1
|
Zeng T, Lei GL, Yu ML, Zhang TY, Wang ZB, Wang SZ. The role and mechanism of various trace elements in atherosclerosis. Int Immunopharmacol 2024; 142:113188. [PMID: 39326296 DOI: 10.1016/j.intimp.2024.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a slow and complex disease that involves various factors, including lipid metabolism disorders, oxygen-free radical production, inflammatory cell infiltration, platelet adhesion and aggregation, and local thrombosis. Trace elements play a crucial role in human health. Many trace elements, especially metallic ones, not only maintain the normal functions of organs but also participate in basic metabolic processes. The latest studies have revealed a close correlation between trace elements and the occurrence and progression of atherosclerosis. The imbalance of these trace elements can induce atherosclerosis or accelerate its progression through various mechanisms, which poses a significant threat to human health. Therefore, exploring the specific mechanism of trace elements on atherosclerosis is highly significant. In this review, we summarized the roles and mechanisms of iron, copper, zinc, magnesium, and selenium homeostasis and imbalance in atherosclerosis development, in order to identify novel targets and therapeutic strategies for treating atherosclerosis.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guan-Lan Lei
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Mei-Ling Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Ting-Yu Zhang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Ryba-Stanisławowska M, Słomiński B, Myśliwiec M. Association of KLF14 rs4731702 gene polymorphism with metabolic phenotype in young patients with type 1 diabetes. Diabetes Obes Metab 2024; 26:3663-3672. [PMID: 38894632 DOI: 10.1111/dom.15707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
AIM To explore the potential association between the KLF14 rs4731702 polymorphism and metabolic syndrome traits among patients diagnosed with type 1 diabetes (T1D). METHODS The study group included 350 patients with T1D and 250 healthy control subjects. The analysis focused on the genotyping of KLF14 rs4731702 single nucleotide polymorphism (SNP), as well as evaluating serum concentrations of inflammatory markers, blood pressure, lipid profiles, and the quantitative status of CD4 + CD25highFOXP3+ T cells. RESULTS Patients with T1D carrying the T allele of KLF14 rs4731702 SNP had higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, as well as lower glycated haemoglobin and serum concentration of proinflammatory markers than C allele carriers. They also developed hypertension less often than carriers of the C allele. The analysis of CD4 + CD25highFOXP3+ regulatory T-cell status based on KLF14 genotype showed that, in T1D patients, those with the TT genotype had the highest frequency of these cells compared to carriers of the CC and CT genotypes. CONCLUSION Our study suggests that the T allele of the KLF14 rs4731702 SNP might confer a protective effect against the development of obesity, hypertension, dyslipidaemia, and chronic inflammatory state in patients diagnosed with T1D.
Collapse
Affiliation(s)
| | - Bartosz Słomiński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Chair & Clinics of Paediatrics, Diabetology and Endocrinology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
3
|
Serikbaeva A, Li Y, Ma S, Yi D, Kazlauskas A. Resilience to diabetic retinopathy. Prog Retin Eye Res 2024; 101:101271. [PMID: 38740254 PMCID: PMC11262066 DOI: 10.1016/j.preteyeres.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes (DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, and its deterioration results in progressive accumulation of retinal damage. The concepts that co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities within the DR field. Identification of biomarkers and mediators of protection from DM-mediated damage will enable development of resilience-based therapies that will indefinitely delay the onset of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Simon Ma
- Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Darvin Yi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Xing Z, Du M, Zhen Y, Chen J, Li D, Liu R, Zheng J. LETMD1, a target of KLF4, hinders endothelial inflammation and pyroptosis: A protective mechanism in the pathogenesis of atherosclerosis. Cell Signal 2023; 112:110907. [PMID: 37769890 DOI: 10.1016/j.cellsig.2023.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Atherosclerosis (AS), a metabolic disorder, is usually caused by chronic inflammation. LETM1 Domain-Containing Protein 1 (LETMD1) is a mitochondrial outer membrane protein required for mitochondrial structure. This study aims to evaluate the functional role of LETMD1 in endothelial pathogenesis of AS. Oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) and high-fat diet apolipoprotein E-deficient (ApoE-/-) mice were used to establish in vitro and in vivo models, respectively. Recombinant adenovirus vectors were constructed to investigate the role of LETMD1 in AS. mRNA sequencing was used to explore the effect of LETMD1 overexpression on gene expression in ox-LDL-induced HUVECs. A dual-luciferase reporting assay and chromatin immunoprecipitation (ChIP)-PCR were further conducted to verify the relationship between KLF4 and LETMD1. Results showed that LETMD1 was highly expressed in the aortas of atherosclerotic animals. LETMD1 overexpression reduced the expression of inflammatory factors, pyroptosis, ROS production, and NF-κB activation in ox-LDL-induced HUVECs, whereas LETMD1 knockdown had the opposite impact. LETMD1 overexpression was involved in regulating gene expression in ox-LDL-induced HUVECs. Overexpression of LETMD1 in mice reduced serum lipid levels as well as atherosclerotic lesions in the aortic roots. Furthermore, LETMD1 overexpression suppressed inflammatory reactions, cell pyroptosis, nuclear p65 protein level, cell apoptosis, and ROS generation in the aortas of AS mice. KLF4 (Krüppel-like factor 4) was found to be the transcriptional regulator of LETMD1. In conclusion, LETMD1, a target of KLF4, hinders endothelial inflammation and pyroptosis, which is a mechanism inhibiting the development of atherosclerosis.
Collapse
Affiliation(s)
- Zeyu Xing
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Yanhua Zhen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Jie Chen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Dongdong Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Ruyin Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China..
| |
Collapse
|
5
|
Luca AC, David SG, David AG, Țarcă V, Pădureț IA, Mîndru DE, Roșu ST, Roșu EV, Adumitrăchioaiei H, Bernic J, Cojocaru E, Țarcă E. Atherosclerosis from Newborn to Adult-Epidemiology, Pathological Aspects, and Risk Factors. Life (Basel) 2023; 13:2056. [PMID: 37895437 PMCID: PMC10608492 DOI: 10.3390/life13102056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity throughout the world, accounting for 16.7 million deaths each year. The underlying pathological process for the majority of cardiovascular diseases is atherosclerosis, a slowly progressing, multifocal, chronic, immune-inflammatory disease that involves the intima of large and medium-sized arteries. The process of atherosclerosis begins in childhood as fatty streaks-an accumulation of lipids, inflammatory cells, and smooth muscle cells in the arterial wall. Over time, a more complex lesion develops into an atheroma and characteristic fibrous plaques. Atherosclerosis alone is rarely fatal; it is the further changes that render fibrous plaques vulnerable to rupture; plaque rupture represents the most common cause of coronary thrombosis. The prevalence of atherosclerosis is increasing worldwide and more than 50% of people with circulatory disease die of it, mostly in modern societies. Epidemiological studies have revealed several environmental and genetic risk factors that are associated with the early formation of a pathogenic foundation for atherosclerosis, such as dyslipidemia, hypertension, diabetes mellitus, obesity, and smoking. The purpose of this review is to bring together the current information concerning the origin and progression of atherosclerosis in childhood as well as the identification of known risk factors for atherosclerotic cardiovascular disease in children.
Collapse
Affiliation(s)
- Alina Costina Luca
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Simona Georgiana David
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Alexandru Gabriel David
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Viorel Țarcă
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana-Alexandra Pădureț
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Dana Elena Mîndru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Solange Tamara Roșu
- Nursing Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Eduard Vasile Roșu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.C.L.); (D.E.M.); (E.V.R.)
| | - Heidrun Adumitrăchioaiei
- Saint Mary Emergency Hospital for Children, 700309 Iasi, Romania; (S.G.D.); (A.G.D.); (I.-A.P.); (H.A.)
| | - Jana Bernic
- Discipline of Pediatric Surgery, “Nicolae Testemițanu” State University of Medicine and Pharmacy, 2025 Chisinau, Moldova;
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- Surgery II Department—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
6
|
Parente A, Flores Carvalho M, Schlegel A. Endothelial Cells and Mitochondria: Two Key Players in Liver Transplantation. Int J Mol Sci 2023; 24:10091. [PMID: 37373238 DOI: 10.3390/ijms241210091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Building the inner layer of our blood vessels, the endothelium forms an important line communicating with deeper parenchymal cells in our organs. Previously considered passive, endothelial cells are increasingly recognized as key players in intercellular crosstalk, vascular homeostasis, and blood fluidity. Comparable to other cells, their metabolic function strongly depends on mitochondrial health, and the response to flow changes observed in endothelial cells is linked to their mitochondrial metabolism. Despite the direct impact of new dynamic preservation concepts in organ transplantation, the impact of different perfusion conditions on sinusoidal endothelial cells is not yet explored well enough. This article therefore describes the key role of liver sinusoidal endothelial cells (LSECs) together with their mitochondrial function in the context of liver transplantation. The currently available ex situ machine perfusion strategies are described with their effect on LSEC health. Specific perfusion conditions, including perfusion pressure, duration, and perfusate oxygenation are critically discussed considering the metabolic function and integrity of liver endothelial cells and their mitochondria.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | | | - Andrea Schlegel
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Chen X, Shi W, Zhu L, Zhou X, Wang Y. Mammalian cleavage factor 25 targets KLF14 to inhibit hepatic stellate cell activation and liver fibrosis. Cell Signal 2023:110752. [PMID: 37295703 DOI: 10.1016/j.cellsig.2023.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Liver fibrosis is primarily caused by the activation of hepatic stellate cells (HSCs), which results from chronic liver damage. Understanding the pathogenesis of HSC activation could identify new therapeutic targets to treat liver fibrosis. In this study, we examined the protective role of the mammalian cleavage factor I 25 kD subunit (CFIm25, NUDT21) in inhibiting hepatic stellate cell activation. CFIm25 expression was measured in liver cirrhosis patients and a CCl4-induced mouse model. Adeno-associated viruses and adenoviruses were used to alter hepatic CFIm25 expression in vivo and in vitro to investigate how CFIm25 functions in liver fibrosis. The underlying mechanisms were explored using RNA-seq and co-IP assays. Here, we found that CFIm25 expression was drastically decreased in activated murine HSCs and fibrotic liver tissues. CFIm25 overexpression downregulated the expression of genes involved in liver fibrosis, inhibiting the progression of HSC activation, migration and proliferation. These effects resulted from direct activation of the KLF14/PPARγ signaling axis. KLF14 inhibition abrogated the CFIm25 overexpression-mediated reduction in antifibrotic effects. These data reveal that hepatic CFIm25 regulates HSC activation through the KLF14/PPARγ pathway as liver fibrosis progresses. CFIm25 may be a novel therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China; The State Key Laboratory of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojiang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunwu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Chandran M, S S, Abhirami, Chandran A, Jaleel A, Plakkal Ayyappan J. Defining atherosclerotic plaque biology by mass spectrometry-based omics approaches. Mol Omics 2023; 19:6-26. [PMID: 36426765 DOI: 10.1039/d2mo00260d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atherosclerosis is the principal cause of vascular diseases and one of the leading causes of worldwide death. Even though several insights into its natural course, risk factors and interventions have been identified, it is still an ongoing global pandemic. Since the structure and biochemical composition of the plaques show high heterogeneity, a comprehensive understanding of the intraplaque composition, its microenvironment, and the mechanisms of the progression and instability across different vascular beds at their progression stages is crucial for better risk stratification and treatment modalities. Even though several cell-based studies, animal studies, and extensive multicentric population studies have been conducted concerning cardiovascular diseases for assessing the risk factors and plaque biology, the studies on human clinical samples are very limited. New novel approaches utilize samples from percutaneous coronary interventions, which could possibly gain more access to clinical samples at different stages of the diseases without complex invasive resections. As an emerging technological platform in disease discovery research, mass spectrometry-based omics technologies offer capabilities for a comprehensive understanding of the mechanisms linked to several vascular diseases. Here, we discuss the cellular and molecular processes of atherosclerosis, different mass spectrometry-based omics approaches, and the studies mostly done on clinical samples of atheroma plaque using mass spectrometry-based proteomics, metabolomics and lipidomics approaches.
Collapse
Affiliation(s)
- Mahesh Chandran
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India. .,Department of Biotechnology, University of Kerala, Thiruvananthapuram 695034, Kerala, India.,Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695012, India
| | - Sudhina S
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India.
| | - Abhirami
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India.
| | - Akash Chandran
- Department of Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram-695581, Kerala, India
| | - Abdul Jaleel
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695012, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India. .,Department of Biotechnology, University of Kerala, Thiruvananthapuram 695034, Kerala, India.,Department of Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram-695581, Kerala, India.,Centre for Advanced Cancer Research, Department of Biochemistry, University of Kerala, Thiruvananthapuram 695034, Kerala, India
| |
Collapse
|
9
|
Li Y, Chen L, Li Y, Yang C, Gui B, Li Y, Liao L, Zhu Z, Huang R, Wang Y. Krüppel-like factor 2a (KLF2A) suppresses GCRV replication by upregulating serpinc1 expression in Ctenopharyngodon idellus kidney (CIK) cells. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1118-1124. [PMID: 36400369 DOI: 10.1016/j.fsi.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Krüppel-like factor 2a (KLF2A), a transcription factor of the krüppel-like family, is involved in regulating the immune molecules and is associated with viral infection. However, the function of KLF2A during viral infections in fish remains unclear. In this study, grass carp (Ctenopharyngodon idellus) was used to predict the target genes regulated by KLF2A. The results showed that the candidate target genes included four members of the serpin gene family (serpinb1l2, serpinc1, serpinh1a, and serpinh1b). Dual-luciferase experiments showed that klf2a positively regulates serpinc1 expression. Dose-dependent klf2a overexpression in C. idellus kidney (CIK) cells significantly upregulated the expression of serpinc1. Overexpressing klf2a or serpinc1 in CIK cells activated interferon responses and suppressed grass carp reovirus (GCRV) replication. Klf2a and serpinc1 co-expression inhibited GCRV replication. These results show that klf2a upregulates serpinc1 mRNA expression, promotes type 1 interferon responses, and suppresses GCRV infection. This study provides insights into the regulatory role and biological functions of KLF2A in host-virus interactions in fish.
Collapse
Affiliation(s)
- Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bin Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Zhou C, Sun P, Hamblin MH, Yin KJ. Genetic deletion of Krüppel-like factor 11 aggravates traumatic brain injury. J Neuroinflammation 2022; 19:281. [PMID: 36403074 PMCID: PMC9675068 DOI: 10.1186/s12974-022-02638-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The long-term functional recovery of traumatic brain injury (TBI) is hampered by pathological events, such as parenchymal neuroinflammation, neuronal death, and white matter injury. Krüppel-like transcription factor 11 (KLF 11) belongs to the zinc finger family of transcription factors and actively participates in various pathophysiological processes in neurological disorders. Up to now, the role and molecular mechanisms of KLF11 in regulating the pathogenesis of brain trauma is poorly understood. METHODS KLF11 knockout (KO) and wild-type (WT) mice were subjected to experimental TBI, and sensorimotor and cognitive functions were evaluated by rotarod, adhesive tape removal, foot fault, water maze, and passive avoidance tests. Brain tissue loss/neuronal death was examined by MAP2 and NeuN immunostaining, and Cresyl violet staining. White matter injury was assessed by Luxol fast blue staining, and also MBP/SMI32 and Caspr/Nav1.6 immunostaining. Activation of cerebral glial cells and infiltration of blood-borne immune cells were detected by GFAP, Iba-1/CD16/32, Iba-1/CD206, Ly-6B, and F4/80 immunostaining. Brian parenchymal inflammatory cytokines were measured with inflammatory array kits. RESULTS Genetic deletion of KLF11 worsened brain trauma-induced sensorimotor and cognitive deficits, brain tissue loss and neuronal death, and white matter injury in mice. KLF11 genetic deficiency in mice also accelerated post-trauma astrocytic activation, promoted microglial polarization to a pro-inflammatory phenotype, and increased the infiltration of peripheral neutrophils and macrophages into the brain parenchyma. Mechanistically, loss-of-KLF11 function was found to directly increase the expression of pro-inflammatory cytokines in the brains of TBI mice. CONCLUSION KLF11 acts as a novel protective factor in TBI. KLF11 genetic deficiency in mice aggravated the neuroinflammatory responses, grey and white matter injury, and impaired long-term sensorimotor and cognitive recovery. Elucidating the functional importance of KLF11 in TBI may lead us to discover novel pharmacological targets for the development of effective therapies against brain trauma.
Collapse
Affiliation(s)
- Chao Zhou
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Ping Sun
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
- Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Milton H Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA, 70112, USA
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Ke-Jie Yin
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
- Department of Neurology, School of Medicine, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
van der Vorst EPC, Lecour S. Finding the culprit for the failure of the immune clock as time goes by. Cardiovasc Res 2022; 118:e88-e90. [PMID: 36065125 DOI: 10.1093/cvr/cvac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emiel P C van der Vorst
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Sandrine Lecour
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, South Africa
| |
Collapse
|
12
|
Iarovaia OV, Ulianov SV, Ioudinkova ES, Razin SV. Segregation of α- and β-Globin Gene Cluster in Vertebrate Evolution: Chance or Necessity? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1035-1049. [PMID: 36180994 DOI: 10.1134/s0006297922090140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The review is devoted to the patterns of evolution of α- and β-globin gene domains. A hypothesis is presented according to which segregation of the ancestral cluster of α/β-globin genes in Amniota occurred due to the performance by α-globins and β-globins of non-canonical functions not related to oxygen transport.
Collapse
Affiliation(s)
- Olga V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Elena S Ioudinkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
13
|
Coon BG, Timalsina S, Astone M, Zhuang ZW, Fang J, Han J, Themen J, Chung M, Yang-Klingler YJ, Jain M, Hirschi KK, Yamamato A, Trudeau LE, Santoro M, Schwartz MA. A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells. J Cell Biol 2022; 221:e202109144. [PMID: 35695893 PMCID: PMC9198948 DOI: 10.1083/jcb.202109144] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2. Subsequent mechanistic investigation revealed that LSS induces Klf2 via activation of both a MEKK2/3-MEK5-ERK5 kinase module and mitochondrial metabolism. Mitochondrial calcium and ROS signaling regulate assembly of a mitophagy- and p62-dependent scaffolding complex that amplifies MEKK-MEK5-ERK5 signaling. Blocking the mitochondrial pathway in vivo reduces expression of KLF2-dependent genes such as eNOS and inhibits vascular remodeling. Failure to activate the mitochondrial pathway limits Klf2 expression in regions of disturbed flow. This work thus defines a connection between metabolism and vascular inflammation that provides a new framework for understanding and developing treatments for vascular disease.
Collapse
Affiliation(s)
- Brian G. Coon
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Matteo Astone
- Department of Biology, University of Padua, Padua, Italy
| | - Zhen W. Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Jennifer Fang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Jinah Han
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Jurgen Themen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | | | - Mukesh Jain
- Department of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH
| | - Karen K. Hirschi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
| | - Ai Yamamato
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, CNS Research Group, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT
- Department of Cell Biology, Yale University, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT
| |
Collapse
|
14
|
Kant S, Tran KV, Kvandova M, Caliz AD, Yoo HJ, Learnard H, Dolan AC, Craige SM, Hall JD, Jiménez JM, St. Hilaire C, Schulz E, Kröller-Schön S, Keaney JF. PGC1α Regulates the Endothelial Response to Fluid Shear Stress via Telomerase Reverse Transcriptase Control of Heme Oxygenase-1. Arterioscler Thromb Vasc Biol 2022; 42:19-34. [PMID: 34789002 PMCID: PMC8702461 DOI: 10.1161/atvbaha.121.317066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Fluid shear stress (FSS) is known to mediate multiple phenotypic changes in the endothelium. Laminar FSS (undisturbed flow) is known to promote endothelial alignment to flow, which is key to stabilizing the endothelium and rendering it resistant to atherosclerosis and thrombosis. The molecular pathways responsible for endothelial responses to FSS are only partially understood. In this study, we determine the role of PGC1α (peroxisome proliferator gamma coactivator-1α)-TERT (telomerase reverse transcriptase)-HMOX1 (heme oxygenase-1) during shear stress in vitro and in vivo. Approach and Results: Here, we have identified PGC1α as a flow-responsive gene required for endothelial flow alignment in vitro and in vivo. Compared with oscillatory FSS (disturbed flow) or static conditions, laminar FSS (undisturbed flow) showed increased PGC1α expression and its transcriptional coactivation. PGC1α was required for laminar FSS-induced expression of TERT in vitro and in vivo via its association with ERRα(estrogen-related receptor alpha) and KLF (Kruppel-like factor)-4 on the TERT promoter. We found that TERT inhibition attenuated endothelial flow alignment, elongation, and nuclear polarization in response to laminar FSS in vitro and in vivo. Among the flow-responsive genes sensitive to TERT status, HMOX1 was required for endothelial alignment to laminar FSS. CONCLUSIONS These data suggest an important role for a PGC1α-TERT-HMOX1 axis in the endothelial stabilization response to laminar FSS.
Collapse
Affiliation(s)
- Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Equal contribution
| | - Khanh-Van Tran
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
- Equal contribution
| | - Miroslava Kvandova
- Department of Cardiology, University Medical Center, Mainz, Germany
- Equal contribution
| | - Amada D. Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Hyung-Jin Yoo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Heather Learnard
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Ana C. Dolan
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Siobhan M. Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blackburg, VA 24061
| | - Joshua D. Hall
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Cynthia St. Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
| | - Eberhard Schulz
- Department of Cardiology, Allgemeines Krankenhaus, Celle, Germany
| | | | - John F. Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
Jiang L, Sun X, Deng J, Hu Y, Xu Q. Different Roles of Stem/Progenitor Cells in Vascular Remodeling. Antioxid Redox Signal 2021; 35:192-203. [PMID: 33107320 DOI: 10.1089/ars.2020.8199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Since the discovery of vascular stem cells, there has been considerable advancement in comprehending the nature and functions of these cells. Due to their differentiation potential to repair endothelial cells and to participate in lesion formation during vascular remodeling, it is crucial to elucidate vascular stem cell behaviors and the mechanisms underlying this process, which could provide new chances for the design of clinical therapeutic application of stem cells. Recent Advances: Over the past decades, major progress has been made on progenitor/vascular stem cells in the field of cardiovascular research. Vascular stem cells are mostly latent in their niches and can be bioactivated in response to damage and get involved in endothelial repair and smooth muscle cell aggregation to generate neointima. Accumulating evidence has been shown recently, using genetic lineage tracing mouse models, to particularly provide solutions to the nature of vascular stem cells and to monitor both cell migration and the process of differentiation during physiological angiogenesis and in vascular diseases. Critical Issues: This article reviews and summarizes the current research progress of vascular stem cells in this field and highlights future prospects for stem cell research in regenerative medicine. Future Directions: Despite recent advances and achievements of stem cells in cardiovascular research, the nature and cell fate of vascular stem cells remain elusive. Further comprehensive studies using new techniques including genetic cell lineage tracing and single-cell RNA sequencing are essential to fully illuminate the role of stem cells in vascular development and diseases. Antioxid. Redox Signal. 35, 192-203.
Collapse
Affiliation(s)
- Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolei Sun
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiacheng Deng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Paudel R, Fusi L, Schmidt M. The MEK5/ERK5 Pathway in Health and Disease. Int J Mol Sci 2021; 22:ijms22147594. [PMID: 34299213 PMCID: PMC8303459 DOI: 10.3390/ijms22147594] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway.
Collapse
|
17
|
Chen L, Huang R, Li Y, Li Y, Li Y, Liao L, He L, Zhu Z, Wang Y. Genome-wide identification, evolution of Krüppel-like factors (klfs) and their expressions during GCRV challenge in grass carp (Ctenopharyngodonidella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104062. [PMID: 33667530 DOI: 10.1016/j.dci.2021.104062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The Krüppel-like factors (KLFs) are a family of transcription factors containing three highly conserved tandem zinc finger structures, and each member participates in multiple physiological and pathological processes. The publication of genome sequences and the application of bioinformatics tools have led to the discovery of numerous gene families in fishes. Here, 24 klf genes were re-annotated in grass carp. Subsequently, the number of klf family members were investigated in some representative vertebrate species. Then, a series of bioinformatics analysis showed that grass carp klfs in the same subfamily had similar genome structure patterns and conserved distribution patterns of motifs, which supported their molecular evolutionary relationships. Furthermore, the mRNA expression profiles showed that 24 grass carp klfs were ubiquitously expressed in 11 different tissues, and some of them displayed tissue-enriched expression patterns. Finally, the expressions of the evolutionarily expanded klf members (klf2a, 2b, 2l, 5a, 5b, 5l, 6a, 6b, 7a, 7b, 11a, 11b, 12a, 12b, 15 and 15l) during GCRV infection were also analyzed. The results suggested that grass carp klf genes with common evolutionary sources may share functional diversity and conservation. In conclusion, this study provides preliminary clues for further researches on grass carp klf members and their underlying transcriptional regulatory mechanisms during GCRV infection.
Collapse
Affiliation(s)
- Liangming Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
18
|
Chrysin boosts KLF2 expression through suppression of endothelial cell-derived exosomal microRNA-92a in the model of atheroprotection. Eur J Nutr 2021; 60:4345-4355. [PMID: 34041583 DOI: 10.1007/s00394-021-02593-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Atherosclerosis and its related clinical complications are the leading cause of death. MicroRNA (miR)-92a in the inflammatory endothelial dysfunction leads to atherosclerosis. Krüppel-like factor 2 (KLF2) is required for vascular integrity and endothelial function maintenance. Flavonoids possess many biological properties. This study investigated the vascular protective effects of chrysin in balloon-injured carotid arteries. MATERIALS AND METHODS Exosomes were extracted from human coronary artery endothelial cell (HCAEC) culture media. Herb flavonoids and chrysin were the treatments in these atheroprotective models. Western blotting and real-time PCRs were performed. In situ hybridization, immunohistochemistry, and immunofluorescence analyses were employed. RESULTS MiR-92a increased after balloon injury and was present in HCAEC culture media. Chrysin was treated, and significantly attenuated the miR-92a levels after balloon injury, and similar results were obtained in HCAEC cultures in vitro. Balloon injury-induced miR-92a expression, and attenuated KLF2 expression. Chrysin increased the KLF2 but reduced exosomal miR-92a secretion. The addition of chrysin and antagomir-92a, neointimal formation was reduced by 44.8 and 49.0% compared with balloon injury after 14 days, respectively. CONCLUSION Chrysin upregulated KLF2 expression in atheroprotection and attenuated endothelial cell-derived miR-92a-containing exosomes. The suppressive effect of miR-92a suggests that chrysin plays an atheroprotective role. Proposed pathway for human coronary artery endothelial cell (HCAEC)-derived exosomes induced by chrysin to suppress microRNA (miR)-92a expression and counteract the inhibitory effect of miR-92a on KLF2 expression in HCAECs. This provides an outline of the critical role of the herbal flavonoid chrysin, which may serve as a valuable therapeutic supplement for atheroprotection.
Collapse
|
19
|
Psefteli PM, Kitscha P, Vizcay G, Fleck R, Chapple SJ, Mann GE, Fowler M, Siow RC. Glycocalyx sialic acids regulate Nrf2-mediated signaling by fluid shear stress in human endothelial cells. Redox Biol 2021; 38:101816. [PMID: 33340902 PMCID: PMC7750408 DOI: 10.1016/j.redox.2020.101816] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is critical for vascular endothelial redox homeostasis in regions of high, unidirectional shear stress (USS), however the underlying mechanosensitive mediators are not fully understood. The endothelial glycocalyx is disrupted in arterial areas exposed to disturbed blood flow that also exhibit enhanced oxidative stress leading to atherogenesis. We investigated the contribution of glycocalyx sialic acids (SIA) to Nrf2 signaling in human endothelial cells (EC) exposed to atheroprotective USS or atherogenic low oscillatory shear stress (OSS). Cells exposed to USS exhibited a thicker glycocalyx and enhanced turnover of SIA which was reduced in cells cultured under OSS. Physiological USS, but not disturbed OSS, enhanced Nrf2-mediated expression of antioxidant enzymes, which was attenuated following SIA cleavage with exogenous neuraminidase. SIA removal disrupted kinase signaling involved in the nuclear accumulation of Nrf2 elicited by USS and promoted mitochondrial reactive oxygen species accumulation. Notably, knockdown of the endogenous sialidase NEU1 potentiated Nrf2 target gene expression, directly implicating SIA in regulation of Nrf2 signaling by USS. In the absence of SIA, deficits in Nrf2 responses to physiological flow were also associated with a pro-inflammatory EC phenotype. This study demonstrates that the glycocalyx modulates endothelial redox state in response to shear stress and provides the first evidence of an atheroprotective synergism between SIA and Nrf2 antioxidant signaling. The endothelial glycocalyx therefore represents a potential therapeutic target against EC dysfunction in cardiovascular disease and redox dyshomeostasis in ageing.
Collapse
Affiliation(s)
- Paraskevi-Maria Psefteli
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, United Kingdom
| | - Phoebe Kitscha
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, United Kingdom
| | - Gema Vizcay
- Centre for Ultrastructural Imaging, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Roland Fleck
- Centre for Ultrastructural Imaging, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Sarah J Chapple
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, United Kingdom
| | - Mark Fowler
- Strategic Science Group, Unilever R&D, Colworth Science Park, Bedford, MK44 1LQ, United Kingdom
| | - Richard C Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, United Kingdom.
| |
Collapse
|
20
|
Roche-Molina M, Hardwick B, Sanchez-Ramos C, Sanz-Rosa D, Gewert D, Cruz FM, Gonzalez-Guerra A, Andres V, Palma JA, Ibanez B, Mckenzie G, Bernal JA. The pharmaceutical solvent N-methyl-2-pyrollidone (NMP) attenuates inflammation through Krüppel-like factor 2 activation to reduce atherogenesis. Sci Rep 2020; 10:11636. [PMID: 32669659 PMCID: PMC7363918 DOI: 10.1038/s41598-020-68350-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022] Open
Abstract
N-methyl-2-pyrrolidone (NMP) is a versatile water-miscible polar aprotic solvent. It is used as a drug solubilizer and penetration enhancer in human and animal, yet its bioactivity properties remain elusive. Here, we report that NMP is a bioactive anti-inflammatory compound well tolerated in vivo, that shows efficacy in reducing disease in a mouse model of atherosclerosis. Mechanistically, NMP increases the expression of the transcription factor Kruppel-like factor 2 (KLF2). Monocytes and endothelial cells treated with NMP express increased levels of KLF2, produce less pro-inflammatory cytokines and adhesion molecules. We found that NMP attenuates monocyte adhesion to endothelial cells inflamed with tumor necrosis factor alpha (TNF-α) by reducing expression of adhesion molecules. We further show using KLF2 shRNA that the inhibitory effect of NMP on endothelial inflammation and subsequent monocyte adhesion is KLF2 dependent. Enhancing KLF2 expression and activity improves endothelial function, controls multiple genes critical for inflammation, and prevents atherosclerosis. Our findings demonstrate a consistent effect of NMP upon KLF2 activation and inflammation, biological processes central to atherogenesis. Our data suggest that inclusion of bioactive solvent NMP in pharmaceutical compositions to treat inflammatory disorders might be beneficial and safe, in particular to treat diseases of the vascular system, such as atherosclerosis.
Collapse
Affiliation(s)
- Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain
| | - Bryn Hardwick
- MRC Cancer Unit At the University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Hills Road, Cambridge, CB2 0XZ, UK
| | - Cristina Sanchez-Ramos
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain.,CIBERCV, Madrid, Spain.,Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Dirk Gewert
- DG Bioconsult Ltd, 50 Gilbert Road, Cambridge, CB4 3PE, UK
| | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain
| | - Andres Gonzalez-Guerra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain
| | - Vicente Andres
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain.,CIBERCV, Madrid, Spain
| | - Joaquin A Palma
- Department of Development, Grupo STIG, Velázquez 11, 28001, Madrid, CP, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain.,CIBERCV, Madrid, Spain.,IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Grahame Mckenzie
- MRC Cancer Unit At the University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Hills Road, Cambridge, CB2 0XZ, UK.
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain. .,CIBERCV, Madrid, Spain.
| |
Collapse
|
21
|
Abstract
Acute coronary syndromes (ACS) are a global cause of mortality and morbidity that affect millions of lives worldwide. Following atherosclerotic plaque rupture, platelet activation and aggregation are the two major elements that initiate thrombus formation inside a coronary artery, which can obstruct blood flow and cause myocardial ischemia; ergo, antiplatelet therapy forms a major part of the treatment strategy for ACS. Patients with ACS routinely receive dual antiplatelet therapy (DAPT), which consists of aspirin and a platelet P2Y12 inhibitor to both treat and prevent atherothrombosis. Use of platelet glycoprotein (GP) IIb/IIIa inhibitors is now limited due to the risk of severe bleeding and thrombocytopenia. Thus, administration of GPIIb/IIIa inhibitors is generally restricted to bail out thrombotic events associated with PCI. Furthermore, current antiplatelet medications mainly rely on thromboxane A2 and P2Y12 inhibition, which have broad-acting effects on platelets and are known to cause bleeding, which especially limits the long-term use of these agents. In addition, not all ACS patients treated with current antiplatelet treatments are protected from recurrence of arterial thrombosis, since many platelet mechanisms and activation pathways remain uninhibited by current antiplatelet therapy. Pharmacological antagonism of novel targets involved in platelet function could shape future antiplatelet therapies that could ultimately lead to more effective or safer therapeutic approaches. In this article, we focus on inhibitors of promising targets that have not yet been introduced into clinical practice, including inhibitors of GPVI, protease-activated receptor (PAR)-4, GPIb, 5-hydroxytryptamine receptor subtype 2A (5-HT2A), protein disulfide isomerase, P-selectin and phosphoinositide 3-kinase β.
Collapse
Affiliation(s)
- Fawaz O Alenazy
- Institute of Cardiovascular Sciences, University of Birmingham , Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, University of Birmingham , Birmingham, UK.,UHB and SWBH NHS Trusts , Birmingham, UK
| |
Collapse
|
22
|
Knights AJ, Yang L, Shah M, Norton LJ, Green GS, Stout ES, Vohralik EJ, Crossley M, Quinlan KGR. Krüppel-like factor 3 (KLF3) suppresses NF-κB-driven inflammation in mice. J Biol Chem 2020; 295:6080-6091. [PMID: 32213596 DOI: 10.1074/jbc.ra120.013114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation.
Collapse
Affiliation(s)
- Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lu Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Laura J Norton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Gamran S Green
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Elizabeth S Stout
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
23
|
Chekalin EV, Zolotarenko AD, Bruskin SA. IQGAP Genes in Psoriasis. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Jiang T, Jiang D, You D, Zhang L, Liu L, Zhao Q. Agonism of GPR120 prevents ox-LDL-induced attachment of monocytes to endothelial cells. Chem Biol Interact 2020; 316:108916. [PMID: 31870843 DOI: 10.1016/j.cbi.2019.108916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation plays an important role in the development of cardiovascular diseases. G protein-coupled receptors (GPCR) are gaining traction as potential treatment targets due to their roles in mediating a wide range of physiological processes. GPR120 is a recently identified omega-3 fatty acid receptor. We hypothesized that agonism of GPR120 might attenuate ox-LDL-induced endothelial dysfunction. In the present study, we tested the effects of two GPR120 agonists-GW9508 and TUG-891-in mitigating endothelial insult induced by ox-LDL in human aortic endothelial cells (HAECs). Real-time PCR, western blot, and ELISA analyses were used in our experiments. Our findings demonstrate that GPR120 is downregulated by exposure to ox-LDL, suggesting a role for GPR120 in mediating ox-LDL insult. Furthermore, we found that agonism of GPR120 could suppress oxidative stress and inflammation by inhibiting the production of reactive oxygen species and the expression of proinflammatory cytokines. Importantly, we show that agonism of GPR120 prevents the attachment of monocytes to endothelial cells by suppressing the expression of VCAM-1 and E-selectin. Finally, we show that agonism of GPR120 exerts a remarkable atheroprotective effect by elevating the expression level of Krüppel-like factor 2 (KLF2). Together, our results demonstrate a potential role for specific agonism of GPR120 in the prevention of endothelial damages induced by ox-LDL.
Collapse
Affiliation(s)
- Tiechao Jiang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China
| | - Dongli Jiang
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Dong You
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Long Liu
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China.
| | - Qini Zhao
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China.
| |
Collapse
|
25
|
Libby P, Hansson GK. From Focal Lipid Storage to Systemic Inflammation: JACC Review Topic of the Week. J Am Coll Cardiol 2019; 74:1594-1607. [PMID: 31537270 PMCID: PMC6910128 DOI: 10.1016/j.jacc.2019.07.061] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/12/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022]
Abstract
Concepts of atherogenesis have evolved considerably with time. Early animal experiments showed that a cholesterol-rich diet could induce fatty lesion formation in arteries. The elucidation of lipoprotein metabolism ultimately led to demonstrating the clinical benefits of lipid lowering. The view of atheromata as bland accumulations of smooth muscle cells that elaborated an extracellular matrix that could entrap lipids then expanded to embrace inflammation as providing pathways that could link risk factors to atherogenesis. The characterization of leukocyte adhesion molecules and their control by proinflammatory cytokines, the ability of chemokines to recruit leukocytes, and the identification of inflammatory cell subtypes in lesions spurred the unraveling of innate and adaptive immune pathways that contribute to atherosclerosis and its thrombotic complications. Such pathophysiologic insights have led to the identification of biomarkers that can define categories of risk and direct therapies and to the development of new treatments.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Göran K Hansson
- Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Medical Therapy for Long-Term Prevention of Atherothrombosis Following an Acute Coronary Syndrome: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2886-2903. [PMID: 30522652 DOI: 10.1016/j.jacc.2018.09.052] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/21/2018] [Accepted: 09/04/2018] [Indexed: 01/17/2023]
Abstract
Following an acute coronary syndrome (ACS), heightened predisposition to atherothrombotic events may persist for years. Advances in understanding the pathobiology that underlies this elevated risk furnish a mechanistic basis for devising long-term secondary prevention strategies. Recent progress in ACS pathophysiology has challenged the focus on single "vulnerable plaques" and shifted toward a more holistic consideration of the "vulnerable patient," thus highlighting the primacy of medical therapy in secondary prevention. Despite current guideline-directed medical therapy, a consistent proportion of post-ACS patients experience recurrent atherothrombosis due to unaddressed "residual risk": contemporary clinical trials underline the pivotal role of platelets, coagulation, cholesterol, and systemic inflammation and provide a perspective on a personalized, targeted approach. Emerging data sheds new light on heretofore unrecognized residual risk factors. This review aims to summarize evolving evidence relative to secondary prevention of atherothrombosis, with a focus on recent advances that promise to transform the management of the post-ACS patient.
Collapse
|
27
|
Sun Z, Han Y, Song S, Chen T, Han Y, Liu Y. Activation of GPR81 by lactate inhibits oscillatory shear stress-induced endothelial inflammation by activating the expression of KLF2. IUBMB Life 2019; 71:2010-2019. [PMID: 31444899 DOI: 10.1002/iub.2151] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a common and deadly cardiovascular disease with extremely high prevalence. Areas of the vasculature exposed to oscillatory shear stress (OSS) or disturbed blood flow are particularly prone to the development of atherosclerotic lesions. In part, various mechanosensitive receptors on the surface of endothelial cells play a role in regulating the ability of the vasculature to cope with variations in blood flow patterns. However, the exact mechanisms behind flow-mediated endothelial responses remain poorly understood. Along with the development of highly specific receptor agonists, the class of G coupled-protein receptors has been receiving increasing attention as potential therapeutic targets. G coupled-protein receptor 81 (GPR81), also known as hydroxycarboxylic acid receptor 1 (HCA1 ), is activated by lactate, its endogenous ligand. In the present study, we show for the first time that expression of GPR81 is significantly downregulated in response to OSS in endothelial cells and that activation of GPR81 using physiologically relevant doses of lactate can rescue OSS-induced reduced GPR81 expression. Importantly, our findings demonstrate that activation of GPR81 can exert valuable atheroprotective effects in endothelial cells exposed to OSS by reducing oxidative stress and significantly downregulating the expression of inflammatory cytokines including interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, and high mobility group box 1 (HMGB1). We also show that activation of GPR81 can potentially prevent the attachment of monocytes to the endothelium by suppressing OSS-induced secretion of vascular cellular adhesion molecule (VCAM)-1 and endothelial-selectin (E-selectin). Finally, we show that activation of GPR81 can rescue OSS-induced reduced expression of the key atheroprotective transcription factor Kruppel-like factor 2 (KLF2), which is mediated through the extracellular-regulated kinase 5 (ERK5) pathway. These findings demonstrate a potential protective role of GPR81 against atherogenesis and that targeted activation of GPR81 may inhibit endothelial inflammation and dysfunction induced by OSS.
Collapse
Affiliation(s)
- Zirui Sun
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital,Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Han
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital,Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shubo Song
- Department of Pediatric Cardiac Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Tongfeng Chen
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital,Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Han
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital,Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Liu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital,Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Huang R, Hu Z, Cao Y, Li H, Zhang H, Su W, Xu Y, Liang L, Melgiri ND, Jiang L. MiR-652-3p inhibition enhances endothelial repair and reduces atherosclerosis by promoting Cyclin D2 expression. EBioMedicine 2019; 40:685-694. [PMID: 30674440 PMCID: PMC6413686 DOI: 10.1016/j.ebiom.2019.01.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Atherosclerosis is a hyperlipidemia-induced condition affecting the arterial wall that damages healthy endothelial cell (EC) function, leading to enhanced risk of atherothrombotic events. Certain microRNAs regulate EC dysfunction in response to hyperlipidemia and may be suitable therapeutic targets to combat atherosclerosis. METHODS miRNA expression in human ECs was analyzed under various conditions to identify key microRNAs. High-cholesterol diet (HCD)-fed Mir652-/-Apoe-/- (Mir652-/-) mice and matching Mir652+/+Apoe-/- (Mir652+/+) mice were subjected to carotid injury to analyze the effects of miR-652 knockdown on endothelial repair. In silico analysis followed by in vitro and in vivo experiments were applied to identify miR-652's target gene Ccnd2 and investigate the pair's effects on ECs. miR-652-5p and miR-652-3p antagomir therapies were tested in Mir652+/+ mice under normal and HCD diet to assess their effect on endothelial repair. FINDINGS miR-652-3p, which is upregulated in human and murine atherosclerotic plaques, suppresses expression of the endothelial repair gene Ccnd2, thereby enhancing atherosclerotic lesion formation. Post-denudation recovery of ECs was promoted in Mir652-/- mice due to enhanced EC proliferation attributable to de-repression of miR-652-3p's (but not miR-652-5p's) regulation of Ccnd2 expression. Under hyperlipidemic conditions at non-predilection sites, miR-652-3p produces anti-proliferative effects in ECs, such that Mir652-/- mice display reduced atherosclerotic progression. In contrast, neither miR-652-3p nor Ccnd2 displayed significant effects on the endothelium at predilection sites or under disturbed flow conditions. Administration of a miR-652-3p antagomir rescued the proliferation of ECs in vivo, thereby limiting atherosclerotic development. INTERPRETATION miR-652-3p blockade may be a potential therapeutic strategy against atherosclerosis.
Collapse
Affiliation(s)
- Rongzhong Huang
- Department of Cardiothoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Zicheng Hu
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Cao
- Department of Cardiothoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Hongrong Li
- Department of Cardiothoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Hong Zhang
- Department of Cardiology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Wenhua Su
- Department of Cardiology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Yu Xu
- Statistical Laboratory, Chuangxu Institute of Lifescience, Chongqing, China
| | - Liwen Liang
- Department of Cardiology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - N D Melgiri
- Impactys Foundation for Biomedical Research, San Diego, CA, USA.
| | - Lihong Jiang
- Department of Cardiothoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China.
| |
Collapse
|
29
|
Novikova OA, Laktionov PP, Karpenko AA. The roles of mechanotransduction, vascular wall cells, and blood cells in atheroma induction. Vascular 2018; 27:98-109. [PMID: 30157718 DOI: 10.1177/1708538118796063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND This paper describes and analyzes the cellular and molecular mechanisms underlying atherosclerosis development. In particular, the roles of monocytes/macrophages, smooth muscle cells, and vascular endothelium in the formation of stable/unstable atheromatous plaques, and the contributions of some processes to atheroma formation. METHODS AND RESULTS In this study we analyzed endothelium: function, dysfunction, and involvement into atherogenesis; cell proteins mediating mechanotransduction; proatherogenic role of monocytes; the role of macrophages in the development of unstable atheromatous plaques and smooth muscle cell origin in atherosclerosis. Smooth muscle cell phenotypic switching; their functioning; the ability to retain cholesterol and lipoproteins as well as secretion of pro- and anti-inflammatory molecules and extracellular matrix proteins, their response to extracellular stimuli secreted by other cells, and the effect of smooth muscle cells on the cells surrounding atheromatous plaques are fundamentally important for the insight into atherosclerosis molecular basis. CONCLUSION Atheromatous plaque transcriptome studies will be helpful in the identification of the key genes involved in atheroma transformation and development as well as discovery of the new targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Olga A Novikova
- 1 Department of Vascular and Hybrid Surgery, National Medical Research Institute Academician E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Pavel P Laktionov
- 2 Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine; E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation.,3 E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- 1 Department of Vascular and Hybrid Surgery, National Medical Research Institute Academician E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| |
Collapse
|
30
|
Novikova OA, Laktionov PP, Karpenko AA. Mechanisms Underlying Atheroma Induction: The Roles of Mechanotransduction, Vascular Wall Cells, and Blood Cells. Ann Vasc Surg 2018; 53:224-233. [PMID: 30012457 DOI: 10.1016/j.avsg.2018.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The objective of this article is to review cellular mechanism of atherosclerosis (AS) development. The pathogenesis of AS comprises a sequence of biological events leading to build up of a dense or loose atheromatous plaque (AP). METHODS In this review, we tried to attempt to analyze the cellular mechanisms underlying AS development, including the roles of monocytes/macrophages and smooth muscle cells in the formation of stable/unstable APs. RESULTS As a rule, APs are formed in the regions with irregular blood flow; both mechanical perturbations of the vascular wall and several biological events contribute to plaque formation. Blood lipid/lipoprotein deposition, recruitment of monocytes/macrophages, foam cell formation, migration and proliferation of smooth muscle cells, secretion of extracellular matrix, and formation of the connective tissue in plaques are among the latter events. CONCLUSIONS The review briefs the contributions of different processes to atheroma formation and describes the molecular mechanisms involved in AS development. AP transcriptome studies will be helpful in the identification of the key genes involved in atheroma transformation and development as well as discovery of the new targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Olga A Novikova
- E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation.
| | - Pavel P Laktionov
- Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine, E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| | - Andrey A Karpenko
- E.N. Meshalkin National Medical Research Center, Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
| |
Collapse
|
31
|
Zhao Y, Du R, Zhou T, Yang D, Huang Y, Wang Y, Huang J, Ma X, He F, Qiu J, Wang G. Arsenic Trioxide-Coated Stent Is an Endothelium-Friendly Drug Eluting Stent. Adv Healthc Mater 2018; 7:e1800207. [PMID: 29770610 DOI: 10.1002/adhm.201800207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/29/2018] [Indexed: 12/14/2022]
Abstract
An ideal vascular stent would both inhibit in-stent restenosis (ISR) and promote rapid re-endothelialization. In the current study, the performance of arsenic trioxide (ATO)-drug eluting stent (AES) is compared with the bare metal stent, poly-lactic-co-glycolic acid-coating metal stent, and rapamycin-drug eluting stent (RES). In vivo AES is shown to prevent neointimal hyperplasia more efficiently than the others when implanted into the carotid arteries of rabbits. Moreover, AES promotes endothelial cells proliferation and re-endothelialization more quickly than RES. In vitro ATO exposure significantly increases the viability, proliferation, adhesion, and spreading of primary porcine coronary artery endothelial cells (PCAECs), which are critical for endothelialization. However, ATO exposure reduces the viability of porcine coronary artery smooth muscle cells (PCASMCs). The evaluation of mitochondrial morphology, membrane potential, and function demonstrates that ATO at 2 µmol L-1 causes enlargement of the mitochondrion, enhancement of mitochondrial membrane potential, and adenosine triphosphate (ATP) production in PCAECs but not in PCASMCs. Thus, both in vivo and in vitro studies demonstrate that AES is an effective strategy for rapid re-endothelialization and inhibition of ISR.
Collapse
Affiliation(s)
- Yinping Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Tian Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Dongchuan Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Yuhua Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Xiaoyi Ma
- Beijing Amsinomed Medical Co., Ltd; Beijing 100021 China
| | - Fugui He
- Beijing Amsinomed Medical Co., Ltd; Beijing 100021 China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University; Chongqing 400030 China
| |
Collapse
|
32
|
Liu B, Xu L, Yu X, Li W, Sun X, Xiao S, Guo M, Wang H. Protective effect of KLF15 on vascular endothelial dysfunction induced by TNF‑α. Mol Med Rep 2018; 18:1987-1994. [PMID: 29956764 PMCID: PMC6072176 DOI: 10.3892/mmr.2018.9195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/17/2018] [Indexed: 01/21/2023] Open
Abstract
Atherosclerosis (AS) is a cardiovascular disease with a relatively high incidence rate. Krüppel-like factor 15 (KLF15) has a role in numerous pathological processes, including nephropathy, abnormal glucose metabolism and myocardial injury. The aim of the present study was to investigate the function of KLF15 in vascular endothelial dysfunction. MTT analyses, nitric oxide (NO) detection and cell adhesion detection kits were used to investigate the viability and adhesion of, and quantity of NO released by Eahy926 cells induced by tumor necrosis factor (TNF)-α, respectively. Reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to determine the expression levels of KLF15, endothelial nitric oxide synthase, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), transforming growth factor-β1 (TGF-β1), phosphorylated (p-)transcription factor p65 (p65) and nuclear factor erythroid 2-related factor 2 (Nrf2). The results of the present study demonstrated that TNF-α was able to induce vascular endothelial dysfunction in Eahy926 cells at an optimum concentration of 10 ng/ml. Overexpression of KLF15 markedly enhanced cell viability in addition to the quantity of released NO of TNF-α-induced Eahy926 cells, and increased the expression levels of eNOS and Nrf2. Furthermore, overexpression of KLF15 markedly suppressed the rate of cellular adhesion, and downregulated levels of MCP-1, ICAM-1, TGF-β1 and p-p65 in TNF-α induced Eahy926 cells. In conclusion, the results of the present study suggested that overexpression of KLF15 in Eahy926 cells exhibited a protective effect against TNF-α induced dysfunction via activation of Nrf2 signaling and inhibition of nuclear factor κB signaling.
Collapse
Affiliation(s)
- Bing Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xinming Yu
- Department of Vascular Surgery, The Central Hospital of Zibo, Zibo, Shandong 256100, P.R. China
| | - Wei Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaozhi Sun
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shun Xiao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Mingjin Guo
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Haofu Wang
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
33
|
Liang N, Zhong Y, Zhou J, Liu B, Lu R, Guan Y, Wang Q, Liang C, He Y, Zhou Y, Song J, Zhou J. Immunosuppressive effects of hydroxychloroquine and artemisinin combination therapy via the nuclear factor-κB signaling pathway in lupus nephritis mice. Exp Ther Med 2018; 15:2436-2442. [PMID: 29456648 PMCID: PMC5795753 DOI: 10.3892/etm.2018.5708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022] Open
Abstract
Lupus nephritis (LN) is one of the most common and severe manifestations of systemic lupus erythematosus, leading to permanent renal damage and chronic kidney disease. Hydroxychloroquine (HCQ) serves a protective role against lupus-associated clinical manifestations and medical complications; however, it results in numerous adverse reactions, limiting its long-term use. The aim of the present study was to investigate the combined effect of HCQ and artemisinin (ART) on LN, and to elucidate the underlying mechanisms. An in vivo LN mouse model was prepared, and the animals were administered prednisone (PDS; serving as a positive control), high-dose HCQ (H-HCQ) or low-dose HCQ combined with ART (L-HCQ + ART) once daily for 8 weeks. The body weight, serum biochemical parameters, immune and inflammatory indicators, renal and spleen histological alterations, and mRNA expression levels of Kruppel-like factor 15 (KLF15) and nuclear factor-κB (NF-κB) were analyzed. It was observed that L-HCQ + ART and H-HCQ ameliorated the LN-induced body weight decrease, and significantly decreased the levels of anti-double stranded DNA, antinuclear antibodies, immunoglobulin G, interferon γ, tumor necrosis factor-α and transforming growth factor-β1, as well as improved the kidney and spleen pathology, when compared with the model group. In addition, L-HCQ + ART and H-HCQ treatments induced KLF15 upregulation and NF-κB downregulation. These results indicated that treatment with L-HCQ + ART exerted renoprotective effects by regulating the expression levels of cytokines, KLF15 and NF-κB. This combination treatment may have a similar immunosuppressive effect as PDS and H-HCQ, and may be a promising alternative for LN treatment.
Collapse
Affiliation(s)
- Ning Liang
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China.,Department of Zhuang Medicine, College of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, P.R. China
| | - Yanchun Zhong
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jie Zhou
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Bihao Liu
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ruirui Lu
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yezhi Guan
- Science and Technology Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510445, P.R. China
| | - Qi Wang
- Artepharm Co., Ltd., Guangzhou, Guangdong 510032, P.R. China
| | - Chunlin Liang
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yu He
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yuan Zhou
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianping Song
- Science and Technology Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510445, P.R. China
| | - Jiuyao Zhou
- Department of Pharmacology, College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
34
|
Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb Haemost 2017; 117:437-444. [DOI: 10.1160/th16-08-0620] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/20/2016] [Indexed: 11/05/2022]
Abstract
SummaryThe heparins, well-known for their anticoagulant properties, may also have anti-inflammatory effects that could contribute to their effectiveness in the treatment of venous thromboembolism and other vascular diseases. This review focuses on the inflammatory pathophysiology that underlies the development of thrombosis and the putative effects of heparin on these pathways. We present evidence supporting the use of heparin for other indications, including autoimmune disease, malignancy, and disseminated intravascular coagulation. These considerations highlight the need for further research to elucidate the mechanisms of the possible pleiotropic effects of the heparins, with a view to advancing treatments based upon heparin derivatives.
Collapse
|
35
|
Libby P. Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond. J Am Coll Cardiol 2017; 70:2278-2289. [PMID: 29073957 DOI: 10.1016/j.jacc.2017.09.028] [Citation(s) in RCA: 441] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory pathways drive atherogenesis and link conventional risk factors to atherosclerosis and its complications. One inflammatory mediator has come to the fore as a therapeutic target in cardiovascular disease. The experimental and clinical evidence reviewed here support interleukin-1 beta (IL-1β) as both a local vascular and systemic contributor in this regard. Intrinsic vascular wall cells and lesional leukocytes alike can produce this cytokine. Local stimuli in the plaque favor the generation of active IL-1β through the action of a molecular assembly known as the inflammasome. Clinically applicable interventions that interfere with IL-1 action can improve cardiovascular outcomes, ushering in a new era of anti-inflammatory therapies for atherosclerosis. The translational path described here illustrates how advances in basic vascular biology may transform therapy. Biomarker-directed application of anti-inflammatory interventions promises to help us achieve a more precise and personalized allocation of therapy for our cardiovascular patients.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
36
|
Sangwung P, Zhou G, Lu Y, Liao X, Wang B, Mutchler SM, Miller M, Chance MR, Straub AC, Jain MK. Regulation of endothelial hemoglobin alpha expression by Kruppel-like factors. Vasc Med 2017; 22:363-369. [PMID: 28825355 PMCID: PMC5898218 DOI: 10.1177/1358863x17722211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemoglobin subunit alpha (HBA) expression in endothelial cells (ECs) has recently been shown to control vascular tone and function. We sought to elucidate the transcriptional regulation of HBA expression in the EC. Gain of KLF2 or KLF4 function studies led to significant induction of HBA in ECs. An opposite effect was observed in ECs isolated from animals with endothelial-specific ablation of Klf2, Klf4 or both. Promoter reporter assays demonstrated that KLF2/KLF4 transactivated the hemoglobin alpha promoter, an effect that was abrogated following mutation of all four putative KLF-binding sites. Fine promoter mutational studies localized three out of four KLF-binding sites (sites 2, 3, and 4) as critical for the transactivation of the HBA promoter by KLF2/KLF4. Chromatin immunoprecipitation studies showed that KLF4 bound to the HBA promoter in ECs. Thus, KLF2 and KLF4 serve as important regulators that promote HBA expression in the endothelium.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Guangjin Zhou
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yuan Lu
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Xudong Liao
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie M Mutchler
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan Miller
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
37
|
Carratala A, Martinez-Hervas S, Rodriguez-Borja E, Benito E, Real JT, Saez GT, Carmena R, Ascaso JF. PAI-1 levels are related to insulin resistance and carotid atherosclerosis in subjects with familial combined hyperlipidemia. J Investig Med 2017; 66:17-21. [PMID: 28822973 DOI: 10.1136/jim-2017-000468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2017] [Indexed: 01/13/2023]
Abstract
Familial combined hyperlipidemia (FCH) is a primary atherogenic dyslipidemia with insulin resistance and increased cardiovascular risk. Plasminogen activator inhibitor type 1 (PAI-1) and myeloperoxidase (MPO) activity are associated with proinflammatory and atherothrombotic risk. Our aim was to study the role played by PAI-1 and MPO activity in the carotid atherosclerosis prevalence in FCH subjects. 36 FCH unrelated subjects (17 women) were matched by age and body weight with 36 healthy normolipidemic subjects (19 female). Blood lipids, glucose, insulin, insulin resistance (homeostasis model assessment (HOMA)), MPO, and PAI-1 were determined in both groups. Carotid intima media thickness (IMT) was measured by the same investigator by standardized protocol. No differences in age, body mass index (BMI) or waist circumference were observed between the two groups. HOMA and PAI-1 values were higher in the FCH group, reaching statistical significance in those subjects with insulin resistance. In addition, PAI-1 values correlated significantly with metabolic syndrome components and carotid IMT. It is known that the elevated cardiovascular risk that characterizes FCH is frequently associated with insulin resistance. We have detected that two known proinflammatory and proatherothrombotic factors (MPO and PAI-1) are significantly elevated in FCH subjects with insulin resistance. These results could partly explain the high cardiovascular risk present in FCH subjects.
Collapse
Affiliation(s)
- Arturo Carratala
- Service of Clinical Biochemistry and Molecular Biology, University Clinical Hospital of Valencia, Valencia, Spain
| | - Sergio Martinez-Hervas
- Service of Endocrinology and Nutrition, University Clinical Hospital of Valencia, INCLIVA, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Enrique Rodriguez-Borja
- Service of Clinical Biochemistry and Molecular Biology, University Clinical Hospital of Valencia, Valencia, Spain
| | - Esther Benito
- Department of Medicine, University of Valencia, Valencia, Spain
| | - José T Real
- Service of Endocrinology and Nutrition, University Clinical Hospital of Valencia, INCLIVA, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Guillermo T Saez
- Department of Biochemistry and Molecular Biology, University of Valencia, INCLIVA, Valencia, Spain.,Service of Clinical Analysis, Dr Peset University Hospital, Valencia, Spain
| | - Rafael Carmena
- Service of Endocrinology and Nutrition, University Clinical Hospital of Valencia, INCLIVA, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Juan F Ascaso
- Service of Endocrinology and Nutrition, University Clinical Hospital of Valencia, INCLIVA, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
38
|
Xu Y, Liu P, Xu S, Koroleva M, Zhang S, Si S, Jin ZG. Tannic acid as a plant-derived polyphenol exerts vasoprotection via enhancing KLF2 expression in endothelial cells. Sci Rep 2017; 7:6686. [PMID: 28751752 PMCID: PMC5532219 DOI: 10.1038/s41598-017-06803-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
The transcription factor Kruppel-like factor 2 (KLF2) is a critical anti-inflammatory and anti-atherogenic molecule in vascular endothelium. Enhancing KLF2 expression and activity improves endothelial function and prevents atherosclerosis. However, the pharmacological and molecular regulators for KLF2 are scarce. Using high-throughput luciferase reporter assay to screen for KLF2 activators, we have identified tannic acid (TA), a polyphenolic compound, as a potent KLF2 activator that attenuates endothelial inflammation. Mechanistic studies suggested that TA induced KLF2 expression in part through the ERK5/MEF2 pathway. Functionally, TA markedly decreased monocyte adhesion to ECs by reducing expression of adhesion molecule VCAM1. Using lung ECs isolated from Klf2+/+ and Klf2+/− mice, we showed that the anti-inflammatory effect of TA is dependent on KLF2. Collectively, our results demonstrate that TA is a potent KLF2 activator and TA attenuated endothelial inflammation through upregulation of KLF2. Our findings provide a novel mechanism for the well-established beneficial cardiovascular effects of TA and suggest that KLF2 could be a novel therapeutic target for atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.,Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.,Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Shuya Zhang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Shuyi Si
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA. .,Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.
| |
Collapse
|
39
|
Bai A. β2-glycoprotein I and its antibodies involve in the pathogenesis of the antiphospholipid syndrome. Immunol Lett 2017; 186:15-19. [DOI: 10.1016/j.imlet.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
|
40
|
|
41
|
Sangwung P, Zhou G, Nayak L, Chan ER, Kumar S, Kang DW, Zhang R, Liao X, Lu Y, Sugi K, Fujioka H, Shi H, Lapping SD, Ghosh CC, Higgins SJ, Parikh SM, Jo H, Jain MK. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight 2017; 2:e91700. [PMID: 28239661 DOI: 10.1172/jci.insight.91700] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Maintenance of vascular integrity in the adult animal is needed for survival, and it is critically dependent on the endothelial lining, which controls barrier function, blood fluidity, and flow dynamics. However, nodal regulators that coordinate endothelial identity and function in the adult animal remain poorly characterized. Here, we show that endothelial KLF2 and KLF4 control a large segment of the endothelial transcriptome, thereby affecting virtually all key endothelial functions. Inducible endothelial-specific deletion of Klf2 and/or Klf4 reveals that a single allele of either gene is sufficient for survival, but absence of both (EC-DKO) results in acute death from myocardial infarction, heart failure, and stroke. EC-DKO animals exhibit profound compromise in vascular integrity and profound dysregulation of the coagulation system. Collectively, these studies establish an absolute requirement for KLF2/4 for maintenance of endothelial and vascular integrity in the adult animal.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Cardiovascular Research Institute, Department of Medicine, and.,Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Guangjin Zhou
- Cardiovascular Research Institute, Department of Medicine, and
| | - Lalitha Nayak
- Cardiovascular Research Institute, Department of Medicine, and.,Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Rongli Zhang
- Cardiovascular Research Institute, Department of Medicine, and
| | - Xudong Liao
- Cardiovascular Research Institute, Department of Medicine, and
| | - Yuan Lu
- Cardiovascular Research Institute, Department of Medicine, and
| | - Keiki Sugi
- Cardiovascular Research Institute, Department of Medicine, and
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hong Shi
- Cardiovascular Research Institute, Department of Medicine, and
| | | | - Chandra C Ghosh
- Center for Vascular Biology Research and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah J Higgins
- Center for Vascular Biology Research and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Samir M Parikh
- Center for Vascular Biology Research and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Mukesh K Jain
- Cardiovascular Research Institute, Department of Medicine, and.,Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
42
|
Czepluch FS, Meier J, Binder C, Hasenfuss G, Schäfer K. CCL5 deficiency reduces neointima formation following arterial injury and thrombosis in apolipoprotein E-deficient mice. Thromb Res 2016; 144:136-43. [DOI: 10.1016/j.thromres.2016.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 01/21/2023]
|
43
|
Affiliation(s)
- Hong Lu
- From the Saha Cardiovascular Research Center, University of Kentucky, Lexington.
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center, University of Kentucky, Lexington
| |
Collapse
|
44
|
Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nat Commun 2016; 7:10521. [PMID: 26837267 PMCID: PMC4742841 DOI: 10.1038/ncomms10521] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs regulate the maladaptation of endothelial cells (ECs) to naturally occurring disturbed blood flow at arterial bifurcations resulting in arterial inflammation and atherosclerosis in response to hyperlipidemic stress. Here, we show that reduced endothelial expression of the RNAse Dicer, which generates almost all mature miRNAs, decreases monocyte adhesion, endothelial C–X–C motif chemokine 1 (CXCL1) expression, atherosclerosis and the lesional macrophage content in apolipoprotein E knockout mice (Apoe−/−) after exposure to a high-fat diet. Endothelial Dicer deficiency reduces the expression of unstable miRNAs, such as miR-103, and promotes Krüppel-like factor 4 (KLF4)-dependent gene expression in murine atherosclerotic arteries. MiR-103 mediated suppression of KLF4 increases monocyte adhesion to ECs by enhancing nuclear factor-κB-dependent CXCL1 expression. Inhibiting the interaction between miR-103 and KLF4 reduces atherosclerosis, lesional macrophage accumulation and endothelial CXCL1 expression. Overall, our study suggests that Dicer promotes endothelial maladaptation and atherosclerosis in part by miR-103-mediated suppression of KLF4. The RNAse III endonuclease Dicer is crucial for processing of pre-miRNAs in health and disease. Here the authors show that endothelial Dicer promotes atherosclerosis by increasing miR-103 levels leading to suppression of the anti-inflammatory transcription factor KLF4, thus suggesting a novel approach to treat this disease.
Collapse
|
45
|
Shahidi M. Thrombosis and von Willebrand Factor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 906:285-306. [DOI: 10.1007/5584_2016_122] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Czepluch FS, Vogler M, Kuschicke H, Meier J, Gogiraju R, Katschinski DM, Riggert J, Hasenfuss G, Schäfer K. Circulating Endothelial Cells Expressing the Angiogenic Transcription Factor Krüppel-Like Factor 4 are Decreased in Patients with Coronary Artery Disease. Microcirculation 2015. [DOI: 10.1111/micc.12226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Frauke S. Czepluch
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Melanie Vogler
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
- Institute of Cardiovascular Physiology; University Medical Center Göttingen; Göttingen Germany
| | - Hendrik Kuschicke
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Julia Meier
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Rajinikanth Gogiraju
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Dörthe M. Katschinski
- Institute of Cardiovascular Physiology; University Medical Center Göttingen; Göttingen Germany
| | - Joachim Riggert
- Department of Transfusion Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
| | - Katrin Schäfer
- Department of Cardiology and Pulmonary Medicine; University Medical Center Göttingen; Göttingen Germany
- Medical Clinic 2; Department of Cardiology; University Medical Center Mainz; Mainz Germany
| |
Collapse
|
47
|
Tong Y, Ding ZH, Zhan FX, Cai L, Yin X, Ling JL, Ye JJ, Hou SY, Lu Z, Wang ZH, Liu JF. The NLRP3 inflammasome and stroke. Int J Clin Exp Med 2015; 8:4787-4794. [PMID: 26131053 PMCID: PMC4483817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
Inflammasome pattern recognition receptors, which belong to the family of multi-meric proteins, play an important role in innate immunity, including NLRPs, NLRC, and NAIP. Among these receptors, NLRP3 (nucleotide-binding domain (NOD)-like receptor protein 3) inflammasome may activate the inflammation and participate in atherosclerosis, pathophysiology of myocardial infarction, resultin ischemia/reperfusion injury and stroke and other cardiovascular diseases. Effective regulation of NLRP3 may help prevent or even treat stroke. In recent years, the role of inflammation in stroke has attracted much attention, and the in-depth study of its mechanism of action is gradually clear. This mini-review focuses on the association of regulatory mechanisms of NLRP3 inflammasome with the development of stroke, which may supply some clues for future therapies and novel drug targets for stroke.
Collapse
Affiliation(s)
- Yeqing Tong
- Hubei Center for Disease Control and PreventionWuhan 430079, P. R. China
- School of Public Health, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R China
| | - Zhi-Hong Ding
- Xiangyang Hospital of Traditional Chinese Medical HospitalXiangyang 441021, P. R. China
| | - Fa-Xian Zhan
- Hubei Center for Disease Control and PreventionWuhan 430079, P. R. China
| | - Li Cai
- Wuhan Center for Disease Control and PreventionWuhan, 430015, P. R. China
| | - Xiaoxv Yin
- School of Public Health, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R China
| | - Jin-Lian Ling
- Queens University BelfastNorthern Ireland, United Kingdom
| | - Jian-Jun Ye
- Hubei Center for Disease Control and PreventionWuhan 430079, P. R. China
| | - Shuang-Yi Hou
- Hubei Center for Disease Control and PreventionWuhan 430079, P. R. China
| | - Zuxun Lu
- School of Public Health, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P. R China
| | - Zhi-Hong Wang
- Department of Neurology, Shenzhen NO. 2 People’s Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen 518035, P. R. China
| | - Jia-Fa Liu
- Hubei Center for Disease Control and PreventionWuhan 430079, P. R. China
| |
Collapse
|
48
|
Shear stress modulates endothelial KLF2 through activation of P2X4. Purinergic Signal 2015; 11:139-53. [PMID: 25563726 DOI: 10.1007/s11302-014-9442-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial cells that are in direct contact with blood flow are exposed to fluid shear stress and regulate vascular homeostasis. Studies report endothelial cells to release ATP in response to shear stress that in turn modulates cellular functions via P2 receptors with P2X4 mediating shear stress-induced calcium signaling and vasodilation. A recent study shows that a loss-of-function polymorphism in the human P2X4 resulting in a Tyr315>Cys variant is associated with increased pulse pressure and impaired endothelial vasodilation. Although the importance of shear stress-induced Krüppel-like factor 2 (KLF2) expression in atheroprotection is well studied, whether ATP regulates KLF2 remains unanswered and is the objective of this study. Using an in vitro model, we show that in human umbilical vein endothelial cells (HUVECs), apyrase decreased shear stress-induced KLF2, KLF4, and NOS3 expression but not that of NFE2L2. Exposure of HUVECs either to shear stress or ATPγS under static conditions increased KLF2 in a P2X4-dependent manner as was evident with both the receptor antagonist and siRNA knockdown. Furthermore, transient transfection of static cultures of human endothelial cells with the Tyr315>Cys mutant P2X4 construct blocked ATP-induced KLF2 expression. Also, P2X4 mediated the shear stress-induced phosphorylation of extracellular regulated kinase-5, a known regulator of KLF2. This study demonstrates a major physiological finding that the shear-induced effects on endothelial KLF2 axis are in part dependent on ATP release and P2X4, a previously unidentified mechanism.
Collapse
|
49
|
Prosdocimo DA, Sabeh MK, Jain MK. Kruppel-like factors in muscle health and disease. Trends Cardiovasc Med 2014; 25:278-87. [PMID: 25528994 DOI: 10.1016/j.tcm.2014.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/22/2022]
Abstract
Kruppel-like factors (KLF) are zinc-finger DNA-binding transcription factors that are critical regulators of tissue homeostasis. Emerging evidence suggests that KLFs are critical regulators of muscle biology in the context of cardiovascular health and disease. The focus of this review is to provide an overview of the current state of knowledge regarding the physiologic and pathologic roles of KLFs in the three lineages of muscle: cardiac, smooth, and skeletal.
Collapse
Affiliation(s)
- Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Cleveland, OH; Harrington Heart & Vascular Institute, Cleveland, OH; Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, OH
| | - M Khaled Sabeh
- Case Cardiovascular Research Institute, Cleveland, OH; Harrington Heart & Vascular Institute, Cleveland, OH; Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, OH
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Cleveland, OH; Harrington Heart & Vascular Institute, Cleveland, OH; Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH; Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, OH.
| |
Collapse
|
50
|
Cochain C, Zernecke A. Noncoding RNAs in vascular inflammation and atherosclerosis: recent advances toward therapeutic applications. Curr Opin Lipidol 2014; 25:380-6. [PMID: 25051497 DOI: 10.1097/mol.0000000000000108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW We here highlight recent studies that in vivo demonstrate an involvement of microRNAs in atherosclerotic lesion formation and provide important preclinical evidence of their therapeutic targeting in atherosclerosis, with a particular focus on endothelial cells and macrophages. We also briefly discuss the emerging role of long noncoding RNAs herein. RECENT FINDINGS Noncoding RNAs have received considerable attention as regulators of different cell types and functions that dictate the inflammatory response in atherosclerosis. In particular, microRNAs have emerged to control endothelial cell functions by acting as mechanosensors that are regulated by flow, determinants of inflammation in the context of cytokine exposure and hypercholesterolemia and guardians of endothelial homeostasis. In addition, microRNAs control macrophage-driven cytokine production and polarization, and regulate cholesterol metabolism and foam cell formation. By these (cell specific) effects, microRNAs contain or drive atherosclerotic lesion formation and progression in animal models of disease and can be harnessed for therapeutic targeting. SUMMARY Given their multifaceted and specific contribution to vascular inflammation and atherosclerosis, and proven amenability for successful modulation in preclinical murine models of atheroscleorosis and large animal studies, miRNAs appear as promising therapeutic targets for treating atherosclerosis.
Collapse
Affiliation(s)
- Clément Cochain
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|