study investigated the induction of these mitochondrial stress protein genes in the hippocampal CA1 region and less vulnerable regions following transient forebrain ischemia. In situ hybridization analysis revealed that the induction pattern of HSP60 mRNA was identical to that of HSP10 mRNA throughout the entire ischemic course. No changes occurred in the expression of both mRNAs after 2 min ischemia. Strong induction of both mRNAs occurred in the CA1 region after 10 min ischemia and persisted until 1 d after reperfusion. In contrast, induction of both mRNAs in the less vulnerable regions was terminated by 1 d after reperfusion. These results demonstrate that mitochondrial stress conditions persist concomitantly with cytosolic stress conditions in regions vulnerable to transient forebrain ischemia.
Collapse
Affiliation(s)
- A Okubo
- Department of Neurosurgery, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Marmol F, Puig-Parellada P, Sanchez J, Trullas R. Influence of aging on thromboxane A2 and prostacyclin levels in rat hippocampal brain slices. Neurobiol Aging 1999; 20:695-7. [PMID: 10674436 DOI: 10.1016/s0197-4580(99)00069-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have investigated the influence of age (3, 18, 24 months) on Thromboxane A2 (TXA2) and Prostacyclin (PGI2) levels in hippocampal slices from F344/NHSD rats. A significant increase in TXA2 and PGI2 levels was observed in 18 and 24 months old compared to 3 months old animals. A significant reduction in the ratio TXA2/PGI2 produced by a higher increase in PGI2 was observed in 24 month old animals. The reduction in the TXA2/PGI2 ratio has been related to vasodilatory and antiaggregating effects that may contribute to protect the brain against neuronal damage.
Collapse
Affiliation(s)
- F Marmol
- Unitat de Farmacologia.IDIBAPS.(Institut d'Investigacions Biomèdiques August Pi I Sunyer) Facultat de Medicina, Universitat de Barcelona, Casanova, Spain
| | | | | | | |
Collapse
|
30
|
Rao AM, Hatcher JF, Kindy MS, Dempsey RJ. Arachidonic acid and leukotriene C4: role in transient cerebral ischemia of gerbils. Neurochem Res 1999; 24:1225-32. [PMID: 10492517 DOI: 10.1023/a:1020916905312] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accumulation of arachidonic acid (AA) is greatest in brain regions most sensitive to transient ischemia. Free AA released after ischemia is either: 1) reincorporated into the membrane phospholipids, or 2) oxidized during reperfusion by lipoxygenases and cyclooxygenases, producing leukotrienes (LT), prostaglandins, thromboxanes and oxygen radicals. AA, its metabolite LTC4 and lipid peroxides (generated during AA metabolism) have been implicated in the blood-brain barrier (BBB) dysfunction, edema and neuronal death after ischemia/reperfusion. This report describes the time course of AA release, LTC4 accumulation and association with the physiological outcome during transient cerebral ischemia of gerbils. Significant amount of AA was detected immediately after 10 min ischemia (0 min reperfusion) which returned to sham levels within 30 min reperfusion. A later release of AA occurred after 1 d. LTC4 levels were elevated at 0-6 h and 1 d after ischemia. Increased lipid peroxidation due to AA metabolism was observed between 2-6 h. BBB dysfunction occurred at 6 h. Significant edema developed at 1 and 2 d after ischemia and reached maximum at 3 d. Ischemia resulted in approximately 80% neuronal death in the CA1 hippocampal region. Pretreatment with a 5-lipoxygenase inhibitor, AA861 resulted in significant attenuation of LTC4 levels (Baskaya et al. 1996. J. Neurosurg. 85: 112-116) and CA1 neuronal death. Accumulation of AA and LTC4, together with highly reactive oxygen radicals and lipid peroxides, may alter membrane permeability, resulting in BBB dysfunction, edema and ultimately to neuronal death.
Collapse
Affiliation(s)
- A M Rao
- Department of Neurological Surgery, University of Wisconsin, Madison 53792-3232, USA.
| | | | | | | |
Collapse
|
31
|
Shishido Y, Furushiro M, Tanabe S, Shibata S, Hashimoto S, Yokokura T. Effects of prolyl endopeptidase inhibitors and neuropeptides on delayed neuronal death in rats. Eur J Pharmacol 1999; 372:135-42. [PMID: 10395093 DOI: 10.1016/s0014-2999(99)00185-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the effects of the prolyl endopeptidase inhibitors 1-[1-(Benzyloxycarbonyl)-L-prolyl]prolinal (Z-Pro-Prolinal) and N-benzyloxycarbonyl-thioprolyl-thioprolinal-dimethylaceta l (ZTTA) on delayed neuronal death induced by four-vessel-occlusion transient ischemia in rats. We also examined the effects of [pGlu4, Cyt6, ArgS]vasopressin (vasopressin-(4-9)) and thyrotropin-releasing hormone (TRH) on the delayed neuronal death. Furthermore, we investigated the role of vasopressin receptors in the effects of vasopressin and prolyl endopeptidase inhibitors. Z-Pro-Prolinal, vasopressin-(4-9) and TRH protected pyramidal cells in the CA1 subfield of the rat hippocampus from delayed neuronal death after 10-min ischemia. The effect of vasopressin-(4-9) was abolished by vasopressin receptor antagonists. The effect of Z-Pro-Prolinal was also abrogated by the antagonists. These results suggest that the neuroprotective effect of prolyl endopeptidase inhibitors is mediated by neuropeptides such as [Arg8]vasopressin and TRH, and indicate the involvement of vasopressin receptors in the neuroprotective effect of vasopressin-(4-9) and prolyl endopeptidase inhibitors.
Collapse
Affiliation(s)
- Y Shishido
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Walton M, Connor B, Lawlor P, Young D, Sirimanne E, Gluckman P, Cole G, Dragunow M. Neuronal death and survival in two models of hypoxic-ischemic brain damage. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:137-68. [PMID: 10209230 DOI: 10.1016/s0165-0173(98)00053-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two unilateral hypoxic-ischemia (HI) models (moderate and severe) in immature rat brain have been used to investigate the role of various transcription factors and related proteins in delayed neuronal death and survival. The moderate HI model results in an apoptotic-like neuronal death in selectively vulnerable regions of the brain while the more severe HI injury consistently produces widespread necrosis resulting in infarction, with some necrosis resistant cell populations showing evidence of an apoptotic type death. In susceptible regions undergoing an apoptotic-like death there was not only a prolonged induction of the immediate early genes, c-jun, c-fos and nur77, but also of possible target genes amyloid precursor protein (APP751) and CPP32. In contrast, increased levels of BDNF, phosphorylated CREB and PGHS-2 were found in cells resistant to the moderate HI insult suggesting that these proteins either alone or in combination may be of importance in the process of neuroprotection. An additional feature of both the moderate and severe brain insults was the rapid activation and/or proliferation of glial cells (microglia and astrocytes) in and around the site of damage. The glial response following HI was associated with an upregulation of both the CCAAT-enhancer binding protein alpha (microglia only) and NFkappaB transcription factors.
Collapse
Affiliation(s)
- M Walton
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Stetler RA, Isakson PC, Chen J, Graham SH. Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci U S A 1998; 95:10954-9. [PMID: 9724811 PMCID: PMC28002 DOI: 10.1073/pnas.95.18.10954] [Citation(s) in RCA: 268] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/1998] [Accepted: 07/17/1998] [Indexed: 11/18/2022] Open
Abstract
The inducible isoform of the enzyme cyclooxygenase-2 (COX2) is an immediate early gene induced by synaptic activity in the brain. COX2 activity is an important mediator of inflammation, but it is not known whether COX2 activity is pathogenic in brain. To study the role of COX2 activity in ischemic injury in brain, expression of COX2 mRNA and protein and the effect of treatment with a COX2 inhibitor on neuronal survival in a rat model of global ischemia were determined. Expression of both COX2 mRNA and protein was increased after ischemia in CA1 hippocampal neurons before their death. There was increased survival of CA1 neurons in rats treated with the COX2-selective inhibitor SC58125 [1-[(4-methylsulfonyl) phenyl]-3-trifluoro-methyl-5-[(4-fluoro)phenyl] pyrazole] before or after global ischemia compared with vehicle controls. Furthermore, hippocampal prostaglandin E2 concentrations 24 h after global ischemia were decreased in drug-treated animals compared with vehicle-treated controls. These results suggest that COX2 activity contributes to CA1 neuronal death after global ischemia.
Collapse
Affiliation(s)
- M Nakayama
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rabin O, Drieu K, Grange E, Chang MC, Rapoport SI, Purdon AD. Effects of EGb 761 on fatty acid reincorporation during reperfusion following ischemia in the brain of the awake gerbil. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1998; 34:79-101. [PMID: 9778647 DOI: 10.1007/bf02815137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Transient cerebral ischemia (5 min) releases unesterified fatty acids from membrane phospholipids, increasing brain concentrations of fatty acids for up to 1 h following reperfusion. To understand the reported anti-ischemic effect of Ginkgo biloba extract (EGb 761), we monitored its effect on brain fatty acid reincorporation in a gerbil-stroke model. Both common carotid arteries in awake gerbils were occluded for 5 min, followed by 5 min of reperfusion. Animals were infused intravenously with labeled arachidonic (AA) or palmitic acid (Pam), and rates of incorporation of unlabeled fatty acid from the brian acyl-CoA pool were calculated by the model of Robinson et al. (1992), using quantitative autoradiography and biochemical analysis of brain acyl-CoA. Animals were treated for 14 d with 50 or 150 mg/kg/d EGb 761 or vehicle. Ischemia-reperfusion had no effect on the rate of unlabeled Pam incorporation into brain phospholipids from palmitoyl-CoA; this rate also was unaffected by EGb 761. In contrast, ischemia-reperfusion increased the rate of incorporation of unlabeled AA from brain arachidonoyl-CoA by a factor of 2.3-3.3 compared with the control rate; this factor was further augmented to 3.6-5.0 by pretreatment with EGb 761. There is selective reincorporation of AA compared with Pam into brain phospholipids following ischemia. EGb 761 further accelerates AA reincorporation, potentially reducing neurotoxic effects of prolonged exposure of brain to high concentrations of AA and its metabolites.
Collapse
Affiliation(s)
- O Rabin
- Laboratory of Neurosciences, National Institutes on Aging, National Institutes of Health, Bethesda, MD 20892-1582, USA
| | | | | | | | | | | |
Collapse
|
35
|
Walton M, Sirimanne E, Williams C, Gluckman PD, Keelan J, Mitchell MD, Dragunow M. Prostaglandin H synthase-2 and cytosolic phospholipase A2 in the hypoxic-ischemic brain: role in neuronal death or survival? BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 50:165-70. [PMID: 9406931 DOI: 10.1016/s0169-328x(97)00181-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The breakdown of membrane phospholipids and subsequent arachidonic acid metabolism to prostanoids is a well-documented brain response to cerebral ischemia. To further elucidate the components of this signal transduction pathway, immunocytochemistry was used to determine the levels of two potentially important enzymes, cytosolic phospholipase A2 (cPLA2) and prostaglandin H synthase-2 (PGHS-2), in the immature rat brain following moderate unilateral hypoxic-ischemia (HI). The CA1 pyramidal cells of the hippocampus which undergo delayed neuronal death on the injured side following HI demonstrated a significant induction of PGHS-2 immunoreactivity 48 h post-insult. However, a consistent increase in PGHS-2 was also evident in the resistant dentate granule cells at an earlier time point. Although PGHS-2 is present in both susceptible and resistant cell populations following HI, the possibility remains that divergence further down-stream in the pathway is responsible for selective vulnerability. In contrast to the neuronal PGHS-2 expression, cPLA2 immunoreactivity appears to be of glial origin with increases in and around the CAI-2 pyramidal cell layer at the 72-168-h time points. These results suggest that prostanoids are likely to serve important roles in HI brain damage and repair in infant brain.
Collapse
Affiliation(s)
- M Walton
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
36
|
Sanz O, Estrada A, Ferrer I, Planas AM. Differential cellular distribution and dynamics of HSP70, cyclooxygenase-2, and c-Fos in the rat brain after transient focal ischemia or kainic acid. Neuroscience 1997; 80:221-32. [PMID: 9252233 DOI: 10.1016/s0306-4522(97)00089-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cerebral ischemia and also excitotoxicity induce the expression of 72,000 mol. wt heat shock protein (Hsp70), c-Fos, and cyclooxygenase-2. In the present work we have examined whether Hsp70, c-Fos and cyclooxygenase-2 are expressed by the same cells in the rat brain at 6, 12 and 24 h following transient focal ischemia or kainic acid administration, by means of single and double immunohistochemistry. At 6 h after kainic acid, some co-localization of Hsp70 with c-Fos and cyclooxygenase-2 was seen in pyramidal hippocampal neurons and superficial cortical layers, however by 24 h such colocalization became rare within the cortex but was partially maintained in the hippocampus. Cyclooxygenase-2 was seen in many neurons that were also immunoreactive for c-Fos in superficial cortical layers, dentate gyrus and pyramidal cell layer of the hippocampus from 6 h after kainic acid. Co-localization of cyclooxygenase-2 and c-Fos was also observed in superficial cortical layers within the ipsilateral hemisphere at 6 h following focal ischemia. Also, some co-localization of Hsp70 with c-Fos and cyclooxygenase-2 was seen at this time. However, by 24 h cyclooxygenase-2 and c-Fos-immunoreactive cells were restricted to perifocal regions, and only a very limited co-localization with Hsp70 was seen in perifocal neurons located in the border of the penumbra-like area that surrounds the ischemic core and is strongly immunoreactive for Hsp70. This study shows a selective and dynamic cellular expression of inducible proteins following either ischemia or kainic acid, with a remarkable neuronal co-localization of c-Fos and cyclooxygenase-2. The results suggest that, first, stimuli underlying neuronal c-Fos expression can also lead to the induction of cyclooxygenase-2; second, transient co-localization of Hsp70 and c-Fos can take place in non-vulnerable neurons; and finally, expression of c-Fos, cyclooxygenase-2, and/or Hsp70 at a given time-point is part of the response to altered environmental conditions and can be related to the particular cellular sensitivity rather than the pathological outcome.
Collapse
Affiliation(s)
- O Sanz
- Departament de Farmacologia i Toxicologia, IIBB, CSIC, Barcelona, Spain
| | | | | | | |
Collapse
|
37
|
Experimental neuronal protection in cerebral ischaemia Part II: Potential neuroprotective drugs. J Clin Neurosci 1997; 4:290-310. [DOI: 10.1016/s0967-5868(97)90096-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1996] [Accepted: 06/04/1996] [Indexed: 01/01/2023]
|
38
|
Miettinen S, Fusco FR, Yrjänheikki J, Keinänen R, Hirvonen T, Roivainen R, Närhi M, Hökfelt T, Koistinaho J. Spreading depression and focal brain ischemia induce cyclooxygenase-2 in cortical neurons through N-methyl-D-aspartic acid-receptors and phospholipase A2. Proc Natl Acad Sci U S A 1997; 94:6500-5. [PMID: 9177247 PMCID: PMC21079 DOI: 10.1073/pnas.94.12.6500] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Repetitive spreading depression (SD) waves, involving depolarization of neurons and astrocytes and up-regulation of glucose consumption, is thought to lower the threshold of neuronal death during and immediately after ischemia. Using rat models for SD and focal ischemia we investigated the expression of cyclooxygenase-1 (COX-1), the constitutive form, and cyclooxygenase-2 (COX-2), the inducible form of a key enzyme in prostaglandin biosynthesis and the target enzymes for nonsteroidal anti-inflammatory drugs. Whereas COX-1 mRNA levels were undetectable and uninducible, COX-2 mRNA and protein levels were rapidly increased in the cortex, especially in layers 2 and 3 after SD and transient focal ischemia. The cortical induction was reduced by MK-801, an N-methyl-D-aspartic acid-receptor antagonist, and by dexamethasone and quinacrine, phospholipase A2 (PLA2) inhibiting compounds. MK-801 acted by blocking SD whereas treatment with PLA2 inhibitors preserved the wave propagation. NBQX, an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-receptor antagonist, did not affect the SD-induced COX-2 expression, whereas COX-inhibitors indomethacin and diclofenac, as well as a NO synthase-inhibitor, NG-nitro-L-arginine methyl ester, tended to enhance the COX-2 mRNA expression. In addition, ischemia induced COX-2 expression in the hippocampal and perifocal striatal neurons and in endothelial cells. Thus, COX-2 is transiently induced after SD and focal ischemia by activation of N-methyl-D-aspartic acid-receptors and PLA2, most prominently in cortical neurons that are at a high risk to die after focal brain ischemia.
Collapse
Affiliation(s)
- S Miettinen
- A. I. Virtanen Institute, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- C Denzlinger
- Medizinische Klinik III, Klinikum Grosshadern, Ludwig-Maximilians Universität München, Germany
| |
Collapse
|
40
|
Okada M, Amamoto T, Tomonaga M, Kawachi A, Yazawa K, Mine K, Fujiwara M. The chronic administration of docosahexaenoic acid reduces the spatial cognitive deficit following transient forebrain ischemia in rats. Neuroscience 1996; 71:17-25. [PMID: 8834389 DOI: 10.1016/0306-4522(95)00427-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to investigate whether chronic administration of docosahexaenoic acid is able to reduce spatial cognitive deficit following transient ischemia in rats. In addition, we investigated whether the chronic treatment of docosahexaenoic acid is able to protect the hippocampal neuronal damage induced by either hypoxia in vitro or cerebral ischemia in vivo. A chronic administration of 200 mg/kg/day docosahexaenoic acid over 21 days did not affect the content of docosahexaenoic acid in the hippocampus, but did tend to increase it in the frontal cortex. On the other hand, this chronic administration decreased the content of arachidonic acid significantly both in the hippocampus and the frontal cortex. Under hypoxic conditions, the onset of the increase in the NADH fluorescence in the hippocampal slice was made significantly slower relative to the control by the chronic administration of docosahexaenoic acid. Rats were subjected to 10 min of transient forebrain ischemia by the method of four-vessel occlusion and were tested in a radial eight-arm maze task after cerebral reperfusion. Docosahexaenoic acid was administered either once 1 h before occlusion or daily for 21 days before occlusion. The single treatment of docosahexaenoic acid (1, 10, 100 or 200 mg/kg) did not significantly affect any aspect of the spatial learning deficit following occlusion. On the other hand, chronic treatment with docosahexaenoic acid (10, 100 or 200 mg/kg/day) significantly improved the spatial learning deficit following occlusion. A comparison of the neuronal densities in the hippocampal CA1 region of the chronically docosahexaenoic acid-treated (200 mg/kg/day) rats with those of the ischemic control revealed a significant neuronal preservation. From these results, it appears that chronic administration of docosahexaenoic acid may be valuable in ameliorating the spatial cognitive deficit induced by transient forebrain ischemia. In addition, docosahexaenoic acid might contribute to the protection of hippocampal neuronal damage caused by either hypoxia or ischemia.
Collapse
Affiliation(s)
- M Okada
- Department of Physiology and Pharmacology, Fukuoka University, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Neuroprotective Strategies for Treatment of Acute Ischemic Stroke. Neurotherapeutics 1996. [DOI: 10.1007/978-1-59259-466-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Planas AM, Soriano MA, Rodríguez-Farré E, Ferrer I. Induction of cyclooxygenase-2 mRNA and protein following transient focal ischemia in the rat brain. Neurosci Lett 1995; 200:187-90. [PMID: 9064608 DOI: 10.1016/0304-3940(95)12108-g] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Expression of cyclooxygenase-2 (cox-2) mRNA and inducible heat-shock protein-70 (hsp-70) mRNA was studied with in situ hybridization techniques at 30 min and 4 h following 1 h transient middle cerebral artery (MCA) occlusion in the rat brain. In addition, immunoreactivity for cox-2 was studied after 8 h of reperfusion. Induction of hsp-70 and cox-2 mRNA was found in the brain side ipsilateral to MCA occlusion. Hsp-70 mRNA was induced in the parietal cortex and striatum within the territory of the occluded MCA. Induction of cox-2 mRNA was particularly seen in cortical layer II in the brain side ipsilateral to MCA occlusion. At 30 min of reperfusion, areas showing cox-2 mRNA induction included the cingulate and frontal cortices located perifocally to the areas showing hsp-70 mRNA induction, and the piriform cortex. At 4 h of reperfusion, induction of cox-2 mRNA was seen within the parietal cortex. At 8 h of reperfusion, immunoreactivity for cox-2 was mainly seen in the ipsilateral cortex. These results demonstrate that transient focal ischemia induces the expression of cox-2 mRNA and protein in discrete areas of the rat brain during reperfusion, which might lead to local increases of arachidonic acid metabolism.
Collapse
Affiliation(s)
- A M Planas
- Departament de Farmacologia i Toxicologia, CID, Barcelona, Spain
| | | | | | | |
Collapse
|
43
|
Abstract
In this article we summarize a wide variety of properties of arachidonic acid (AA) in the mammalian nervous system especially in the brain. AA serves as a biologically-active signaling molecule as well as an important component of membrane lipids. Esterified AA is liberated from the membrane by phospholipase activity which is stimulated by various signals such as neurotransmitter-mediated rise in intracellular Ca2+. AA exerts many biological actions which include modulation of the activities of protein kinases and ion channels, inhibition of neurotransmitter uptake, and enhancement of synaptic transmission. AA serves also as a precursor of a variety of eicosanoids, which are formed by oxidative metabolism of AA. AA cascade is activated under several pathological conditions in the brain such as ischemia and seizures, and may be involved in irreversible tissue damage. On the other hand, AA can show beneficial influences on brain tissues and cells in several situations. In a recent study using cultured brain neurons, we have found that AA shows quite distinct actions at a narrow concentration range, such as induction of cell death, promotion of cell survival and enhancement of neurite extension. The neurotoxic action is mediated by free radicals generated by AA metabolism, whereas the neurotrophic actions are exerted by AA itself. The observed in vitro actions of AA might be related to important roles of AA in brain pathogenesis and neural development.
Collapse
Affiliation(s)
- H Katsuki
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | |
Collapse
|
44
|
Chen J, Weinstein PR, Graham SH. Attenuation of postischemic brain hypoperfusion and reperfusion injury by the cyclooxygenase-lipoxygenase inhibitor BW755C. J Neurosurg 1995; 83:99-104. [PMID: 7782858 DOI: 10.3171/jns.1995.83.1.0099] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Arachidonic acid metabolites are believed to be important mediators of tissue injury during reperfusion after cerebral ischemia. To determine whether inhibiting the oxygen-dependent metabolism of arachidonic acid would reduce reperfusion injury, we administered the mixed cyclooxygenase-lipoxygenase inhibitor BW755C (3-amino-1-[m(trifluoromethyl)phenyl]-2-pyrazoline) near the time of reperfusion in a rat model of temporary focal ischemia. The duration of ischemia + reperfusion was 2 hours + 22 hours, 3 hours + 3 hours, or 3 hours + 21 hours. The effects of drug or saline treatment on infarct volume, blood-brain barrier permeability, and blood flow were determined. Cortical blood flow was monitored with laser Doppler flowmetry and blood-brain barrier permeability was evaluated by the Evans blue dye method. Infarct volume was determined in all groups by computerized image analysis of Nissl-stained sections. We found that BW755C treatment significantly attenuated delayed postischemic hypoperfusion in the 3 + 3 group (p < 0.05) and reduced the volume of Evans blue dye staining in the cortex (p < 0.01) and basal ganglia (p < 0.05). Hemispheric swelling was reduced in all treatment groups (p < 0.01), as was total infarct volume in the ischemic hemisphere (p < 0.05). These results support the hypothesis that arachidonic acid metabolites contribute to acute postischemic reperfusion injury and suggest that using a mixed cyclooxygenase-lipoxygenase inhibitor as an adjunct to thrombolytic or revascularization therapy could lengthen the ischemia time after which reperfusion is beneficial.
Collapse
Affiliation(s)
- J Chen
- Department of Neurology, School of Medicine, University of California, San Francisco, USA
| | | | | |
Collapse
|
45
|
Lazarewicz JW, Salińska E. N-methyl-D-aspartate-evoked release of cyclo-oxygenase products in rabbit hippocampus: an in vivo microdialysis study. J Neurosci Res 1995; 40:660-6. [PMID: 7602616 DOI: 10.1002/jnr.490400511] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In vivo microdialysis of the rabbit hippocampus was used to study the effects of N-methyl-D-aspartate (NMDA) receptor stimulation on dialysate concentrations of thromboxane B2 (Tx B2)- and 6-keto prostaglandin F1 alpha (6-keto PGF1 alpha)-immunoreactive materials that are stable metabolites of biologically active thromboxane A2 and prostacyclin. All pharmacological substances were applied in the dialysis medium. The application of 1 mM NMDA for 20 min resulted in five- and eightfold increases in Tx B2 and 6-keto PGF1 alpha concentrations, respectively. An increase in NMDA concentration to 2.5 mM did not potentiate a peak eicosanoid release, but significantly prolonged this effect. Either 10 microM MK-801 or the extrusion of Ca2+ from the dialysis medium inhibited the release by about 50%. Quinacrine, a phospholipase A2 inhibitor (250 microM), decreased the NMDA-evoked eicosanoid release by 30%, whereas 10 microM indomethacin, a cyclo-oxygenase inhibitor, completely suppressed the release. One hundred micromolar furegrelate, an inhibitor of thromboxane synthase, reduced by 75% Tx B2 release with concomitant 100% increase in 6-keto PGF1 alpha formation. Thus, stimulation of NMDA receptors induces calcium-dependent formation of thromboxane A2 and prostacyclin in the hippocampus, which may have pathophysiological implications. The neuronal site of their formation seems probable, although a transcellular mechanism of their synthesis should be also considered.
Collapse
Affiliation(s)
- J W Lazarewicz
- Department of Neurochemistry, Polish Academy of Sciences, Warsaw
| | | |
Collapse
|
46
|
Volterra A, Trotti D, Bezzi P, Civenni G, Racagni G. [Ca2+] modulates the ratio between cycloxygenase and lipoxygenase metabolism of arachidonic acid in homogenates of hippocampal astroglial cultures. Neurosci Lett 1995; 183:160-3. [PMID: 7739784 DOI: 10.1016/0304-3940(94)11140-e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
While studying the enzymatic processing of arachidonic acid (AA) to eicosanoids in homogenates of hippocampal astrocytes, we observed that all the HPLC peaks corresponding to AA metabolites displayed significantly different levels depending on the presence or not of free Ca2+ in the incubation medium. A specific pattern was noticed, i.e. lipoxygenase (LOX) derivatives, in particular 12-hydroxyeicosatetraenoic acid (12-HETE), showed higher levels in medium containing 1 mM Ca2+, while cycloxygenase (COX) products including prostaglandins (PG) F2 alpha, E2 and D2 and 12-hydroxyhepatadecatrienoic acid (12-HHT), were higher in Ca(2+)-free medium. COX metabolism exceeded LOX metabolism by threefold in Ca(2+)-free medium, while it was only 60% of it in 1 mM Ca2+. The total amount of AA processed under the two conditions was identical. These data suggest that free [Ca2+] influences the pattern of AA metabolites formed in hippocampal astrocytes, with possible important implications in view of the distinct roles played by COX and LOX eicosanoids in synaptic transmission and neurotoxicity in this area.
Collapse
Affiliation(s)
- A Volterra
- Center of Neuropharmacology, University of Milan, Italy
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- B K Siesjö
- Laboratory for Experimental Brain Research, University of Lund, Sweden
| |
Collapse
|
48
|
Andrus PK, Taylor BM, Sun FF, Hall ED. Effects of the lipid peroxidation inhibitor tirilazad mesylate (U-74006F) on gerbil brain eicosanoid levels following ischemia and reperfusion. Brain Res 1994; 659:126-32. [PMID: 7820653 DOI: 10.1016/0006-8993(94)90871-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study measured the production of eicosanoids in the gerbil brain during early reperfusion after either a 3-h unilateral carotid occlusion (UCO, model of focal ischemia) or a 10-min bilateral carotid occlusion (BCO, model of global ischemia). Arachidonic acid (AA) metabolites were examined to determine if pretreatment with the 21-aminosteroid lipid peroxidation inhibitor U-74006F (tirilazad mesylate) could influence postreperfusion synthesis of brain eicosanoids. In the 3-h UCO focal ischemia model, there was an early (5-min) postreperfusion elevation in brain levels of PGF2 alpha, TXB2 and LTC4 (P < 0.05 vs. sham for all three eicosanoids). LTB4 also rose but not significantly. On the other hand, PGE2 and 6-keto-PGF1 alpha tended to decrease during ischemia and at 5-min postreperfusion (P < 0.05 vs. sham for PGE2). Pretreatment with known neuroprotective doses of U-74006F in this model (10 mg/kg i.p. 10 min before and again immediately upon reperfusion) did not affect the increase in PGF2 alpha or TXB2 but significantly blunted the elevations in LTC4 and LTB4. The postreperfusion decrease in PGE2 was also attenuated. In the 10-min BCO global ischemia model, there was also an increase in each of the measured eicosanoids, except LTB4, at 5 min after reperfusion. Pretreatment with U-74006F (10 mg/kg i.p. 10 min before ischemia) selectively decreased the rise in LTC4 but did not significantly affect the other eicosanoids. In contrast, the antioxidant actually caused a significant enhancement of the postreperfusion increase in PGE2 vs. vehicle-treated animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
49
|
Abstract
Current evidence for the participation of free radicals in diseases of the central nervous system is reviewed. We conclude that the pathogenesis is based on a uniform mechanism: free radicals preferentially attack myelin, which contains easily peroxidizable phospholipids. The basal ganglia seem to be a brain area that is especially susceptible to radical damage which is possibly related to the synthesis of neurotransmitters. The clinical picture of the resulting cell death is dominated by convulsions and retardation in childhood and by psychomotoric disability and dementia in adulthood.
Collapse
Affiliation(s)
- G F Weber
- Dana-Farber Cancer Institute, Boston, MA 02115
| |
Collapse
|
50
|
Patel PM, Drummond JC, Cole DJ, Yaksh TL. Differential temperature sensitivity of ischemia-induced glutamate release and eicosanoid production in rats. Brain Res 1994; 650:205-11. [PMID: 7953685 DOI: 10.1016/0006-8993(94)91783-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of mild and moderate hypothermia on ischemia-induced glutamate release and eicosanoid production was evaluated in WKY rats subjected to incomplete forebrain ischemia. Under isoflurane anesthesia, microdialysis probes were inserted into the hippocampus and caudate nucleus. In four groups of rats, the intraischemic temperature was maintained at either 38 degrees C (normothermia), 36 degrees C, 34 degrees C (mild hypothermia) and 30 degrees C (moderate hypothermia). In these groups, normothermia was restored immediately upon reperfusion. In two additional groups, both intra- and post-ischemic temperatures were maintained at either 34 degrees C or 30 degrees C. The levels of glutamate were measured in the dialysate collected during ischemia and the levels of TxB2, 6-keto-PGF1 alpha and PGF2 alpha were measured in dialysate collected prior to and after ischemia. As expected, hypothermia reduced ischemia-induced glutamate release in both structures. However, the application of mild hypothermia did not attenuate post-ischemic levels of all eicosanoids measured. Moderate hypothermia (30 degrees C) attenuated the post-ischemic increase in the levels of PGF2 alpha. The data suggest that the processes that lead to eicosanoid formation are less sensitive to temperature reduction than those that lead to glutamate release.
Collapse
Affiliation(s)
- P M Patel
- Department of Anesthesiology, VA Medical Center, San Diego 92161
| | | | | | | |
Collapse
|