1
|
Karasawa T, Takahashi M. Inflammasome Activation and Neutrophil Extracellular Traps in Atherosclerosis. J Atheroscler Thromb 2025:RV22033. [PMID: 39828369 DOI: 10.5551/jat.rv22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The deposition of cholesterol containing cholesterol crystals and the infiltration of immune cells are features of atherosclerosis. Although the role of cholesterol crystals in the progression of atherosclerosis have long remained unclear, recent studies have clarified the involvement of cholesterol crystals in inflammatory responses. Cholesterol crystals activate the NLRP3 inflammasome, a molecular complex involved in the innate immune system. Activation of NLRP3 inflammasomes in macrophages cause pyroptosis, which is accompanied by the release of inflammatory cytokines such as IL-1β and IL-1α. Furthermore, NLRP3 inflammasome activation drives neutrophil infiltration into atherosclerotic plaques. Cholesterol crystals trigger NETosis against infiltrated neutrophils, a form of cell death characterized by the formation of neutrophil extracellular traps (NETs), which, in turn, prime macrophages to enhance inflammasome-mediated inflammatory responses. Colchicine, an anti-inflammatory drug effective in cardiovascular disease, is expected to inhibit cholesterol crystal-induced NLRP3 inflammasome activation and neutrophil infiltration. In this review, we illustrate the reinforcing cycle of inflammation that is amplified by inflammasome activation and NETosis.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| |
Collapse
|
2
|
Karasawa T, Komada T, Baatarjav C, Aizawa E, Mizushina Y, Fujimura K, Gunji Y, Komori S, Aizawa H, Jing Tao CB, Matsumura T, Takahashi M. Caspase-11 deficiency attenuates neutrophil recruitment into the atherosclerotic lesion in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2023; 686:149158. [PMID: 37922574 DOI: 10.1016/j.bbrc.2023.149158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Caspase-11 is an inflammatory caspase that triggers an inflammatory response by regulating non-canonical NLRP3 inflammasome activation. Although the deficiency of both caspase-11 and caspase-1, another inflammatory caspase that functions as an executor of the inflammasome, prevents the development of atherosclerosis, the effect of caspase-11 deficiency alone on the development of atherosclerosis has not been fully evaluated. In the present study, we found that caspase-11 deficiency prevented the formation of the necrotic core, whereas it did not affect the development of atherosclerosis in Apoe-deficient mice. Notably, the infiltration of neutrophils into atherosclerotic lesions was attenuated by caspase-11 deficiency. RNA-seq analysis of stage-dependent expression of atherosclerotic lesions revealed that both upregulations of caspase-11 and neutrophil migration are common features of advanced atherosclerotic lesions. Furthermore, similar expression profiles were observed in unstable human plaque. These data suggest that caspase-11 regulates neutrophil recruitment and plaque destabilization in advanced atherosclerotic lesions.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Chintogtokh Baatarjav
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Emi Aizawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiko Mizushina
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kenta Fujimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshitaka Gunji
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Satoko Komori
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hidetoshi Aizawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Cantona Billton Jing Tao
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takayoshi Matsumura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
3
|
Asano T, Wakabayashi T, Kondo Y, Okada K, Yamamuro D, Koga Y, Oka K, Sakurai M, Sawayama N, Takahashi M, Okazaki H, Ebihara K, Minami K, Morisawa Y, Hatakeyama S, Matsumura M, Ishibashi S. Serum 25-hydroxycholesterol levels are increased in patients with coronavirus disease 2019. J Clin Lipidol 2023; 17:78-86. [PMID: 36522261 PMCID: PMC9637049 DOI: 10.1016/j.jacl.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND 25-hydroxycholesterol (25HC), produced by cholesterol 25-hydroxylase (CH25H) in macrophages, has been reported to inhibit the replication of viral pathogens such as severe acute respiratory syndrome coronavirus-2. Also, CH25H expression in macrophages is robustly induced by interferons (IFNs). OBJECTIVE To better understand the serum level increase of 25HC in coronavirus disease 2019 (COVID-19) and how it relates to the clinical picture. METHODS We measured the serum levels of 25HC and five other oxysterols in 17 hospitalized COVID-19 patients. RESULTS On admission, 25HC and 27-hydroxycholesterol (27HC) serum levels were elevated; however, 7-ketocholesterol (7KC) levels were lower in patients with COVID-19 than in the healthy controls. There was no significant correlation between 25HC serum levels and disease severity markers, such as interferon-gamma (IFN-γ) and interleukin 6. Dexamethasone effectively suppressed cholesterol 25-hydroxylase (CH25H) mRNA expression in RAW 264.7 cells, a murine leukemia macrophage cell line, with or without lipopolysaccharide or IFNs; therefore, it might mitigate the increasing effects of COVID-19 on the serum levels of 25HC. CONCLUSIONS Our results highlighted that 25HC could be used as a unique biomarker in severe COVID-19 and a potential therapeutic candidate for detecting the severity of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Takumi Asano
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Yasuyuki Kondo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Kenta Okada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Yukiko Koga
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Kiyonori Oka
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Momoe Sakurai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Nagisa Sawayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Hiroaki Okazaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Ken Ebihara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Kensuke Minami
- Division of Infectious Diseases, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan (Drs Minami and Morisawa)
| | - Yuji Morisawa
- Division of Infectious Diseases, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan (Drs Minami and Morisawa)
| | - Shuji Hatakeyama
- Division of General Medicine, Center for Community Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Hatakeyama and Matsumura)
| | - Masami Matsumura
- Division of General Medicine, Center for Community Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Hatakeyama and Matsumura)
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi).
| |
Collapse
|
4
|
Rujimongkon K, Ampawong S, Isarangkul D, Reamtong O, Aramwit P. Sericin-mediated improvement of dysmorphic cardiac mitochondria from hypercholesterolaemia is associated with maintaining mitochondrial dynamics, energy production, and mitochondrial structure. PHARMACEUTICAL BIOLOGY 2022; 60:708-721. [PMID: 35348427 PMCID: PMC8967205 DOI: 10.1080/13880209.2022.2055088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 05/30/2023]
Abstract
CONTEXT Sericin is a component protein in the silkworm cocoon [Bombyx mori Linnaeus (Bombycidae)] that improves dysmorphic cardiac mitochondria under hypercholesterolemic conditions. This is the first study to explore cardiac mitochondrial proteins associated with sericin treatment. OBJECTIVE To investigate the mechanism of action of sericin in cardiac mitochondria under hypercholesterolaemia. MATERIALS AND METHODS Hypercholesterolaemia was induced in Wistar rats by feeding them 6% cholesterol-containing chow for 6 weeks. The hypercholesterolemic rats were separated into 2 groups (n = 6 for each): the sericin-treated (1,000 mg/kg daily) and nontreated groups. The treatment conditions were maintained for 4 weeks prior to cardiac mitochondria isolation. The mitochondrial structure was evaluated by immunolabeling electron microscopy, and differential mitochondrial protein expression was determined and quantitated by two-dimensional gel electrophoresis coupled with mass spectrometry. RESULTS A 32.22 ± 2.9% increase in the percent striated area of cardiac muscle was observed in sericin-treated hypercholesterolemic rats compared to the nontreatment group (4.18 ± 1.11%). Alterations in mitochondrial proteins, including upregulation of optic atrophy 1 (OPA1) and reduction of NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1) expression, are correlated with a reduction in mitochondrial apoptosis under sericin treatment. Differential proteomic observation also revealed that sericin may improve mitochondrial energy production by upregulating acetyl-CoA acetyltransferase (ACAT1) and NADH dehydrogenase 1α subcomplex subunit 10 (NDUFA10) expression. DISCUSSION AND CONCLUSIONS Sericin treatment could improve the dysmorphic mitochondrial structure, metabolism, and energy production of cardiac mitochondria under hypercholesterolaemia. These results suggest that sericin may be an alternative treatment molecule that is related to cardiac mitochondrial abnormalities.
Collapse
Affiliation(s)
- Kitiya Rujimongkon
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- Proteomics Research Team, National Omics Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, and
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
5
|
Baumer Y, McCurdy SG, Boisvert WA. Formation and Cellular Impact of Cholesterol Crystals in Health and Disease. Adv Biol (Weinh) 2021; 5:e2100638. [PMID: 34590446 PMCID: PMC11055929 DOI: 10.1002/adbi.202100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/20/2021] [Indexed: 11/10/2022]
Abstract
Cholesterol crystals (CCs) were first discovered in atherosclerotic plaque tissue in the early 1900 and have since been observed and implicated in many diseases and conditions, including myocardial infarction, abdominal aortic aneurism, kidney disease, ocular diseases, and even central nervous system anomalies. Despite the widespread involvement of CCs in many pathologies, the mechanisms involved in their formation and their role in various diseases are still not fully understood. Current knowledge concerning the formation of CCs, as well as the molecular pathways activated upon cellular exposure to CCs, will be explored in this review. As CC formation is tightly associated with lipid metabolism, the role of cellular lipid homeostasis in the formation of CCs is highlighted, including the role of lysosomes. In addition, cellular pathways and processes known to be affected by CCs are described. In particular, CC-induced activation of the inflammasome and production of reactive oxygen species, along with the role of CCs in complement-mediated inflammation is discussed. Moreover, the clinical manifestation of embolized CCs is described with a focus on renal and skin diseases associated with CC embolism. Lastly, potential therapeutic measures that target either the formation of CCs or their impact on different cell types and tissues are highlighted.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, Building 10, 10 Center Drive, Bethesda, MD 20814, USA
| | - Sara G. McCurdy
- Dept. of Medicine, University of California San Diego, 9500 Gilman Street, La Jolla, CA 92093, USA
| | - William A. Boisvert
- Center for Cardiovascular Research, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
6
|
Li J, Meng Q, Fu Y, Yu X, Ji T, Chao Y, Chen Q, Li Y, Bian H. Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis. J Cell Physiol 2021; 236:6154-6167. [PMID: 33507545 DOI: 10.1002/jcp.30300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis can be regarded as a chronic disease derived from the interaction between disordered lipoproteins and an unsuitable immune response. The evolution of foam cells is not only a significant pathological change in the early stage of atherosclerosis but also a key stage in the occurrence and development of atherosclerosis. The formation of foam cells is mainly caused by the imbalance among lipids uptake, lipids treatment, and reverse cholesterol transport. Although a large number of studies have summarized the source of foam cells and the mechanism of foam cells formation, we propose a new idea about foam cells in atherosclerosis. Rather than an isolated microenvironment, the macrophage multiple lipid uptake pathways, lipid internalization, lysosome, mitochondria, endoplasmic reticulum, neutral cholesterol ester hydrolase (NCEH), acyl-coenzyme A-cholesterol acyltransferase (ACAT), and reverse cholesterol transport are mutually influential, and form a dynamic process under multi-factor regulation. The macrophage takes on different uptake lipid statuses depending on multiple uptake pathways and intracellular lipids, lipid metabolites versus pro-inflammatory factors. Except for NCEH and ACAT, the lipid internalization of macrophages also depends on multicellular organelles including the lysosome, mitochondria, and endoplasmic reticulum, which are associated with each other. A dynamic balance between esterification and hydrolysis of cholesterol for macrophages is essential for physiology and pathology. Therefore, we propose that the foam cell in the process of atherosclerosis may be dynamic under multi-factor regulation, and collate this study to provide a holistic and dynamic idea of the foam cell.
Collapse
Affiliation(s)
- Jun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Fu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xichao Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Ji
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Chao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Bian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Takahashi M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc Res 2021; 118:372-385. [PMID: 33483732 DOI: 10.1093/cvr/cvab010] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
NLRP3 (nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3) is an intracellular innate immune receptor that recognizes a diverse range of stimuli derived from pathogens, damaged or dead cells, and irritants. NLRP3 activation causes the assembly of a large multiprotein complex termed the NLRP3 inflammasome, and leads to the secretion of bioactive interleukin (IL)-1β and IL-18 as well as the induction of inflammatory cell death termed pyroptosis. Accumulating evidence indicates that NLRP3 inflammasome plays a key role in the pathogenesis of sterile inflammatory diseases, including atherosclerosis and other vascular diseases. Indeed, the results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial demonstrated that IL-1β-mediated inflammation plays an important role in atherothrombotic events and suggested that NLRP3 inflammasome is a key driver of atherosclerosis. In this review, we will summarize the current state of knowledge regarding the role of NLRP3 inflammasome in vascular diseases, in particular in atherosclerosis, vascular injury, aortic aneurysm, and Kawasaki disease vasculitis, and discuss NLRP3 inflammasome as a therapeutic target for these disorders.
Collapse
Affiliation(s)
- Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
8
|
Quiroga IY, Pellon-Maison M, Gonzalez MC, Coleman RA, Gonzalez-Baro MR. Triacylglycerol synthesis directed by glycerol-3-phosphate acyltransferases -3 and -4 is required for lipid droplet formation and the modulation of the inflammatory response during macrophage to foam cell transition. Atherosclerosis 2021; 316:1-7. [PMID: 33260006 PMCID: PMC7803380 DOI: 10.1016/j.atherosclerosis.2020.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS The transition of macrophage to foam cells is a major hallmark of early stage atherosclerotic lesions. This process is characterized by the accumulation of large cytoplasmic lipid droplets containing large quantities of cholesterol esters (CE), triacylglycerol (TAG) and phospholipid (PL). Although cholesterol and CE metabolism during foam cell formation has been broadly studied, little is known about the role of the glycerolipids (TAG and PL) in this context. Here we studied the contribution of glycerolipid synthesis to lipid accumulation, focusing specifically on the first and rate-limiting enzyme of the pathway: glycerol-3-phosphate acyltransferase (GPAT). METHODS We used RAW 264.7 cells and bone marrow derived macrophages (BMDM) treated with oxidized LDL (oxLDL). RESULTS We showed that TAG synthesis is induced during the macrophage to foam cell transition. The expression and activity of GPAT3 and GPAT4 also increased during this process, and these two isoforms were required for the accumulation of cell TAG and PL. Compared to cells from wildtype mice after macrophage to foam cell transition, Gpat4-/- BMDM released more pro-inflammatory cytokines and chemokines, suggesting that the activity of GPAT4 could be associated with a decrease in the inflammatory response, probably by sequestering signaling precursors into lipid droplets. CONCLUSIONS Our results provide evidence that TAG synthesis directed by GPAT3 and GPAT4 is required for lipid droplet formation and the modulation of the inflammatory response during the macrophage-foam cell transition.
Collapse
Affiliation(s)
- Ivana Y Quiroga
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Magali Pellon-Maison
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Marina C Gonzalez
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Maria R Gonzalez-Baro
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina.
| |
Collapse
|
9
|
Luo M, Opoku E, Traughber CA, Hai Q, Robinet P, Berisha S, Smith JD. Soat1 mediates the mouse strain effects on cholesterol loading-induced endoplasmic reticulum stress and CHOP expression in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158825. [PMID: 33031913 PMCID: PMC7686275 DOI: 10.1016/j.bbalip.2020.158825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023]
Abstract
We previously demonstrated that AKR vs. DBA/2 mouse bone marrow derived macrophages have higher levels of free cholesterol and lower levels of esterified cholesterol after cholesterol loading, and that AKR, but not DBA/2, macrophages induced C/EBP homologous protein (CHOP) expression after cholesterol loading. We earlier determined that the free and esterified cholesterol level effect is due to a truncation in the sterol O-acyltransferase 1 (Soat1) gene, encoding acetyl-coenzyme A acetyltransferase 1 (ACAT1). Here we examined the mechanism for the differential induction of CHOP by cholesterol loading. CHOP was induced in both strains after incubation with tunicamycin, indicating both strains have competent endoplasmic reticulum stress pathways. CHOP was induced when DBA/2 macrophages were cholesterol loaded in the presence of an ACAT inhibitor, indicating that the difference in free cholesterol levels were responsible for this strain effect. This finding was confirmed in macrophages derived from DBA/2 embryonic stem cells. Cholesterol loading of Soat1 gene edited cells, mimicking the AKR allele, led to increased free cholesterol levels and restored CHOP induction. The upstream pathway of free cholesterol induced endoplasmic reticulum stress was investigated; and, RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1 α protein kinase (IRE1α) pathways were required for maximal CHOP expression.
Collapse
Affiliation(s)
- Mengdie Luo
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China; Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Emmanuel Opoku
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - C Alicia Traughber
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine -Case Western Reserve University, Cleveland, OH, USA
| | - Qimin Hai
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Peggy Robinet
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Stela Berisha
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Jonathan D Smith
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine -Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Fairman G, Robichaud S, Ouimet M. Metabolic Regulators of Vascular Inflammation. Arterioscler Thromb Vasc Biol 2020; 40:e22-e30. [PMID: 31967905 DOI: 10.1161/atvbaha.119.312582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Garrett Fairman
- From the University of Ottawa Heart Institute, Ottawa, ON, Canada; and the Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Sabrina Robichaud
- From the University of Ottawa Heart Institute, Ottawa, ON, Canada; and the Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Mireille Ouimet
- From the University of Ottawa Heart Institute, Ottawa, ON, Canada; and the Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| |
Collapse
|
11
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
12
|
Targeting NLRP3 Inflammasome in Inflammatory Bowel Disease: Putting out the Fire of Inflammation. Inflammation 2020; 42:1147-1159. [PMID: 30937839 DOI: 10.1007/s10753-019-01008-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the colon and small intestine, comprised of ulcerative colitis and Crohn's disease. Among the complicated pathogenic factors of IBD, the overaction of inflammatory and immune reaction serves as an important factor. Inflammasome is a form of innate immunity as well as inflammation. Among all kinds of inflammasomes, the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is the most studied one, and has been revealed to be involved in the pathogenesis and progression of IBD. Here, in this review, the association between the NLRP3 inflammasome and IBD will be discussed. Furthermore, several NLRP3 inflammasome inhibitors which have been demonstrated to be effective in the alleviation of IBD will be described in this review.
Collapse
|
13
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Annual Report on Sex in Preclinical Studies: Arteriosclerosis, Thrombosis, and Vascular Biology Publications in 2018. Arterioscler Thromb Vasc Biol 2019; 40:e1-e9. [PMID: 31869272 DOI: 10.1161/atvbaha.119.313556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.M.)
| | - Daniel J Rader
- Departments of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
14
|
Gastrodin ameliorates microvascular reperfusion injury-induced pyroptosis by regulating the NLRP3/caspase-1 pathway. J Physiol Biochem 2019; 75:531-547. [PMID: 31440987 DOI: 10.1007/s13105-019-00702-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Inflammation is a pivotal feature of myocardial reperfusion-induced microvascular injury and dysfunction. However, the molecular mechanisms by which myocardial reperfusion triggered inflammation remain incurable. The NLRP3 inflammasome is a key intracellular sensor that detection of cellular stress to activation of caspase-1, and consequent IL-1β maturation and pyroptotic cell death. Here, we showed that NLRP3 inflammasome played a key role in myocardial reperfusion-induced microvascular injury. We observed NLRP3 inflammasome activation and pyroptosis in both cardiac microvascular endothelial cells and myocardial I/R animal model. Gastrodin, an effective monomeric component extracted from the herb Gastrodia elata BIume, blocked cardiac microvascular endothelial cell pyroptosis via inhibiting NLRP3/caspase-1 pathway. Gastrodin also reduced interleukin-1β (IL-1β) production in vivo and in vitro. Furthermore, gastrodin treatment attenuated infarct size and inflammatory cells infiltration and increased capillary formation. Gastrodin is thus a potential therapeutic for NLRP3-associated inflammatory disease.
Collapse
|