1
|
McCarthy MM, Szerencsy A, Fletcher J, Taza-Rocano L, Weintraub H, Hopkins S, Applebaum R, Schwartzbard A, Mann D, D'Eramo Melkus G, Vorderstrasse A, Katz SD. The Impact of an Electronic Best Practice Advisory on Patients' Physical Activity and Cardiovascular Risk Profile. J Cardiovasc Nurs 2024; 39:E150-E157. [PMID: 37467192 PMCID: PMC10787798 DOI: 10.1097/jcn.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND Regular physical activity (PA) is a component of cardiovascular health and is associated with a lower risk of cardiovascular disease (CVD). However, only about half of US adults achieved the current PA recommendations. OBJECTIVE The study purpose was to implement PA counseling using a clinical decision support tool in a preventive cardiology clinic and to assess changes in CVD risk factors in a sample of patients enrolled over 12 weeks of PA monitoring. METHODS This intervention, piloted for 1 year, had 3 components embedded in the electronic health record: assessment of patients' PA, an electronic prompt for providers to counsel patients reporting low PA, and patient monitoring using a Fitbit. Cardiovascular disease risk factors included PA (self-report and Fitbit), body mass index, blood pressure, lipids, and cardiorespiratory fitness assessed with the 6-minute walk test. Depression and quality of life were also assessed. Paired t tests assessed changes in CVD risk. RESULTS The sample who enrolled in the remote patient monitoring (n = 59) were primarily female (51%), White adults (76%) with a mean age of 61.13 ± 11.6 years. Self-reported PA significantly improved over 12 weeks ( P = .005), but not Fitbit steps ( P = .07). There was a significant improvement in cardiorespiratory fitness (469 ± 108 vs 494 ± 132 m, P = .0034), and 23 participants (42%) improved at least 25 m, signifying a clinically meaningful improvement. Only 4 participants were lost to follow-up over 12 weeks of monitoring. CONCLUSIONS Patients may need more frequent reminders to be active after an initial counseling session, perhaps getting automated messages based on their step counts syncing to their electronic health record.
Collapse
|
2
|
Li B, Jiang XF, Dong YJ, Zhang YP, He XLS, Zhou CL, Ding YY, Wang N, Wang YB, Cheng WQ, Jiang NH, Su J, Lv GY, Chen SH. The effects of Atractylodes macrocephala extract BZEP self-microemulsion based on gut-liver axis HDL/LPS signaling pathway to ameliorate metabolic dysfunction-associated fatty liver disease in rats. Biomed Pharmacother 2024; 175:116519. [PMID: 38663104 DOI: 10.1016/j.biopha.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 06/03/2024] Open
Abstract
OBJECTIVES To elucidate the therapeutic effects and mechanisms of Atractylodes macrocephala extract crystallize (BZEP) and BZEP self-microemulsion (BZEPWR) on metabolic dysfunction-associated fatty liver disease (MAFLD) induced by "high sugar, high fat, and excessive alcohol consumption" based on the gut-liver axis HDL/LPS signaling pathway. METHODS In this study, BZEP and BZEPWR were obtained via isolation, purification, and microemulsification. Furthermore, an anthropomorphic MAFLD rat model of "high sugar, high fat, and excessive alcohol consumption" was established. The therapeutic effects of BZEPWR and BZEP on the model rats were evaluated in terms of liver function, lipid metabolism (especially HDL-C), serum antioxidant indexes, and liver and intestinal pathophysiology. To determine the lipoproteins in the serum sample, the amplitudes of a plurality of NMR spectra were derived via deconvolution of the composite methyl signal envelope to yield HDL-C subclass concentrations. The changes in intestinal flora were detected via 16 S rRNA gene sequencing. In addition, the gut-liver axis HDL/LPS signaling pathway was validated using immunohistochemistry, immunofluorescence, and western blot. RESULTS The findings established that BZEPWR and BZEP improved animal signs, serum levels of liver enzymes (ALT and AST), lipid metabolism (TC, TG, HDL-C, and LDL-C), and antioxidant indexes (GSH, SOD, and ROS). In addition, pathological damage to the liver, colon, and ileum was ameliorated, and the intestinal barrier function of the model rats was restored. At the genus level, BZEPWR and BZEP exerted positive effects on beneficial bacteria, such as Lactobacillus and norank_f__Muribaculaceae, and inhibitory effects on harmful bacteria, such as unclassified_f__Lachnospiraceae and Blautia. Twenty HDL-C subspecies were detected, and their levels were differentially increased in both BZEPWR and BZEP groups, with BZEPWR exhibiting a stronger elevating effect on specific HDL-C subspecies. Also, the gut-liver axis HDL/LPS signaling pathway was studied, which indicated that BZEPWR and BZEP significantly increased the expressions of ABCA1, LXR, occludin, and claudin-1 proteins in the gut and serum levels of HDL-C. Concomitantly, the levels of LPS in the serum and TLR4, Myd88, and NF-κB proteins in the liver were decreased. CONCLUSION BZEPWR and BZEP exert restorative and reversal effects on the pathophysiological damage to the gut-liver axis in MAFLD rats, and the therapeutic mechanism may be related to the regulation of the intestinal flora and the HDL/LPS signaling pathway.
Collapse
Affiliation(s)
- Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Xiao-Feng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yi-Piao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Cheng-Liang Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yan-Yan Ding
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yi-Bin Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Wan-Qi Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Gongshu District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China.
| |
Collapse
|
3
|
Andraski AB, Sacks FM, Aikawa M, Singh SA. Understanding HDL Metabolism and Biology Through In Vivo Tracer Kinetics. Arterioscler Thromb Vasc Biol 2024; 44:76-88. [PMID: 38031838 PMCID: PMC10842918 DOI: 10.1161/atvbaha.123.319742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
HDL (high-density lipoprotein), owing to its high protein content and small size, is the densest circulating lipoprotein. In contrast to lipid-laden VLDL (very-low-density lipoprotein) and LDL (low-density lipoprotein) that promote atherosclerosis, HDL is hypothesized to mitigate atherosclerosis via reverse cholesterol transport, a process that entails the uptake and clearance of excess cholesterol from peripheral tissues. This process is mediated by APOA1 (apolipoprotein A-I), the primary structural protein of HDL, as well as by the activities of additional HDL proteins. Tracer-dependent kinetic studies are an invaluable tool to study HDL-mediated reverse cholesterol transport and overall HDL metabolism in humans when a cardiovascular disease therapy is investigated. Unfortunately, HDL cholesterol-raising therapies have not been successful at reducing cardiovascular events suggesting an incomplete picture of HDL biology. However, as HDL tracer studies have evolved from radioactive isotope- to stable isotope-based strategies that in turn are reliant on mass spectrometry technologies, the complexity of the HDL proteome and its metabolism can be more readily addressed. In this review, we outline the motivations, timelines, advantages, and disadvantages of the various tracer kinetics strategies. We also feature the metabolic properties of select HDL proteins known to regulate reverse cholesterol transport, which in turn underscore that HDL lipoproteins comprise a heterogeneous particle population whose distinct protein constituents and kinetics likely determine its function and potential contribution to cholesterol clearance.
Collapse
Affiliation(s)
- Allison B. Andraski
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Kim H, Lichtenstein AH, Ganz P, Miller ER, Coresh J, Appel LJ, Rebholz CM. Associations of circulating proteins with lipoprotein profiles: proteomic analyses from the OmniHeart randomized trial and the Atherosclerosis Risk in Communities (ARIC) Study. Clin Proteomics 2023; 20:27. [PMID: 37400771 PMCID: PMC10316599 DOI: 10.1186/s12014-023-09416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Within healthy dietary patterns, manipulation of the proportion of macronutrient can reduce CVD risk. However, the biological pathways underlying healthy diet-disease associations are poorly understood. Using an untargeted, large-scale proteomic profiling, we aimed to (1) identify proteins mediating the association between healthy dietary patterns varying in the proportion of macronutrient and lipoproteins, and (2) validate the associations between diet-related proteins and lipoproteins in the Atherosclerosis Risk in Communities (ARIC) Study. METHODS In 140 adults from the OmniHeart trial, a randomized, cross-over, controlled feeding study with 3 intervention periods (carbohydrate-rich; protein-rich; unsaturated fat-rich dietary patterns), 4,958 proteins were quantified at the end of each diet intervention period using an aptamer assay (SomaLogic). We assessed differences in log2-transformed proteins in 3 between-diet comparisons using paired t-tests, examined the associations between diet-related proteins and lipoproteins using linear regression, and identified proteins mediating these associations using a causal mediation analysis. Levels of diet-related proteins and lipoprotein associations were validated in the ARIC study (n = 11,201) using multivariable linear regression models, adjusting for important confounders. RESULTS Three between-diet comparisons identified 497 significantly different proteins (protein-rich vs. carbohydrate-rich = 18; unsaturated fat-rich vs. carbohydrate-rich = 335; protein-rich vs. unsaturated fat-rich dietary patterns = 398). Of these, 9 proteins [apolipoprotein M, afamin, collagen alpha-3(VI) chain, chitinase-3-like protein 1, inhibin beta A chain, palmitoleoyl-protein carboxylesterase NOTUM, cathelicidin antimicrobial peptide, guanylate-binding protein 2, COP9 signalosome complex subunit 7b] were positively associated with lipoproteins [high-density lipoprotein (HDL)-cholesterol (C) = 2; triglyceride = 5; non-HDL-C = 3; total cholesterol to HDL-C ratio = 1]. Another protein, sodium-coupled monocarboxylate transporter 1, was inversely associated with HDL-C and positively associated with total cholesterol to HDL-C ratio. The proportion of the association between diet and lipoproteins mediated by these 10 proteins ranged from 21 to 98%. All of the associations between diet-related proteins and lipoproteins were significant in the ARIC study, except for afamin. CONCLUSIONS We identified proteins that mediate the association between healthy dietary patterns varying in macronutrients and lipoproteins in a randomized feeding study and an observational study. TRIAL REGISTRATION NCT00051350 at clinicaltrials.gov.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-500, Baltimore, MD 21287 USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD USA
| | - Alice H. Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA USA
| | - Peter Ganz
- Department of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Edgar R. Miller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-500, Baltimore, MD 21287 USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-500, Baltimore, MD 21287 USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Lawrence J. Appel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-500, Baltimore, MD 21287 USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-500, Baltimore, MD 21287 USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| |
Collapse
|
5
|
Trimigno A, Khakimov B, Rasmussen MA, Dragsted LO, Larsen TM, Astrup A, Engelsen SB. Human blood plasma biomarkers of diet and weight loss among centrally obese subjects in a New Nordic Diet intervention. Front Nutr 2023; 10:1198531. [PMID: 37396134 PMCID: PMC10308042 DOI: 10.3389/fnut.2023.1198531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Scope The New Nordic Diet (NND) has been shown to promote weight loss and lower blood pressure amongst obese people. This study investigates blood plasma metabolite and lipoprotein biomarkers differentiating subjects who followed Average Danish Diet (ADD) or NND. The study also evaluates how the individual response to the diet is reflected in the metabolic differences between NND subjects who lost or maintained their pre-intervention weight. Methods Centrally obese Danes (BMI >25) followed NND (90 subjects) or ADD (56 subjects) for 6 months. Fasting blood plasma samples, collected at three time-points during the intervention, were screened for metabolites and lipoproteins (LPs) using proton nuclear magnetic resonance spectroscopy. In total, 154 metabolites and 65 lipoproteins were analysed. Results The NND showed a relatively small but significant effect on the plasma metabolome and lipoprotein profiles, with explained variations ranging from 0.6% for lipoproteins to 4.8% for metabolites. A total of 38 metabolites and 11 lipoproteins were found to be affected by the NND. The primary biomarkers differentiating the two diets were found to be HDL-1 cholesterol, apolipoprotein A1, phospholipids, and ketone bodies (3-hydroxybutyric acid, acetone, and acetoacetic acid). The increased levels of ketone bodies detected in the NND group inversely associated with the decrease in diastolic blood pressure of the NND subjects. The study also showed that body weight loss among the NND subjects was weakly associated with plasma levels of citrate. Conclusion The main plasma metabolites associated with NND were acetate, methanol and 3-hydroxybutyrate. The metabolic changes associated with the NND-driven weight loss are mostly pronounced in energy and lipid metabolism.
Collapse
Affiliation(s)
- Alessia Trimigno
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bekzod Khakimov
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Morten Arendt Rasmussen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- COPSAC (Copenhagen Prospective Studies on Asthma in Childhood), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Meinert Larsen
- Department of Nutrition Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Arne Astrup
- Department of Nutrition Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Søren Balling Engelsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
6
|
Andraski AB, Singh SA, Higashi H, Lee LH, Aikawa M, Sacks FM. The distinct metabolism between large and small HDL indicates unique origins of human apolipoprotein A4. JCI Insight 2023; 8:162481. [PMID: 37092549 DOI: 10.1172/jci.insight.162481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/01/2023] [Indexed: 04/25/2023] Open
Abstract
Apolipoprotein A4's (APOA4's) functions on HDL in humans are not well understood. A unique feature of APOA4 is that it is an intestinal apolipoprotein secreted on HDL and chylomicrons. The goal of this study was to gain a better understanding of the origin and function of APOA4 on HDL by studying its metabolism across 6 HDL sizes. Twelve participants completed a metabolic tracer study. HDL was isolated by APOA1 immunopurification and separated by size. Tracer enrichments for APOA4 and APOA1 were determined by targeted mass spectrometry, and metabolic rates were derived by compartmental modeling. APOA4 metabolism on small HDL (alpha3, prebeta, and very small prebeta) was distinct from that of APOA4 on large HDL (alpha0, 1, 2). APOA4 on small HDL appeared in circulation by 30 minutes and was relatively rapidly catabolized. In contrast, APOA4 on large HDL appeared in circulation later (1-2 hours) and had a much slower catabolism. The unique metabolic profiles of APOA4 on small and large HDL likely indicate that each has a distinct origin and function in humans. This evidence supports the notion that APOA4 on small HDL originates directly from the small intestine while APOA4 on large HDL originates from chylomicron transfer.
Collapse
Affiliation(s)
- Allison B Andraski
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, and
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, and
| | - Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, and
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, and
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Proteomic analysis of postprandial high-density lipoproteins in healthy subjects. Int J Biol Macromol 2023; 225:1280-1290. [PMID: 36427620 DOI: 10.1016/j.ijbiomac.2022.11.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The relationship between the functionality and composition of high-density lipoproteins (HDL) is yet not fully studied, and little is known about the influence of the diet in HDL proteome. Therefore, the aim of this research was to elucidate the HDL proteome associated to postprandial hyperlipidemia. Male volunteers were recruited for an interventional study with high fatty acid-based meals. Blood samples were collected before the intake (baseline), and 2-3 (postprandial peak) and 5-6 (postprandial post peak) hours later. HDL were purified and the protein composition was quantified by LC-MS/MS. Statistical analysis was performed by lineal models (amica) and by ANOVA and multi-t-test of the different conditions (MetaboAnalyst). Additionally, a clustering of the expression profiles of each protein was done with coseq R package (RStudio). Initially, 320 proteins were identified but only 119 remained after the filtering. APOM, APOE, APOB, and APOA2, proteins previously identified in the HDL proteome, were the only proteins with a statistically significant altered expression in postprandial hyperlipidemia when compared to baseline (p values <0.05 and logFC >1). In conclusion, we have been able to describe several behaviors of the whole HDL proteome during the postprandial hyperlipidemic metabolism.
Collapse
|
8
|
LCAT- targeted therapies: Progress, failures and future. Biomed Pharmacother 2022; 147:112677. [PMID: 35121343 DOI: 10.1016/j.biopha.2022.112677] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Lecithin: cholesterol acyltransferase (LCAT) is the only enzyme in plasma which is able to esterify cholesterol and boost cholesterol esterify with phospholipid-derived acyl chains. In order to better understand the progress of LCAT research, it is always inescapable that it is linked to high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT). Because LCAT plays a central role in HDL metabolism and RCT, many animal studies and clinical studies are currently aimed at improving plasma lipid metabolism by increasing LCAT activity in order to find better treatment options for familial LCAT deficiency (FLD), fish eye disease (FED), and cardiovascular disease. Recombinant human LCAT (rhLCAT) injections, cells and gene therapy, and small molecule activators have been carried out with promising results. Recently rhLCAT therapies have entered clinical phase II trials with good prospects. In this review, we discuss the diseases associated with LCAT and therapies that use LCAT as a target hoping to find out whether LCAT can be an effective therapeutic target for coronary heart disease and atherosclerosis. Also, probing the mechanism of action of LCAT may help better understand the heterogeneity of HDL and the action mechanism of dynamic lipoprotein particles.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Dietary fat compared to carbohydrate increases the plasma concentration of high-density lipoprotein (HDL)-cholesterol. However, neither the mechanism nor its connection to cardiovascular disease is known. RECENT FINDINGS Protein-based subspecies of HDL, especially those containing apolipoprotein E (apoE) or apolipoprotein C3 (apoC3), offer a glimpse of a vast metabolic system related to atherogenicity, coronary heart disease (CHD) and other diseases. ApoE stimulates several processes that define reverse cholesterol transport through HDL, specifically secretion of active HDL subspecies, cholesterol efflux to HDL from macrophages involved in atherogenesis, size enlargement of HDL with cholesterol ester, and rapid clearance from the circulation. Dietary unsaturated fat stimulates the flux of HDL that contains apoE through these protective pathways. Effective reverse cholesterol transport may lessen atherogenesis and prevent disease. In contrast, apoC3 abrogates the benefit of apoE on reverse cholesterol transport, which may account for the association of HDL that contains apoC3 with dyslipidemia, obesity and CHD. SUMMARY Dietary unsaturated fat and carbohydrate affect the metabolism of protein-defined HDL subspecies containing apoE or apoC3 accelerating or retarding reverse cholesterol transport, thus demonstrating new mechanisms that may link diet to HDL and to CHD.
Collapse
Affiliation(s)
- Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
10
|
Davidson WS, Shah AS, Sexmith H, Gordon SM. The HDL Proteome Watch: Compilation of studies leads to new insights on HDL function. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159072. [PMID: 34800735 PMCID: PMC8715479 DOI: 10.1016/j.bbalip.2021.159072] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW High density lipoproteins (HDL) are a heterogeneous family of particles that contain distinct complements of proteins that define their function. Thus, it is important to accurately and sensitively identify proteins associated with HDL. Here we highlight the HDL Proteome Watch Database which tracks proteomics studies from different laboratories across the world. RECENT FINDINGS In 45 published reports, almost 1000 individual proteins have been detected in preparations of HDL. Of these, 251 have been identified in at least three different laboratories. The known functions of these consensus HDL proteins go well beyond traditionally recognized roles in lipid transport with many proteins pointing to HDL functions in innate immunity, inflammation, cell adhesion, hemostasis and protease regulation, and even vitamin and metal binding. SUMMARY The HDL proteome derived across multiple studies using various methodologies provides confidence in protein identifications that can offer interesting new insights into HDL function. We also point out significant issues that will require additional study going forward.
Collapse
Affiliation(s)
- W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, United States of America.
| | - Amy S Shah
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, United States of America.
| | - Hannah Sexmith
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, United States of America.
| | - Scott M Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| |
Collapse
|
11
|
Modification of High-Density Lipoprotein Functions by Diet and Other Lifestyle Changes: A Systematic Review of Randomized Controlled Trials. J Clin Med 2021; 10:jcm10245897. [PMID: 34945193 PMCID: PMC8707678 DOI: 10.3390/jcm10245897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023] Open
Abstract
High-density lipoprotein (HDL) functional traits have emerged as relevant elements that may explain HDL antiatherogenic capacity better than HDL cholesterol levels. These properties have been improved in several lifestyle intervention trials. The aim of this systematic review is to summarize the results of such trials of the most commonly used dietary modifications (fatty acids, cholesterol, antioxidants, alcohol, and calorie restriction) and physical activity. Articles were screened from the Medline database until March 2021, and 118 randomized controlled trials were selected. Results from HDL functions and associated functional components were extracted, including cholesterol efflux capacity, cholesteryl ester transfer protein, lecithin-cholesterol acyltransferase, HDL antioxidant capacity, HDL oxidation status, paraoxonase-1 activity, HDL anti-inflammatory and endothelial protection capacity, HDL-associated phospholipase A2, HDL-associated serum amyloid A, and HDL-alpha-1-antitrypsin. In mainly short-term clinical trials, the consumption of monounsaturated and polyunsaturated fatty acids (particularly omega-3 in fish), and dietary antioxidants showed benefits to HDL functionality, especially in subjects with cardiovascular risk factors. In this regard, antioxidant-rich dietary patterns were able to improve HDL function in both healthy individuals and subjects at high cardiovascular risk. In addition, in randomized trial assays performed mainly in healthy individuals, reverse cholesterol transport with ethanol in moderate quantities enhanced HDL function. Nevertheless, the evidence summarized was of unclear quality and short-term nature and presented heterogeneity in lifestyle modifications, trial designs, and biochemical techniques for the assessment of HDL functions. Such findings should therefore be interpreted with caution. Large-scale, long-term, randomized, controlled trials in different populations and individuals with diverse pathologies are warranted.
Collapse
|
12
|
Cheng G, Zheng L. Regulation of the apolipoprotein M signaling pathway: a review. J Recept Signal Transduct Res 2021; 42:285-292. [PMID: 34006168 DOI: 10.1080/10799893.2021.1924203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apolipoprotein M (apoM), an apolipoprotein predominantly associated with high-density lipoprotein (HDL), is considered a mediator of the numerous roles of HDL, including reverse cholesterol transport, anti-atherosclerotic, anti-inflammatory and anti-oxidant, and mediates pre-β-HDL formation. ApoM expression is known to be regulated by a variety of in vivo and in vitro factors. The transcription factors farnesoid X receptor, small heterodimer partner, liver receptor homolog-1, and liver X receptor comprise the signaling cascade network that regulates the expression and secretion of apoM. Moreover, hepatocyte nuclear factor-1α and c-Jun/JunB have been demonstrated to exert opposing regulatory effects on apoM through competitive binding to the same sites in the proximal region of the apoM gene. Furthermore, as a carrier and modulator of sphingosine 1-phosphate (S1P), apoM binds to S1P within its hydrophobic-binding pocket. The apoM/S1P axis has been discovered to play a crucial role in the apoM signaling pathway through its ability to regulate glucose and lipid metabolism, vascular barrier homeostasis, inflammatory response and other pathological and physiological processes. Using the findings of previous studies, the present review aimed to summarize the regulation of apoM expression by various factors and its role in different physiological and pathological conditions, and provide a new perspective for the further treatment of these diseases.
Collapse
Affiliation(s)
- Gangli Cheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
13
|
High-Density Lipoproteins and Mediterranean Diet: A Systematic Review. Nutrients 2021; 13:nu13030955. [PMID: 33809504 PMCID: PMC7999874 DOI: 10.3390/nu13030955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of global mortality and the study of high-density lipoproteins (HDL) particle composition and functionality has become a matter of high interest, particularly in light to the disappointing clinical data for HDL-cholesterol (HDL-C) raising therapies in CVD secondary prevention and the lack of association between HDL-C and the risk of CVD. Recent evidences suggest that HDL composition and functionality could be modulated by diet. The purpose of this systematic review was to investigate the effect of Mediterranean diet (MD) on changes in HDL structure and functionality in humans. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane library and Web of Science) and 13 records were chosen. MD showed favorable effects on HDL functionality, particularly by improving HDL cholesterol efflux capacity and decreasing HDL oxidation. In addition, HDL composition and size were influenced by MD. Thus, MD is a protective factor against CVD associated with the improvement of HDL quality and the prevention of HDL dysfunctionality.
Collapse
|
14
|
Singh SA, Andraski AB, Higashi H, Lee LH, Ramsaroop A, Sacks FM, Aikawa M. Metabolism of PLTP, CETP, and LCAT on multiple HDL sizes using the Orbitrap Fusion Lumos. JCI Insight 2021; 6:143526. [PMID: 33351780 PMCID: PMC7934878 DOI: 10.1172/jci.insight.143526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Recent in vivo tracer studies demonstrated that targeted mass spectrometry (MS) on the Q Exactive Orbitrap could determine the metabolism of HDL proteins 100s-fold less abundant than apolipoprotein A1 (APOA1). In this study, we demonstrate that the Orbitrap Lumos can measure tracer in proteins whose abundances are 1000s-fold less than APOA1, specifically the lipid transfer proteins phospholipid transfer protein (PLTP), cholesterol ester transfer protein (CETP), and lecithin-cholesterol acyl transferase (LCAT). Relative to the Q Exactive, the Lumos improved tracer detection by reducing tracer enrichment compression, thereby providing consistent enrichment data across multiple HDL sizes from 6 participants. We determined by compartmental modeling that PLTP is secreted in medium and large HDL (alpha2, alpha1, and alpha0) and is transferred from medium to larger sizes during circulation from where it is catabolized. CETP is secreted mainly in alpha1 and alpha2 and remains in these sizes during circulation. LCAT is secreted mainly in medium and small HDL (alpha2, alpha3, prebeta). Unlike PLTP and CETP, LCAT’s appearance on HDL is markedly delayed, indicating that LCAT may reside for a time outside of systemic circulation before attaching to HDL in plasma. The determination of these lipid transfer proteins’ unique metabolic structures was possible due to advances in MS technologies.
Collapse
Affiliation(s)
- Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allison B Andraski
- Department of Nutrition and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashisha Ramsaroop
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank M Sacks
- Department of Nutrition and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, and
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, and.,Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Asare-Bediako B, Noothi SK, Li Calzi S, Athmanathan B, Vieira CP, Adu-Agyeiwaah Y, Dupont M, Jones BA, Wang XX, Chakraborty D, Levi M, Nagareddy PR, Grant MB. Characterizing the Retinal Phenotype in the High-Fat Diet and Western Diet Mouse Models of Prediabetes. Cells 2020; 9:cells9020464. [PMID: 32085589 PMCID: PMC7072836 DOI: 10.3390/cells9020464] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023] Open
Abstract
We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.
Collapse
Affiliation(s)
- Bright Asare-Bediako
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (B.A.-B.); (Y.A.-A.); (M.D.)
| | - Sunil K. Noothi
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.K.N.); (S.L.C.); (C.P.V.); (D.C.)
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.K.N.); (S.L.C.); (C.P.V.); (D.C.)
| | - Baskaran Athmanathan
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.A.); (P.R.N.)
| | - Cristiano P. Vieira
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.K.N.); (S.L.C.); (C.P.V.); (D.C.)
| | - Yvonne Adu-Agyeiwaah
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (B.A.-B.); (Y.A.-A.); (M.D.)
| | - Mariana Dupont
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (B.A.-B.); (Y.A.-A.); (M.D.)
| | - Bryce A. Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA;
| | - Xiaoxin X. Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; (X.X.W.); (M.L.)
| | - Dibyendu Chakraborty
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.K.N.); (S.L.C.); (C.P.V.); (D.C.)
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA; (X.X.W.); (M.L.)
| | - Prabhakara R. Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (B.A.); (P.R.N.)
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.K.N.); (S.L.C.); (C.P.V.); (D.C.)
- Correspondence:
| |
Collapse
|
16
|
Morel S, Amre D, Teasdale E, Caru M, Laverdière C, Krajinovic M, Sinnett D, Curnier D, Levy E, Marcil V. Dietary Intakes Are Associated with HDL-Cholesterol in Survivors of Childhood Acute Lymphoblastic Leukaemia. Nutrients 2019; 11:E2977. [PMID: 31817482 PMCID: PMC6950746 DOI: 10.3390/nu11122977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Survivors of childhood acute lymphoblastic leukemia (cALL) are at high risk of developing dyslipidemia, including low HDL-cholesterol (HDL-C). This study aimed to examine the associations between food/nutrient intake and the levels of HDL-C in a cohort of children and young adult survivors of cALL. Eligible participants (n = 241) were survivors of cALL (49.4% boys; median age: 21.7 years old) recruited as part of the PETALE study. Nutritional data were collected using a validated food frequency questionnaire. Fasting blood was used to determine participants' lipid profile. Multivariable logistic regression models were fitted to evaluate the associations between intakes of macro- and micronutrients and food groups and plasma lipids. We found that 41.3% of cALL survivors had at least one abnormal lipid value. Specifically, 12.2% had high triglycerides, 17.4% high LDL-cholesterol, and 23.1% low HDL-C. Low HDL-C was inversely associated with high intake (third vs. first tertile) of several nutrients: proteins (OR: 0.27, 95% CI: 0.08-0.92), zinc (OR: 0.26, 95% CI: 0.08-0.84), copper (OR: 0.34, 95% CI: 0.12-0.99), selenium (OR: 0.17, 95% CI: 0.05-0.59), niacin (OR: 0.25, 95% CI: 0.08-0.84), riboflavin (OR: 0.31, 95% CI: 0.12-0.76) and vitamin B12 (OR: 0.35, 95% CI: 0.13-0.90). High meat consumption was also inversely associated (OR: 0.28, 95% CI: 0.09-0.83) with low HDL-C while fast food was positively associated (OR: 2.41, 95% CI: 1.03-5.63) with low HDL-C. The role of nutrition in the development of dyslipidemia after cancer treatment needs further investigation.
Collapse
Affiliation(s)
- Sophia Morel
- Research Centre, Sainte-Justine University Health Center, Departments of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.M.); (E.T.); (E.L.)
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Devendra Amre
- Research Centre, Sainte-Justine University Health Center, Departments of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada; (D.A.); (C.L.); (M.K.); (D.S.)
| | - Emma Teasdale
- Research Centre, Sainte-Justine University Health Center, Departments of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.M.); (E.T.); (E.L.)
| | - Maxime Caru
- Research Centre, Sainte-Justine University Health Center, Departments of Kinesiology, Université de Montréal, Montreal, QC H3T 1C5, Canada; (M.C.); (D.C.)
| | - Caroline Laverdière
- Research Centre, Sainte-Justine University Health Center, Departments of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada; (D.A.); (C.L.); (M.K.); (D.S.)
| | - Maja Krajinovic
- Research Centre, Sainte-Justine University Health Center, Departments of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada; (D.A.); (C.L.); (M.K.); (D.S.)
| | - Daniel Sinnett
- Research Centre, Sainte-Justine University Health Center, Departments of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada; (D.A.); (C.L.); (M.K.); (D.S.)
| | - Daniel Curnier
- Research Centre, Sainte-Justine University Health Center, Departments of Kinesiology, Université de Montréal, Montreal, QC H3T 1C5, Canada; (M.C.); (D.C.)
| | - Emile Levy
- Research Centre, Sainte-Justine University Health Center, Departments of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.M.); (E.T.); (E.L.)
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Valérie Marcil
- Research Centre, Sainte-Justine University Health Center, Departments of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.M.); (E.T.); (E.L.)
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|