1
|
Liu Y, Huang T, Yap NA, Lim K, Ju LA. Harnessing the power of bioprinting for the development of next-generation models of thrombosis. Bioact Mater 2024; 42:328-344. [PMID: 39295733 PMCID: PMC11408160 DOI: 10.1016/j.bioactmat.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Thrombosis, a leading cause of cardiovascular morbidity and mortality, involves the formation of blood clots within blood vessels. Current animal models and in vitro systems have limitations in recapitulating the complex human vasculature and hemodynamic conditions, limiting the research in understanding the mechanisms of thrombosis. Bioprinting has emerged as a promising approach to construct biomimetic vascular models that closely mimic the structural and mechanical properties of native blood vessels. This review discusses the key considerations for designing bioprinted vascular conduits for thrombosis studies, including the incorporation of key structural, biochemical and mechanical features, the selection of appropriate biomaterials and cell sources, and the challenges and future directions in the field. The advancements in bioprinting techniques, such as multi-material bioprinting and microfluidic integration, have enabled the development of physiologically relevant models of thrombosis. The future of bioprinted models of thrombosis lies in the integration of patient-specific data, real-time monitoring technologies, and advanced microfluidic platforms, paving the way for personalized medicine and targeted interventions. As the field of bioprinting continues to evolve, these advanced vascular models are expected to play an increasingly important role in unraveling the complexities of thrombosis and improving patient outcomes. The continued advancements in bioprinting technologies and the collaboration between researchers from various disciplines hold great promise for revolutionizing the field of thrombosis research.
Collapse
Affiliation(s)
- Yanyan Liu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tao Huang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicole Alexis Yap
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Khoon Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Darlington, NSW 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| |
Collapse
|
2
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
3
|
Memari E, Helfield B. Shear stress preconditioning and microbubble flow pattern modulate ultrasound-assisted plasma membrane permeabilization. Mater Today Bio 2024; 27:101128. [PMID: 38988819 PMCID: PMC11234154 DOI: 10.1016/j.mtbio.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The recent and exciting success of anti-inflammatory therapies for ischemic heart disease (e.g. atherosclerosis) is hindered by the lack of site-specific and targeted therapeutic deposition. Microbubble-mediated focused ultrasound, which uses circulating, lipid-encapsulated intravascular microbubbles to locally enhance endothelial permeability, offers an exciting approach. Atherosclerotic plaques preferentially develop in regions with disturbed blood flow, and microbubble-endothelial cell membrane interactions under such flow conditions are not well understood. Here, using an acoustically-coupled microscopy system, endothelial cells were sonicated (1 MHz, 20 cycle bursts, 1 ms PRI, 4 s duration, 300 kPa peak-negative pressure) under perfusion with Definity™ bubbles to examine microbubble-mediated endothelial permeabilization under a range of physiological conditions. Endothelial preconditioning under prolonged shear influenced physiology and the secretome, inducing increased expression of pro-angiogenesis analytes, decreasing levels of pro-inflammatory ones, and increasing the susceptibility of ultrasound therapy. Ultrasound treatment efficiency was positively correlated with concentrations of pro-angiogenic cytokines (e.g. VEGF-A, EGF, FGF-2), and negatively correlated with pro-inflammatory chemokines (e.g. MCP-1, GCP-2, SDF-1). Furthermore, ultrasound therapy under non-reversing pulsatile flow (∼4-8 dyne/cm2, 0.5-1 Hz) increased permeabilization up to 2.4-fold compared to shear-matched laminar flow, yet treatment under reversing oscillatory flow resulted in more heterogeneous modulation. This study provides insight into the role of vascular physiology, including endothelial biology, into the design of a localized ultrasound drug delivery system for ischemic heart disease.
Collapse
Affiliation(s)
- Elahe Memari
- Department of Physics, Concordia University, Montreal, H4B 1R6, Canada
| | - Brandon Helfield
- Department of Physics, Concordia University, Montreal, H4B 1R6, Canada
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| |
Collapse
|
4
|
Chen P, Li X. NLRP3 inflammasome in atherosclerosis: Mechanisms and targeted therapies. Front Pharmacol 2024; 15:1430236. [PMID: 39144618 PMCID: PMC11322363 DOI: 10.3389/fphar.2024.1430236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Atherosclerosis (AS) is the primary pathology behind various cardiovascular diseases and the leading cause of death and disability globally. Recent evidence suggests that AS is a chronic vascular inflammatory disease caused by multiple factors. In this context, the NLRP3 inflammasome, acting as a signal transducer of the immune system, plays a critical role in the onset and progression of AS. The NLRP3 inflammasome is involved in endothelial injury, foam cell formation, and pyroptosis in AS. Therefore, targeting the NLRP3 inflammasome offers a new treatment strategy for AS. This review highlights the latest insights into AS pathogenesis and the pharmacological therapies targeting the NLRP3 inflammasome, focusing on optimal targets for small molecule inhibitors. These insights are valuable for rational drug design and the pharmacological assessment of new targeted NLRP3 inflammasome inhibitors in treating AS.
Collapse
Affiliation(s)
- Pengfei Chen
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- Shandong Kelun Pharmaceutical Co, Ltd., Binzhou, China
| |
Collapse
|
5
|
Le NT. Metabolic regulation of endothelial senescence. Front Cardiovasc Med 2023; 10:1232681. [PMID: 37649668 PMCID: PMC10464912 DOI: 10.3389/fcvm.2023.1232681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
Endothelial cell (EC) senescence is increasingly recognized as a significant contributor to the development of vascular dysfunction and age-related disorders and diseases, including cancer and cardiovascular diseases (CVD). The regulation of cellular senescence is known to be influenced by cellular metabolism. While extensive research has been conducted on the metabolic regulation of senescence in other cells such as cancer cells and fibroblasts, our understanding of the metabolic regulation of EC senescence remains limited. The specific metabolic changes that drive EC senescence are yet to be fully elucidated. The objective of this review is to provide an overview of the intricate interplay between cellular metabolism and senescence, with a particular emphasis on recent advancements in understanding the metabolic changes preceding cellular senescence. I will summarize the current knowledge on the metabolic regulation of EC senescence, aiming to offer insights into the underlying mechanisms and future research directions.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
6
|
Trettel CDS, Pelozin BRDA, Barros MP, Bachi ALL, Braga PGS, Momesso CM, Furtado GE, Valente PA, Oliveira EM, Hogervorst E, Fernandes T. Irisin: An anti-inflammatory exerkine in aging and redox-mediated comorbidities. Front Endocrinol (Lausanne) 2023; 14:1106529. [PMID: 36843614 PMCID: PMC9951776 DOI: 10.3389/fendo.2023.1106529] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Human beings lead largely sedentary lives. From an evolutionary perspective, such lifestyle is not beneficial to health. Exercise can promote many enabling pathways, particularly through circulating exerkines, to optimize individual health and quality of life. Such benefits might explain the protective effects of exercise against aging and noncommunicable diseases. Nevertheless, the miRNA-mediated molecular mechanisms and exerkine interorgan crosstalk that underlie the beneficial effects of exercise remain poorly understood. In this mini review, we focused on the exerkine, irisin, mainly produced by muscle contraction during adaptation to exercise and its beneficial effects on body homeostasis. Herein, the complex role of irisin in metabolism and inflammation is described, including its subsequent effects on thermogenesis through browning to control obesity and improve glycemic regulation for diabetes mellitus control, its potential to improve cognitive function (via brain derived neurotrophic factor), and its pathways of action and role in aging.
Collapse
Affiliation(s)
- Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Bruno Rocha de Avila Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Paes Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Pedro Gabriel Senger Braga
- Laboratory of Metabolism and Lipids, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Guilherme Eustáquio Furtado
- Applied Research Institute, Polytechnic Institute of Coimbra, Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2020), Faculty of Sport Sciences and Physical Education (FCDEF-UC), Coimbra, Portugal
| | - Pedro Afonso Valente
- Research Centre for Sport and Physical Activity, Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Eef Hogervorst
- National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, United Kingdom
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Shimabukuro M. Nonsteroidal Mineralocorticoid Receptor Antagonists and Protection Against Cardiovascular Disease in Patients with Diabetes Mellitus. J Atheroscler Thromb 2023; 30:321-322. [PMID: 36682775 PMCID: PMC10067335 DOI: 10.5551/jat.ed226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Michio Shimabukuro
- Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University
| |
Collapse
|
8
|
Prognostic value of reactive hyperemia index using peripheral artery tonometry in patients with heart failure. Sci Rep 2023; 13:125. [PMID: 36599885 PMCID: PMC9812967 DOI: 10.1038/s41598-023-27454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Given the high prevalence and poor prognosis of heart failure (HF), finding prognostic factors for patients with HF is crucial. This study investigated the prognostic value of reactive hyperemia index (RHI), a measure of endothelial function, in HF. A total of 90 HF patients (mean age, 63.7 ± 13.2 years; female, 25.6%) with a history of hospitalization for HF treatment were prospectively enrolled. RHI was measured using digital arterial tonometry in a stable condition. Clinical events, including all-cause death and HF admission, were assessed. During the median follow-up of 3.66 years (interquartile range, 0.91-4.94 years), 26 clinical events (28.9%) occurred. Although there were no significant differences in risk factors and laboratory findings according to the occurrence of clinical events, the RHI value was significantly lower in patients with clinical events than in those without (1.21 ± 0.34 vs. 1.68 ± 0.48; P < 0.001). Kaplan-Meier survival analysis showed that a lower RHI value (< 1.48) was associated with a significantly higher incidence rate of clinical events (log-rank P < 0.001). In multivariable cox regression analysis, a low RHI value (< 1.48) was associated with an increased risk of clinical events (hazard ratio, 14.09; 95% confidence interval, 3.61-54.99; P < 0.001) even after controlling for potential confounders. Our study showed that reduced RHI was associated with an increased risk of adverse clinical outcomes in HF. This suggests that endothelial dysfunction may be an important prognostic marker in patients with HF.
Collapse
|
9
|
Taylor HA, Finkel T, Gao Y, Ballinger SW, Campo R, Chen R, Chen SH, Davidson K, Iruela-Arispe ML, Jaquish C, LeBrasseur NK, Odden MC, Papanicolaou GJ, Picard M, Srinivas P, Tjurmina O, Wolz M, Galis ZS. Scientific opportunities in resilience research for cardiovascular health and wellness. Report from a National Heart, Lung, and Blood Institute workshop. FASEB J 2022; 36:e22639. [PMID: 36322029 PMCID: PMC9703084 DOI: 10.1096/fj.202201407r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Exposure of biological systems to acute or chronic insults triggers a host of molecular and physiological responses to either tolerate, adapt, or fully restore homeostasis; these responses constitute the hallmarks of resilience. Given the many facets, dimensions, and discipline-specific focus, gaining a shared understanding of "resilience" has been identified as a priority for supporting advances in cardiovascular health. This report is based on the working definition: "Resilience is the ability of living systems to successfully maintain or return to homeostasis in response to physical, molecular, individual, social, societal, or environmental stressors or challenges," developed after considering many factors contributing to cardiovascular resilience through deliberations of multidisciplinary experts convened by the National Heart, Lung, and Blood Institute during a workshop entitled: "Enhancing Resilience for Cardiovascular Health and Wellness." Some of the main emerging themes that support the possibility of enhancing resilience for cardiovascular health include optimal energy management and substrate diversity, a robust immune system that safeguards tissue homeostasis, and social and community support. The report also highlights existing research challenges, along with immediate and long-term opportunities for resilience research. Certain immediate opportunities identified are based on leveraging existing high-dimensional data from longitudinal clinical studies to identify vascular resilience measures, create a 'resilience index,' and adopt a life-course approach. Long-term opportunities include developing quantitative cell/organ/system/community models to identify resilience factors and mechanisms at these various levels, designing experimental and clinical interventions that specifically assess resilience, adopting global sharing of resilience-related data, and cross-domain training of next-generation researchers in this field.
Collapse
Affiliation(s)
- Herman A. Taylor
- Cardiovascular Research Institute Morehouse School of Medicine, Atlanta, Georgia, USA
- Morehouse-Emory Cardiovascular Center for Health Equity, Atlanta, Georgia, USA
- Harvard Chan School of Public Health, Atlanta, Georgia, USA
- Emory School of Medicine, Atlanta, Georgia, USA
| | - Toren Finkel
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yunling Gao
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott W. Ballinger
- University of Alabama Heersink School of Medicine, Birmingham, Alabama, USA
| | - Rebecca Campo
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rong Chen
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, USA
| | - Shu Hui Chen
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karina Davidson
- Feinstein Institutes for Medical Research, Northwell Health, New York, New York, USA
| | | | - Cashell Jaquish
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - George J. Papanicolaou
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin Picard
- Columbia University Irving Medical Center, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | - Pothur Srinivas
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Olga Tjurmina
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Wolz
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Grant MG, Pratt C, Wong RP, Addou E, Desvigne-Nickens P, Campo RA, Donze LF, Barnes VI, Schopfer DW, Jaquish CE, Fleg J, Galis ZS, Fenton K, Oh YS, Hong Y, Chen J, Wang W, Fine L, Goff DC. Implementing the National Heart, Lung, and Blood Institute's Strategic Vision in the Division of Cardiovascular Sciences-2022 Update. Circ Res 2022; 131:713-724. [PMID: 36173825 PMCID: PMC9757122 DOI: 10.1161/circresaha.122.321449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spurred by the 2016 release of the National Heart, Lung, and Blood Institute's Strategic Vision, the Division of Cardiovascular Sciences developed its Strategic Vision Implementation Plan-a blueprint for reigniting the decline in cardiovascular disease (CVD) mortality rates, improving health equity, and accelerating translation of scientific discoveries into better cardiovascular health (CVH). The 6 scientific focus areas of the Strategic Vision Implementation Plan reflect the multifactorial nature of CVD and include (1) addressing social determinants of CVH and health inequities, (2) enhancing resilience, (3) promoting CVH and preventing CVD across the lifespan, (4) eliminating hypertension-related CVD, (5) reducing the burden of heart failure, and (6) preventing vascular dementia. This article presents an update of strategic vision implementation activities within Division of Cardiovascular Sciences. Overarching and cross-cutting themes include training the scientific workforce and engaging the extramural scientific community to stimulate transformative research in cardiovascular sciences. In partnership with other NIH Institutes, Federal agencies, industry, and the extramural research community, Division of Cardiovascular Sciences strategic vision implementation has stimulated development of numerous workshops and research funding opportunities. Strategic Vision Implementation Plan activities highlight innovative intervention modalities, interdisciplinary systems approaches to CVD reduction, a life course framework for CVH promotion and CVD prevention, and multi-pronged research strategies for combatting COVID-19. As new knowledge, technologies, and areas of scientific research emerge, Division of Cardiovascular Sciences will continue its thoughtful approach to strategic vision implementation, remaining poised to seize emerging opportunities and catalyze breakthroughs in cardiovascular sciences.
Collapse
Affiliation(s)
- Meagan G. Grant
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Charlotte Pratt
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Renee P. Wong
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Ebyan Addou
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Patrice Desvigne-Nickens
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Rebecca A. Campo
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Laurie Friedman Donze
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Vanessa I. Barnes
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - David W. Schopfer
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Cashell E. Jaquish
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Jerome Fleg
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Kathleen Fenton
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Young S. Oh
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Yuling Hong
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Jue Chen
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Wayne Wang
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - Lawrence Fine
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| | - David C. Goff
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 6705 Rockledge Drive, Bethesda, MD 20892
| |
Collapse
|
11
|
Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, Febbraio MA, Galis ZS, Gao Y, Haus JM, Lanza IR, Lavie CJ, Lee CH, Lucia A, Moro C, Pandey A, Robbins JM, Stanford KI, Thackray AE, Villeda S, Watt MJ, Xia A, Zierath JR, Goodpaster BH, Snyder MP. Exerkines in health, resilience and disease. Nat Rev Endocrinol 2022; 18:273-289. [PMID: 35304603 PMCID: PMC9554896 DOI: 10.1038/s41574-022-00641-2] [Citation(s) in RCA: 314] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/16/2022]
Abstract
The health benefits of exercise are well-recognized and are observed across multiple organ systems. These beneficial effects enhance overall resilience, healthspan and longevity. The molecular mechanisms that underlie the beneficial effects of exercise, however, remain poorly understood. Since the discovery in 2000 that muscle contraction releases IL-6, the number of exercise-associated signalling molecules that have been identified has multiplied. Exerkines are defined as signalling moieties released in response to acute and/or chronic exercise, which exert their effects through endocrine, paracrine and/or autocrine pathways. A multitude of organs, cells and tissues release these factors, including skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (baptokines) and neurons (neurokines). Exerkines have potential roles in improving cardiovascular, metabolic, immune and neurological health. As such, exerkines have potential for the treatment of cardiovascular disease, type 2 diabetes mellitus and obesity, and possibly in the facilitation of healthy ageing. This Review summarizes the importance and current state of exerkine research, prevailing challenges and future directions.
Collapse
Affiliation(s)
- Lisa S Chow
- Division of Diabetes Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN, USA.
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joan M Taylor
- Department of Pathology, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism/Centre for PA Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henriette van Praag
- Stiles-Nicholson Brain institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN, USA
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Zorina S Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yunling Gao
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Ian R Lanza
- Division of Endocrinology, Nutrition, and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Carl J Lavie
- Division of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, USA
| | - Chih-Hao Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre ('imas12'), Madrid, Spain
- CIBER en Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, Inserm UMR1297, Toulouse, France
- Toulouse III University-Paul Sabatier (UPS), Toulouse, France
| | - Ambarish Pandey
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Saul Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Victoria, Australia
| | - Ashley Xia
- Division of Diabetes, Endocrinology, & Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
13
|
Dillon GA, Wolf ST, Alexander LM. Nitric oxide-mediated cutaneous microvascular function is not altered in young adults following mild-to-moderate SARS CoV-2 infection. Am J Physiol Heart Circ Physiol 2022; 322:H319-H327. [PMID: 34995164 PMCID: PMC8803551 DOI: 10.1152/ajpheart.00602.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Vascular dysfunction has been reported in adults who have recovered from COVID-19. To date, no studies have investigated the underlying mechanisms of persistent COVID-19-associated vascular dysfunction. Our purpose was to quantify nitric oxide (NO)-mediated vasodilation in healthy adults who have recovered from SARS-CoV-2 infection. We hypothesized that COVID-19-recovered adults would have impaired NO-mediated vasodilation compared with adults who have not had COVID-19. In methods, we performed a cross-sectional study including 10 (5 men/5 women, 24 ± 4 yr) healthy control (HC) adults who were unvaccinated for COVID-19, 11 (4 men/7 women, 25 ± 6 yr) healthy vaccinated (HV) adults, and 12 (5 men/7 women, 22 ± 3 yr) post-COVID-19 (PC, 19 ± 14 wk) adults. COVID-19 symptoms severity (survey) was assessed. A standardized 39°C local heating protocol was used to assess NO-dependent vasodilation via perfusion (intradermal microdialysis) of 15 mM NG-nitro-l-arginine methyl ester during the plateau of the heating response. Red blood cell flux was measured (laser-Doppler flowmetry) and cutaneous vascular conductance (CVC = flux/mmHg) was expressed as a percentage of maximum (28 mM sodium nitroprusside + 43°C). In results, the local heating plateau (HC: 61 ± 20%, HV: 60 ± 19%, PC: 67 ± 19%, P = 0.80) and NO-dependent vasodilation (HC: 77 ± 9%, HV: 71 ± 7%, PC: 70 ± 10%, P = 0.36) were not different among groups. Neither symptom severity (25 ± 12 AU) nor time since diagnosis correlated with the NO-dependent vasodilation (r = 0.46, P = 0.13; r = 0.41, P = 0.19, respectively). In conclusion, healthy adults who have had mild-to-moderate COVID-19 do not have altered NO-mediated cutaneous microvascular function.NEW & NOTEWORTHY Healthy young adults who have had mild-to-moderate COVID-19 do not display alterations in nitric oxide-mediated cutaneous microvascular function. In addition, healthy young adults who have COVID-19 antibodies from the COVID-19 vaccinations do not display alterations in nitric oxide-mediated cutaneous microvascular function.
Collapse
Affiliation(s)
- Gabrielle A Dillon
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Healthy Aging, The Pennsylvania State University, University Park, Pennsylvania
| | - S Tony Wolf
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Healthy Aging, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
14
|
Gonzalez-Candia A, Herrera EA. High Altitude Pregnancies and Vascular Dysfunction: Observations From Latin American Studies. Front Physiol 2021; 12:786038. [PMID: 34950057 PMCID: PMC8688922 DOI: 10.3389/fphys.2021.786038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
An estimated human population of 170 million inhabit at high-altitude (HA, above 2,500 m). The potential pathological effects of HA hypobaric hypoxia during gestation have been the focus of several researchers around the world. The studies based on the Himalayan and Central/South American mountains are particularly interesting as these areas account for nearly 70% of the HA world population. At present, studies in human and animal models revealed important alterations in fetal development and growth at HA. Moreover, vascular responses to chronic hypobaria in the pregnant mother and her fetus may induce marked cardiovascular impairments during pregnancy or in the neonatal period. In addition, recent studies have shown potential long-lasting postnatal effects that may increase cardiovascular risk in individuals gestated under chronic hypobaria. Hence, the maternal and fetal adaptive responses to hypoxia, influenced by HA ancestry, are vital for a better developmental and cardiovascular outcome of the offspring. This mini-review exposes and discusses the main determinants of vascular dysfunction due to developmental hypoxia at HA, such as the Andean Mountains, at the maternal and fetal/neonatal levels. Although significant advances have been made from Latin American studies, this area still needs further investigations to reveal the mechanisms involved in vascular dysfunction, to estimate complications of pregnancy and postnatal life adequately, and most importantly, to determine potential treatments to prevent or treat the pathological effects of being developed under chronic hypobaric hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Abstract
Endothelial cells (ECs) under physiologic and pathologic conditions are capable of substantial plasticity that includes the endothelial-mesenchymal transition (EndMT). Notably, in the hypoxic pulmonary circulation EndMT likely drives increases in the pulmonary arterial blood pressure, leading to pulmonary arterial hypertension (PAH). However, it is unclear whether suppressing EndMT can prevent PAH development or mitigate established disease. In this issue of the JCI, Woo et al. generated mice with EC-specific deletion of FGFR1 and -2 and mice with EC-specific expression of a constitutively active FGFR1 to determine the role of FGF signaling in PAH. Mice with FGFR1/2 deletion in ECs that were exposed to hypoxic conditions developed extensive EndMT and more severe PAH than control mice. Animals with the constitutively active endothelial FGFR were protected from hypoxia-induced EndMT and PAH development. These findings suggest that FGF signaling may promote vascular resilience and prevent hypoxia-induced development of EndMT and PAH.
Collapse
Affiliation(s)
- Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine and
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Hsu PY, Mammadova A, Benkirane-Jessel N, Désaubry L, Nebigil CG. Updates on Anticancer Therapy-Mediated Vascular Toxicity and New Horizons in Therapeutic Strategies. Front Cardiovasc Med 2021; 8:694711. [PMID: 34386529 PMCID: PMC8353082 DOI: 10.3389/fcvm.2021.694711] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular toxicity is a frequent adverse effect of current anticancer chemotherapies and often results from endothelial dysfunction. Vascular endothelial growth factor inhibitors (VEGFi), anthracyclines, plant alkaloids, alkylating agents, antimetabolites, and radiation therapy evoke vascular toxicity. These anticancer treatments not only affect tumor vascularization in a beneficial manner, they also damage ECs in the heart. Cardiac ECs have a vital role in cardiovascular functions including hemostasis, inflammatory and coagulation responses, vasculogenesis, and angiogenesis. EC damage can be resulted from capturing angiogenic factors, inhibiting EC proliferation, survival and signal transduction, or altering vascular tone. EC dysfunction accounts for the pathogenesis of myocardial infarction, atherothrombosis, microangiopathies, and hypertension. In this review, we provide a comprehensive overview of the effects of chemotherapeutic agents on vascular toxicity leading to hypertension, microvascular rarefaction thrombosis and atherosclerosis, and affecting drug delivery. We also describe the potential therapeutic approaches such as vascular endothelial growth factor (VEGF)-B and prokineticin receptor-1 agonists to maintain endothelial function during or following treatments with chemotherapeutic agents, without affecting anti-tumor effectiveness.
Collapse
Affiliation(s)
| | | | | | | | - Canan G. Nebigil
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, FMTS (Fédération de Médecine Translationnelle de l'Université de Strasbourg), Strasbourg, France
| |
Collapse
|
17
|
Villalba N, Baby S, Yuan SY. The Endothelial Glycocalyx as a Double-Edged Sword in Microvascular Homeostasis and Pathogenesis. Front Cell Dev Biol 2021; 9:711003. [PMID: 34336864 PMCID: PMC8316827 DOI: 10.3389/fcell.2021.711003] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Expressed on the endothelial cell (EC) surface of blood vessels, the glycocalyx (GCX), a mixture of carbohydrates attached to proteins, regulates the access of cells and molecules in the blood to the endothelium. Besides protecting endothelial barrier integrity, the dynamic microstructure of the GCX confers remarkable functions including mechanotransduction and control of vascular tone. Recently, a novel perspective has emerged supporting the pleiotropic roles of the endothelial GCX (eGCX) in cardiovascular health and disease. Because eGCX degradation occurs in certain pathological states, the circulating levels of eGCX degradation products have been recognized to have diagnostic or prognostic values. Beyond their biomarker roles, certain eGCX fragments serve as pathogenic factors in disease progression. Pharmacological interventions that attenuate eGCX degradation or restore its integrity have been sought. This review provides our current understanding of eGCX structure and function across the microvasculature in different organs. We also discuss disease or injury states, such as infection, sepsis and trauma, where eGCX dysfunction contributes to severe inflammatory vasculopathy.
Collapse
Affiliation(s)
- Nuria Villalba
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sheon Baby
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|