1
|
Varshney S, Kumar D, Choudhary R, Gupta A, Beg M, Shankar K, Rajan S, Srivastava A, Gupta S, Khandelwal N, Balaramnavar VM, Gaikwad AN. Flavopiridol inhibits adipogenesis and improves metabolic homeostasis by ameliorating adipose tissue inflammation in a diet-induced obesity model. Biomed Pharmacother 2024; 179:117330. [PMID: 39208666 DOI: 10.1016/j.biopha.2024.117330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Repositioning of FDA approved/clinical phase drugs has recently opened a new opportunity for rapid approval of drugs, as it shortens the overall process of drug discovery and development. In previous studies, we predicted the possibility of better activity profiles of flavopiridol, the FDA approved orphan drug with better fit value 2.79 using a common feature pharmacophore model for anti-adipogenic compounds (CFMPA). The present study aimed to investigate the effect of flavopiridol on adipocyte differentiation and to determine the underlying mechanism. Flavopiridol inhibited adipocyte differentiation in different cell models like 3T3-L1, C3H10T1/2, and hMSCs at 150 nM. Flavopiridol was around 135 times more potent than its parent molecule rohitukine. The effect was mediated through down-regulation of key transcription factors of adipogenesis i.e. Peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and their downstream targets, including adipocyte protein -2 (aP2) and fatty acid synthase (FAS). Further, results revealed that flavopiridol arrested the cell cycle in G1/S phase during mitotic clonal expansion by suppressing cell cycle regulatory proteins i.e. Cyclins and CDKs. Flavopiridol inhibited insulin-stimulated signalling in the early phase of adipocyte differentiation by downregulation of AKT/mTOR pathway. In addition, flavopiridol improved mitochondrial function in terms of increased oxygen consumption rate (OCR) in mature adipocytes. In the mouse model of diet-induced obesity, flavopiridol attenuated obesity-associated adipose tissue inflammation and improved serum lipid profile, glucose tolerance as well as insulin sensitivity. In conclusion, the FDA approved drug flavopiridol could be placed as a potential drug candidate for the treatment of cancer and obesity comorbid patients.
Collapse
Affiliation(s)
- Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakhi Choudhary
- Global Institute of Pharmaceutical Education and Research, Jaspur Road, Kashipur, Uttarakhand 244713, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nilesh Khandelwal
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal M Balaramnavar
- Global Institute of Pharmaceutical Education and Research, Jaspur Road, Kashipur, Uttarakhand 244713, India; School of Pharmacy & Research Center, Sanskriti University, 281401 Mathura, UP, India
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
2
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
3
|
Joshi H, Tuli HS, Ranjan A, Chauhan A, Haque S, Ramniwas S, Bhatia GK, Kandari D. The Pharmacological Implications of Flavopiridol: An Updated Overview. Molecules 2023; 28:7530. [PMID: 38005250 PMCID: PMC10673037 DOI: 10.3390/molecules28227530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don 344090, Russia;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Sector 125, Noida 201301, India;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Gurpreet Kaur Bhatia
- Department of Physics, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| |
Collapse
|
4
|
Sun Z, Lin J, Zhang T, Sun X, Wang T, Duan J, Yao K. Combining bioinformatics and machine learning to identify common mechanisms and biomarkers of chronic obstructive pulmonary disease and atrial fibrillation. Front Cardiovasc Med 2023; 10:1121102. [PMID: 37057099 PMCID: PMC10086368 DOI: 10.3389/fcvm.2023.1121102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundPatients with chronic obstructive pulmonary disease (COPD) often present with atrial fibrillation (AF), but the common pathophysiological mechanisms between the two are unclear. This study aimed to investigate the common biological mechanisms of COPD and AF and to search for important biomarkers through bioinformatic analysis of public RNA sequencing databases.MethodsFour datasets of COPD and AF were downloaded from the Gene Expression Omnibus (GEO) database. The overlapping genes common to both diseases were screened by WGCNA analysis, followed by protein-protein interaction network construction and functional enrichment analysis to elucidate the common mechanisms of COPD and AF. Machine learning algorithms were also used to identify key biomarkers. Co-expression analysis, “transcription factor (TF)-mRNA-microRNA (miRNA)” regulatory networks and drug prediction were performed for key biomarkers. Finally, immune cell infiltration analysis was performed to evaluate further the immune cell changes in the COPD dataset and the correlation between key biomarkers and immune cells.ResultsA total of 133 overlapping genes for COPD and AF were obtained, and the enrichment was mainly focused on pathways associated with the inflammatory immune response. A key biomarker, cyclin dependent kinase 8 (CDK8), was identified through screening by machine learning algorithms and validated in the validation dataset. Twenty potential drugs capable of targeting CDK8 were obtained. Immune cell infiltration analysis revealed the presence of multiple immune cell dysregulation in COPD. Correlation analysis showed that CDK8 expression was significantly associated with CD8+ T cells, resting dendritic cell, macrophage M2, and monocytes.ConclusionsThis study highlights the role of the inflammatory immune response in COPD combined with AF. The prominent link between CDK8 and the inflammatory immune response and its characteristic of not affecting the basal expression level of nuclear factor kappa B (NF-kB) make it a possible promising therapeutic target for COPD combined with AF.
Collapse
Affiliation(s)
- Ziyi Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jianguo Lin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianya Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoning Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianlin Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jinlong Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Eye Hospital China Academy of Chinese Medical Sciences, China Academy of Chinese Medical Sciences, Beijing, China
- Correspondence: Kuiwu Yao
| |
Collapse
|
5
|
Gu L, Li C, Peng X, Lin H, Niu Y, Zheng H, Zhao G, Lin J. Flavopiridol Protects against Fungal Keratitis due to Aspergillus fumigatus by Alleviating Inflammation through the Promotion of Autophagy. ACS Infect Dis 2022; 8:2362-2373. [PMID: 36283079 DOI: 10.1021/acsinfecdis.2c00427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fungal keratitis is a serious infectious keratopathy related to fungal virulence and excessive inflammatory responses. Autophagy exhibits a potent ability to resolve inflammation during fungal infection. This study aimed to investigate the protective function of flavopiridol in Aspergillus fumigatus keratitis and explore its effects on autophagy. In our study, the corneas of the fungal keratitis mouse model were treated with 5 μM flavopiridol. In vitro, RAW 264.7 cells were pretreated with 200 nM flavopiridol before fungal stimulation. A. fumigatus was incubated with flavopiridol, and the antifungal activity of flavopiridol was detected. Our results indicated that flavopiridol treatment notably reduced clinical scores as well as cytokines expression of infected corneas. In infected RAW 264.7 cells, flavopiridol treatment inhibited IL-1β, IL-6, and TNF-α expression but promoted IL-10 expression. Transmission electron microscopy (TEM) images showed that more autolysosomes were present in infected corneas and RAW 264.7 cells after flavopiridol treatment. Flavopiridol treatment notably upregulated the protein expression of LC3, Beclin-1, and Atg-7. 3-Methyladenine (3-MA, an inhibitor of autophagy) pretreatment counteracted the cytokine regulation induced by flavopiridol. Moreover, flavopiridol promoted the phagocytosis of RAW 264.7 cells. Flavopiridol also exhibited antifungal activity by restricting fungal growth and limiting fungal biofilm formation and conidial adhesion. In conclusion, flavopiridol significantly alleviated the inflammation of fungal keratitis by activating autophagy. In addition, flavopiridol promoted the phagocytosis of RAW 264.7 cells and exhibited antifungal function, indicating the potential therapeutic role of flavopiridol in fungal keratitis.
Collapse
Affiliation(s)
- Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hao Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yawen Niu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
6
|
Kim HJ, Booth G, Saunders L, Srivatsan S, McFaline-Figueroa JL, Trapnell C. Nuclear oligo hashing improves differential analysis of single-cell RNA-seq. Nat Commun 2022; 13:2666. [PMID: 35562344 PMCID: PMC9106741 DOI: 10.1038/s41467-022-30309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) offers a high-resolution molecular view into complex tissues, but suffers from high levels of technical noise which frustrates efforts to compare the gene expression programs of different cell types. "Spike-in" RNA standards help control for technical variation in scRNA-seq, but using them with recently developed, ultra-scalable scRNA-seq methods based on combinatorial indexing is not feasible. Here, we describe a simple and cost-effective method for normalizing transcript counts and subtracting technical variability that improves differential expression analysis in scRNA-seq. The method affixes a ladder of synthetic single-stranded DNA oligos to each cell that appears in its RNA-seq library. With improved normalization we explore chemical perturbations with broad or highly specific effects on gene regulation, including RNA pol II elongation, histone deacetylation, and activation of the glucocorticoid receptor. Our methods reveal that inhibiting histone deacetylation prevents cells from executing their canonical program of changes following glucocorticoid stimulation.
Collapse
Affiliation(s)
- Hyeon-Jin Kim
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Greg Booth
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Lauren Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA. .,Brotman Baty Institute of Precision Medicine, Seattle, WA, 98195, USA. .,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, 98195, USA.
| |
Collapse
|
7
|
Kaveh A, Bruton FA, Oremek MEM, Tucker CS, Taylor JM, Mullins JJ, Rossi AG, Denvir MA. Selective Cdk9 inhibition resolves neutrophilic inflammation and enhances cardiac regeneration in larval zebrafish. Development 2022; 149:272181. [PMID: 34523672 PMCID: PMC8601713 DOI: 10.1242/dev.199636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022]
Abstract
Sustained neutrophilic inflammation is detrimental for cardiac repair and associated with adverse outcomes following myocardial infarction (MI). An attractive therapeutic strategy to treat MI is to reduce or remove infiltrating neutrophils to promote downstream reparative mechanisms. CDK9 inhibitor compounds enhance the resolution of neutrophilic inflammation; however, their effects on cardiac repair/regeneration are unknown. We have devised a cardiac injury model to investigate inflammatory and regenerative responses in larval zebrafish using heartbeat-synchronised light-sheet fluorescence microscopy. We used this model to test two clinically approved CDK9 inhibitors, AT7519 and flavopiridol, examining their effects on neutrophils, macrophages and cardiomyocyte regeneration. We found that AT7519 and flavopiridol resolve neutrophil infiltration by inducing reverse migration from the cardiac lesion. Although continuous exposure to AT7519 or flavopiridol caused adverse phenotypes, transient treatment accelerated neutrophil resolution while avoiding these effects. Transient treatment with AT7519, but not flavopiridol, augmented wound-associated macrophage polarisation, which enhanced macrophage-dependent cardiomyocyte number expansion and the rate of myocardial wound closure. Using cdk9−/− knockout mutants, we showed that AT7519 is a selective CDK9 inhibitor, revealing the potential of such treatments to promote cardiac repair/regeneration. Summary: This study is the first to show that resolving neutrophilic inflammation using a clinically approved immunomodulatory drug (AT7519) improves heart regeneration in zebrafish.
Collapse
Affiliation(s)
- Aryan Kaveh
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Finnius A Bruton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Magdalena E M Oremek
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Carl S Tucker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | - John J Mullins
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
8
|
Liu JC, Liu SH, Fu G, Qiu XR, Jiang RD, Huang SY, Zhu YL, Li WZ. Blood Immune Cell Composition Associated with Obesity and Drug Repositioning Revealed by Epigenetic and Transcriptomic Conjoint Analysis. Front Pharmacol 2021; 12:714643. [PMID: 34712134 PMCID: PMC8546369 DOI: 10.3389/fphar.2021.714643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
This research was designed to analyze the composition of immune cells in obesity and identify novel and potent drugs for obesity management by epigenetic and transcriptomic conjoint analysis. DNA methylation data set (GSE166611) and mRNA expression microarray (GSE18897) were obtained from the Gene Expression Omnibus database. A total of 72 objects (35 obese samples and 37 controls) were included in the study. Immune cell composition analysis, drug repositioning, and gene set enrichment analysis (GSEA) were performed using CIBERSORT, connectivity map (CMap), and GSEA tools. Besides, we performed a single-cell RNA-seq of the immune cells from whole blood samples obtained from one obese patient and one healthy control. mRNA levels of drug target genes were analyzed by qPCR assay in blood samples from six patients and six healthy controls. Immune cell composition analysis found that CD8 + T cells and NK cells were significantly lower in the obese group. 11 drugs/compounds are considered to possess obesity-control potential, such as atorvastatin. Moreover, the expression of drug targets (STAT3, MCL1, PMAIP1, SOD2, FOX O 3, FOS, FKBP5) in obese patients were higher than those in controls. In conclusion, immune cells are potential therapeutic targets for obesity. Our results also contribute to accelerate research on drug development of obesity.
Collapse
Affiliation(s)
- Jia-Chen Liu
- Center of Biomedical Informatics and Genomics, Xiangya Medical College of Central South University, Changsha, China
| | - Sheng-Hua Liu
- Center of Biomedical Informatics and Genomics, Xiangya Medical College of Central South University, Changsha, China
| | - Guang Fu
- Department of Gastroenterology, The First Affiliated Hospital of University of South, Hengyang, China
| | - Xiao-Rui Qiu
- Center of Biomedical Informatics and Genomics, Xiangya Medical College of Central South University, Changsha, China
| | - Run-Dong Jiang
- Center of Biomedical Informatics and Genomics, Xiangya Medical College of Central South University, Changsha, China
| | - Sheng-Yuan Huang
- Center of Biomedical Informatics and Genomics, Xiangya Medical College of Central South University, Changsha, China
| | - Yong-Li Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Zheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling. Nat Commun 2021; 12:6053. [PMID: 34663829 PMCID: PMC8523534 DOI: 10.1038/s41467-021-26289-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
Tumor necrosis factor (TNF) is one of the few cytokines successfully targeted by therapies against inflammatory diseases. However, blocking this well studied and pleiotropic ligand can cause dramatic side-effects. Here, we reason that a systems-level proteomic analysis of TNF signaling could dissect its diverse functions and offer a base for developing more targeted therapies. Therefore, we combine phosphoproteomics time course experiments with subcellular localization and kinase inhibitor analysis to identify functional modules of protein phosphorylation. The majority of regulated phosphorylation events can be assigned to an upstream kinase by inhibiting master kinases. Spatial proteomics reveals phosphorylation-dependent translocations of hundreds of proteins upon TNF stimulation. Phosphoproteome analysis of TNF-induced apoptosis and necroptosis uncovers a key role for transcriptional cyclin-dependent kinase activity to promote cytokine production and prevent excessive cell death downstream of the TNF signaling receptor. This resource of TNF-induced pathways and sites can be explored at http://tnfviewer.biochem.mpg.de/. Tumor necrosis factor (TNF) has various effects on phosphorylation-mediated cellular signaling. Combining phosphoproteomics, subcellular localization analyses and kinase inhibitor assays, the authors provide systems level insights into TNF signaling and identify modulators of TNF-induced cell death.
Collapse
|
10
|
Lv Y, Li Y, Wang J, Li M, Zhang W, Zhang H, Shen Y, Li C, Du Y, Jiang L. MiR-382-5p suppresses M1 macrophage polarization and inflammatory response in response to bronchopulmonary dysplasia through targeting CDK8: Involving inhibition of STAT1 pathway. Genes Cells 2021; 26:772-781. [PMID: 34228857 DOI: 10.1111/gtc.12883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is an inflammation-related respiratory disorder in infants. MiR-382-5p has displayed low expression in developing lungs with BPD, while the effect of miR-382-5p on BPD remains elusive. Here, a hyperoxia (85% oxygen)-induced BPD model in neonatal mice was established. On postnatal days 10 and 15, hyperoxia reduced miR-382-5p expression in lungs of mice. Besides, CDK8, CD68 and CD86 levels were elevated on day 15 after birth, implying the involvement of CDK8 in M1 macrophage polarization. In addition, in vitro injury in RAW264.7 macrophages was induced by IFN-γ and LPS stimulation. Lentivirus-encoding miR-382-5p decreased CDK8 expression, alleviated the production of inflammatory cytokines TNF-α, IL-1β and IL-6, and restricted the levels of CD40 and CD86 in response to IFN-γ and LPS. Moreover, miR-382-5p inhibited the phosphorylation of STAT1. Luciferase reporter assay verified that miR-382-5p might target the 3'UTR of CDK8. Rescue assays revealed that CDK8 reversed the mitigating roles of miR-382-5p in inflammatory response and M1 macrophage polarization, as reflected by increased IL-6 and CD40 levels. Taken together, these findings indicate that miR-382-5p may suppress M1 macrophage activation and inflammatory response via inhibiting CDK8, thereby regulating the development of BPD, which is possibly mediated by STAT1 signaling.
Collapse
Affiliation(s)
- Yuanyuan Lv
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Pediatrics, Baoding First Central Hospital, Baoding, China
| | - Yang Li
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiangya Wang
- Department of Pediatrics, Hebei General Hospital, Shijiazhuang, China
| | - Mei Li
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenhao Zhang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huifen Zhang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Shen
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Li
- Department of Pediatrics, Baoding First Central Hospital, Baoding, China
| | - Yuan Du
- Department of Laboratory Medicine, Baoding No. 1 Hospital of TCM, Baoding, China
| | - Lian Jiang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Huang S, Luo W, Wu G, Shen Q, Zhuang Z, Yang D, Qian J, Hu X, Cai Y, Chattipakorn N, Huang W, Liang G. Inhibition of CDK9 attenuates atherosclerosis by inhibiting inflammation and phenotypic switching of vascular smooth muscle cells. Aging (Albany NY) 2021; 13:14892-14909. [PMID: 34102609 PMCID: PMC8221363 DOI: 10.18632/aging.202998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies have demonstrated a key role of vascular smooth muscle cell (VSMC) dysfunction in atherosclerosis. Cyclin-dependent kinases 9 (CDK9), a potential biomarker of atherosclerosis, was significantly increased in coronary artery disease patient serum and played an important role in inflammatory diseases. This study was to explore the pharmacological role of CDK9 inhibition in attenuating atherosclerosis. METHODS A small-molecule CDK9 inhibitor, LDC000067, was utilized to treat the high fat diet (HFD)-fed ApoE-/- mice and human VSMCs. RESULTS The results showed that inflammation and phenotypic switching of VSMCs were observed in HFD-induced atherosclerosis in ApoE-/- mice, which were accompanied with increased CDK9 in the serum and atherosclerotic lesions where it colocalized with VSMCs. LDC000067 treatment significantly suppressed HFD-induced inflammation, proliferation and phenotypic switching of VSMCs, resulting in reduced atherosclerosis in the ApoE-/- mice, while had no effect on plasma lipids. Further in vitro studies confirmed that LDC000067 and siRNA-mediated CDK9 knockdown reversed ox-LDL-induced inflammation and phenotypic switching of VSMCs from a contractile phenotype to a synthetic phenotype via inhibiting NF-κB signaling pathway in human VSMCs. CONCLUSION These results indicate that inhibition of CDK9 may be a novel therapeutic target for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Shushi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qirui Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zaishou Zhuang
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Daona Yang
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Jinfu Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiang Hu
- Department of Endocrinology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yan Cai
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang 325000, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
12
|
Cellular and Molecular Mechanisms of R/S-Roscovitine and CDKs Related Inhibition under Both Focal and Global Cerebral Ischemia: A Focus on Neurovascular Unit and Immune Cells. Cells 2021; 10:cells10010104. [PMID: 33429982 PMCID: PMC7827530 DOI: 10.3390/cells10010104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide. Following ischemic stroke, Neurovascular Unit (NVU) inflammation and peripheral leucocytes infiltration are major contributors to the extension of brain lesions. For a long time restricted to neurons, the 10 past years have shown the emergence of an increasing number of studies focusing on the role of Cyclin-Dependent Kinases (CDKs) on the other cells of NVU, as well as on the leucocytes. The most widely used CDKs inhibitor, (R)-roscovitine, and its (S) isomer both decreased brain lesions in models of global and focal cerebral ischemia. We previously showed that (S)-roscovitine acted, at least, by modulating NVU response to ischemia. Interestingly, roscovitine was shown to decrease leucocytes-mediated inflammation in several inflammatory models. Specific inhibition of roscovitine majors target CDK 1, 2, 5, 7, and 9 showed that these CDKs played key roles in inflammatory processes of NVU cells and leucocytes after brain lesions, including ischemic stroke. The data summarized here support the investigation of roscovitine as a potential therapeutic agent for the treatment of ischemic stroke, and provide an overview of CDK 1, 2, 5, 7, and 9 functions in brain cells and leucocytes during cerebral ischemia.
Collapse
|
13
|
Wu Y, Song F, Li Y, Li J, Cui Y, Hong Y, Han W, Wu W, Lakhani I, Li G, Wang Y. Acacetin exerts antioxidant potential against atherosclerosis through Nrf2 pathway in apoE -/- Mice. J Cell Mol Med 2021; 25:521-534. [PMID: 33241629 PMCID: PMC7810944 DOI: 10.1111/jcmm.16106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has a considerable influence on endothelial cell dysfunction and atherosclerosis. Acacetin, an anti-inflammatory and antiarrhythmic, is frequently used in the treatment of myocarditis, albeit its role in managing atherosclerosis is currently unclear. Thus, we evaluated the regulatory effects of acacetin in maintaining endothelial cell function and further investigated whether the flavonoid could attenuate atherosclerosis in apolipoprotein E deficiency (apoE-/- ) mice. Different concentrations of acacetin were tested on EA.hy926 cells, either induced or non-induced by human oxidized low-density lipoprotein (oxLDL), to clarify its influence on cell viability, cellular reactive oxidative stress (ROS) level, apoptotic ratios and other regulatory effects. In vivo, apoE-/- mice were fed either a Western diet or a chow diet. Acacetin pro-drug (15 mg/kg) was injected subcutaneously two times a day for 12 weeks. The effects of acacetin on the atherosclerotic process, plasma inflammatory factors and lipid metabolism were also investigated. Acacetin significantly increased EA.hy926 cell viability by reducing the ratios of apoptotic and necrotic cells at 3 μmol/L. Moreover, 3 μmol/L acacetin clearly decreased ROS levels and enhanced reductase protein expression through MsrA and Nrf2 pathway through phosphorylation of Nrf2 and degradation of Keap1. In vivo, acacetin treatment remarkably attenuated atherosclerosis by increasing reductase levels in circulation and aortic roots, decreasing plasma inflammatory factor levels as well as accelerating lipid metabolism in Western diet-fed apoE-/- mice. Our findings demonstrate the anti-oxidative and anti-atherosclerotic effects of acacetin, in turn suggesting its potential therapeutic value in atherosclerotic-related cardiovascular diseases (CVD).
Collapse
Affiliation(s)
- Yao Wu
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Fei Song
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Yunda Li
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Jingzhou Li
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Yukai Cui
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Yixiang Hong
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Weimin Han
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Weiyin Wu
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Ishan Lakhani
- Laboratory of Cardiovascular PhysiologyLi Ka Shing Institute of Health SciencesHong KongChina
| | - Gang Li
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen UniversityXiamenChina
| |
Collapse
|
14
|
Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, Wang J, Meng C, Buhrlage SJ, Gray N, Griffin JD. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res 2020; 37:167. [PMID: 32778962 PMCID: PMC7417114 DOI: 10.1007/s11095-020-02851-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an intense search for treatments by the scientific community. In the absence of a vaccine, the goal is to target the viral life cycle and alleviate the lung-damaging symptoms of infection, which can be life-threatening. There are numerous protein kinases associated with these processes that can be inhibited by FDA-approved drugs, the repurposing of which presents an alluring option as they have been thoroughly vetted for safety and are more readily available for treatment of patients and testing in clinical trials. Here, we characterize more than 30 approved kinase inhibitors in terms of their antiviral potential, due to their measured potency against key kinases required for viral entry, metabolism, or reproduction. We also highlight inhibitors with potential to reverse pulmonary insufficiency because of their anti-inflammatory activity, cytokine suppression, or antifibrotic activity. Certain agents are projected to be dual-purpose drugs in terms of antiviral activity and alleviation of disease symptoms, however drug combination is also an option for inhibitors with optimal pharmacokinetic properties that allow safe and efficacious co-administration with other drugs, such as antiviral agents, IL-6 blocking agents, or other kinase inhibitors.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Alexander Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Priscilla L Yang
- Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingwang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Chung YH, Lin CW, Huang HY, Chen SL, Huang HJ, Sun YC, Lee GC, Lee-Chen GJ, Chang YC, Hsieh-Li HM. Targeting Inflammation, PHA-767491 Shows a Broad Spectrum in Protein Aggregation Diseases. J Mol Neurosci 2020; 70:1140-1152. [PMID: 32170713 DOI: 10.1007/s12031-020-01521-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Many protein aggregation diseases (PAD) affect the nervous system. Deposits of aggregated disease-specific proteins are found within or around the neuronal cells of neurodegenerative diseases. Although the main protein component is disease-specific, oligomeric aggregates are presumed to be the key agents causing the neurotoxicity. Evidence has shown that protein aggregates cause a chronic inflammatory reaction in the brain, resulting in neurodegeneration. Therefore, strategies targeting anti-inflammation could be beneficial to the therapeutics of PAD. PHA-767491 was originally identified as an inhibitor of CDC7/CDK9 and was found to reduce TDP-43 phosphorylation and prevent neurodegeneration in TDP-43 transgenic animals. We recently identified PHA-767491 as a GSK-3β inhibitor. In this study, we established mouse hippocampal primary culture with tau-hyperphosphorylation through the activation of GSK-3β using Wortmannin and GF109203X. We found that PHA-767491 significantly improved the neurite outgrowth of hippocampal primary neurons against the neurotoxicity induced by GSK-3β. We further showed that PHA-767491 had neuroprotective ability in hippocampal primary culture under oligomeric Aβ treatment. In addition, PHA-767491 attenuated the neuroinflammation in mouse cerebellar slice culture with human TBP-109Q agitation. Further study of SCA17 transgenic mice carrying human TBP-109Q showed that PHA-767491 ameliorated the gait ataxia and the inflammatory response both centrally and peripherally. Our findings suggest that PHA-767491 has a broad spectrum of activity in the treatment of different PAD and that this activity could be based on the anti-inflammation mechanism.
Collapse
Affiliation(s)
- Yu-Han Chung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Yu Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guan-Chiun Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Ching Chang
- Department of Pharmacy, Taiwan Adventist Hospital, Taipei, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
16
|
Wang X, Yu C, Wang C, Ma Y, Wang T, Li Y, Huang Z, Zhou M, Sun P, Zheng J, Yang S, Fan Y, Xiang R. Novel cyclin-dependent kinase 9 (CDK9) inhibitor with suppression of cancer stemness activity against non-small-cell lung cancer. Eur J Med Chem 2019; 181:111535. [DOI: 10.1016/j.ejmech.2019.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/16/2023]
|
17
|
Xue S, Shao Q, Zhu LB, Jiang YF, Wang C, Xue B, Lu HM, Sang WL, Ma JZ. LDC000067 suppresses RANKL-induced osteoclastogenesis in vitro and prevents LPS-induced osteolysis in vivo. Int Immunopharmacol 2019; 75:105826. [DOI: 10.1016/j.intimp.2019.105826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022]
|
18
|
Manickavasagam D, Oyewumi MO. Internalization of particulate delivery systems by activated microglia influenced the therapeutic efficacy of simvastatin repurposing for neuroinflammation. Int J Pharm 2019; 570:118690. [DOI: 10.1016/j.ijpharm.2019.118690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 10/26/2022]
|
19
|
Toghueo RMK. Anti-leishmanial and Anti-inflammatory Agents from Endophytes: A Review. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:311-328. [PMID: 31564050 PMCID: PMC6814666 DOI: 10.1007/s13659-019-00220-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/23/2019] [Indexed: 05/05/2023]
Abstract
Leishmaniases and chronic inflammatory diseases are the cause of millions of deaths in the world each year. The treatment of leishmaniasis is facing serious drawbacks particularly due to the limited number of effective medicines, the resistance, and the toxicity of available drugs. On the other hand, many drugs are used for the management of inflammatory disorders. However, the most commonly prescribed although efficient is highly toxic with multiples side effects. New leads compounds for the development of new anti-leishmanial and anti-inflammatory drugs are needed. Over the past decade, several studies on the potential of endophytes to produce bioactive metabolites have been reported. We are presenting in the present review the status of research from 2000 to 2019 on the anti-leishmanial and anti-inflammatory metabolites isolated from endophytes from diverse habitats. An emphasis was put on existing gaps in the literature to inspire and guide future investigations. We hope that this review will help accelerate the drug discovery against leishmaniases and inflammation-associated disorders.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
20
|
CDK9 attenuation exerts protective effects on catabolism and hypertrophy in chondrocytes and ameliorates osteoarthritis development. Biochem Biophys Res Commun 2019; 517:132-139. [DOI: 10.1016/j.bbrc.2019.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
|
21
|
Rárová L, Ncube B, Van Staden J, Fürst R, Strnad M, Gruz J. Identification of Narciclasine as an in Vitro Anti-Inflammatory Component of Cyrtanthus contractus by Correlation-Based Metabolomics. JOURNAL OF NATURAL PRODUCTS 2019; 82:1372-1376. [PMID: 30933514 DOI: 10.1021/acs.jnatprod.8b00973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, an extract from the bulbs of Cyrtanthus contractus showed strong anti-inflammatory activity in vitro. The extract was partially separated into 14 fractions and analyzed by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry metabolomics, and the correlation coefficients were calculated between biological activities and metabolite levels. As a result, the top-scoring metabolite narciclasine (1) is proposed as the active principle of C. contractus. This was confirmed by comparing the biological effect of crude extract with that of an authentic standard.
Collapse
Affiliation(s)
- Lucie Rárová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science , Palacký University , Šlechtitelů 27 , CZ-783 71 Olomouc , Czech Republic
| | - Bhekumthetho Ncube
- Research Centre for Plant Growth and Development, School of Life Sciences , University of KwaZulu-Natal Pietermaritzburg , Private Bag X01 , Scottsville 3209 , South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences , University of KwaZulu-Natal Pietermaritzburg , Private Bag X01 , Scottsville 3209 , South Africa
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Biocenter , Goethe University , Frankfurt/Main , Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Institute of Experimental Botany ASCR and Palacky University , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Jiri Gruz
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Institute of Experimental Botany ASCR and Palacky University , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| |
Collapse
|
22
|
Liu AQ, Xie Z, Chen XN, Feng J, Chen JW, Qin FJ, Ge LY. Fas-associated factor 1 inhibits tumor growth by suppressing Helicobacter pylori-induced activation of NF-κB signaling in human gastric carcinoma. Oncotarget 2018; 8:7999-8009. [PMID: 28030825 PMCID: PMC5352377 DOI: 10.18632/oncotarget.14033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
Loss of Fas-associated factor 1 (FAF1) may act as a pro-survival signal in diseased cells, but whether this is true in gastric carcinoma remains unclear. Here we report that FAF1 was expressed at low levels in gastric carcinoma tissues and cell lines, and its expression correlated with larger tumors, higher histology grade, higher TNM stage, tumor infiltration, and lymph node metastasis. Univariate analysis and survival curve analysis identified low FAF1 expression as a predictor of poor prognosis. FAF1 overexpression in HGC-27 gastric cancer cells induced cell apoptosis and inhibited cell proliferation and growth. It also reduced colony formation in vitro and tumor growth in mice. We found that Helicobacter pylori, a risk factor for gastric cancer, down-regulated FAF1 expression via NF-κB signaling. Knock-down of IKKβ or p65 expression in gastric cancer cells reversed H. pylori-induced down-regulation of FAF1 expression and partially blocked H. pylori-induced secretion of inflammatory cytokines TNF-α and IL-8. Our results suggest that loss of FAF1 contributes to human gastric carcinogenesis by allowing H. pylori to activate NF-κB signaling.
Collapse
Affiliation(s)
- Ai-Qun Liu
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiao-Ni Chen
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Jie Feng
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Jia-Wei Chen
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| | - Fu-Jun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Ying Ge
- Department of Endoscopy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, P.R. China
| |
Collapse
|
23
|
Zhan Y, Han Y, Sun H, Liang T, Zhang C, Song J, Hou G. Down-regulating cyclin-dependent kinase 9 of alloreactive CD4+ T cells prolongs allograft survival. Oncotarget 2018; 7:24983-94. [PMID: 27102157 PMCID: PMC5041884 DOI: 10.18632/oncotarget.8804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/06/2016] [Indexed: 01/27/2023] Open
Abstract
CDK9 (Cyclin-dependent kinase 9)/Cyclin T1/RNA polymerase II pathway has been demonstrated to promote the development of several inflammatory diseases, such as arthritis or atherosclerosis, however, its roles in allotransplantation rejection have not been addressed. Here, we found that CDK9/Cyclin T1 were apparently up-regulated in the allogeneic group, which was positively correlated with allograft damage. CDK9 was inhibited obviously in naive splenic CD4+ T cells treated 6 h with 3 μM PHA767491 (a CDK9 inhibitor), and adoptive transfer of these CD4+ T cells into allografted SCID mice resulted in prolonged survival compared with the group without PHA767491 pretreated. Decelerated rejection was correlated with enhanced IL-4 and IL-10 production and with decreased IFN-γ production by alloreactive T cells. More interestingly, we found that CDK942, not CDK955, was high expressed in allorejection group, which could be prominently dampened with PHA767491 treatment. The expression of CDK942 was consistent with its downstream molecule RNA polymerase II. Altogether, our findings revealed the crucial role of CDK9/Cyclin T1/Pol II pathway in promoting allorejection at multiple levels and may provide a new approach for transplantation tolerance induction through targeting CDK9.
Collapse
Affiliation(s)
- Yang Zhan
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Yeming Han
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hukui Sun
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Ting Liang
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Chao Zhang
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Song
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Guihua Hou
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Manickavasagam D, Novak K, Oyewumi MO. Therapeutic Delivery of Simvastatin Loaded in PLA-PEG Polymersomes Resulted in Amplification of Anti-inflammatory Effects in Activated Microglia. AAPS JOURNAL 2017; 20:18. [DOI: 10.1208/s12248-017-0176-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/21/2017] [Indexed: 01/18/2023]
|
25
|
Hussain A, Verma CK, Chouhan U. Identification of novel inhibitors against Cyclin Dependent Kinase 9/Cyclin T1 complex as: Anti cancer agent. Saudi J Biol Sci 2017; 24:1229-1242. [PMID: 28855816 PMCID: PMC5562455 DOI: 10.1016/j.sjbs.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022] Open
Abstract
Cell cycle consists of different types of phases, transition from G1, S, G2, M. Inhibition of associated CDKs like CDK9/Cyclin T1 complex, which are indirectly involved in the Cell cycle progression in the form of transcription elongation, reduces diverse diseases such as Cardiac Hypertrophy, Alzheimer’s, Cancer, AIDS and Inflammation. Glide tool of the Schrodinger software has been used for performing Structure Based Virtual Screening and Docking against Drug Bank and MDPI database. The best hits were identified which go and bind in the active site of the target where ATP binds for the activity. The ADMET, MM-GBSA and DFT analysis is also done for the same. Compound 4-{4-[4-(3-aminopropoxy)phenyl]-1H-pyrazol-5-yl}-6-chlorobenzene-1,3-diol (DB08045) was found to be more potent, novel and selective as an inhibitor. Hopefully compound (DB08045) could be used as an anti-cancer agent for the treatment of life-threatening diseases.
Collapse
Key Words
- ATP, adenosine triphosphate
- CDK
- CDK9, Cyclin Dependent Kinase 9
- CTD, carboxy terminal domain
- Cancer
- Cell cycle
- DFT, density functional theory
- Drug Bank
- HOMO, high occupied molecular orbital
- LUMO, lowest unoccupied molecular orbital
- MDPI
- MDPI, molecular diversity preservation international
- MW, molecular weight
- P-TEFB, positive transcription elongation factor B
- Potent
- SBVS, structure based virtual screening
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Bioinformatics, MANIT, Bhopal, M.P. 462003, India
| | | | - Usha Chouhan
- Department of Bioinformatics, MANIT, Bhopal, M.P. 462003, India
| |
Collapse
|
26
|
Han Y, Zhao S, Gong Y, Hou G, Li X, Li L. Serum cyclin-dependent kinase 9 is a potential biomarker of atherosclerotic inflammation. Oncotarget 2016; 7:1854-62. [PMID: 26636538 PMCID: PMC4811502 DOI: 10.18632/oncotarget.6443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Atherosclerotic coronary artery disease (CAD) is one of the most prevalent diseases worldwide. Atherosclerosis was considered to be the single most important contributor to CAD. In this study, a distinct serum protein expression pattern in CAD patients was demonstrated by proteomic analysis with two-dimensional gel electrophoresis coupled with mass spectrometry. In particular, CDK9 was found to be highly elevated in serum, monocytes and artery plaque samples of CAD patients. Furthermore, there was high infiltration of CD14+ monocytes/macrophages within artery plaques correlated with the expression of CDK9. Moreover, Flavopiridol (CDK9 inhibitor) could inhibit THP-1 cell (monocytic acute leukemia cell line) proliferation by targeting CDK9. Altogether, These findings indicate that CDK9 represent an important role for inflammation in the pathogenesis of atherosclerosis. It may be a potential biomarker of atherosclerotic inflammation and offer insights into the pathophysiology and targeted therapy for atherosclerotic CAD.
Collapse
Affiliation(s)
- Yeming Han
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Shanshan Zhao
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Genetics, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guihua Hou
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xi Li
- Laboratory of Experimental Teratology, Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Genetics, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Li Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
27
|
Matrone G, Mullins JJ, Tucker CS, Denvir MA. Effects of Cyclin Dependent Kinase 9 inhibition on zebrafish larvae. Cell Cycle 2016; 15:3060-3069. [PMID: 27715402 PMCID: PMC5134698 DOI: 10.1080/15384101.2016.1231283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
CDK9 is a known regulator of cellular transcription, growth and proliferation. Small molecule inhibitors are currently being developed and assessed in clinical trials as anti-cancer drugs. The zebrafish embryo provides an ideal model to explore the effects of CDK9 inhibition in-vivo. This has not been adequately explored previously at the level of a whole organism. We have compared and contrasted the effects of pharmacological and molecular inhibition of CDK9 on somatic growth, apoptosis and cellular proliferation in zebrafish larvae between 0 to 120 hours post fertilisation (hpf) using flavopiridol, a selective CDK9 antagonist, and CDK9-targeting morpholino. We demonstrate that the inhibition of CDK9 diminishes cellular proliferation and increases apoptosis. Subsequently, it affects somatic growth and development of a number of key embryonic structures including the brain, heart, eye and blood vessels. For the first time, we have localized CDK9 at a subcellular level in whole-mounted larvae. This works shows, at a high-throughput level, that CDK9 clearly plays a fundamental role in early cellular growth and proliferation.
Collapse
Affiliation(s)
- Gianfranco Matrone
- a British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh , Edinburgh , UK.,b Department of Cardiovascular Sciences , Methodist Hospital Research Institute , Houston , TX , USA
| | - John J Mullins
- a British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh , Edinburgh , UK
| | - Carl S Tucker
- a British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh , Edinburgh , UK
| | - Martin A Denvir
- a British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh , Edinburgh , UK
| |
Collapse
|
28
|
Oqani RK, Lin T, Lee JE, Kim SY, Sa SJ, Woo JS, Jin DI. Inhibition of P-TEFb disrupts global transcription, oocyte maturation, and embryo development in the mouse. Genesis 2016; 54:470-82. [PMID: 27488304 DOI: 10.1002/dvg.22961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 11/11/2022]
Abstract
Positive transcription elongation factor b (P-TEFb) is an RNA polymerase II kinase that phosphorylates Ser2 of the carboxyl-terminal domain and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in early developmental events. In this study, using immunocytochemical analyses, we find that the P-TEFb components, Cyclin T1, CDK9, and its T-loop phosphorylated form, are localized to nuclear speckles, as well as in nucleoli in mouse germinal vesicle oocytes. Moreover, using fluorescence in situ hybridization, we show that in absence of CDK9 activity, nucleolar integration, as well as production of 28S rRNA is impaired in oocytes and embryos. We also present evidence indicating that P-TEFb kinase activity is essential for completion of mouse oocyte maturation and embryo development. Treatment with CDK9 inhibitor, flavopiridol resulted in metaphase I arrest in maturing oocytes. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when zygotes or 2-cell embryos were treated with flavopiridol only in their G2 phase of the cell cycle, development to the blastocyst stage was impaired. Inhibition of the CDK9 activity after embryonic genome activation resulted in failure to form normal blastocysts and aberrant phosphorylation of RNA polymerase II CTD. In all stages analyzed, treatment with flavopiridol abrogated global transcriptional activity. Collectively, our data suggest that P-TEFb kinase activity is crucial for oocyte maturation, embryo development, and regulation of global RNA transcription in mouse early development.
Collapse
Affiliation(s)
- Reza K Oqani
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Tao Lin
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - So Yeon Kim
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo Jin Sa
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, 31001, Korea
| | - Je Seok Woo
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, 31001, Korea
| | - Dong Il Jin
- Department of Animal Science and Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
29
|
Inhibition of CDK9 as a therapeutic strategy for inflammatory arthritis. Sci Rep 2016; 6:31441. [PMID: 27511630 PMCID: PMC4980610 DOI: 10.1038/srep31441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/20/2016] [Indexed: 11/08/2022] Open
Abstract
Rheumatoid arthritis is characterised by synovial inflammation and proliferation of fibroblast-like synoviocytes. The induction of apoptosis has long been proposed as a target for proliferative autoimmune diseases, and has further been shown to act as a successful treatment of experimental models of arthritis, such as collagen-induced arthritis. Here we examined the effects of specific oral small-molecule inhibitors of the transcription regulating cyclin-dependent kinase 9 on the development and progression of collagen-induced arthritis. DBA/1 mice were immunised with bovine collagen type II and treated orally with specific CDK9 inhibitors. The effects of CDK9 inhibition on RNA levels and protein expression, apoptosis induction, caspase activation and lymphocyte phenotype were further analysed. Mice showed a significant delay in disease onset and a reduction in disease severity following treatment with CDK9 inhibitors. Inhibiting CDK9 activity in peripheral blood mononuclear cells resulted in the loss of Mcl-1 expression at both the protein and RNA levels, along with a subsequent increase in apoptosis. CDK9 specific inhibitors may be a potential alternative treatment not only of cancer, but also for autoimmune- and inflammatory diseases. Taken together, these results show that transient inhibition of CDK9 induces apoptosis in leukocyte subsets and modulates the immune response.
Collapse
|
30
|
Abstract
Trees have made an enormous phytochemical contribution in anticancer drugs' development more than any other life form. The contributions include alkaloids that are biosynthesized in various ways and yield. Lead alkaloids isolated from the trees are taxol and camptothecins that currently have annual sales in billion dollars. Other important alkaloids isolated from these life forms include rohitukine, harringtonine, acronycine, thalicarpine, usambarensine, ellipticine, and matrines. Studies on their mechanism of action and target on the DNA and protein of cancerous cells aided the development of potent hemisynthesized congeners. The molecules and their congeners passed/are passing a long period of historical development before approved as antineoplastic drugs for cancer chemotherapy. Some of them did not find the application as anticancer drugs due to ineffectiveness in clinical trials; others are generating research interest in the antineoplastic activity at the present and have reached clinical trial stages. Potentials in antineoplastic molecules from trees are high and are hoped to be commensurate with cancer types afflicting human society in the future.
Collapse
Affiliation(s)
- Tasiu Isah
- Department of Botany, Cellular Differentiation and Molecular Genetics Section, Hamdard University, New Delhi, India
| |
Collapse
|
31
|
P-TEFb Kinase Activity Is Essential for Global Transcription, Resumption of Meiosis and Embryonic Genome Activation in Pig. PLoS One 2016; 11:e0152254. [PMID: 27011207 PMCID: PMC4807088 DOI: 10.1371/journal.pone.0152254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/13/2016] [Indexed: 11/20/2022] Open
Abstract
Positive transcription elongation factor b (P-TEFb) is a RNA polymerase II carboxyl-terminal domain (Pol II CTD) kinase that phosphorylates Ser2 of the CTD and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in mammalian early developmental events. In this study, using immunocytochemical analyses, we found that the P-TEFb components, CDK9, Cyclin T1 and Cyclin T2 were localized to nuclear speckles, as well as in nucleolar-like bodies in pig germinal vesicle oocytes. Using nascent RNA labeling and small molecule inhibitors, we showed that inhibition of CDK9 activity abolished the transcription of GV oocytes globally. Moreover, using fluorescence in situ hybridization, in absence of CDK9 kinase activity the production of ribosomal RNAs was impaired. We also presented the evidences indicating that P-TEFb kinase activity is essential for resumption of oocyte meiosis and embryo development. Treatment with CDK9 inhibitors resulted in germinal vesicle arrest in maturing oocytes in vitro. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when in vitro produced zygotes were treated with CDK9 inhibitors, their development beyond the 4-cell stage was impaired. In these embryos, inhibition of CDK9 abrogated global transcriptional activity and rRNA production. Collectively, our data suggested that P-TEFb kinase activity is crucial for oocyte maturation, embryo development and regulation of RNA transcription in pig.
Collapse
|
32
|
Ray B, Agarwal S, Lohani N, Rajeswari MR, Mehrotra R. Structural, conformational and thermodynamic aspects of groove-directed-intercalation of flavopiridol into DNA. J Biomol Struct Dyn 2016; 34:2518-35. [DOI: 10.1080/07391102.2015.1118708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bhumika Ray
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Shweta Agarwal
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Neelam Lohani
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Moganty R. Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ranjana Mehrotra
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| |
Collapse
|
33
|
Srikumar T, Padmanabhan J. Potential Use of Flavopiridol in Treatment of Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:209-228. [PMID: 27771926 DOI: 10.1007/978-3-319-41342-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the potential use of flavopiridol, a CDK inhibitor with anti-inflammatory and anti-proliferative activities, in the treatment of various chronic diseases. Flavopiridol arrests cell cycle progression in the G1 or G2 phase by inhibiting the kinase activities of CDK1, CDK2, CDK4/6, and CDK7. Additionally, it binds tightly to CDK9, a component of the P-TEFb complex (CDK9/cyclin T), and interferes with RNA polymerase II activation and associated transcription. This in turn inhibits expression of several pro-survival and anti-apoptotic genes, and enhances cytotoxicity in transformed cells or differentiation in growth-arrested cells. Recent studies indicate that flavopiridol elicits anti-inflammatory activity via CDK9 and NFκB-dependent signaling. Overall, these effects of flavopiridol potentiate its ability to overcome aberrant cell cycle activation and/or inflammatory stimuli, which are mediators of various chronic diseases.
Collapse
Affiliation(s)
- Thejal Srikumar
- Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Jaya Padmanabhan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA. .,USF Health Byrd Alzheimer's Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, Florida, 33613, USA.
| |
Collapse
|
34
|
Fuchs S, Hsieh LT, Saarberg W, Erdelmeier CAJ, Wichelhaus TA, Schaefer L, Koch E, Fürst R. Haemanthus coccineus extract and its main bioactive component narciclasine display profound anti-inflammatory activities in vitro and in vivo. J Cell Mol Med 2015; 19:1021-32. [PMID: 25754537 PMCID: PMC4420604 DOI: 10.1111/jcmm.12493] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022] Open
Abstract
Haemanthus coccineus extracts (HCE) have traditionally been used to treat a variety of diseases, like febrile colds or asthma. Since new therapeutic options against inflammatory processes are still urgently needed, we aimed to pharmacologically characterise the anti-inflammatory potential of HCEin vitro and in vivo and to identify the underlying bioactive component(s). The action of HCE on oedema formation and leucocyte infiltration were analysed in two murine models of inflammation (dermal oedema induced by arachidonic acid and croton oil; kidney injury caused by unilateral ureteral obstruction). The interaction of leucocytes with endothelial cells (ECs) as well as the activation parameters of these two cell types were analysed. Moreover, the nuclear factor κB (NFκB) pathway was investigated in detail in ECs. Using different fractions of HCE, the bioactive principle was identified. In vivo, HCE (450 mg/kg orally or 2 mg/kg intraperitoneally) inhibited oedema formation, leucocyte infiltration and cytokine synthesis. In vitro, HCE (100-300 ng/ml) blocked leucocyte-EC interaction as well as the activation of isolated leucocytes (cytokine synthesis and proliferation) and of primary ECs (adhesion molecule expression). HCE suppressed NFκB-dependent gene transcription in the endothelium, but did not interfere with the NFκB activation cascade (IκB degradation, p65 nuclear translocation and NFκB DNA-binding activity). The alkaloid narciclasine was elucidated as the bioactive compound responsible for the anti-inflammatory action of HCE. Our study highlights HCE and its main alkaloid narciclasine as novel interesting approach for the treatment of inflammation-related disorders.
Collapse
Affiliation(s)
- Simone Fuchs
- Institute of Pharmaceutical Biology, Biocenter, Goethe-University, Frankfurt/Main, Germany; Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bartkowiak B, Greenleaf AL. Expression, purification, and identification of associated proteins of the full-length hCDK12/CyclinK complex. J Biol Chem 2014; 290:1786-95. [PMID: 25429106 PMCID: PMC4340420 DOI: 10.1074/jbc.m114.612226] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coupling of transcription and associated processes has been shown to be dependent on the RNA polymerase II (RNAPII) C-terminal repeat domain (CTD) and the phosphorylation of the heptad repeats of which it is composed (consensus sequence Y1S2P3T4S5P6S7). Two primary S2 position CTD kinases have been identified in higher eukaryotes: P-TEFb and CDK12/CyclinK. The more recently discovered CDK12 appears to act at the 3'-end of the transcription unit and has been identified as a tumor suppressor for ovarian cancer; however much is still unknown about the in vivo roles of CDK12/CyclinK. In an effort to further characterize these roles we have purified to near homogeneity and characterized, full-length, active, human CDK12/CyclinK, and identified hCDK12-associated proteins via mass spectrometry. We find that employing a "2A" peptide-linked multicistronic construct containing CDK12 and CyclinK results in the efficient production of active, recombinant enzyme in the baculovirus/Sf9 expression system. Using GST-CTD fusion protein substrates we find that CDK12/CyclinK prefers a substrate with unmodified repeats or one that mimics prephosphorylation at the S7 position of the CTD; also the enzyme is sensitive to the inhibitor flavopiridol at higher concentrations. Identification of CDK12-associating proteins reveals a strong enrichment for RNA-processing factors suggesting that CDK12 affects RNA processing events in two distinct ways: Indirectly through generating factor-binding phospho-epitopes on the CTD of elongating RNAPII and directly through binding to specific factors.
Collapse
Affiliation(s)
- Bartlomiej Bartkowiak
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Arno L Greenleaf
- From the Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
36
|
Bensaude O. Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity? Transcription 2014; 2:103-108. [PMID: 21922053 DOI: 10.4161/trns.2.3.16172] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/28/2011] [Indexed: 02/07/2023] Open
Abstract
This review first discusses ways in which we can evaluate transcription inhibition, describe changes in nuclear structure due to transcription inhibition, and report on genes that are paradoxically stimulated by transcription inhibition. Next, it summarizes the characteristics and mechanisms of commonly used inhibitors: α-amanitin is highly selective for RNAP II and RNAP III but its action is slow, actinomycin D is fast but its selectivity is poor, CDK9 inhibitors such as DRB and flavopiridol are fast and reversible but many genes escape transcription inhibition. New compounds, such as triptolide, are fast and selective and able to completely arrest transcription by triggering rapid degradation of RNAP II.
Collapse
|
37
|
Selective inhibition of CDK7 ameliorates experimental arthritis in mice. Clin Exp Med 2014; 15:269-75. [DOI: 10.1007/s10238-014-0305-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022]
|
38
|
Yik JHN, Hu Z, Kumari R, Christiansen BA, Haudenschild DR. Cyclin-dependent kinase 9 inhibition protects cartilage from the catabolic effects of proinflammatory cytokines. Arthritis Rheumatol 2014; 66:1537-46. [PMID: 24470357 DOI: 10.1002/art.38378] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/21/2014] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Cyclin-dependent kinase 9 (CDK-9) controls the activation of primary inflammatory response genes. The purpose of this study was to determine whether CDK-9 inhibition protects cartilage from the catabolic effects of proinflammatory cytokines. METHODS Human chondrocytes were challenged with different proinflammatory stimuli (interleukin-1β [IL-1β], lipopolysaccharides, and tumor necrosis factor α) in the presence or absence of either the CDK-9 inhibitor flavopiridol or small interfering RNA (siRNA). The expression of messenger RNA (mRNA) for inflammatory mediator genes, catabolic genes, and anabolic genes were determined by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Cartilage explants were incubated for 6 days with IL-1β in the presence or absence of flavopiridol. Cartilage matrix degradation was assessed by the release of glycosaminoglycan (GAG) and cleaved type II collagen (COL2A) peptides. RESULTS CDK-9 inhibition by flavopiridol or knockdown by siRNA effectively suppressed the induction of mRNA for inducible nitric oxide synthase by all 3 proinflammatory stimuli. Results from NF-κB-targeted PCR array analysis showed that flavopiridol suppressed IL-1β induction of a broad range of inflammatory mediator genes (59 of 67 tested). CDK-9 inhibition also suppressed the induction of catabolic genes (matrix metalloproteinase 1 [MMP-1], MMP-3, MMP-9, MMP-13, ADAMTS-4, and ADAMTS-5), but did not affect the basal expression of anabolic genes (COL2A, aggrecan, and cartilage oligomeric matrix protein) and housekeeping genes. Flavopiridol had no apparent short-term cytotoxicity, as assessed by G6PDH activity. Finally, in IL-1β-treated cartilage explants, flavopiridol reduced the release of the matrix degradation product GAG and cleaved COL2A peptides, but did not affect long-term chondrocyte viability. CONCLUSION CDK-9 activity is required for the primary inflammatory response in chondrocytes. Flavopiridol suppresses the induction of inflammatory mediator genes and catabolic genes to protect cartilage from the deleterious effects of proinflammatory cytokines, without affecting cell viability and functions.
Collapse
|
39
|
Han Y, Zhan Y, Hou G, Li L. Cyclin-dependent kinase 9 may as a novel target in downregulating the atherosclerosis inflammation (Review). Biomed Rep 2014; 2:775-779. [PMID: 25279144 DOI: 10.3892/br.2014.322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023] Open
Abstract
Inflammation is a key component of atherosclerosis. Genes coding for inflammatory or anti-inflammatory molecules are considered good candidates for estimating the risk of developing atherosclerosis. Cyclin-dependent kinase 9 (CDK9), the kinase of positive transcription elongation factor b (P-TEFb), is crucial in the cell cycle and apoptosis. Previous studies have focused on its inhibition of immune cells for the resolution of inflammation. Considering the effects of inflammation in the pathogenicity of atherosclerosis, decreasing inflammation through the inhibition of CDK9 may be useful for the prognosis of atherosclerosis. The aim of this review was to examine whether inhibition of the CDK9 monocyte may affect the process of inflammation by acting on the cytokine secretion and interacting with endothelial cells (ECs). Thus, CDK9 may be a novel target for the diagnosis and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Yeming Han
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yang Zhan
- Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guihua Hou
- Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Li Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
40
|
Garriga J, Graña X. CDK9 inhibition strategy defines distinct sets of target genes. BMC Res Notes 2014; 7:301. [PMID: 24886624 PMCID: PMC4045923 DOI: 10.1186/1756-0500-7-301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/08/2014] [Indexed: 12/02/2022] Open
Abstract
Background CDK9 is the catalytic subunit of the Positive Transcription Elongation Factor b (P-TEFb), which phosphorylates the CTD of RNAPII and negative elongation factors enabling for productive elongation after initiation. CDK9 associates with T-type cyclins and cyclin K and its activity is tightly regulated in cells at different levels. CDK9 is also the catalytic subunit of TAK (Tat activating Kinase), essential for HIV1 replication. Because of CDK9′s potential as a therapeutic target in AIDS, cancer, inflammation, and cardiomyophathy it is important to understand the consequences of CDK9 inhibition. A previous gene expression profiling study performed with human glioblastoma T98G cells in which CDK9 activity was inhibited either with a dominant negative mutant form of CDK9 (dnCDK9) or the pharmacological inhibitor Flavopiridol unveiled striking differences in gene expression effects. In the present report we extended these studies by (1) using both immortalized normal human fibroblasts and primary human astrocytes, (2) eliminating potential experimental variability due to transduction methodology and (3) also modulating CDK9 activity with siRNA. Findings Striking differences in the effects on gene expression resulting from the strategy used to inhibit CDK9 activity (dnCDK9 or FVP) remain even when potential variability due to viral transduction is eliminated. siRNA mediated CDK9 knockdown in human fibroblasts and astrocytes efficiently reduced CDK9 expression and led to potent changes in gene expression that exhibit little correlation with the effects of dnCDK9 or FVP. Interestingly, HEXIM1 a validated CDK9 target gene, was found to be potently downregulated by dnCDK9, FVP and siCDK9, but the cluster of genes with expression profiles similar to HEXIM1 was small. Finally, cluster analysis of all treatments revealed higher correlation between treatments than cell type origin. Conclusion The nature of the strategy used to inhibit CDK9 profoundly affects the patterns of gene expression resulting from CDK9 inhibition. These results suggest multiple variables that affect outcome, including kinetics of inhibition, potency, off-target effects, and selectivity issues. This is particularly important when considering CDK9 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology, AHP bldg,, room 308, 3307 North Broad St,, Philadelphia, PA 19140, USA.
| |
Collapse
|
41
|
Németh G, Greff Z, Sipos A, Varga Z, Székely R, Sebestyén M, Jászay Z, Béni S, Nemes Z, Pirat JL, Volle JN, Virieux D, Gyuris Á, Kelemenics K, Ay E, Minarovits J, Szathmary S, Kéri G, Orfi L. Synthesis and evaluation of phosphorus containing, specific CDK9/CycT1 inhibitors. J Med Chem 2014; 57:3939-65. [PMID: 24742150 DOI: 10.1021/jm401742r] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although there is a significant effort in the design of a selective CDK9/CycT1 inhibitor, no compound has been proven to be a specific inhibitor of this kinase so far. The aim of this research was to develop novel and selective phosphorus containing CDK9/CycT1 inhibitors. Molecules bearing phosphonamidate, phosphonate, and phosphinate moieties were synthesized. Prepared compounds were evaluated in an enzymatic CDK9/CycT1 assay. The most potent molecules were tested in cell-based toxicity and HIV proliferation assays. Selectivity of shortlisted compounds against CDKs and other kinases was tested. The best compound was shown to be a highly specific, ATP-competitive inhibitor of CDK9/CycT1 with antiviral activity.
Collapse
|
42
|
Kumara PM, Soujanya KN, Ravikanth G, Vasudeva R, Ganeshaiah KN, Shaanker RU. Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb).Wight & Arn. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:541-546. [PMID: 24215673 DOI: 10.1016/j.phymed.2013.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/05/2013] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
Rohitukine, a chromone alkaloid, has gained considerable international attention in recent years because of its novel semi-synthetic derivative, flavopiridol and P-276-00. Both these molecules are in advanced stages of clinical development and trial for cancer treatment. Recently, flavopiridol was approved as an orphan drug for treatment of chronic lymphocytic leukemia cancer. The natural occurrence of rohitukine is restricted to only four plant species, Amoora rohituka and Dysoxylum binectariferum (both from the Meliaceae family) and from Schumanniophyton magnificum and Schumanniophyton problematicum (both from the Rubiaceae family). Recently, an endophytic fungi isolated from D. binectariferum was reported to produce rohitukine in culture. In this study, we report the production of rohitukine and its subsequent attenuation by endophytic fungi, Fusarium oxysporum (MTCC-11383), Fusarium oxysporum (MTCC-11384) and Fusarium solani (MTCC-11385), all isolated from D. binectariferum and Gibberella fujikuroi (MTCC-11382) isolated from Amoora rohituka. The fungal rohitukine which was analyzed by HPLC, LC-MS and LC-MS/MS was identical to reference rohitukine and that produced by the plant. The rohitukine content in the mycelial samples ranged from 192.78μg to 359.55μg100g(-1) of dry weight of and in broth it ranged from 14.10 to 71.90μg100ml(-1). In all the fungal cultures, the production declined from first to fourth sub-culture. Studies are underway to unravel the mechanism by which the fungi produce the host metabolite in culture.
Collapse
Affiliation(s)
- P Mohana Kumara
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore 560065, India; Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - K N Soujanya
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - G Ravikanth
- Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur PO, Bangalore 560064, India
| | - R Vasudeva
- Department of Forest Biology and Tree Improvement, College of Forestry, Sirsi 581401, India
| | - K N Ganeshaiah
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore 560065, India; Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur PO, Bangalore 560064, India; Department of Forestry and Environmental Sciences, University of Agricultural Sciences, GKVK Campus, Bangalore 560065, India
| | - R Uma Shaanker
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore 560065, India; Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065, India; Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur PO, Bangalore 560064, India.
| |
Collapse
|
43
|
Tanigawa N, Hagiwara M, Tada H, Komatsu T, Sugiura S, Kobayashi K, Kato Y, Ishida N, Nishida K, Ninomiya M, Koketsu M, Matsushita K. Acacetin inhibits expression of E-selectin on endothelial cells through regulation of the MAP kinase signaling pathway and activation of NF-κB. Immunopharmacol Immunotoxicol 2013; 35:471-7. [DOI: 10.3109/08923973.2013.811596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Burger K, Mühl B, Rohrmoser M, Coordes B, Heidemann M, Kellner M, Gruber-Eber A, Heissmeyer V, Strässer K, Eick D. Cyclin-dependent kinase 9 links RNA polymerase II transcription to processing of ribosomal RNA. J Biol Chem 2013; 288:21173-21183. [PMID: 23744076 DOI: 10.1074/jbc.m113.483719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3' extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3' processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3' rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing.
Collapse
Affiliation(s)
- Kaspar Burger
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Bastian Mühl
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Michaela Rohrmoser
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Britta Coordes
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany, and
| | - Martin Heidemann
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Markus Kellner
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Anita Gruber-Eber
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Vigo Heissmeyer
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Katja Strässer
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany, and
| | - Dirk Eick
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany,.
| |
Collapse
|
45
|
Tian B, Zhao Y, Kalita M, Edeh CB, Paessler S, Casola A, Teng MN, Garofalo RP, Brasier AR. CDK9-dependent transcriptional elongation in the innate interferon-stimulated gene response to respiratory syncytial virus infection in airway epithelial cells. J Virol 2013; 87:7075-92. [PMID: 23596302 PMCID: PMC3676079 DOI: 10.1128/jvi.03399-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/08/2013] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections. During infection, the presence of double-stranded RNA (dsRNA) activates the interferon (IFN) regulatory factor 3 (IRF3) transcription factor, an event triggering expression of immediate early, IFN-stimulated genes (ISGs). We examine the role of transcriptional elongation in control of IRF3-dependent ISG expression. RSV infection induces ISG54, ISG56, and CIG5 gene expression in an IRF3-dependent manner demonstrated by IRF3 small interfering RNA (siRNA) silencing in both A549 epithelial cells and IRF3(-/-) MEFs. ISG expression was mediated by the recruitment of IRF3, CDK9, polymerase II (Pol II), and phospho-Ser(2) carboxy-terminal domain (CTD) Pol II to the IFN-stimulated response element (ISRE) binding sites of the IRF3-dependent ISG promoters in native chromatin. We find that RSV infection enhances the activated fraction of cyclin-dependent kinase 9 (CDK9) by promoting its association with bromodomain 4 (BRD4) and disrupting its association with the inhibitory 7SK small nuclear RNA. The requirement of CDK9 activity for ISG expression was shown by siRNA-mediated silencing of CDK9 and by a selective CDK9 inhibitor in A549 cells. In contrast, RSV-induced beta interferon (IFN-β) expression is not influenced by CDK9 inhibition. Using transcript-selective quantitative real-time reverse transcription-PCR (Q-RT-PCR) assays for the ISG54 gene, we observed that RSV induces transition from short to fully spliced mRNA transcripts and that this transition is blocked by CDK9 inhibition in both A549 and primary human small airway epithelial cells. These data indicate that transcription elongation plays a major role in RSV-induced ISG expression and is mediated by IRF3-dependent recruitment of activated CDK9. CDK9 activity may be a target for immunomodulation in RSV-induced lung disease.
Collapse
Affiliation(s)
| | - Yingxin Zhao
- Department of Internal Medicine,
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
| | | | | | | | - Antonella Casola
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
- Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael N. Teng
- Joy McCann Culverhouse Airway Disease Research Center, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Roberto P. Garofalo
- Institute for Translational Sciences,
- Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Allan R. Brasier
- Department of Internal Medicine,
- Institute for Translational Sciences,
- Sealy Center for Molecular Medicine,
| |
Collapse
|
46
|
Abstract
Enzymes are key molecules in signal-transduction pathways. However, only a small fraction of more than 500 human kinases, 300 human proteases and 200 human phosphatases is characterised so far. Peptide microarray based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimisation of enzyme substrates. Focus of this review is on assay principles for measuring activities of kinases, phosphatases or proteases and on substrate identification/optimisation for kinases. Additionally, several examples for reliable identification of substrates for lysine methyl-transferases, histone deacetylases and SUMO-transferases are given. Finally, use of high-density peptide microarrays for the simultaneous profiling of kinase activities in complex biological samples like cell lysates or lysates of complete organisms is described. All published examples of peptide arrays used for enzyme profiling are summarised comprehensively.
Collapse
|