1
|
Zhu A, Jiang Y, Pan L, Li J, Huang Y, Shi M, Di L, Wang L, Wang R. Cell inspired delivery system equipped with natural membrane structures in applications for rescuing ischemic stroke. J Control Release 2025; 377:54-80. [PMID: 39547421 DOI: 10.1016/j.jconrel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke (IS), accounting for 87 % of stroke incidences, constitutes a paramount health challenge owing to neurological impairments and irreversible tissue damage arising from cerebral ischemia. Chief among therapeutic obstacles are the restrictive penetration of the blood-brain barrier (BBB) and insufficient targeting precision, hindering the accumulation of drugs in ischemic brain areas. Motivated by the remarkable capabilities of natural membrane-based delivery vehicles in achieving targeted delivery and traversing the BBB, thanks to their biocompatible architecture and bioactive components, numerous membrane-engineered systems such as cells, cell membranes and extracellular vesicles have emerged as promising platforms to augment IS treatment efficacy with the help of nanotechnology. This review consolidates the primary pathological manifestations following IS, elucidates the unique functionalities of natural membrane drug delivery systems (DDSs) with nanotechnology, as well as delineates the structural characteristics of various natural membranes alongside rational design strategies employed. The review illuminates both the potential and challenges encountered when employing natural membrane DDSs in IS drug therapy, offering fresh perspectives and insights for devising efficacious and practical delivery systems tailored to IS intervention.
Collapse
Affiliation(s)
- Anran Zhu
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Huang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Shi
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruoning Wang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Wright SA, Lennon R, Greenhalgh AD. Basement membranes' role in immune cell recruitment to the central nervous system. J Inflamm (Lond) 2024; 21:53. [PMID: 39707430 DOI: 10.1186/s12950-024-00426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Basement membranes form part of the extracellular matrix (ECM), which is the structural basis for all tissue. Basement membranes are cell-adherent sheets found between cells and vascular endothelia, including those of the central nervous system (CNS). There is exceptional regional specialisation of these structures, both in tissue organisation and regulation of tissue-specific cellular processes. Due to their location, basement membranes perform a key role in immune cell trafficking and therefore are important in inflammatory processes causing or resulting from CNS disease and injury. This review will describe basement membranes in detail, with special focus on the brain. We will cover how genetic changes drive brain pathology, describe basement membranes' role in immune cell recruitment and how they respond to various brain diseases. Understanding how basement membranes form the junction between the immune and central nervous systems will be a major advance in understanding brain disease.
Collapse
Affiliation(s)
- Shaun A Wright
- Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rachel Lennon
- Cell Matrix Biology & Regenerative Medicine and Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Fontán-Baselga T, Cañeque-Rufo H, Rivera-Illades E, Gramage E, Zapico JM, de Pascual-Teresa B, Ramos-Álvarez MDP, Herradón G, Vicente-Rodríguez M. Pharmacological inhibition of receptor protein tyrosine phosphatase β/ζ decreases Aβ plaques and neuroinflammation in the hippocampus of APP/PS1 mice. Front Pharmacol 2024; 15:1506049. [PMID: 39712494 PMCID: PMC11658987 DOI: 10.3389/fphar.2024.1506049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disorder that courses with chronic neuroinflammation. Pleiotrophin (PTN) is an endogenous inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ which is upregulated in different neuroinflammatory disorders of diverse origin, including AD. To investigate the role of RPTPβ/ζ in neuroinflammation and neurodegeneration, we used eight-to ten-month-old APP/PS1 AD mouse model. They were administered intragastrically with MY10, an inhibitor of RPTPβ/ζ, at different doses (60 and 90 mg/kg) every day for 14 days. Treatment with 90 mg/kg MY10 significantly reduced the number and size of amyloid beta (Aβ) plaques in the dorsal subiculum of the hippocampus of APP/PS1 mice. In addition, we observed a significant decrease in the number and size of astrocytes in both sexes and in the number of microglial cells in a sex-dependent manner. This suggests that RPTPβ/ζ plays an important role in modulating Aβ plaque formation and influences glial responses, which may contribute to improved Aβ clearance. In addition, MY10 treatment decreased the interaction of glial cells with Aβ plaques in the hippocampus of APP/PS1 mice. Furthermore, the analysis of proinflammatory markers in the hippocampus revealed that MY10 treatment decreased the mRNA levels of Tnfa and Hmgb1. Notably, treatment with MY10 increased Bace1 mRNA expression, which could be involved in enhancing Aβ degradation, and it decreased Mmp9 levels, which might reflect changes in the neuroinflammatory environment and impact Aβ plaque dynamics. These results support the therapeutic potential of inhibition of RPTPβ/ζ in modulating Aβ pathology and neuroinflammation in AD.
Collapse
Affiliation(s)
- Teresa Fontán-Baselga
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Héctor Cañeque-Rufo
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Elisa Rivera-Illades
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Esther Gramage
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - José María Zapico
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - María Del Pilar Ramos-Álvarez
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Gonzalo Herradón
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Marta Vicente-Rodríguez
- Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| |
Collapse
|
4
|
Wang P, Okada-Rising S, Scultetus AH, Bailey ZS. The Relevance and Implications of Monoclonal Antibody Therapies on Traumatic Brain Injury Pathologies. Biomedicines 2024; 12:2698. [PMID: 39767605 PMCID: PMC11672875 DOI: 10.3390/biomedicines12122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Traumatic brain injury (TBI) is a global public health concern. It remains one of the leading causes of morbidity and mortality. TBI pathology involves complex secondary injury cascades that are associated with cellular and molecular dysfunction, including oxidative stress, coagulopathy, neuroinflammation, neurodegeneration, neurotoxicity, and blood-brain barrier (BBB) dysfunction, among others. These pathological processes manifest as a diverse array of clinical impairments. They serve as targets for potential therapeutic intervention not only in TBI but also in other diseases. Monoclonal antibodies (mAbs) have been used as key therapeutic agents targeting these mechanisms for the treatment of diverse diseases, including neurological diseases such as Alzheimer's disease (AD). MAb therapies provide a tool to block disease pathways with target specificity that may be capable of mitigating the secondary injury cascades following TBI. This article reviews the pathophysiology of TBI and the molecular mechanisms of action of mAbs that target these shared pathological pathways in a wide range of diseases. Publicly available databases for various applications of mAb therapy were searched and further classified to assess relevance to TBI pathology and evaluate current stages of development. The authors intend for this review to highlight the potential impact of current mAb technology within pathological TBI processes.
Collapse
Affiliation(s)
- Ping Wang
- Brain Trauma Neuroprotection, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.O.-R.); (A.H.S.); (Z.S.B.)
| | | | | | | |
Collapse
|
5
|
Kongbunkiat K, Thukham-mee W, Tiamkao S, Kasemsap N, Vorasoot N, Wattanathorn J. A Combined Extract Derived from Black Sticky Rice and Dill Improves Clinical Symptoms and Ischemic Stroke Biomarkers in Transient Ischemic Attack and Ischemic Stroke Patients. Nutrients 2024; 16:3946. [PMID: 39599732 PMCID: PMC11597798 DOI: 10.3390/nu16223946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Currently, the adjuvant therapy to optimize the restorative process after stroke is required due to the unsatisfied therapeutic efficacy. A combined extract of black sticky rice and dill showed potential in the preclinical state, so we hypothesized that it could provide clinical benefits. A three-arm, randomized, placebo-controlled study was set up to elucidate this issue. Both males and females (18-80 years old) who had experienced transient ischemic attacks or ischemic strokes within the last 5-10 days with an NIHSS score ≤ 7 and received standard treatment were randomly assigned to receive either a placebo or capsule containing a combined extract of black sticky rice and dill at a dose of 600 or 1200 mg per day. The safety parameters, movement control, and degree of disability were assessed 1, 2, and 6 weeks after the intervention, and serum stroke biomarkers were assessed at the mentioned time points, except at 2 weeks. After week 1, the high-dose (1200 mg/day) treatment group had improved NIHSSS, VCAM1, and MMP-9. Both S100β and VCAM1 also improved at week 6, while the low-dose treatment group (600 mg/day) only exhibited improved VCAM1. Therefore, a high dose of the developed adjuvant supplement improves stroke recovery by improving motor impairment by reducing endothelial dysfunction and inflammation.
Collapse
Affiliation(s)
- Kannikar Kongbunkiat
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (K.K.); (S.T.); (N.K.); (N.V.)
- North-Eastern Stroke Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsak Tiamkao
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (K.K.); (S.T.); (N.K.); (N.V.)
| | - Narongrit Kasemsap
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (K.K.); (S.T.); (N.K.); (N.V.)
- North-Eastern Stroke Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisa Vorasoot
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (K.K.); (S.T.); (N.K.); (N.V.)
- North-Eastern Stroke Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jintanaporn Wattanathorn
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Monjazeb S, Chang HV, Lyden PD. Before, during, and after: An Argument for Safety and Improved Outcome of Thrombolysis in Acute Ischemic Stroke with Direct Oral Anticoagulant Treatment. Ann Neurol 2024; 96:871-886. [PMID: 39258443 PMCID: PMC11496014 DOI: 10.1002/ana.27058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/12/2024]
Abstract
Direct oral anticoagulants are the primary stroke prevention option in patients with atrial fibrillation. Anticoagulant use before stroke, however, might inhibit clinician comfort with thrombolysis if a stroke does occur. Resuming anticoagulants after ischemic stroke is also problematic for fear of hemorrhage. We describe extensive literature showing that thrombolysis is safe after stroke with direct anticoagulant use. Early reinstitution of direct anticoagulant treatment is associated with lower risk of embolic recurrence and lower hemorrhage risk. The use of direct anticoagulants before, during, and after thrombolysis appears to be safe and is likely to promote improved outcomes after ischemic stroke. ANN NEUROL 2024;96:871-886.
Collapse
Affiliation(s)
- Sanaz Monjazeb
- Department of Neurology, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
| | - Heather V. Chang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
| | - Patrick D. Lyden
- Department of Neurology, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
| |
Collapse
|
7
|
Lee AH, Tai SH, Huang SY, Chang LD, Chen LY, Chen YN, Hsu HH, Lee EJ. Melatonin Improves Vasogenic Edema via Inhibition to Water Channel Aquaporin-4 (AQP4) and Metalloproteinase-9 (MMP-9) Following Permanent Focal Cerebral Ischemia. Biomedicines 2024; 12:2184. [PMID: 39457496 PMCID: PMC11504272 DOI: 10.3390/biomedicines12102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The efficacy of melatonin in reducing vasogenic and cytotoxic edema was investigated using a model of permanent middle cerebral artery occlusion (pMCAO). Methods: Rats underwent pMCAO, followed by intravenous administration of either melatonin (5 mg/kg) or a vehicle 10 min post-insult. Brain infarction and edema were assessed, and Western blot analyses were conducted to examine the expression levels of aquaporin-4 (AQP4), metalloproteinase-9 (MMP-9), and the neurovascular tight-junction protein ZO-1 upon sacrifice. The permeability of the blood-brain barrier (BBB) was measured using spectrophotometric quantification of Evans blue dye leakage. Results: Compared to controls, melatonin-treated rats exhibited a significant reduction in infarct volume by 26.9% and showed improved neurobehavioral outcomes (p < 0.05 for both). Melatonin treatment also led to decreased Evans blue dye extravasation and brain edema (p < 0.05 for both), along with lower expression levels of AQP4 and MMP-9 proteins and better preservation of ZO-1 protein (p < 0.05 for all). Conclusions: Therefore, melatonin offers neuroprotection against brain swelling induced by ischemia, possibly through its modulation of AQP4 and MMP-9 activities in glial cells and the extracellular matrix (ECM) during the early phase of ischemic injury.
Collapse
Affiliation(s)
- Ai-Hua Lee
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Occupational Safety and Health, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Shih-Huang Tai
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Li-Der Chang
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Liang-Yi Chen
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yu-Ning Chen
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Hao-Hsiang Hsu
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - E-Jian Lee
- Neurophysiology Laboratory, Neurosurgical Service, Departments of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
8
|
Liu Y, Liu Y, Zhang X, Yan G, Qi L, Yong VW, Xue M. The cerebroprotection and prospects of FNDC5/irisin in stroke. Neuropharmacology 2024; 253:109986. [PMID: 38705569 DOI: 10.1016/j.neuropharm.2024.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Stroke, the leading cause of disability and cognitive impairment, is also the second leading cause of death worldwide. The drugs with multi-targeted brain cytoprotective effects are increasingly being advocated for the treatment of stroke. Irisin, a newly discovered myokine produced by cleavage of fibronectin type III domain 5, has been shown to regulate glucose metabolism, mitochondrial energy, and fat browning. A large amount of evidence indicated that irisin could exert anti-inflammatory, anti-apoptotic, and antioxidant properties in a variety of diseases such as myocardial infarction, inflammatory bowel disease, lung injury, and kidney or liver disease. Studies have found that irisin is widely distributed in multiple brain regions and also plays an important regulatory role in the central nervous system. The most common cause of a stroke is a sudden blockage of an artery (ischemic stroke), and in some circumstances, a blood vessel rupture can also result in a stroke (hemorrhagic stroke). After a stroke, complicated pathophysiological processes lead to serious brain injury and neurological dysfunction. According to recent investigations, irisin may protect elements of the neurovascular unit by acting on multiple pathological processes in stroke. This review aims to outline the currently recognized effects of irisin on stroke and propose possible directions for future research.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Gaili Yan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Lingxiao Qi
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Kucherova KS, Koroleva ES, Alifirova VM. The role of matrix metalloproteinases in the pathogenetic mechanisms of ischemic stroke. RUSSIAN NEUROLOGICAL JOURNAL 2024; 29:5-15. [DOI: 10.30629/2658-7947-2024-29-3-5-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Modern understanding of the mechanisms of the pathogenesis of ischemic stroke has expanded due to the study of neuroinfl ammation processes, in which matrix metalloproteinases (MMPs) play an important role. This literature review describes the main types of MMPs and provides current data on the pathophysiological role of this group of proteases in acute cerebral ischemia, which have multidirectional eff ects depending on the stage of the disease. Clinical studies assessing the role of MMPs in ischemic stroke are in most cases based on experimental models, and their results are ambiguous, which is determined by the versatility of their actions. MMPs are an important regulator of infl ammatory processes, the permeability of the blood-brain barrier and, as a consequence, cerebral edema. However, the positive eff ect of MMPs in the processes of angiogenesis, neurogenesis and neuroplasticity has been proven. Thus, further study of MMPs is relevant from the point of view of their role in functional recovery after ischemic stroke.
Collapse
|
10
|
Owjfard M, Rahimian Z, Ghaderpanah R, Rafiei E, Sadrian S, Sabaghan M, Karimi F. Therapeutic Effects of Intranasal Administration of Resveratrol on the Rat Model of Brain Ischemia. Heliyon 2024; 10:e32592. [PMID: 38952360 PMCID: PMC11215267 DOI: 10.1016/j.heliyon.2024.e32592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Background Resveratrol is a natural phenolic compound widely found in plants. Previous studies have suggested its neuroprotective role in cerebral ischemia due to its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. Intranasal administration of resveratrol enhances its capacity to penetrate the blood-brain barrier, increasing therapeutic efficacy and safety. Objective We aimed to examine the therapeutic potential of intranasal administration of resveratrol treatment in rats exposed to cerebral ischemia. Methods Sixty-four male rats were divided into three groups: the sham group, which was exposed to only surgical stress; the vehicle and resveratrol groups, which received intranasal vehicle or 50 mg/kg resveratrol for 7 days following middle cerebral artery occlusion, respectively. We assessed the modified neurologic severity scores, wire hanging tests, blood-brain barrier disruption, brain water content, and infarct volume. Levels of matrix metalloproteinase-9, nuclear factor-kappa B, B-cell lymphoma protein 2, and B-cell lymphoma protein 2-associated X messenger RNA expression were examined. Results At 3- and 7-days post-ischemia, rats receiving intranasal resveratrol had lower modified neurological severity scores and a smaller brain infarct volume than the rats receiving vehicle. Additionally, the intranasal resveratrol-treated rats showed significantly prolonged wire-hanging performance at the 7-day mark post-ischemia compared to the vehicle group. The blood-brain barrier disruption and brain water content were significantly lower in the resveratrol group than in the vehicle group. Furthermore, the resveratrol-treated group displayed lower expression of Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B in contrast to the vehicle group, while the difference in expression levels of B-cell lymphoma protein 2-associated X and B-cell lymphoma protein 2 were not significant. Conclusion Intranasal administration of resveratrol showed neuroprotective effects on ischemic stroke by improving neurobehavioral function, reducing blood-brain barrier disruption, cerebral edema, and infarct volume. This treatment also downregulated Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B expression, indicating its potential as a therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rezvan Ghaderpanah
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Rafiei
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedhassan Sadrian
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
11
|
López-Sánchez C, Lagoa R, Poejo J, García-López V, García-Martínez V, Gutierrez-Merino C. An Update of Kaempferol Protection against Brain Damage Induced by Ischemia-Reperfusion and by 3-Nitropropionic Acid. Molecules 2024; 29:776. [PMID: 38398528 PMCID: PMC10893315 DOI: 10.3390/molecules29040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Kaempferol, a flavonoid present in many food products, has chemical and cellular antioxidant properties that are beneficial for protection against the oxidative stress caused by reactive oxygen and nitrogen species. Kaempferol administration to model experimental animals can provide extensive protection against brain damage of the striatum and proximal cortical areas induced by transient brain cerebral ischemic stroke and by 3-nitropropionic acid. This article is an updated review of the molecular and cellular mechanisms of protection by kaempferol administration against brain damage induced by these insults, integrated with an overview of the contributions of the work performed in our laboratories during the past years. Kaempferol administration at doses that prevent neurological dysfunctions inhibit the critical molecular events that underlie the initial and delayed brain damage induced by ischemic stroke and by 3-nitropropionic acid. It is highlighted that the protection afforded by kaempferol against the initial mitochondrial dysfunction can largely account for its protection against the reported delayed spreading of brain damage, which can develop from many hours to several days. This allows us to conclude that kaempferol administration can be beneficial not only in preventive treatments, but also in post-insult therapeutic treatments.
Collapse
Affiliation(s)
- Carmen López-Sánchez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - Joana Poejo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| | - Virginio García-López
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-Martínez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
12
|
Didwischus N, Guduru A, Badylak SF, Modo M. In vitro dose-dependent effects of matrix metalloproteinases on ECM hydrogel biodegradation. Acta Biomater 2024; 174:104-115. [PMID: 38081445 PMCID: PMC10775082 DOI: 10.1016/j.actbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Matrix metalloproteinases (MMPs) cause proteolysis of extracellular matrix (ECM) in tissues affected by stroke. However, little is known about how MMPs degrade ECM hydrogels implanted into stroke cavities to regenerate lost tissue. To establish a structure-function relationship between different doses of individual MMPs and isolate their effects in a controlled setting, an in vitro degradation assay quantified retained urinary bladder matrix (UBM) hydrogel mass as a measure of degradation across time. A rheological characterization indicated that lower ECM concentrations (<4 mg/mL) did not cure completely at 37 °C and had a high fraction of mobile proteins that were easily washed-out. Hydrolysis by dH2O caused a steady 2 % daily decrease in hydrogel mass over 14 days. An acceleration of degradation to 6 % occurred with phosphate buffered saline and artificial cerebrospinal fluid. MMPs induced a dose-dependent increase and within 14 days almost completely (>95 %) degraded the hydrogel. MMP-9 exerted the most significant biodegradation, compared to MMP-3 and -2. To model the in vivo exposure of hydrogel to MMPs, mixtures of MMP-2, -3, and -9, present in the cavity at 14-, 28-, or 90-days post-stroke, revealed that 14- and 28-days mixtures achieved an equivalent biodegradation, but a 90-days mixture exhibited a slower degradation. These results revealed that hydrolysis, in addition to proteolysis, exerts a major influence on the degradation of hydrogels. Understanding the mechanisms of ECM hydrogel biodegradation is essential to determine the therapeutic window for bioscaffold implantation after a stroke, and they are also key to determine optimal degradation kinetics to support tissue regeneration. STATEMENT OF SIGNIFICANCE: After implantation into a stroke cavity, extracellular matrix (ECM) hydrogel promotes tissue regeneration through the degradation of the bioscaffold. However, the process of degradation of an ECM hydrogel remains poorly understood. We here demonstrated in vitro under highly controlled conditions that hydrogel degradation is very dependent on its protein concentration. Lower protein concentration hydrogels were weaker in rheological measurements and particularly susceptible to hydrolysis. The proteolytic degradation of tissue ECM after a stroke is caused by matrix metalloproteinases (MMPs). A dose-dependent MMP-driven biodegradation of ECM hydrogel exceeded the effects of hydrolysis. These results highlight the importance of in vitro testing of putative causes of degradation to gain a better understanding of how these factors affect in vivo biodegradation.
Collapse
Affiliation(s)
- Nadine Didwischus
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arun Guduru
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Pijet B, Kostrzewska-Księzyk A, Pijet-Kucicka M, Kaczmarek L. Matrix Metalloproteinase-9 Contributes to Epilepsy Development after Ischemic Stroke in Mice. Int J Mol Sci 2024; 25:896. [PMID: 38255970 PMCID: PMC10815104 DOI: 10.3390/ijms25020896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Epilepsy, a neurological disorder affecting over 50 million individuals globally, is characterized by an enduring predisposition and diverse consequences, both neurobiological and social. Acquired epilepsy, constituting 30% of cases, often results from brain-damaging injuries like ischemic stroke. With one third of epilepsy cases being resistant to existing drugs and without any preventive therapeutics for epileptogenesis, identifying anti-epileptogenic targets is crucial. Stroke being a leading cause of acquired epilepsy, particularly in the elderly, prompts the need for understanding post-stroke epileptogenesis. Despite the challenges in studying stroke-evoked epilepsy in rodents due to poor long-term survival rates, in this presented study the use of an animal care protocol allowed for comprehensive investigation. We highlight the role of matrix metalloproteinase-9 (MMP-9) in post-stroke epileptogenesis, emphasizing MMP-9 involvement in mouse models and its potential as a therapeutic target. Using a focal Middle Cerebral Artery occlusion model, this study demonstrates MMP-9 activation following ischemia, influencing susceptibility to seizures. MMP-9 knockout reduces epileptic features, while overexpression exacerbates them. The findings show that MMP-9 is a key player in post-stroke epileptogenesis, presenting opportunities for future therapies and expanding our understanding of acquired epilepsy.
Collapse
Affiliation(s)
- Barbara Pijet
- Laboratory of Neurobiology, Braincity, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland; (A.K.-K.)
| | | | | | | |
Collapse
|
14
|
Goodman GW, Do TH, Tan C, Ritzel RM. Drivers of Chronic Pathology Following Ischemic Stroke: A Descriptive Review. Cell Mol Neurobiol 2023; 44:7. [PMID: 38112809 DOI: 10.1007/s10571-023-01437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Stroke is the third leading cause of death and long-term disability in the world. Considered largely a disease of aging, its global economic and healthcare burden is expected to rise as more people survive into advanced age. With recent advances in acute stroke management, including the expansion of time windows for treatment with intravenous thrombolysis and mechanical thrombectomy, we are likely to see an increase in survival rates. It is therefore critically important to understand the complete pathophysiology of ischemic stroke, both in the acute and subacute stages and during the chronic phase in the months and years following an ischemic event. One of the most clinically relevant aspects of the chronic sequelae of stroke is its extended negative effect on cognition. Cognitive impairment may be related to the deterioration and dysfunctional reorganization of white matter seen at later timepoints after stroke, as well as ongoing progressive neurodegeneration. The vasculature of the brain also undergoes significant insult and remodeling following stroke, undergoing changes which may further contribute to chronic stroke pathology. While inflammation and the immune response are well established drivers of acute stroke pathology, the chronicity and functional role of innate and adaptive immune responses in the post-ischemic brain and in the peripheral environment remain largely uncharacterized. In this review, we summarize the current literature on post-stroke injury progression, its chronic pathological features, and the putative secondary injury mechanisms underlying the development of cognitive impairment and dementia. We present findings from clinical and experimental studies and discuss the long-term effects of ischemic stroke on both brain anatomy and functional outcome. Identifying mechanisms that occur months to years after injury could lead to treatment strategies in the chronic phase of stroke to help mitigate stroke-associated cognitive decline in patients.
Collapse
Affiliation(s)
- Grant W Goodman
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Trang H Do
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodney M Ritzel
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Williams EI, Betterton RD, Stanton JA, Moreno-Rodriguez VM, Lochhead JJ, Davis TP, Ronaldson PT. Oatp (Organic Anion Transporting Polypeptide)-Mediated Transport: A Mechanism for Atorvastatin Neuroprotection in Stroke. Stroke 2023; 54:2875-2885. [PMID: 37750296 PMCID: PMC10615849 DOI: 10.1161/strokeaha.123.043649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/13/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Drug discovery for stroke is challenging as indicated by poor clinical translatability. In contrast, HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (ie, statins) improve poststroke neurological outcomes. This property requires transport across the blood-brain barrier via an endogenous uptake transporter (ie, Oatp1a4 [organic anion transporting polypeptide 1a4]). Our goal was to study Oatp1a4 as a drug delivery mechanism because the blood-brain barrier cannot be assumed to be completely open for all drugs in ischemic stroke. METHODS Male Sprague-Dawley rats (200-250 g) were subjected to middle cerebral artery occlusion (90 minutes) followed by reperfusion for up to 7 days. Atorvastatin (20 mg/kg, IV) was administered 2 hours following intraluminal suture removal. Involvement of Oatp-mediated transport was determined using fexofenadine (3.2 mg/kg, IV), a competitive Oatp inhibitor. Oatp1a4 transport activity was measured by in situ brain perfusion. Infarction volumes/brain edema ratios and neuronal nuclei expression were determined using 2,3,5-triphenyltetrazolium chloride-stained brain tissue slices and confocal microscopy, respectively. Poststroke functional outcomes were assessed via neurological deficit scores and rotarod analysis. RESULTS At 2-hour post-middle cerebral artery occlusion, [3H]atorvastatin uptake was increased in ischemic brain tissue. A single dose of atorvastatin significantly reduced post-middle cerebral artery occlusion infarction volume, decreased brain edema ratio, increased caudoputamen neuronal nuclei expression, and improved functional neurological outcomes. All middle cerebral artery occlusion positive effects of atorvastatin were attenuated by fexofenadine coadministration (ie, an Oatp transport inhibitor). CONCLUSIONS Our data demonstrate that neuroprotective effects of atorvastatin may require central nervous system delivery by Oatp-mediated transport at the blood-brain barrier, a mechanism that persists despite increased cerebrovascular permeability in ischemic stroke. These novel and translational findings support utility of blood-brain barrier transporters in drug delivery for neuroprotective agents.
Collapse
Affiliation(s)
- Erica I. Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Robert D. Betterton
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Joshua A. Stanton
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Jeffrey J. Lochhead
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Thomas P. Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Wendt TS, Gonzales RJ. Ozanimod differentially preserves human cerebrovascular endothelial barrier proteins and attenuates matrix metalloproteinase-9 activity following in vitro acute ischemic injury. Am J Physiol Cell Physiol 2023; 325:C951-C971. [PMID: 37642239 DOI: 10.1152/ajpcell.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| |
Collapse
|
17
|
Miao M, Lyu M, Zhong C, Liu Y. Correlation Between MMP9 Promoter Methylation and Transient Ischemic Attack/Mild Ischemic Stroke with Early Cognitive Impairment. Clin Interv Aging 2023; 18:1221-1232. [PMID: 37547382 PMCID: PMC10404041 DOI: 10.2147/cia.s421830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Background/Objective Dyskinesia caused by transient ischemic attack (TIA) and mild ischemic stroke (MIS) is mild and short-lived; however, cognitive impairment (CI) can occur in the acute phase and be easily overlooked. DNA methylation is an epigenetic phenomenon that can affect gene expression through gene silencing. Blood levels of matrix metalloproteinase (MMP) 9 are elevated in ischemic stroke patients and is associated with the destruction of the blood-brain barrier and the occurrence of CI. No studies have investigated the relationship between MMP9 gene methylation and TIA/MIS with early cognitive impairment (ECI). As such, the purpose of the present study was to investigate the correlation between MMP9 gene methylation and TIA/MIS with ECI. Methods Data from 112 subjects were collected, including 84 with TIA/MIS (National Institutes of Health Stroke Scale <5 points) and 28 non-stroke control subjects. Patients were evaluated within 7 days of TIA/MIS onset according to four single-domain cognitive scales. Whole blood DNA methylation was detected using MethylTarget sequencing technology. Comparison of MMP9 gene methylation levels among subgroups was performed using statistical methods. Results The site S33-79 in the TIA/MIS group was hypomethylated compared with the control group, and sites S33-25 and S33-30 in TIA/MIS with ECI was hypomethylated compared with TIA/MIS without ECI. Compared with the small artery occlusion group, MMP9 gene, S33-25, 30, 39, 53, 58, 73, 79, 113 and 131 sites in the large artery atherosclerosis group were hypomethylated. Conclusion MMP9 gene hypomethylation sites were associated with TIA/MIS and TIA/MIS with ECI, and there was a strong correlation between MMP9 gene hypomethylation and atherosclerotic TIA/MIS. MMP9 gene methylation can reflect the severity of TIA/MIS. MMP9 gene hypomethylation sites may be used as potential biomarkers and therapeutic targets for TIA/MIS and TIA/MIS with ECI.
Collapse
Affiliation(s)
- Meng Miao
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Mingyang Lyu
- Haihe Laboratory of Cell Ecosystem, Tianjin, People’s Republic of China
| | - Chi Zhong
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Ying Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
18
|
Gao Y, Li Y, Feng S, Gu L. Bibliometric and visualization analysis of matrix metalloproteinases in ischemic stroke from 1992 to 2022. Front Neurosci 2023; 17:1206793. [PMID: 37483355 PMCID: PMC10357507 DOI: 10.3389/fnins.2023.1206793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are important players in the complex pathophysiology of ischemic stroke (IS). Recent studies have shown that tremendous progress has been made in the research of MMPs in IS. However, a comprehensive bibliometric analysis is lacking in this research field. This study aimed to introduce the research status as well as hotspots and explore the field of MMPs in IS from a bibliometric perspective. Methods This study collected 1,441 records related to MMPs in IS from 1979 to 2022 in the web of science core collection (WoSCC) database, among them the first paper was published in 1992. CiteSpace, VOSviewer, and R package "bibliometrix" software were used to analyze the publication type, author, institution, country, keywords, and other relevant data in detail, and made descriptive statistics to provide new ideas for future clinical and scientific research. Results The change in the number of publications related to MMPs in IS can be divided into three stages: the first stage was from 1992 to 2012, when the number of publications increased steadily; the second stage was from 2013 to 2017, when the number of publications was relatively stable; the third stage was from 2018 to 2022, when the number of publications began to decline. The United States and China, contributing more than 64% of publications, were the main drivers for research in this field. Universities in the United States were the most active institutions and contributed the most publications. STROKE is the most popular journal in this field with the largest publications as well as the most co-cited journal. Rosenberg GA was the most prolific writer and has the most citations. "Clinical," "Medical," "Neurology," "Immunology" and "Biochemistry molecular biology" were the main research areas of MMPs in IS. "Molecular regulation," "Metalloproteinase-9 concentration," "Clinical translation" and "Cerebral ischemia-reperfusion" are the primary keywords clusters in this field. Conclusion This is the first bibliometric study that comprehensively mapped out the knowledge structure and development trends in the research field of MMPs in IS in recent 30 years, which will provide a reference for scholars studying this field.
Collapse
|
19
|
Josifovska S, Panov S, Hadzi-Petrushev N, Mitrokhin V, Kamkin A, Stojchevski R, Avtanski D, Mladenov M. Positive Tetrahydrocurcumin-Associated Brain-Related Metabolomic Implications. Molecules 2023; 28:molecules28093734. [PMID: 37175144 PMCID: PMC10179939 DOI: 10.3390/molecules28093734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Tetrahydrocurcumin (THC) is a metabolite of curcumin (CUR). It shares many of CUR's beneficial biological activities in addition to being more water-soluble, chemically stable, and bioavailable compared to CUR. However, its mechanisms of action have not been fully elucidated. This paper addresses the preventive role of THC on various brain dysfunctions as well as its effects on brain redox processes, traumatic brain injury, ischemia-reperfusion injury, Alzheimer's disease, and Parkinson's disease in various animal or cell culture models. In addition to its strong antioxidant properties, the effects of THC on the reduction of amyloid β aggregates are also well documented. The therapeutic potential of THC to treat patterns of mitochondrial brain dysmorphic dysfunction is also addressed and thoroughly reviewed, as is evidence from experimental studies about the mechanism of mitochondrial failure during cerebral ischemia/reperfusion injury. THC treatment also results in a dose-dependent decrease in ERK-mediated phosphorylation of GRASP65, which prevents further compartmentalization of the Golgi apparatus. The PI3K/AKT signaling pathway is possibly the most involved mechanism in the anti-apoptotic effect of THC. Overall, studies in various animal models of different brain disorders suggest that THC can be used as a dietary supplement to protect against traumatic brain injury and even improve brain function in Alzheimer's and Parkinson's diseases. We suggest further preclinical studies be conducted to demonstrate the brain-protective, anti-amyloid, and anti-Parkinson effects of THC. Application of the methods used in the currently reviewed studies would be useful and should help define doses and methods of THC administration in different disease conditions.
Collapse
Affiliation(s)
- Slavica Josifovska
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Sasho Panov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| |
Collapse
|
20
|
Ji Y, Gao Q, Ma Y, Wang F, Tan X, Song D, Hoo RLC, Wang Z, Ge X, Han H, Guo F, Chang J. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity. Pharmacol Res 2023; 190:106720. [PMID: 36893823 DOI: 10.1016/j.phrs.2023.106720] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Rapid upregulation of matrix metalloproteinase 9 (MMP-9) leads to blood-brain barrier (BBB) breakdown following stroke, but no MMP-9 inhibitors have been approved in clinic largely due to their low specificities and side effects. Here, we explored the therapeutic potential of a human IgG monoclonal antibody (mAb), L13, which was recently developed with exclusive neutralizing specificity to MMP-9, nanomolar potency, and biological function, using mouse stroke models and stroke patient samples. We found that L13 treatment at the onset of reperfusion following cerebral ischemia or after intracranial hemorrhage (ICH) significantly reduced brain tissue injury and improved the neurological outcomes of mice. Compared to control IgG, L13 substantially attenuated BBB breakdown in both types of stroke model by inhibiting MMP-9 activity-mediated degradations of basement membrane and endothelial tight junction proteins. Importantly, these BBB-protective and neuroprotective effects of L13 in wild-type mice were comparable to Mmp9 genetic deletion and fully abolished in Mmp9 knockout mice, highlighting the in vivo target specificity of L13. Meanwhile, ex vivo co-incubation with L13 significantly neutralized the enzymatic activities of human MMP-9 in the sera of ischemic and hemorrhagic stroke patients, or in the peri-hematoma brain tissues from hemorrhagic stroke patients. Overall, we demonstrated that MMP-9 exclusive neutralizing mAbs constitute a potential feasible therapeutic approach for both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Yabin Ji
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China; Department of Neurosurgery, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Xixi Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Neurology, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Dengpan Song
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Ruby L C Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Hongjie Han
- Department of Neurosurgery, Pingdingshan Second People's Hospital, Pingdingshan 467000, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
21
|
Gamiotea-Turro D, Cronin CC, Liang BT, Verma R. Transcriptomic analysis reveals novel age-independent immunomodulatory proteins as a mode of cerebroprotection in P2X4R KO mice after ischemic stroke. RESEARCH SQUARE 2023:rs.3.rs-2747807. [PMID: 37034723 PMCID: PMC10081441 DOI: 10.21203/rs.3.rs-2747807/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Identification of new potential drug target proteins and their plausible mechanisms for stroke treatment is critically needed. We previously showed that genetic deletion and short-term pharmacological inhibition of P2X4R, a purinergic receptor for adenosine triphosphate ATP, provides acute cerebroprotection. However, potential mechanisms remain unknown. Therefore, we employed RNA-seq technology to identify the gene expression profiles, pathway analysis, and qPCR validation of differentially expressed genes (DEGs). This analysis identified roles of DEGs in certain biological processes responsible for P2X4R-dependent cerebroprotection after stroke. We subjected both young and aged male and female global P2X4 KO and littermate WT mice to ischemic stroke. After 3 days, mice were sacrificed, total RNA was isolated using Trizol, and subjected to RNA-seq and Nanostring-mediated qPCR. DESeq2, Gene Ontology (GO), and Ingenuity Pathway Analysis (IPA) were used to identify mRNA transcript expression profiles and biological pathways. We found 2246 DEGs in P2X4R KO vs WT tissue after stroke. Out of these DEGs, 1920 gene were downregulated, and 325 genes were upregulated in KO. GO/IPA analysis of the top 300 DEGs suggests an enrichment of inflammation and extracellular matrix component genes. qPCR validation of the top 30 DEGs revealed downregulation of two common age-independent genes in P2X4R KO mice: Interleukin-6 ( IL-6) , an inflammatory cytokine, and Cytotoxic T Lymphocyte-Associated Protein 2 alpha ( Ctla2a ), an immunosuppressive factor. These data suggest that P2X4R-mediated cerebroprotection after stroke is initiated by attenuation of immune modulatory pathways in both young and aged mice of both sexes.
Collapse
|
22
|
Iban-Arias R, Trageser KJ, Yang EJ, Griggs E, Radu A, Naughton S, Al Rahim M, Tatsunori O, Raval U, Palmieri J, Huang Z, Chen LC, Pasinetti GM. Exposure to World Trade Center Dust Exacerbates Cognitive Impairment and Evokes a Central and Peripheral Pro-Inflammatory Transcriptional Profile in an Animal Model of Alzheimer's Disease. J Alzheimers Dis 2023; 91:779-794. [PMID: 36502334 PMCID: PMC9912736 DOI: 10.3233/jad-221046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The terrorist attacks on September 11, 2001, on the World Trade Center (WTC) led to intense fires and a massive dense cloud of toxic gases and suspended pulverized debris. In the subsequent years, following the attack and cleanup efforts, a cluster of chronic health conditions emerged among First Responders (FR) who were at Ground Zero for prolonged periods and were repeatedly exposed to high levels of WTC particulate matter (WTCPM). Among those are neurological complications which may increase the risk for the development of Alzheimer's disease (AD) later in life. OBJECTIVE We hypothesize that WTCPM dust exposure affects the immune cross-talking between the periphery and central nervous systems that may induce brain permeability ultimately promoting AD-type phenotype. METHODS 5XFAD and wild-type mice were intranasally administered with WTCPM dust collected at Ground Zero within 72 h after the attacks. Y-maze assay and novel object recognition behavioral tests were performed for working memory deficits and learning and recognition memory, respectively. Transcriptomic analysis in the blood and hippocampus was performed and confirmed by RT qPCR. RESULTS Mice exposed to WTCPM dust exhibited a significant impairment in spatial and recognition short and long-term memory. Furthermore, the transcriptomic analysis in the hippocampal formation and blood revealed significant changes in genes related to immune-inflammatory responses, and blood-brain barrier disruption. CONCLUSION These studies suggest a putative peripheral-brain immune inflammatory cross-talking that may potentiate cognitive decline, identifying for the first time key steps which may be therapeutically targetable in future studies in WTC FR.
Collapse
Affiliation(s)
- Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle J. Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aurelian Radu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean Naughton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oguchi Tatsunori
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Palmieri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zerlina Huang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, NYU Langone School of Medicine, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, USA,Correspondence to: Giulio Maria Pasinetti, MD, PhD, Department of Neurology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1137, New York, NY 10029, USA. Tel.: +1 212 241 7938; Fax: +1 212 876 9042; E-mail:
| |
Collapse
|
23
|
Zhang JJ, Sánchez Vidaña DI, Chan JNM, Hui ESK, Lau KK, Wang X, Lau BWM, Fong KNK. Biomarkers for prognostic functional recovery poststroke: A narrative review. Front Cell Dev Biol 2023; 10:1062807. [PMID: 36699006 PMCID: PMC9868572 DOI: 10.3389/fcell.2022.1062807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background and objective: Prediction of poststroke recovery can be expressed by prognostic biomarkers that are related to the pathophysiology of stroke at the cellular and molecular level as well as to the brain structural and functional reserve after stroke at the systems neuroscience level. This study aimed to review potential biomarkers that can predict poststroke functional recovery. Methods: A narrative review was conducted to qualitatively summarize the current evidence on biomarkers used to predict poststroke functional recovery. Results: Neurophysiological measurements and neuroimaging of the brain and a wide diversity of molecules had been used as prognostic biomarkers to predict stroke recovery. Neurophysiological studies using resting-state electroencephalography (EEG) revealed an interhemispheric asymmetry, driven by an increase in low-frequency oscillation and a decrease in high-frequency oscillation in the ipsilesional hemisphere relative to the contralesional side, which was indicative of individual recovery potential. The magnitude of somatosensory evoked potentials and event-related desynchronization elicited by movement in task-related EEG was positively associated with the quantity of recovery. Besides, transcranial magnetic stimulation (TMS) studies revealed the potential values of using motor-evoked potentials (MEP) and TMS-evoked EEG potentials from the ipsilesional motor cortex as prognostic biomarkers. Brain structures measured using magnetic resonance imaging (MRI) have been implicated in stroke outcome prediction. Specifically, the damage to the corticospinal tract (CST) and anatomical motor connections disrupted by stroke lesion predicted motor recovery. In addition, a wide variety of molecular, genetic, and epigenetic biomarkers, including hemostasis, inflammation, tissue remodeling, apoptosis, oxidative stress, infection, metabolism, brain-derived, neuroendocrine, and cardiac biomarkers, etc., were associated with poor functional outcomes after stroke. However, challenges such as mixed evidence and analytical concerns such as specificity and sensitivity have to be addressed before including molecular biomarkers in routine clinical practice. Conclusion: Potential biomarkers with prognostic values for the prediction of functional recovery after stroke have been identified; however, a multimodal approach of biomarkers for prognostic prediction has rarely been studied in the literature. Future studies may incorporate a combination of multiple biomarkers from big data and develop algorithms using data mining methods to predict the recovery potential of patients after stroke in a more precise way.
Collapse
Affiliation(s)
- Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | | | - Jackie Ngai-Man Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Edward S. K. Hui
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kui Kai Lau
- Division of Neurology, Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Benson W. M. Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
24
|
Vujić T, Schvartz D, Furlani IL, Meister I, González-Ruiz V, Rudaz S, Sanchez JC. Oxidative Stress and Extracellular Matrix Remodeling Are Signature Pathways of Extracellular Vesicles Released upon Morphine Exposure on Human Brain Microvascular Endothelial Cells. Cells 2022; 11:cells11233926. [PMID: 36497184 PMCID: PMC9741159 DOI: 10.3390/cells11233926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 12/09/2022] Open
Abstract
Morphine, a commonly used antinociceptive drug in hospitals, is known to cross the blood-brain barrier (BBB) by first passing through brain endothelial cells. Despite its pain-relieving effect, morphine also has detrimental effects, such as the potential induction of redox imbalance in the brain. However, there is still insufficient evidence of these effects on the brain, particularly on the brain endothelial cells and the extracellular vesicles that they naturally release. Indeed, extracellular vesicles (EVs) are nanosized bioparticles produced by almost all cell types and are currently thought to reflect the physiological state of their parent cells. These vesicles have emerged as a promising source of biomarkers by indicating the functional or dysfunctional state of their parent cells and, thus, allowing a better understanding of the biological processes involved in an adverse state. However, there is very little information on the morphine effect on human brain microvascular endothelial cells (HBMECs), and even less on their released EVs. Therefore, the current study aimed at unraveling the detrimental mechanisms of morphine exposure (at 1, 10, 25, 50 and 100 µM) for 24 h on human brain microvascular endothelial cells as well as on their associated EVs. Isolation of EVs was carried out using an affinity-based method. Several orthogonal techniques (NTA, western blotting and proteomics analysis) were used to validate the EVs enrichment, quality and concentration. Data-independent mass spectrometry (DIA-MS)-based proteomics was applied in order to analyze the proteome modulations induced by morphine on HBMECs and EVs. We were able to quantify almost 5500 proteins in HBMECs and 1500 proteins in EVs, of which 256 and 148, respectively, were found to be differentially expressed in at least one condition. Pathway enrichment analysis revealed that the "cell adhesion and extracellular matrix remodeling" process and the "HIF1 pathway", a pathway related to oxidative stress responses, were significantly modulated upon morphine exposure in HBMECs and EVs. Altogether, the combination of proteomics and bioinformatics findings highlighted shared pathways between HBMECs exposed to morphine and their released EVs. These results put forward molecular signatures of morphine-induced toxicity in HBMECs that were also carried by EVs. Therefore, EVs could potentially be regarded as a useful tool to investigate brain endothelial cells dysfunction, and to a different extent, the BBB dysfunction in patient circulation using these "signature pathways".
Collapse
Affiliation(s)
- Tatjana Vujić
- Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | | | - Izadora Liranço Furlani
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-904, Brazil
| | - Isabel Meister
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland
| | - Víctor González-Ruiz
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland
| | - Jean-Charles Sanchez
- Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-379-54-86
| |
Collapse
|
25
|
Guerra M, Carvalho NB, Santos S, Nascimento MT, Sá R, Carvalho AM, Carvalho EM, Carvalho LP. TNF-induced metalloproteinase-9 production is associated with neurological manifestations in HTLV-1-infected individuals. Front Immunol 2022; 13:954103. [PMID: 36311773 PMCID: PMC9608347 DOI: 10.3389/fimmu.2022.954103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
HTLV-1-infected individuals may develop a neurologic inflammatory condition known as HTLV-1-associated myelopathy (HAM/TSP), in which the high production of TNF is observed. These patients exhibit higher proviral loads, enhanced production of proinflammatory cytokines and lymphocyte proliferation in comparison to asymptomatic HTLV-1 carriers and those presenting overactive bladder (OAB-HTLV-infected). Metalloproteinases (MMPs) are known to degrade the components of the blood-brain barrier, favoring the migration of infected cells into the central nervous system. Moreover, the unbalanced production of MMPs and their inhibitors (TIMPs) has also been associated with tissue damage. The present work studied the production of MMP-9 and TIMPs in HTLV-1-infected individuals with and without neurological manifestations. HAM/TSP patients presented higher concentrations of MMP-9 in peripheral blood mononuclear cell (PBMC) culture supernatants, as well as a higher MMP-9/TIMP-3 ratio when compared to the other groups studied. MMP-9 levels positively correlated with proviral load and TNF in OAB-HTLV-infected individuals, and the in vitro neutralization of TNF significantly decreased MMP-9 levels in PBMC culture supernatants. Our findings indicate an association between MMP-9 production and the proinflammatory state associated with HTLV-1 infection, as well as HAM/TSP.
Collapse
Affiliation(s)
- Mariele Guerra
- Immunology Service, University Hospital Complex Professor Edgard Santos (C-HUPES), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Natália B. Carvalho
- Immunology Service, University Hospital Complex Professor Edgard Santos (C-HUPES), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Silvane Santos
- Biology Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Mauricio T. Nascimento
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Renata Sá
- Immunology Service, University Hospital Complex Professor Edgard Santos (C-HUPES), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Augusto M. Carvalho
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Edgar M. Carvalho
- Immunology Service, University Hospital Complex Professor Edgard Santos (C-HUPES), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- National Institute of Science and Technology - Tropical Diseases Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia (CNPq/MCT), Salvador, Bahia, Brazil
| | - Lucas P. Carvalho
- Immunology Service, University Hospital Complex Professor Edgard Santos (C-HUPES), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- National Institute of Science and Technology - Tropical Diseases Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia (CNPq/MCT), Salvador, Bahia, Brazil
- *Correspondence: Lucas P. Carvalho,
| |
Collapse
|
26
|
Ozaki S, Mikami K, Kunieda T, Tanaka J. Chloride Intracellular Channel Proteins (CLICs) and Malignant Tumor Progression: A Focus on the Preventive Role of CLIC2 in Invasion and Metastasis. Cancers (Basel) 2022; 14:cancers14194890. [PMID: 36230813 PMCID: PMC9562003 DOI: 10.3390/cancers14194890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Although chloride intracellular channel proteins (CLICs) have been identified as ion channel proteins, their true functions are still elusive. Recent in silico analyses show that CLICs may be prognostic markers in cancer. This review focuses on CLIC2 that plays preventive roles in malignant cell invasion and metastasis. CLIC2 is secreted extracellularly and binds to matrix metalloproteinase 14 (MMP14), while inhibiting its activity. As a result, CLIC2 may contribute to the development/maintenance of junctions between blood vessel endothelial cells and the inhibition of invasion and metastasis of tumor cells. CLIC2 may be a novel therapeutic target for malignancies. Abstract CLICs are the dimorphic protein present in both soluble and membrane fractions. As an integral membrane protein, CLICs potentially possess ion channel activity. However, it is not fully clarified what kinds of roles CLICs play in physiological and pathological conditions. In vertebrates, CLICs are classified into six classes: CLIC1, 2, 3, 4, 5, and 6. Recently, in silico analyses have revealed that the expression level of CLICs may have prognostic significance in cancer. In this review, we focus on CLIC2, which has received less attention than other CLICs, and discuss its role in the metastasis and invasion of malignant tumor cells. CLIC2 is expressed at higher levels in benign tumors than in malignant ones, most likely preventing tumor cell invasion into surrounding tissues. CLIC2 is also expressed in the vascular endothelial cells of normal tissues and maintains their intercellular adhesive junctions, presumably suppressing the hematogenous metastasis of malignant tumor cells. Surprisingly, CLIC2 is localized in secretory granules and secreted into the extracellular milieu. Secreted CLIC2 binds to MMP14 and inhibits its activity, leading to suppressed MMP2 activity. CLIC4, on the other hand, promotes MMP14 activity. These findings challenge the assumption that CLICs are ion channels, implying that they could be potential new targets for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Saya Ozaki
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
- Department of Neurosurgery, National Cerebral and Cardiovascular Center Hospital, Suita 564-8565, Japan
- Correspondence: (S.O.); (J.T.)
| | - Kanta Mikami
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon 791-0295, Japan
- Correspondence: (S.O.); (J.T.)
| |
Collapse
|
27
|
Crosstalk between neurological, cardiovascular, and lifestyle disorders: insulin and lipoproteins in the lead role. Pharmacol Rep 2022; 74:790-817. [PMID: 36149598 DOI: 10.1007/s43440-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Insulin resistance and impaired lipoprotein metabolism contribute to a plethora of metabolic and cardiovascular disorders. These alterations have been extensively linked with poor lifestyle choices, such as consumption of a high-fat diet, smoking, stress, and a redundant lifestyle. Moreover, these are also known to increase the co-morbidity of diseases like Type 2 diabetes mellitus and atherosclerosis. Under normal physiological conditions, insulin and lipoproteins exert a neuroprotective role in the central nervous system. However, the tripping of balance between the periphery and center may alter the normal functioning of the brain and lead to neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, depression, and multiple sclerosis. These neurological disorders are further characterized by certain behavioral and molecular changes that show consistent overlap with alteration in insulin and lipoprotein signaling pathways. Therefore, targeting these two mechanisms not only reveals a way to manage the co-morbidities associated with the circle of the metabolic, central nervous system, and cardiovascular disorders but also exclusively work as a disease-modifying therapy for neurological disorders. In this review, we summarize the role of insulin resistance and lipoproteins in the progression of various neurological conditions and discuss the therapeutic options currently in the clinical pipeline targeting these two mechanisms; in addition, challenges faced in designing these therapeutic approaches have also been touched upon briefly.
Collapse
|
28
|
Santos-Lima B, Pietronigro EC, Terrabuio E, Zenaro E, Constantin G. The role of neutrophils in the dysfunction of central nervous system barriers. Front Aging Neurosci 2022; 14:965169. [PMID: 36034148 PMCID: PMC9404376 DOI: 10.3389/fnagi.2022.965169] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Leukocyte migration into the central nervous system (CNS) represents a central process in the development of neurological diseases with a detrimental inflammatory component. Infiltrating neutrophils have been detected inside the brain of patients with several neuroinflammatory disorders, including stroke, multiple sclerosis and Alzheimer’s disease. During inflammatory responses, these highly reactive innate immune cells can rapidly extravasate and release a plethora of pro-inflammatory and cytotoxic factors, potentially inducing significant collateral tissue damage. Indeed, several studies have shown that neutrophils promote blood-brain barrier damage and increased vascular permeability during neuroinflammatory diseases. Recent studies have shown that neutrophils migrate into the meninges and choroid plexus, suggesting these cells can also damage the blood-cerebrospinal fluid barrier (BCSFB). In this review, we discuss the emerging role of neutrophils in the dysfunction of brain barriers across different neuroinflammatory conditions and describe the molecular basis and cellular interplays involved in neutrophil-mediated injury of the CNS borders.
Collapse
|
29
|
Neuro-Axonal Damage and Alteration of Blood–Brain Barrier Integrity in COVID-19 Patients. Cells 2022; 11:cells11162480. [PMID: 36010557 PMCID: PMC9406414 DOI: 10.3390/cells11162480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 01/08/2023] Open
Abstract
Neurofilament light chain (NfL) is a specific biomarker of neuro-axonal damage. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in blood–brain barrier (BBB) integrity. We explored neuro-axonal damage, alteration of BBB integrity and SARS-CoV-2 RNA presence in COVID-19 patients with severe neurological symptoms (neuro-COVID) as well as neuro-axonal damage in COVID-19 patients without severe neurological symptoms according to disease severity and after recovery, comparing the obtained findings with healthy donors (HD). Overall, COVID-19 patients (n = 55) showed higher plasma NfL levels compared to HD (n = 31) (p < 0.0001), especially those who developed ARDS (n = 28) (p = 0.0005). After recovery, plasma NfL levels were still higher in ARDS patients compared to HD (p = 0.0037). In neuro-COVID patients (n = 12), higher CSF and plasma NfL, and CSF MMP-2 levels in ARDS than non-ARDS group were observed (p = 0.0357, p = 0.0346 and p = 0.0303, respectively). SARS-CoV-2 RNA was detected in four CSF and two plasma samples. SARS-CoV-2 RNA detection was not associated to increased CSF NfL and MMP levels. During COVID-19, ARDS could be associated to CNS damage and alteration of BBB integrity in the absence of SARS-CoV-2 RNA detection in CSF or blood. CNS damage was still detectable after discharge in blood of COVID-19 patients who developed ARDS during hospitalization.
Collapse
|
30
|
Zhang L, Li C, Wang S, Avtanski D, Hadzi-Petrushev N, Mitrokhin V, Mladenov M, Wang F. Tetrahydrocurcumin-Related Vascular Protection: An Overview of the Findings from Animal Disease Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165100. [PMID: 36014335 PMCID: PMC9412611 DOI: 10.3390/molecules27165100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/05/2023]
Abstract
Tetrahydrocurcumin (THC), one of the major metabolites of CUR, possesses several CUR-like pharmacological effects; however, its mechanisms of action are largely unknown. This manuscript aims to summarize the literature on the preventive role of THC on vascular dysfunction and the development of hypertension by exploring the effects of THC on hemodynamic status, aortic elasticity, and oxidative stress in vasculature in different animal models. We review the protective effects of THC against hypertension induced by heavy metals (cadmium and iron), as well as its impact on arterial stiffness and vascular remodeling. The effects of THC on angiogenesis in CaSki xenografted mice and the expression of vascular endothelial growth factor (VEGF) are well documented. On the other hand, as an anti-inflammatory and antioxidant compound, THC is involved in enhancing homocysteine-induced mitochondrial remodeling in brain endothelial cells. The experimental evidence regarding the mechanism of mitochondrial dysfunction during cerebral ischemic/reperfusion injury and the therapeutic potential of THC to alleviate mitochondrial cerebral dysmorphic dysfunction patterns is also scrutinized and explored. Overall, the studies on different animal models of disease suggest that THC can be used as a dietary supplement to protect against cardiovascular changes caused by various factors (such as heavy metal overload, oxidative stress, and carcinogenesis). Additionally, the reviewed literature data seem to confirm THC's potential to improve mitochondrial dysfunction in cerebral vasculature during ischemic stroke through epigenetic mechanisms. We suggest that further preclinical studies should be implemented to demonstrate THC's vascular-protective, antiangiogenic, and anti-tumorigenic effects in humans. Applying the methods used in the presently reviewed studies would be useful and will help define the doses and methods of THC administration in various disease settings.
Collapse
Affiliation(s)
- Li Zhang
- Cancer Center, Department of Medical Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Changhu Li
- Cancer Center, Division of Radiation Physics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sicheng Wang
- Medical Department, 6th City Clinical Hospital, 220037 Minsk, Belarus
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Feng Wang
- Cancer Center, Department of Medical Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
31
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
32
|
Strickland BA, Barisano G, Abedi A, Shiroishi MS, Cen S, Emanuel B, Bulic S, Kim-Tenser M, Nguyen P, Giannotta SL, Mack W, Russin J. Minocycline decreases blood-brain barrier permeability following aneurysmal subarachnoid hemorrhage: a randomized, double-blind, controlled trial. J Neurosurg 2022; 136:1251-1259. [PMID: 35349976 DOI: 10.3171/2021.6.jns211270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH)-induced vasospasm is linked to increased inflammatory cell trafficking across a permeable blood-brain barrier (BBB). Elevations in serum levels of matrix metalloprotease 9 (MMP9), a BBB structural protein, have been implicated in the pathogenesis of vasospasm onset. Minocycline is a potent inhibitor of MMP9. The authors sought to detect an effect of minocycline on BBB permeability following aSAH. METHODS Patients presenting within 24 hours of symptom onset with imaging confirmed aSAH (Fisher grade 3 or 4) were randomized to high-dose (10 mg/kg) minocycline or placebo. The primary outcome of interest was BBB permeability as quantitated by contrast signal intensity ratios in vascular regions of interest on postbleed day (PBD) 5 magnetic resonance permeability imaging. Secondary outcomes included serum MMP9 levels and radiographic and clinical evidence of vasospasm. RESULTS A total of 11 patients were randomized to minocycline (n = 6) or control (n = 5) groups. No adverse events or complications attributable to minocycline were reported. High-dose minocycline administration was associated with significantly lower permeability indices on imaging analysis (p < 0.01). There was no significant difference with respect to serum MMP9 levels between groups, although concentrations trended upward in both cohorts. Radiographic vasospasm was noted in 6 patients (minocycline = 3, control = 3), with only 1 patient developing symptoms of clinical vasospasm in the minocycline cohort. There was no difference between cohorts with respect to Lindegaard ratios, transcranial Doppler values, or onset of vasospasm. CONCLUSIONS Minocycline at high doses is well tolerated in the ruptured cerebral aneurysm population. Minocycline curtails breakdown of the BBB following aSAH as evidenced by lower permeability indices, though minocycline did not significantly alter serum MMP9 levels. Larger randomized clinical trials are needed to assess minocycline as a neuroprotectant against aSAH-induced vasospasm. Clinical trial registration no.: NCT04876638 (clinicaltrials.gov).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jonathan Russin
- 1Departments of Neurosurgery
- 5Neurorestoration Center, University of Southern California, Los Angeles, California
| |
Collapse
|
33
|
Emerging Roles for the Orphan GPCRs, GPR37 and GPR37 L1, in Stroke Pathophysiology. Int J Mol Sci 2022; 23:ijms23074028. [PMID: 35409385 PMCID: PMC9000135 DOI: 10.3390/ijms23074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shed light on the diverse and complex roles of G-protein coupled receptors (GPCRs) in the pathophysiology of stroke. These receptors constitute a large family of seven transmembrane-spanning proteins that play an intricate role in cellular communication mechanisms which drive both tissue injury and repair following ischemic stroke. Orphan GPCRs represent a unique sub-class of GPCRs for which no natural ligands have been found. Interestingly, the majority of these receptors are expressed within the central nervous system where they represent a largely untapped resource for the treatment of neurological diseases. The focus of this review will thus be on the emerging roles of two brain-expressed orphan GPCRs, GPR37 and GPR37 L1, in regulating various cellular and molecular processes underlying ischemic stroke.
Collapse
|
34
|
Zhang M, Meng X, Pan Y, Wang Y, Zhao X, Liu L, Li J, Yan H, Liu X, Zhang H, Pang L, Wang Y. Predictive values of Baseline MMP9 Levels in Peripheral Blood on 3-Month outcomes of high-risk patients with minor stroke or TIA. Eur J Neurol 2022; 29:2976-2986. [PMID: 35357766 DOI: 10.1111/ene.15342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To explore the relationship between baseline levels of matrix metalloproteinase 9 (MMP9) in peripheral blood and the outcomes in patients with acute minor stroke and transient ischemic attack (TIA). METHODS We assessed data from patients with acute minor ischemic stroke or TIA who were included in the CHANCE trial. Baseline level of MMP9 in peripheral blood is classified into five quintiles. We assessed the relationship between the baseline MMP9 and outcomes of stroke recurrence, composite vascular events, and poor functional outcomes within 90 days after stroke onset. RESULTS Of the 3014 patients included, 295 (9.79%) had recurrent stroke, 289 (9.59%) had recurrent ischemic stroke, 297 (9.85%) had combined vascular events, and 199 (6.64%) had poor functional outcomes within 90 days. Using MMP9 concentrations near HR = 1 (Q3) in restricted cubic splines as the reference. The result showed that, compared to patients in Q3 group, patients in the highest quintile (Q5 group) had an increased risk of poor functional outcomes at 90 days after adjusted the risk factors and confounders (P = 0.030), may be associated with an increased risk of combined vascular events (P = 0.052). Using Cox regression models or logistic regression models with restricted cubic spline, we also observed that higher MMP9 ratios were associated with an increased risk of stroke recurrence, combined events, and poor functional outcomes at a range of concentrations. CONCLUSIONS For patients with acute minor stroke or TIA, higher baseline MMP9 level was associated with an increased risk of poor functional outcomes, might be related to stroke recurrence and combined vascular events.
Collapse
Affiliation(s)
- Min Zhang
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University) /Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China, 832002
| | - Xia Meng
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Yilong Wang
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Xingquan Zhao
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Liping Liu
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Jiejie Li
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Hongyi Yan
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Hui Zhang
- Shihezi University School of Medicine, Shihezi, Xinjiang, China, 832000
| | - Lijuan Pang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University) /Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China, 832002.,Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China, 524033
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| |
Collapse
|
35
|
Li H, Sheng Z, Khan S, Zhang R, Liu Y, Zhang Y, Yong VW, Xue M. Matrix Metalloproteinase-9 as an Important Contributor to the Pathophysiology of Depression. Front Neurol 2022; 13:861843. [PMID: 35370878 PMCID: PMC8971905 DOI: 10.3389/fneur.2022.861843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are physiologically expressed in the central nervous system in neurons, astrocytes and microglia, and their aberrant elevation contributes to a number of diseases. Amongst the MMP members, MMP−9 has generated considerable attention because of its possible involvement in inflammatory responses, blood-brain barrier permeability, the regulation of perineuronal nets, demyelination, and synaptic long-term potentiation. Emerging evidence indicate an association between MMP−9 and the syndrome of depression. This review provides an updated and comprehensive summary of the probable roles of MMP−9 in depression with an emphasis on the mechanisms and potential of MMP−9 as a biomarker of depression.
Collapse
Affiliation(s)
- Hongmin Li
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Zhaofu Sheng
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruiyi Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yan Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: V. Wee Yong
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
- Mengzhou Xue
| |
Collapse
|
36
|
Post-stroke Impairment of the Blood–Brain Barrier and Perifocal Vasogenic Edema Is Alleviated by Endovascular Mesenchymal Stem Cell Administration: Modulation of the PKCδ/MMP9/AQP4-Mediated Pathway. Mol Neurobiol 2022; 59:2758-2775. [DOI: 10.1007/s12035-022-02761-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
|
37
|
Hamblin MH, Murad R, Yin J, Vallim G, Lee JP. Modulation of gene expression on a transcriptome-wide level following human neural stem cell transplantation in aged mouse stroke brains. Exp Neurol 2022; 347:113913. [PMID: 34752785 PMCID: PMC8647207 DOI: 10.1016/j.expneurol.2021.113913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Neural stem cell (NSC) transplantation offers great potential for treating ischemic stroke. Clinically, ischemia followed by reperfusion results in robust cerebrovascular injury that upregulates proinflammatory factors, disrupts neurovascular units, and causes brain cell death. NSCs possess multiple actions that can be exploited for reducing the severity of neurovascular injury. Our previous studies in young adult mice showed that human NSC transplantation during the subacute stage diminishes stroke pathophysiology and improves behavioral outcome. METHODS We employed a well-established and commonly used stroke model, middle cerebral artery occlusion with subsequent reperfusion (MCAO/R). Here, we assessed the outcomes of hNSC transplantation 48 h post-MCAO (24 h post-transplant) in aged mouse brains in response to stroke because aging is a crucial risk factor for cerebral ischemia. Next, we tested whether administration of the integrin α5β1 inhibitor, ATN-161, prior to hNSC transplantation further affects stoke outcome as compared with NSCs alone. RNA sequencing (RNA-seq) was used to assess the impact of hNSC transplantation on differentially expressed genes (DEGs) on a transcriptome-wide level. RESULTS Here, we report that hNSC-engrafted brains with or without ATN-161 showed significantly reduced infarct size, and attenuated the induction of proinflammatory factors and matrix metalloproteases. RNA-seq analysis revealed DEGs and molecular pathways by which hNSCs induce a beneficial post-stroke outcome in aged stroke brains. 811 genes were differentially expressed (651 downregulated and 160 upregulated) in hNSC-engrafted stroke brains. Functional pathway analysis identified enriched and depleted pathways in hNSC-engrafted aged mouse stroke brains. Depletion of pathways following hNSC-engraftment included signaling involving neuroinflammation, acute phase response, leukocyte extravasation, and phagosome formation. On the other hand, enrichment of pathways in hNSC-engrafted brains was associated with PPAR signaling, LXR/RXR activation, and inhibition of matrix metalloproteases. Hierarchical cluster analysis of DEGs in hNSC-engrafted brains indicate decreased expression of genes encoding TNF receptors, proinflammatory factors, apoptosis factors, adhesion and leukocyte extravasation, and Toll-like receptors. CONCLUSIONS Our study is the first to show global transcripts differentially expressed following hNSC transplantation in the subacute phase of stroke in aged mice. The outcome of our transcriptome study would be useful to develop new therapies ameliorating early-stage stroke injury.
Collapse
Affiliation(s)
- Milton H Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA 70112, USA.
| | - Rabi Murad
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Yin
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gustavo Vallim
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
38
|
Przykaza Ł. Understanding the Connection Between Common Stroke Comorbidities, Their Associated Inflammation, and the Course of the Cerebral Ischemia/Reperfusion Cascade. Front Immunol 2021; 12:782569. [PMID: 34868060 PMCID: PMC8634336 DOI: 10.3389/fimmu.2021.782569] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Despite the enormous progress in the understanding of the course of the ischemic stroke over the last few decades, a therapy that effectively protects neurovascular units (NVUs) and significantly improves neurological functions in stroke patients has still not been achieved. The reasons for this state are unclear, but it is obvious that the cerebral ischemia and reperfusion cascade is a highly complex phenomenon, which includes the intense neuroinflammatory processes, and comorbid stroke risk factors strongly worsen stroke outcomes and likely make a substantial contribution to the pathophysiology of the ischemia/reperfusion, enhancing difficulties in searching of successful treatment. Common concomitant stroke risk factors (arterial hypertension, diabetes mellitus and hyperlipidemia) strongly drive inflammatory processes during cerebral ischemia/reperfusion; because these factors are often present for a long time before a stroke, causing low-grade background inflammation in the brain, and already initially disrupting the proper functions of NVUs. Broad consideration of this situation in basic research may prove to be crucial for the success of future clinical trials of neuroprotection, vasculoprotection and immunomodulation in stroke. This review focuses on the mechanism by which coexisting common risk factors for stroke intertwine in cerebral ischemic/reperfusion cascade and the dysfunction and disintegration of NVUs through inflammatory processes, principally activation of pattern recognition receptors, alterations in the expression of adhesion molecules and the subsequent pathophysiological consequences.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
39
|
Churchill NW, Di Battista AP, Rhind SG, Richards D, Schweizer TA, Hutchison MG. Cerebral blood flow is associated with matrix metalloproteinase levels during the early symptomatic phase of concussion. PLoS One 2021; 16:e0253134. [PMID: 34727098 PMCID: PMC8562781 DOI: 10.1371/journal.pone.0253134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
Concussion is associated with disrupted cerebral blood flow (CBF), although there appears to be substantial inter-individual variability in CBF response. At present, the mechanisms of variable CBF response remain incompletely understood, but one potential contributor is matrix metalloproteinase (MMP) expression. In more severe forms of acquired brain injury, MMP up-regulation contributes to CBF impairments via increased blood-brain barrier permeability. A similar relationship is hypothesized for concussion, where recently concussed individuals with higher MMP levels have lower CBF. To test this hypothesis, 35 concussed athletes were assessed longitudinally at early symptomatic injury (median: 5 days post-injury) and at medical clearance (median: 24 days post-injury), along with 71 athletic controls. For all athletes, plasma MMPs were measured and arterial spin labelling was used to measure CBF. Consistent with our hypothesis, higher concentrations of MMP-2 and MMP-3 were correlated with lower global CBF. The correlations between MMPs and global CBF were also significantly diminished for concussed athletes at medical clearance and for athletic controls. These results indicate an inverse relationship between plasma MMP levels and CBF that is specific to the symptomatic phase of concussion. Analyses of regional CBF further showed that correlations with MMP levels exhibited some spatial specificity, with greatest effects in occipital, parietal and temporal lobes. These findings provide new insights into the mechanisms of post-concussion cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Nathan W. Churchill
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael’s Hospital, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael’s Hospital, Toronto, ON, Canada
| | - Alex P. Di Battista
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G. Rhind
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Doug Richards
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael’s Hospital, Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Tom A. Schweizer
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael’s Hospital, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael’s Hospital, Toronto, ON, Canada
- Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada
- The Institute of Biomaterials & Biomedical Engineering (IBBME) at the University of Toronto, Toronto, ON, Canada
| | - Michael G. Hutchison
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael’s Hospital, Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Xu T, Li Y, Zhu N, Su Y, Li J, Ke K. circSKA3 acts as a sponge of miR-6796-5p to be associated with outcomes of ischemic stroke by regulating matrix metalloproteinase 9 expression. Eur J Neurol 2021; 29:486-495. [PMID: 34725884 DOI: 10.1111/ene.15164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to screen the circular RNAs (circRNAs) influencing matrix metalloproteinase 9 (MMP9) through the competing endogenous RNA (ceRNA) network and evaluate the prognostic value of these circRNAs for acute ischemic stroke. METHODS A total of 220 ischemic stroke patients and 62 healthy subjects were included in this study. RNA was isolated from blood collected in PAXgene tubes. Illumina sequencing, quantitative real-time polymerase chain reaction (qRT-PCR) validation, and luciferase reporter assay were explored to construct and verify the existence of a circRNA-microRNA (miRNA)-matrix metalloproteinase-9 (MMP9) network. The 215 ischemic stroke patients were recruited in a prognostic cohort. They were prospectively followed up for 3 months after stroke onset, and a poor functional outcome was defined as a major disability or death. RESULTS After Illumina sequencing, six circRNAs were predicted to bind miRNAs and then regulate MMP9 messenger RNA (mRNA). qRT-PCR showed that only circSKA3 was significantly increased in ischemic stroke patients compared to healthy controls and positively associated with MMP9 mRNA expression. Luciferase reporter assay further verified a direct interaction between circSKA3, MMP9, and hsa-miR-6796-5p. Patients in the top tertile of circSKA3 had a 2.672-fold (p < 0.05) risk of poor functional outcome, compared with those in the bottom tertile (p for trend = 0.016). The outcome was predicted by circSKA3 with area under the receiver operating characteristic curve at 0.614 (p = 0.004). CONCLUSIONS circSKA3 functioned as a ceRNA for hsa-miR-6796-5p to aggravate the progression of ischemic stroke via targeting MMP9. Baseline circSKA3 was positively associated with poor outcomes of ischemic stroke. circSKA3 may be a potential biomarker or therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Tian Xu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuqing Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ning Zhu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanyuan Su
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Junrui Li
- First Clinical Medical College of Xuzhou Medical University, Xuzhou, China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
41
|
Salman M, Ismael S, Li L, Ahmed HA, Puchowicz MA, Ishrat T. Endothelial Thioredoxin-Interacting Protein Depletion Reduces Hemorrhagic Transformation in Hyperglycemic Mice after Embolic Stroke and Thrombolytic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14100983. [PMID: 34681207 PMCID: PMC8537904 DOI: 10.3390/ph14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
We hypothesize that endothelial-specific thioredoxin-interacting protein knock-out (EC-TXNIP KO) mice will be more resistant to the neurovascular damage (hemorrhagic-transformation-HT) associated with hyperglycemia (HG) in embolic stroke. Adult-male EC-TXNIP KO and wild-type (WT) littermate mice were injected with-streptozotocin (40 mg/kg, i.p.) for five consecutive days to induce diabetes. Four-weeks after confirming HG, mice were subjected to embolic middle cerebral artery occlusion (eMCAO) followed by tissue plasminogen activator (tPA)-reperfusion (10 mg/kg at 3 h post-eMCAO). After the neurological assessment, animals were sacrificed at 24 h for neurovascular stroke outcomes. There were no differences in cerebrovascular anatomy between the strains. Infarct size, edema, and HT as indicated by hemoglobin (Hb)-the content was significantly higher in HG-WT mice, with or without tPA-reperfusion, compared to normoglycemic WT mice. Hyperglycemic EC-TXNIP KO mice treated with tPA tended to show lower Hb-content, edema, infarct area, and less hemorrhagic score compared to WT hyperglycemic mice. EC-TXNIP KO mice showed decreased expression of inflammatory mediators, apoptosis-associated proteins, and nitrotyrosine levels. Further, vascular endothelial growth factor-A and matrix-metalloproteinases (MMP-9/MMP-3), which degrade junction proteins and increase blood-brain-barrier permeability, were decreased in EC-TXNIP KO mice. Together, these findings suggest that vascular-TXNIP could be a novel therapeutic target for neurovascular damage after stroke.
Collapse
Affiliation(s)
- Mohd. Salman
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Lexiao Li
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Heba A. Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
| | - Michelle A. Puchowicz
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (M.S.); (S.I.); (L.L.); (H.A.A.)
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +901-448-2178; Fax:-901-448-7193
| |
Collapse
|
42
|
Chen S, Shao L, Ma L. Cerebral Edema Formation After Stroke: Emphasis on Blood-Brain Barrier and the Lymphatic Drainage System of the Brain. Front Cell Neurosci 2021; 15:716825. [PMID: 34483842 PMCID: PMC8415457 DOI: 10.3389/fncel.2021.716825] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Brain edema is a severe stroke complication that is associated with prolonged hospitalization and poor outcomes. Swollen tissues in the brain compromise cerebral perfusion and may also result in transtentorial herniation. As a physical and biochemical barrier between the peripheral circulation and the central nervous system (CNS), the blood–brain barrier (BBB) plays a vital role in maintaining the stable microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the dysfunction of the BBB results in increased paracellular permeability, directly contributing to the extravasation of blood components into the brain and causing cerebral vasogenic edema. Recent studies have led to the discovery of the glymphatic system and meningeal lymphatic vessels, which provide a channel for cerebrospinal fluid (CSF) to enter the brain and drain to nearby lymph nodes and communicate with the peripheral immune system, modulating immune surveillance and brain responses. A deeper understanding of the function of the cerebral lymphatic system calls into question the known mechanisms of cerebral edema after stroke. In this review, we first discuss how BBB disruption after stroke can cause or contribute to cerebral edema from the perspective of molecular and cellular pathophysiology. Finally, we discuss how the cerebral lymphatic system participates in the formation of cerebral edema after stroke and summarize the pathophysiological process of cerebral edema formation after stroke from the two directions of the BBB and cerebral lymphatic system.
Collapse
Affiliation(s)
- Sichao Chen
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linqian Shao
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ma
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Liu B, Li Y, Han Y, Wang S, Yang H, Zhao Y, Li P, Wang Y. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153660. [PMID: 34344565 DOI: 10.1016/j.phymed.2021.153660] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The leakage of blood-brain barrier (BBB) is main pathophysiological change in acute stage of ischemic stroke, which not only deteriorates neurological function, but also increases the risk of hemorrhagic transformation after thrombolysis. PURPOSE/STUDY DESIGN This article investigates the efficacy of Notoginsenoside R1, an active ingredient of Panax notoginseng, on BBB permeability and explores related mechanisms after acute ischemic stroke. METHODS In vivo, male Sprague-Dawley rats (260-280 g) were selected and randomly divided into 6 groups: sham group, model group, low, middle and high doses of Notoginsenoside R1 groups and positive drug Dl-3-n-Butylphthalide group. Except for sham group, rats were performed with permanent middle cerebral artery occlusion model in each group. Twelve hours later, rats were evaluated for Bederson neurological function, and BBB integrity by Evans blue leak imaging; Triphenyltetrazolium chloride staining was used to detect the volume of cerebral infarction. Frozen sections of rats' brain tissue were prepared for detection of MMPs activity in situ zymography. Peripheral tissue of cerebral infarction was collected and tested the expression of MMP2, 9 and tight junction proteins (zo1, claudin5, occludin) by western blot. In vitro, transwell endothelial barrier model was established by bEnd.3 cells. Oxygen glucose deprivation (OGD) was chosen to simulate the hypoxic environment. Suitable OGD stimulation time as well as Notoginsenoside R1 and Dl-3-n-Butylphthalide optimal dose concentrations were determined through transwell leakage and CCK8 assay. Furthermore, endothelial subcellular component proteins were extracted. The change of zo1, claudin5, occludin and caveolin1 was detected by western blot. RESULTS Notoginsenoside R1 treatment significantly reduced BBB leakage and cerebral infarction volume, weakened neurological deficits in post-stroke rats. Moreover, it inhibited the activity of MMPs in infarcted cortex and striatum, down-regulated MMP2, 9 and up-regulated zo1 and claudin5 expressions in penumbra. In vitro, Notoginsenoside R1 treatment decreased OGD-induced endothelial barrier permeability, restored expressions of zo1, claudin5 on cellular membrane and cytoplasm, as well as mediated membrane redistribution of occludin and caveolin1 from actin cytoskeletal fraction. CONCLUSIONS Notoginsenoside R1 treatment attenuates BBB permeability, cerebral infarction volume and neurological impairments in rats with acute cerebral ischemia. The mechanisms might be related to intervening degradation and redistribution of zo1, caludin5 and occludin by caveolin1/ MMP2/9 pathway. More effects and mechanisms of Notoginsenoside R1 on rehabilitation of stroke are worthy to be explored in the future.
Collapse
Affiliation(s)
- Bowen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yiyang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
44
|
Zhang Z, Mei Y, Xiong M, Lu F, Zhao X, Zhu J, He B. Genetic Variation of Inflammatory Genes to Ischemic Stroke Risk in a Chinese Han Population. Pharmgenomics Pers Med 2021; 14:977-986. [PMID: 34413669 PMCID: PMC8370589 DOI: 10.2147/pgpm.s320483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Background Inflammation proteins play an important role in stroke occurrence. IL1A, IL1B, PTGS2, MMP2, and MMP9 were the mediators involved in the immune response, and the association of these genetic variations with ischemic stroke (IS) risk was still unclear. Methods To investigate the susceptibility of genetic variations of IL1A, IL1B, PTGS2, MMP2, and MMP9 to IS risk, we performed a case–control study involving 299 patients and 300 controls in a Chinese population. Thirteen genetic variations of investigated genes of all participants were genotyped using an improved multiplex ligase detection–reaction technique. Results No SNP in all genes showed an association with overall IS. However, in subgroup analysis, PTGS2 rs689466 (dominant model: CT vs TT – ORadjusted= 2.51, 95% CI: 1.22–5.16, p = 0.012; co-dominant model: CT/CC vs TT – ORadjusted= 2.53, 95% CI: 1.26–5.07, p = 0.009; additive model – ORadjusted= 2.26, 95% CI: 1.19–4.28, p = 0.013) and rs5275 (dominant model: GG vs AA – ORadjusted= 0.31, 95% CI: 0.12–0.80, p = 0.016; co-dominant model: GA/GG vs AA – ORadjusted= 0.45, 95% CI: 0.21–0.95, p = 0.036; additive model – ORadjusted= 0.60, 95% CI: 0.39–0.92, p = 0.020) were associated with IS type of small-vessel occlusion. Conclusion Our study suggested that PTGS2 rs689466 C and rs5275 A were potentially associated with IS subtype of small-vessel occlusion. Our result should be confirmed with further large sample sized studies.
Collapse
Affiliation(s)
- Zhongqiu Zhang
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Yanping Mei
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Fang Lu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Xianghong Zhao
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Junrong Zhu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| | - Bangshun He
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu Province, People's Republic of China.,Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu Province, People's Republic of China
| |
Collapse
|
45
|
Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, Fávaro WJ, Ferreira-Halder CV, Justo GZ, Tasic L. Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 2021; 37:151. [PMID: 34398340 DOI: 10.1007/s11274-021-03120-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The aim of the current review is to address updated research on a natural pigment called violacein, with emphasis on its production, biological activity and applications. New information about violacein's action mechanisms as antitumor agent and about its synergistic action in drug delivery systems has brought new alternatives for anticancer therapy. Thus, violacein is introduced as reliable drug capable of overcoming at least three cancer hallmarks, namely: proliferative signaling, cell death resistance and metastasis. In addition, antimicrobial effects on several microorganisms affecting humans and other animals turn violacein into an attractive drug to combat resistant pathogens. Emphasis is given to effects of violacein combined with different agents, such as antibiotics, anticancer agents and nanoparticles. Although violacein is well-known for many decades, it remains an attractive compound. Thus, research groups have been making continuous effort to help improving its production in recent years, which can surely enable its pharmaceutical and chemical application as multi-task compound, even in the cosmetics and food industries.
Collapse
Affiliation(s)
- Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil. .,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biology Sciences Center, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Marcela Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Ignasio R Berti
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Danijela Stanisic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Laboratory of Tropical Diseases, Department of Genetic, Evolution and Bioagents , Biology Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carmen V Ferreira-Halder
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Departamento de Ciências Farmacêuticas (Campus Diadema) e Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo (UNIFESP), 3 de Maio, 100, São Paulo, SP, 04044-020, Brazil.
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
46
|
Hamblin MH, Lee JP. Neural Stem Cells for Early Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22147703. [PMID: 34299322 PMCID: PMC8306669 DOI: 10.3390/ijms22147703] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical treatments for ischemic stroke are limited. Neural stem cell (NSC) transplantation can be a promising therapy. Clinically, ischemia and subsequent reperfusion lead to extensive neurovascular injury that involves inflammation, disruption of the blood-brain barrier, and brain cell death. NSCs exhibit multiple potentially therapeutic actions against neurovascular injury. Currently, tissue plasminogen activator (tPA) is the only FDA-approved clot-dissolving agent. While tPA’s thrombolytic role within the vasculature is beneficial, tPA’s non-thrombolytic deleterious effects aggravates neurovascular injury, restricting the treatment time window (time-sensitive) and tPA eligibility. Thus, new strategies are needed to mitigate tPA’s detrimental effects and quickly mediate vascular repair after stroke. Up to date, clinical trials focus on the impact of stem cell therapy on neuro-restoration by delivering cells during the chronic stroke stage. Also, NSCs secrete factors that stimulate endogenous repair mechanisms for early-stage ischemic stroke. This review will present an integrated view of the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury, with an emphasis on early-stage ischemic stroke. Further, this will highlight the impact of early sub-acute NSC delivery on improving short-term and long-term stroke outcomes.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| |
Collapse
|
47
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|
48
|
Ringland C, Schweig JE, Eisenbaum M, Paris D, Ait-Ghezala G, Mullan M, Crawford F, Abdullah L, Bachmeier C. MMP9 modulation improves specific neurobehavioral deficits in a mouse model of Alzheimer's disease. BMC Neurosci 2021; 22:39. [PMID: 34034683 PMCID: PMC8152085 DOI: 10.1186/s12868-021-00643-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Matrix metallopeptidase 9 (MMP9) has been implicated in a variety of neurological disorders, including Alzheimer's disease (AD), where MMP9 levels are elevated in the brain and cerebrovasculature. Previously our group demonstrated apolipoprotein E4 (apoE4) was less efficient in regulating MMP9 activity in the brain than other apoE isoforms, and that MMP9 inhibition facilitated beta-amyloid (Aβ) elimination across the blood-brain barrier (BBB) METHODS: In the current studies, we evaluated the impact of MMP9 modulation on Aβ disposition and neurobehavior in AD using two approaches, (1) pharmacological inhibition of MMP9 with SB-3CT in apoE4 x AD (E4FAD) mice, and (2) gene deletion of MMP9 in AD mice (MMP9KO/5xFAD) RESULTS: Treatment with the MMP9 inhibitor SB-3CT in E4FAD mice led to reduced anxiety compared to placebo using the elevated plus maze. Deletion of the MMP9 gene in 5xFAD mice also reduced anxiety using the open field test, in addition to improving sociability and social recognition memory, particularly in male mice, as assessed through the three-chamber task, indicating certain behavioral alterations in AD may be mediated by MMP9. However, neither pharmacological inhibition of MMP9 or gene deletion of MMP9 affected spatial learning or memory in the AD animals, as determined through the radial arm water maze. Moreover, the effect of MMP9 modulation on AD neurobehavior was not due to changes in Aβ disposition, as both brain and plasma Aβ levels were unchanged in the SB-3CT-treated E4FAD animals and MMP9KO/AD mice compared to their respective controls. CONCLUSIONS In total, while MMP9 inhibition did improve specific neurobehavioral deficits associated with AD, such as anxiety and social recognition memory, modulation of MMP9 did not alter spatial learning and memory or Aβ tissue levels in AD animals. While targeting MMP9 may represent a therapeutic strategy to mitigate aspects of neurobehavioral decline in AD, further work is necessary to understand the nature of the relationship between MMP9 activity and neurological dysfunction.
Collapse
Affiliation(s)
- Charis Ringland
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | | | - Maxwell Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Daniel Paris
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Ghania Ait-Ghezala
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA.
- The Open University, Milton Keynes, UK.
- Bay Pines VA Healthcare System, Bay Pines, FL, USA.
| |
Collapse
|
49
|
Zwart SR, Mulavara AP, Williams TJ, George K, Smith SM. The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci Biobehav Rev 2021; 127:307-331. [PMID: 33915203 DOI: 10.1016/j.neubiorev.2021.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Multi-year crewed space exploration missions are now on the horizon; therefore, it is important that we understand and mitigate the physiological effects of spaceflight. The spaceflight hazards-radiation, isolation, confinement, and altered gravity-have the potential to contribute to neuroinflammation and produce long-term cognitive and behavioral effects-while the fifth hazard, distance from earth, limits capabilities to mitigate these risks. Accumulated evidence suggests that nutrition has an important role in optimizing cognition and reducing the risk of neurodegenerative diseases caused by neuroinflammation. Here we review the nutritional perspective of how these spaceflight hazards affect the astronaut's brain, behavior, performance, and sensorimotor function. We also assess potential nutrient/nutritional countermeasures that could prevent or mitigate spaceflight risks and ensure that crewmembers remain healthy and perform well during their missions. Just as history has taught us the importance of nutrition in terrestrial exploration, we must understand the role of nutrition in the development and mitigation of spaceflight risks before humans can successfully explore beyond low-Earth orbit.
Collapse
Affiliation(s)
- Sara R Zwart
- Univerity of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | | | - Thomas J Williams
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Kerry George
- KBR, 2400 E NASA Parkway, Houston, TX, 77058, USA
| | - Scott M Smith
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| |
Collapse
|
50
|
Matrix Metalloproteinase-9 Expression is Enhanced by Ischemia and Tissue Plasminogen Activator and Induces Hemorrhage, Disability and Mortality in Experimental Stroke. Neuroscience 2021; 460:120-129. [PMID: 33465414 DOI: 10.1016/j.neuroscience.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades collagen and other cellular matrix proteins. After acute ischemic stroke, increased MMP-9 levels are correlated with hemorrhage, lack of reperfusion and stroke severity. Nevertheless, definitive data that MMP-9 itself causes poor outcomes in ischemic stroke are limited. In a model of experimental ischemic stroke with reperfusion, we examined whether ischemia and recombinant tissue plasminogen activator (r-tPA) therapy affected MMP-9 expression, and we used specific inhibitors to test if MMP-9 affects brain injury and recovery. After stroke, MMP-9 expression increased significantly in the ischemic vs. non-ischemic hemisphere of the brain (p < 0.001). MMP-9 expression in the ischemic, but not the non-ischemic hemisphere, was further increased by r-tPA treatment (p < 0.001). To determine whether MMP-9 expression contributed to stroke outcomes after r-tPA treatment, we tested three different antibody MMP-9 inhibitors. When compared to treatment with r-tPA and saline, treatment with r-tPA and MMP-9 antibody inhibitors significantly reduced brain hemorrhage by 11.3 to 38.6-fold (p < 0.01), brain swelling by 2.8 to 4.3-fold (p < 0.001) and brain infarction by 2.5 to 3.9-fold (p < 0.0001). Similarly, when compared to treatment with r-tPA and saline, treatment with r-tPA and an MMP-9 antibody inhibitor significantly improved neurobehavioral outcomes (p < 0.001), decreased weight loss (p < 0.001) and prolonged survival (p < 0.01). In summary, both prolonged ischemia and r-tPA selectively enhanced MMP-9 expression in the ischemic hemisphere. When administered with r-tPA, specific MMP-9 inhibitors markedly reduced brain hemorrhage, swelling, infarction, disability and death, which suggests that blocking the deleterious effects of MMP-9 may improve outcomes after ischemic stroke.
Collapse
|