1
|
Qu P, Li L, Jin Q, Liu D, Qiao Y, Zhang Y, Sun Q, Ran S, Li Z, Liu T, Peng L. Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). Int J Mol Med 2024; 54:104. [PMID: 39301658 DOI: 10.3892/ijmm.2024.5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end‑stage renal disease, and is characterized by persistent proteinuria and decreased glomerular filtration rate. Despite extensive efforts, the increasing incidence highlights the urgent need for more effective treatments. Histone methylation is a crucial epigenetic modification, and its alteration can destabilize chromatin structure, thereby regulating the transcriptional activity of specific genes. Histone methylation serves a substantial role in the onset and progression of various diseases. In patients with DKD, changes in histone methylation are pivotal in mediating the interactions between genetic and environmental factors. Targeting these modifications shows promise in ameliorating renal histological manifestations, tissue fibrosis and proteinuria, and represents a novel therapeutic frontier with the potential to halt DKD progression. The present review focuses on the alterations in histone methylation during the development of DKD, systematically summarizes its impact on various renal parenchymal cells and underscores the potential of targeted histone methylation modifications in improving DKD outcomes.
Collapse
Affiliation(s)
- Peng Qu
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lanfang Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Donghai Liu
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yuan Qiao
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yijia Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiuyue Sun
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Shuman Ran
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zecheng Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
2
|
Wu R, Zhang G, Guo M, Li Y, Qin L, Jiang T, Li P, Wang Y, Wang K, Liu Y, He Z, Cheng Z. Assessing personalized molecular portraits underlying endothelial-to-mesenchymal transition within pulmonary arterial hypertension. Mol Med 2024; 30:189. [PMID: 39462326 PMCID: PMC11513636 DOI: 10.1186/s10020-024-00963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rapidly fatal disease with an intricate etiology. Identifying biomarkers for early PAH lesions based on the exploration of subtle biological processes is significant for timely diagnosis and treatment. In the present study, nine distinct cell populations identified based on gene expression profiles revealed high heterogeneity in cell composition ratio, biological function, distribution preference, and communication patterns in PAH. Notably, compared to other cells, endothelial cells (ECs) showed prominent variation in multiple perspectives. Further analysis demonstrated the endothelial-to-mesenchymal transition (EndMT) in ECs and identified a subgroup exhibiting a contrasting phenotype. Based on these findings, a machine-learning integrated program consisting of nine learners was developed to create a PAH Endothelial-to-mesenchymal transition Signature (PETS). This study identified cell populations underlying EndMT and furnished a potential tool that might be valuable for PAH diagnosis and new precise therapies.
Collapse
Affiliation(s)
- Ruhao Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ge Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, 450018, Henan, China
| | - Mingzhou Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yue Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lu Qin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tianci Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yize Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhiqiu He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Vadakke-Madathil S, Bouhamida E, Wang BJ, Mathiyalagan P, Oniskey M, Santos-Gallegos C, Hadley M, Croft L, Dekio F, Brody R, Gelber S, Sperling R, Chaudhry HW. Discovery of a multipotent cell type from the term human placenta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551028. [PMID: 37577721 PMCID: PMC10418244 DOI: 10.1101/2023.08.02.551028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
We report a population of multipotent cells isolated from term human placentas, for the first time, that differentiates into cardiomyocytes and vascular cells with clonal ability, migratory ability, and trancriptomic evidence of immune privilege. Caudal-type homeobox-2 (CDX2) is a conserved factor that regulates trophectoderm formation and placentation during early embryonic development but has not previously been implicated in developmentally conserved regenerative mechanisms. We earlier reported that murine Cdx2 cells restored cardiac function after intravenous delivery in male mice with experimental myocardial infarction (MI). Here we demonstrate that CDX2 cells found in human chorion are poised for cardiovascular differentiation. We isolated CDX2 cells from term placentas of 150 healthy patients and showed that they spontaneously differentiate into cardiomyocytes, functional vascular cells, and retain homing ability in vitro with a transcriptome that supports enhanced cardiogenesis, vasculogenesis, immune modulation, and chemotaxis gene signatures. They restore cardiac function when administered to NOD/SCID mice subjected to MI. CDX2 cells can be clonally propagated in culture with retention of cardiovascular differentiation. Our data compels further use of this ethically feasible cell source in the design of therapeutic strategies for cardiovascular disease. One-sentence Summary CDX2 cells from human placenta are poised for cardiovascular differentiation and may lead to a novel therapeutic approach for human heart repair.
Collapse
|
4
|
Tan S, Yang J, Hu S, Lei W. Cell-cell interactions in the heart: advanced cardiac models and omics technologies. Stem Cell Res Ther 2024; 15:362. [PMID: 39396018 PMCID: PMC11470663 DOI: 10.1186/s13287-024-03982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
A healthy heart comprises various cell types, including cardiomyocytes, endothelial cells, fibroblasts, immune cells, and among others, which work together to maintain optimal cardiac function. These cells engage in complex communication networks, known as cell-cell interactions (CCIs), which are essential for homeostasis, cardiac structure, and efficient function. However, in the context of cardiac diseases, the heart undergoes damage, leading to alterations in the cellular composition. Such pathological conditions trigger significant changes in CCIs, causing cell rearrangement and the transition between cell types. Studying these interactions can provide valuable insights into cardiac biology and disease mechanisms, enabling the development of new therapeutic strategies. While the development of cardiac organoids and advanced 3D co-culture technologies has revolutionized in vitro studies of CCIs, recent advancements in single-cell and spatial multi-omics technologies provide researchers with powerful and convenient tools to investigate CCIs at unprecedented resolution. This article provides a concise overview of CCIs observed in both normal and injured heart, with an emphasis on the cutting-edge methods used to study these interactions. It highlights recent advancements such as 3D co-culture systems, single-cell and spatial omics technologies, that have enhanced the understanding of CCIs. Additionally, it summarizes the practical applications of CCI research in advancing cardiovascular therapies, offering potential solutions for treating heart disease by targeting intercellular communication.
Collapse
Affiliation(s)
- Shuai Tan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
5
|
Peerapen P, Boonmark W, Chantarasaka S, Thongboonkerd V. Trigonelline prevents high-glucose-induced endothelial-to-mesenchymal transition, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial EA.hy926 cells. Biomed Pharmacother 2024; 179:117320. [PMID: 39191024 DOI: 10.1016/j.biopha.2024.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Trigonelline (TRIG) is a natural compound in an alkaloid family found in diverse plants. This compound exerts anti-inflammatory, anti-allergic, anti-oxidative and anti-fibrotic activities in several disease models. However, its beneficial role in endothelial injury, especially induced by diabetes, is unclear. We, therefore, evaluated the effects of TRIG on the cellular proteome of human endothelial (EA.hy926) cells followed by functional validation in high-glucose (HG)-induced endothelial deteriorations. Label-free quantification using nanoLC-ESI-Qq-TOF MS/MS revealed 40 downregulated and 29 upregulated proteins induced by TRIG. Functional enrichment analysis using DAVID and REVIGO tools suggested the involvement of these altered proteins in several biological processes and molecular functions, particularly cell-cell adhesion, ATP metabolic process, cell redox homeostasis, cadherin binding, and ATP hydrolysis activity. Experimental validation showed that HG triggered endothelial-to-mesenchymal transition (EndMT) (as demonstrated by increased spindle index and mesenchymal markers, i.e., fibronectin and vimentin, and decreased endothelial markers, i.e., PECAM-1 and VE-cadherin), increased oxidized proteins, and reduced intracellular ATP, active mitochondria, endothelial tube/mesh formation and VEGF secretion. However, TRIG successfully abolished all these defects induced by HG. These data indicate that TRIG prevents HG-induced EndMT, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial cells.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suwichaya Chantarasaka
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
6
|
Opris CE, Suciu H, Flamand S, Opris CI, Hamida AH, Gurzu S. Update on the genetic profile of mitral valve development and prolapse. Pathol Res Pract 2024; 262:155535. [PMID: 39182449 DOI: 10.1016/j.prp.2024.155535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
The purpose of this review is to present a comprehensive overview of the literature published up to February 2024 on the PubMed database regarding the development of mitral valve disease, with detailed reference to mitral valve prolapse, from embryology to a genetic profile. Out of the 3291 publications that deal with mitral valve embryology, 215 refer to mitral valve genetics and 83 were selected for further analysis. After reviewing these data, we advocate for the importance of a gene-based therapy that should be available soon, to prevent or treat non-invasively the valvular degeneration.
Collapse
Affiliation(s)
- Carmen Elena Opris
- Department of Adult and Children Cardiovascular Recovery, Emergency Institute for Cardio-Vascular Diseases and Transplantation, Targu Mures 540139, Romania; Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Horatiu Suciu
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Romanian Academy of Medical Sciences, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Sanziana Flamand
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Cosmin Ioan Opris
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Al Hussein Hamida
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Romanian Academy of Medical Sciences, Romania; Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania.
| |
Collapse
|
7
|
Wang KJ, Zhang YX, Mo ZW, Li ZL, Wang M, Wang R, Wang ZC, Chang GQ, Wu WB. Upregulation of Long Noncoding RNA MAGOH-DT Mediates TNF-α and High Glucose-Induced Endothelial-Mesenchymal Transition in Arteriosclerosis Obliterans. TOHOKU J EXP MED 2024; 263:227-238. [PMID: 38811212 DOI: 10.1620/tjem.2024.j031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Arteriosclerosis obliterans (ASO) is characterized by arterial narrowing and blockage due to atherosclerosis, influenced by endothelial dysfunction and inflammation. This research focuses on exploring the role of MAGOH-DT, a long noncoding RNA, in mediating endothelial cell dysfunction through endothelial-mesenchymal transition (EndMT) under inflammatory and hyperglycemic stimuli, aiming to uncover potential therapeutic targets for ASO. Differential expression of lncRNAs, including MAGOH-DT, was initially identified in arterial tissues from ASO patients compared to healthy controls through lncRNA microarray analysis. Validation of MAGOH-DT expression in response to tumor necrosis factor-alpha (TNF-α) and high glucose (HG) was performed in human umbilical vein endothelial cells (HUVECs) using RT-qPCR. The effects of MAGOH-DT and HNRPC knockdown on EndMT were assessed by evaluating EndMT markers and TGF-β2 protein expression with Western blot analysis. RNA-immunoprecipitation assays were used to explore the interaction between MAGOH-DT and HNRPC, focusing on their role in regulating TGF-β2 translation. In the results, MAGOH-DT expression is found to be upregulated in ASO and further induced in HUVECs under TNF-α/HG conditions, contributing to the facilitation of EndMT. Silencing MAGOH-DT or HNRPC is shown to inhibit the TNF-α/HG-induced increase in TGF-β2 protein expression, effectively attenuating EndMT processes without altering TGF-β2 mRNA levels. In conclusion, MAGOH-DT is identified as a key mediator in the process of TNF-α/HG-induced EndMT in ASO, offering a promising therapeutic target. Inhibition of MAGOH-DT presents a novel therapeutic strategy for ASO management, especially in cases complicated by diabetes mellitus. Further exploration into the therapeutic implications of MAGOH-DT modulation in ASO treatment is warranted.
Collapse
Affiliation(s)
- Kang-Jie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Yi-Xin Zhang
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University
| | - Zhi-Wei Mo
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Zi-Lun Li
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Mian Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Rui Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Zhe-Cun Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Guang-Qi Chang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| | - Wei-Bin Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
- National-Local Joint Engineering Laboratory of Vascular Diseases Treatment, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Engineering Laboratoty of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
8
|
Peng Q, Arulsamy K, Lu YW, Wu H, Zhu B, Singh B, Cui K, Wylie-Sears J, Li K, Wong S, Cowan DB, Aikawa M, Wang DZ, Bischoff J, Chen K, Chen H. Novel Role of Endothelial CD45 in Regulating Endothelial-to-Mesenchymal Transition in Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610974. [PMID: 39282400 PMCID: PMC11398423 DOI: 10.1101/2024.09.03.610974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Background Protein-tyrosine-phosphatase CD45 is exclusively expressed in all nucleated cells of the hematopoietic system but is rarely expressed in endothelial cells. Interestingly, our recent study indicated that activation of the endogenous CD45 promoter in human endothelial colony forming cells (ECFCs) induced expression of multiple EndoMT marker genes. However, the detailed molecular mechanisms underlying CD45 that drive EndoMT and the therapeutic potential of manipulation of CD45 expression in atherosclerosis are entirely unknown. Method We generated a tamoxifen-inducible EC-specific CD45 deficient mouse strain (EC-iCD45KO) in an ApoE-deficient (ApoE-/-) background and fed with a Western diet (C57BL/6) for atherosclerosis and molecular analyses. We isolated and enriched mouse aortic endothelial cells with CD31 beads to perform single-cell RNA sequencing. Biomedical, cellular, and molecular approaches were utilized to investigate the role of endothelial CD45-specific deletion in the prevention of EndoMT in ApoE-/- model of atherosclerosis. Results Single-cell RNA sequencing revealed that loss of endothelial CD45 inhibits EndoMT marker expression and transforming growth factor-β signaling in atherosclerotic mice. which is associated with the reductions of lesions in the ApoE-/- mouse model. Mechanistically, the loss of endothelial cell CD45 results in increased KLF2 expression, which inhibits transforming growth factor-β signaling and EndoMT. Consistently, endothelial CD45 deficient mice showed reduced lesion development, plaque macrophages, and expression of cell adhesion molecules when compared to ApoE-/- controls. Conclusions These findings demonstrate that the loss of endothelial CD45 protects against EndoMT-driven atherosclerosis, promoting KLF2 expression while inhibiting TGFβ signaling and EndoMT markers. Thus, targeting endothelial CD45 may be a novel therapeutic strategy for EndoMT and atherosclerosis.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kulandaisamy Arulsamy
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Yao Wei Lu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Bandana Singh
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Jill Wylie-Sears
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Masanori Aikawa
- Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine and USF Health Heart Institute, Department of Internal Medicine, University of South Florida, Tampa
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
|
9
|
de la Bastida-Casero L, García-León B, Tura-Ceide O, Oliver E. The Relevance of the Endothelium in Cardiopulmonary Disorders. Int J Mol Sci 2024; 25:9260. [PMID: 39273209 PMCID: PMC11395528 DOI: 10.3390/ijms25179260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
The endothelium is a cell monolayer that lines vessels and separates tissues from blood flow. Endothelial cells (ECs) have a multitude of functions, including regulating blood flow and systemic perfusion through changes in vessel diameter. When an injury occurs, the endothelium is affected by altering its functions and structure, which leads to endothelial dysfunction, a characteristic of many vascular diseases. Understanding the role that the endothelium plays in pulmonary vascular and cardiopulmonary diseases, and exploring new therapeutic strategies is of utmost importance to advance clinically. Currently, there are several treatments able to improve patients' quality of life, however, none are effective nor curative. This review examines the critical role of the endothelium in the pulmonary vasculature, investigating the alterations that occur in ECs and their consequences for blood vessels and potential molecular targets to regulate its alterations. Additionally, we delve into promising non-pharmacological therapeutic strategies, such as exercise and diet. The significance of the endothelium in cardiopulmonary disorders is increasingly being recognized, making ECs a relevant target for novel therapies aimed at preserving their functional and structural integrity.
Collapse
Affiliation(s)
| | - Bertha García-León
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, 28040 Madrid, Spain
| | - Olga Tura-Ceide
- Translational Research Group on Cardiovascular Respiratory Diseases (CAREs), Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Girona, Spain
- Department of Pulmonary Medicine, Servei de Pneumologia, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Eduardo Oliver
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28039 Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
10
|
Stassen SV, Kobashi M, Lam EY, Huang Y, Ho JWK, Tsia KK. StaVia: spatially and temporally aware cartography with higher-order random walks for cell atlases. Genome Biol 2024; 25:224. [PMID: 39152459 PMCID: PMC11328412 DOI: 10.1186/s13059-024-03347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Single-cell atlases pose daunting computational challenges pertaining to the integration of spatial and temporal information and the visualization of trajectories across large atlases. We introduce StaVia, a computational framework that synergizes multi-faceted single-cell data with higher-order random walks that leverage the memory of cells' past states, fused with a cartographic Atlas View that offers intuitive graph visualization. This spatially aware cartography captures relationships between cell populations based on their spatial location as well as their gene expression and developmental stage. We demonstrate this using zebrafish gastrulation data, underscoring its potential to dissect complex biological landscapes in both spatial and temporal contexts.
Collapse
Affiliation(s)
- Shobana V Stassen
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
| | - Minato Kobashi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong
- AI Chip Center for Emerging Smart Systems, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Yuanhua Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
11
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
12
|
Falcão-Pires I, Ferreira AF, Trindade F, Bertrand L, Ciccarelli M, Visco V, Dawson D, Hamdani N, Van Laake LW, Lezoualc'h F, Linke WA, Lunde IG, Rainer PP, Abdellatif M, Van der Velden J, Cosentino N, Paldino A, Pompilio G, Zacchigna S, Heymans S, Thum T, Tocchetti CG. Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on Myocardial Function. Eur J Heart Fail 2024; 26:1454-1479. [PMID: 38837573 DOI: 10.1002/ejhf.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbimortality in Europe and worldwide. CVD imposes a heterogeneous spectrum of cardiac remodelling, depending on the insult nature, that is, pressure or volume overload, ischaemia, arrhythmias, infection, pathogenic gene variant, or cardiotoxicity. Moreover, the progression of CVD-induced remodelling is influenced by sex, age, genetic background and comorbidities, impacting patients' outcomes and prognosis. Cardiac reverse remodelling (RR) is defined as any normative improvement in cardiac geometry and function, driven by therapeutic interventions and rarely occurring spontaneously. While RR is the outcome desired for most CVD treatments, they often only slow/halt its progression or modify risk factors, calling for novel and more timely RR approaches. Interventions triggering RR depend on the myocardial insult and include drugs (renin-angiotensin-aldosterone system inhibitors, beta-blockers, diuretics and sodium-glucose cotransporter 2 inhibitors), devices (cardiac resynchronization therapy, ventricular assist devices), surgeries (valve replacement, coronary artery bypass graft), or physiological responses (deconditioning, postpartum). Subsequently, cardiac RR is inferred from the degree of normalization of left ventricular mass, ejection fraction and end-diastolic/end-systolic volumes, whose extent often correlates with patients' prognosis. However, strategies aimed at achieving sustained cardiac improvement, predictive models assessing the extent of RR, or even clinical endpoints that allow for distinguishing complete from incomplete RR or adverse remodelling objectively, remain limited and controversial. This scientific statement aims to define RR, clarify its underlying (patho)physiologic mechanisms and address (non)pharmacological options and promising strategies to promote RR, focusing on the left heart. We highlight the predictors of the extent of RR and review the prognostic significance/impact of incomplete RR/adverse remodelling. Lastly, we present an overview of RR animal models and potential future strategies under pre-clinical evaluation.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ana Filipa Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Fábio Trindade
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Luc Bertrand
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, Brussels, Belgium
- WELBIO, Department, WEL Research Institute, Wavre, Belgium
| | - Michele Ciccarelli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | | | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessia Paldino
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| |
Collapse
|
13
|
Shlapakova PS, Dobrynina LA, Kalashnikova LA, Gubanova MV, Danilova MS, Gnedovskaya EV, Grigorenko AP, Gusev FE, Manakhov AD, Rogaev EI. Peripheral Blood Gene Expression Profiling Reveals Molecular Pathways Associated with Cervical Artery Dissection. Int J Mol Sci 2024; 25:5205. [PMID: 38791244 PMCID: PMC11121660 DOI: 10.3390/ijms25105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Cervical artery dissection (CeAD) is the primary cause of ischemic stroke in young adults. Monogenic heritable connective tissue diseases account for fewer than 5% of cases of CeAD. The remaining sporadic cases have known risk factors. The clinical, radiological, and histological characteristics of systemic vasculopathy and undifferentiated connective tissue dysplasia are present in up to 70% of individuals with sporadic CeAD. Genome-wide association studies identified CeAD-associated genetic variants in the non-coding genomic regions that may impact the gene transcription and RNA processing. However, global gene expression profile analysis has not yet been carried out for CeAD patients. We conducted bulk RNA sequencing and differential gene expression analysis to investigate the expression profile of protein-coding genes in the peripheral blood of 19 CeAD patients and 18 healthy volunteers. This was followed by functional annotation, heatmap clustering, reports on gene-disease associations and protein-protein interactions, as well as gene set enrichment analysis. We found potential correlations between CeAD and the dysregulation of genes linked to nucleolar stress, senescence-associated secretory phenotype, mitochondrial malfunction, and epithelial-mesenchymal plasticity.
Collapse
Affiliation(s)
- Polina S. Shlapakova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Larisa A. Dobrynina
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Ludmila A. Kalashnikova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Mariia V. Gubanova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Maria S. Danilova
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Elena V. Gnedovskaya
- Third Neurological Department, Research Center of Neurology, Moscow 125367, Russia; (P.S.S.); (L.A.K.); (M.V.G.); (E.V.G.)
| | - Anastasia P. Grigorenko
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia (F.E.G.)
| | - Fedor E. Gusev
- Department of Genomics and Human Genetics, Laboratory of Evolutionary Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia (F.E.G.)
- Department of Genetics, Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi 354340, Russia; (A.D.M.)
| | - Andrey D. Manakhov
- Department of Genetics, Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi 354340, Russia; (A.D.M.)
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Evgeny I. Rogaev
- Department of Genetics, Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi 354340, Russia; (A.D.M.)
- Department of Psychiatry, UMass Chan Medical School, 222 Maple Ave, Reed-Rose-Gordon Building, Shrewsbury, MA 01545, USA
| |
Collapse
|
14
|
Wang Y, Dong H, Dong T, Zhao L, Fan W, Zhang Y, Yao W. Treatment of cytokine release syndrome-induced vascular endothelial injury using mesenchymal stem cells. Mol Cell Biochem 2024; 479:1149-1164. [PMID: 37392343 DOI: 10.1007/s11010-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023]
Abstract
Cytokine release syndrome (CRS) is an acute systemic inflammatory reaction in which hyperactivated immune cells suddenly release a large amount of cytokines, leading to exaggerated inflammatory responses, multiple organ dysfunction, and even death. Although palliative treatment strategies have significantly reduced the overall mortality, novel targeted treatment regimens with superior therapy efficacy are urgently needed. Vascular endothelial cells (ECs) are important target cells of systemic inflammation, and their destruction is considered to be the initiating event underlying many serious complications of CRS. Mesenchymal stem/stromal cells (MSCs) are multipotent cells with self-renewing differentiation capacity and immunomodulatory properties. MSC transplantation can effectively suppress the activation of immune cells, reduce the bulk release of cytokines, and repair damaged tissues and organs. Here, we review the molecular mechanisms underlying CRS-induced vascular endothelial injury and discuss potential treatments using MSCs. Preclinical studies demonstrate that MSC therapy can effectively repair endothelium damage and thus reduce the incidence and severity of ensuing CRS-induced complications. This review highlights the therapeutic role of MSCs in fighting against CRS-induced EC damage, and summarizes the possible therapeutic formulations of MSCs for improved efficacy in future clinical trials.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Health Science Center, Yangtze University, Jingzhou, China
| | - Haibo Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Tengyun Dong
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Lulu Zhao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China
| | - Wen Fan
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, China.
| | - Yu Zhang
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin, China.
| | - Weiqi Yao
- Wuhan Optics Valley Vcanbiopharma Co., Ltd, Wuhan, China.
- Key Industrial Base for Stem Cell Engineering Products, Tianjin, China.
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
15
|
Lai YJ, Chang SH, Tung YC, Chang GJ, Almeida CD, Chen WJ, Yeh YH, Tsai FC. Naringin activates semaphorin 3A to ameliorate TGF-β-induced endothelial-to-mesenchymal transition related to atrial fibrillation. J Cell Physiol 2024; 239:e31248. [PMID: 38501506 DOI: 10.1002/jcp.31248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-β)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-β specifically in cardiac tissues (TGF-β transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-β transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-β transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chia-Yi, Puzi, Taiwan
| | - Shang-Hung Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Ying-Chang Tung
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Gwo-Jyh Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Celina De Almeida
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Feng-Chun Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
17
|
Choi SH, Jang J, Kim Y, Park CG, Lee SY, Kim H, Kim H. ID1 high/activin A high glioblastoma cells contribute to resistance to anti-angiogenesis therapy through malformed vasculature. Cell Death Dis 2024; 15:292. [PMID: 38658527 PMCID: PMC11043395 DOI: 10.1038/s41419-024-06678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junseok Jang
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Cheol Gyu Park
- MEDIFIC Inc, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
18
|
Sun X, Wu J, Zhang X, Xie C, Wei H, Li P, Yang Y, Yuan H, Cai J, Xiao Q, Cheng J, Xu Q. Atlas of Cell Repertoire Within Neointimal Lesions Is Metabolically Altered in Hypertensive Rats. Hypertension 2024; 81:787-800. [PMID: 38240164 DOI: 10.1161/hypertensionaha.123.22057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND High blood pressure has been suggested to accelerate vascular injury-induced neointimal formation and progression. However, little is known about the intricate relationships between vascular injury and hypertension in the context of arterial remodeling. METHODS Single-cell RNA-sequencing analysis was used to depict the cell atlas of carotid arteries of Wistar Kyoto rats and spontaneously hypertensive rats with or without balloon injury. RESULTS We found that hypertension significantly aggravated balloon injury-induced arterial stenosis. A total of 36 202 cells from carotid arteries with or without balloon injury were included in single-cell RNA-sequencing analysis. Cell composition analysis showed that vascular injury and hypertension independently induced distinct aortic cell phenotypic alterations including immune cells, endothelial cells (ECs), and smooth muscle cells. Specifically, our data showed that injury and hypertension-induced specific EC phenotypic alterations, and revealed a transition from functional ECs to hypermetabolic, and eventually dysfunctional ECs in hypertensive rats upon balloon injury. Importantly, our data also showed that vascular injury and hypertension-induced different smooth muscle cell phenotypic alterations, characterized by deferential expression of synthetic signatures. Interestingly, pathway analysis showed that dysregulated metabolic pathways were a common feature in monocytes/macrophages, ECs, and smooth muscle cells in response to injury and hypertension. Functionally, we demonstrate that inhibition of mitochondrial respiration significantly ameliorated injury-induced neointimal formation in spontaneously hypertensive rats. CONCLUSIONS This study provides the cell landscape changes of the main aortic cell phenotypic alterations in response to injury and hypertension. Our findings suggest that targeting cellular mitochondrial respiration could be a novel therapeutic for patients with hypertension undergoing vascular angioplasty.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department of General Surgery (Vascular Surgery), Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, China (X.S., H.W.)
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Junru Wu
- Department of Cardiology and Center of Pharmacology, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (J.W., H.Y., J. Cai)
| | - Xiaolin Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Cheng Xie
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Haijun Wei
- Department of General Surgery (Vascular Surgery), Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou, China (X.S., H.W.)
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Hong Yuan
- Department of Cardiology and Center of Pharmacology, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (J.W., H.Y., J. Cai)
| | - Jingjing Cai
- Department of Cardiology and Center of Pharmacology, Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (J.W., H.Y., J. Cai)
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
| | - Jun Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
| | - Qingbo Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China (X.S., X.Z., C.X., P.L., Y.Y., J. Cheng, Q. Xu)
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom (Q. Xiao, Q. Xu)
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Q. Xu)
| |
Collapse
|
19
|
Zhang L, Wu X, Hong L. Endothelial Reprogramming in Atherosclerosis. Bioengineering (Basel) 2024; 11:325. [PMID: 38671747 PMCID: PMC11048243 DOI: 10.3390/bioengineering11040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Atherosclerosis (AS) is a severe vascular disease that results in millions of cases of mortality each year. The development of atherosclerosis is associated with vascular structural lesions, characterized by the accumulation of immune cells, mesenchymal cells, lipids, and an extracellular matrix at the intimal resulting in the formation of an atheromatous plaque. AS involves complex interactions among various cell types, including macrophages, endothelial cells (ECs), and smooth muscle cells (SMCs). Endothelial dysfunction plays an essential role in the initiation and progression of AS. Endothelial dysfunction can encompass a constellation of various non-adaptive dynamic alterations of biology and function, termed "endothelial reprogramming". This phenomenon involves transitioning from a quiescent, anti-inflammatory state to a pro-inflammatory and proatherogenic state and alterations in endothelial cell identity, such as endothelial to mesenchymal transition (EndMT) and endothelial-to-immune cell-like transition (EndIT). Targeting these processes to restore endothelial balance and prevent cell identity shifts, alongside modulating epigenetic factors, can attenuate atherosclerosis progression. In the present review, we discuss the role of endothelial cells in AS and summarize studies in endothelial reprogramming associated with the pathogenesis of AS.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Liu J, Yu X, Braucht A, Smith S, Wang C. N-Cadherin Targeted Melanin Nanoparticles Reverse the Endothelial-Mesenchymal Transition in Vascular Endothelial Cells to Potentially Slow the Progression of Atherosclerosis and Cancer. ACS NANO 2024; 18:8229-8247. [PMID: 38427686 DOI: 10.1021/acsnano.3c12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Endothelial-mesenchymal transition (EndoMT) of vascular endothelial cells has recently been considered as a key player in the early progression of a variety of vascular and nonvascular diseases, including atherosclerosis, cancer, and organ fibrosis. However, current strategies attempting to identify pharmacological inhibitors to block the regulatory pathways of EndoMT suffer from poor selectivity, unwanted side effects, and a heterogeneous response from endothelial cells with different origins. Furthermore, EndoMT inhibitors focus on preventing EndoMT, leaving the endothelial cells that have already undergone EndoMT unresolved. Here, we report the design of a simple but powerful nanoparticle system (i.e., N-cadherin targeted melanin nanoparticles) to convert cytokine-activated, mesenchymal-like endothelial cells back to their original endothelial phenotype. We term this process "Reversed EndoMT" (R-EndoMT). R-EndoMT allows the impaired endothelial barriers to recover their quiescence and intactness, with significantly reduced leukocyte and cancer cell adhesion and transmigration, which could potentially stop atheromatous plaque formation and cancer metastasis in the early stages. R-EndoMT is achieved on different endothelial cell types originating from arteries, veins, and capillaries, independent of activating cytokines. We reveal that N-cadherin targeted melanin nanoparticles reverse EndoMT by downregulating an N-cadherin dependent RhoA activation pathway. Overall, this approach offers a different prospect to treat multiple EndoMT-associated diseases by designing nanoparticles to reverse the phenotypical transition of endothelial cells.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Xiao Yu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Annaliese Braucht
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Steve Smith
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Congzhou Wang
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| |
Collapse
|
21
|
Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res 2024; 120:223-236. [PMID: 38385523 PMCID: PMC10939465 DOI: 10.1093/cvr/cvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 02/23/2024] Open
Abstract
Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Franceska Kishta
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht 6229ER, The Netherlands
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
- St. Vincent’s Clinical School and University of New South Wales, 390 Victoria St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
22
|
Zhuo D, Mei Y, Lin C, Wu A, Luo Y, Lu H, Fu J. Nudifloside, a Secoiridoid Glucoside Derived from Callicarpa nudiflora, Inhibits Endothelial-to-Mesenchymal Transition and Angiogenesis in Endothelial Cells by Suppressing Ezrin Phosphorylation. J Cancer 2024; 15:2448-2459. [PMID: 38577590 PMCID: PMC10988308 DOI: 10.7150/jca.91566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/19/2024] [Indexed: 04/06/2024] Open
Abstract
Callicarpa nudiflora is a traditional folk medicine in China used for eliminating stasis to subdue swelling. Several compounds from Callicarpa nudiflora have been proved to show anti-inflammatory, haemostasis, hepatitis, and anti-proliferative effects. Tumor endothelial cells play crucial roles in tumor-induced angiogenesis. Recently, it was demonstrated that ECs may be the important source of cancer associated fibroblasts (CAFs) through endothelial to mesenchymal transition (EndoMT). In this study, we evaluated the effects of nudifloside (NDF), a secoiridoid glucoside from Callicarpa Nudiflora, on TGF-β1-induced EndoMT and VEGF-induced angiogenesis, and the underlying mechanisms were also involved. It was found that NDF significantly inhibited enhanced migration, invasion and F-actin assembly in endothelial cells (ECs) exposed in TGF-β1. NDF obviously reversed expression of several biomarkers associated with EndoMT and recovered the morphological characteristics of ECs and tube-like structure induced by TGF-β1. Furthermore, treatment of NDF resulted in a significant destruction of VEGF-induced angiogenesis in vitro and ex vivo. Data from co-immunoprecipitation assay provided the evidence that Ezrin phosphorylation and the interaction with binding protein can be inhibited by NDF, which can be confirmed by data from Ezrin silencing assay. Collectively, the application of NDF inhibited TGF-β1-induced EndoMT and VEGF-induced angiogenesis in ECs by reducing Ezrin phosphorylation.
Collapse
Affiliation(s)
- Dongliang Zhuo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yinlong Mei
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chaozhan Lin
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Aizhi Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuehua Luo
- Jiangxi Provincial Institute for Drug Control, Nanchang, 330029, China
| | - Hong Lu
- Network and Educational Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jianjiang Fu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, China
| |
Collapse
|
23
|
Fang Z, Zhao G, Zhao S, Yu X, Feng R, Zhang YE, Li H, Huang L, Guo Z, Zhang Z, Abdurahman M, Hong H, Li P, Wu B, Zhu J, Zhong X, Huang D, Lu H, Zhao X, Chen Z, Zhang W, Guo J, Zheng H, He Y, Qin S, Lu H, Zhao Y, Wang X, Ge J, Li H. GTF2H4 regulates partial EndMT via NF-κB activation through NCOA3 phosphorylation in ischemic diseases. Innovation (N Y) 2024; 5:100565. [PMID: 38379791 PMCID: PMC10876913 DOI: 10.1016/j.xinn.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 01/01/2024] [Indexed: 02/22/2024] Open
Abstract
Partial endothelial-to-mesenchymal transition (EndMT) is an intermediate phenotype observed in endothelial cells (ECs) undergoing a transition toward a mesenchymal state to support neovascularization during (patho)physiological angiogenesis. Here, we investigated the occurrence of partial EndMT in ECs under hypoxic/ischemic conditions and identified general transcription factor IIH subunit 4 (GTF2H4) as a positive regulator of this process. In addition, we discovered that GTF2H4 collaborates with its target protein excision repair cross-complementation group 3 (ERCC3) to co-regulate partial EndMT. Furthermore, by using phosphorylation proteomics and site-directed mutagenesis, we demonstrated that GTF2H4 was involved in the phosphorylation of receptor coactivator 3 (NCOA3) at serine 1330, which promoted the interaction between NCOA3 and p65, resulting in the transcriptional activation of NF-κB and the NF-κB/Snail signaling axis during partial EndMT. In vivo experiments confirmed that GTF2H4 significantly promoted partial EndMT and angiogenesis after ischemic injury. Collectively, our findings reveal that targeting GTF2H4 is promising for tissue repair and offers potential opportunities for treating hypoxic/ischemic diseases.
Collapse
Affiliation(s)
- Zheyan Fang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Gang Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuang Zhao
- Department of Medical Examination, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Xueting Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Runyang Feng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - You-en Zhang
- Department of Cardiology and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Haomin Li
- Clinical Data Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Lei Huang
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhentao Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Mukaddas Abdurahman
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hangnan Hong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Bing Wu
- Department of Cardiology and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jinhang Zhu
- Bio-X Institute, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, affiliated with Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hongchao Zheng
- Department of Cardiology, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Yue He
- Department of Cardiology, Shanghai Eighth People’s Hospital, Shanghai 200235, China
| | - Shengying Qin
- Bio-X Institute, Key Laboratory for The Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
24
|
Wesseling M, Diez-Benavente E, Mokry M, den Ruijter HM, Pasterkamp G. A critical appreciation of pathway analysis in atherosclerotic disease. Cellular phenotypic plasticity as an illustrative example. Vascul Pharmacol 2024; 154:107286. [PMID: 38408531 DOI: 10.1016/j.vph.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The rapid advancements in genome-scale (omics) techniques has created significant opportunities to investigate complex disease mechanisms in tissues and cells. Nevertheless, interpreting -omics data can be challenging, and pathway enrichment analysis is a frequently used method to identify candidate molecular pathways that drive gene expression changes. With a growing number of -omics studies dedicated to atherosclerosis, there has been a significant increase in studies and hypotheses relying on enrichment analysis. This brief review discusses the benefits and limitations of pathway enrichment analysis within atherosclerosis research. We highlight the challenges of identifying complex biological processes, such as cell phenotypic switching, within -omics data. Additionally, we emphasize the need for more comprehensive and curated gene sets that reflect the biological complexity of atherosclerosis. Pathway enrichment analysis is a valuable tool for gaining insights into the molecular mechanisms of atherosclerosis. Nevertheless, it is crucial to remain aware of the intrinsic limitations of this approach. By addressing these weaknesses, enrichment analysis in atherosclerosis can lead to breakthroughs in identifying the mechanisms of disease progresses, the identification of key driver genes, and consequently, advance personalized patient care.
Collapse
Affiliation(s)
- M Wesseling
- Central Diagnostics Laboratories, Department of Laboratory, pharmacy and biomedical genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - E Diez-Benavente
- Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - M Mokry
- Central Diagnostics Laboratories, Department of Laboratory, pharmacy and biomedical genetics, University Medical Centre Utrecht, Utrecht, the Netherlands; Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - H M den Ruijter
- Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - G Pasterkamp
- Central Diagnostics Laboratories, Department of Laboratory, pharmacy and biomedical genetics, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
25
|
Goligorsky MS. Permissive role of vascular endothelium in fibrosis: focus on the kidney. Am J Physiol Cell Physiol 2024; 326:C712-C723. [PMID: 38223932 PMCID: PMC11193458 DOI: 10.1152/ajpcell.00526.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Fibrosis, the morphologic end-result of a plethora of chronic conditions and the scorch for organ function, has been thoroughly investigated. One aspect of its development and progression, namely the permissive role of vascular endothelium, has been overshadowed by studies into (myo)fibroblasts and TGF-β; thus, it is the subject of the present review. It has been established that tensile forces of the extracellular matrix acting on cells are a prerequisite for mechanochemical coupling, leading to liberation of TGF-β and formation of myofibroblasts. Increased tensile forces are prompted by elevated vascular permeability in response to diverse stressors, resulting in the exudation of fibronectin, fibrinogen/fibrin, and other proteins, all stiffening the extracellular matrix. These processes lead to the development of endothelial cells dysfunction, endothelial-to-mesenchymal transition, premature senescence of endothelial cells, perturbation of blood flow, and gradual obliteration of microvasculature, leaving behind "string" vessels. The resulting microvascular rarefaction is not only a constant companion of fibrosis but also an adjunct mechanism of its progression. The deepening knowledge of the above chain of pathogenetic events involving endothelial cells, namely increased permeability-stiffening of the matrix-endothelial dysfunction-microvascular rarefaction-tissue fibrosis, may provide a roadmap for therapeutic interventions deemed to curtail and reverse fibrosis.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Department of Medicine, New York Medical College, Touro University, Valhalla, New York, United States
- Department of Pharmacology, New York Medical College, Touro University, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Touro University, Valhalla, New York, United States
| |
Collapse
|
26
|
Medina-Dols A, Cañellas G, Capó T, Solé M, Mola-Caminal M, Cullell N, Jaume M, Nadal-Salas L, Llinàs J, Gómez L, Tur S, Jiménez C, Díaz RM, Carrera C, Muiño E, Gallego-Fabrega C, Soriano-Tárraga C, Ruiz-Guerra L, Pol-Fuster J, Asensio V, Muncunill J, Fleischer A, Iglesias A, Giralt-Steinhauer E, Lazcano U, Fernández-Pérez I, Jiménez-Balado J, Gabriel-Salazar M, Garcia-Gabilondo M, Lei T, Torres-Aguila NP, Cárcel-Márquez J, Lladó J, Olmos G, Rosell A, Montaner J, Planas AM, Rabionet R, Hernández-Guillamon M, Jiménez-Conde J, Fernández-Cadenas I, Vives-Bauzá C. Role of PATJ in stroke prognosis by modulating endothelial to mesenchymal transition through the Hippo/Notch/PI3K axis. Cell Death Discov 2024; 10:85. [PMID: 38368420 PMCID: PMC10874379 DOI: 10.1038/s41420-024-01857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
Through GWAS studies we identified PATJ associated with functional outcome after ischemic stroke (IS). The aim of this study was to determine PATJ role in brain endothelial cells (ECs) in the context of stroke outcome. PATJ expression analyses in patient's blood revealed that: (i) the risk allele of rs76221407 induces higher expression of PATJ, (ii) PATJ is downregulated 24 h after IS, and (iii) its expression is significantly lower in those patients with functional independence, measured at 3 months with the modified Rankin scale ((mRS) ≤2), compared to those patients with marked disability (mRS = 4-5). In mice brains, PATJ was also downregulated in the injured hemisphere at 48 h after ischemia. Oxygen-glucose deprivation and hypoxia-dependent of Hypoxia Inducible Factor-1α also caused PATJ depletion in ECs. To study the effects of PATJ downregulation, we generated PATJ-knockdown human microvascular ECs. Their transcriptomic profile evidenced a complex cell reprogramming involving Notch, TGF-ß, PI3K/Akt, and Hippo signaling that translates in morphological and functional changes compatible with endothelial to mesenchymal transition (EndMT). PATJ depletion caused loss of cell-cell adhesion, upregulation of metalloproteases, actin cytoskeleton remodeling, cytoplasmic accumulation of the signal transducer C-terminal transmembrane Mucin 1 (MUC1-C) and downregulation of Notch and Hippo signaling. The EndMT phenotype of PATJ-depleted cells was associated with the nuclear recruitment of MUC1-C, YAP/TAZ, β-catenin, and ZEB1. Our results suggest that PATJ downregulation 24 h after IS promotes EndMT, an initial step prior to secondary activation of a pro-angiogenic program. This effect is associated with functional independence suggesting that activation of EndMT shortly after stroke onset is beneficial for stroke recovery.
Collapse
Affiliation(s)
- Aina Medina-Dols
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - Guillem Cañellas
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Toni Capó
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina Mola-Caminal
- Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Natalia Cullell
- Neurology, Hospital Universitari Mútua de Terrassa/Fundacio Docència i Recerca Mútua Terrassa, Terrassa, Spain
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Marina Jaume
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Laura Nadal-Salas
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Jaume Llinàs
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Lluis Gómez
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Silvia Tur
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Carmen Jiménez
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Rosa M Díaz
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Caty Carrera
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Laura Ruiz-Guerra
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - Josep Pol-Fuster
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Víctor Asensio
- Department of Genetics (GEN-IB), HUSE, IdISBa, Palma, Spain
| | | | | | - Amanda Iglesias
- Department of Respiratory Medicine,, Hospital Universitari Son Espases-IdISBa Palma, Spain; CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Uxue Lazcano
- Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | | | - Marina Gabriel-Salazar
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ting Lei
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria-Paz Torres-Aguila
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jerònia Lladó
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Gabriel Olmos
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institute of Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology & Statistics, IBUB, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Cristòfol Vives-Bauzá
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.
| |
Collapse
|
27
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
28
|
Li Y, Girard R, Srinath A, Cruz DV, Ciszewski C, Chen C, Lightle R, Romanos S, Sone JY, Moore T, DeBiasse D, Stadnik A, Lee JJ, Shenkar R, Koskimäki J, Lopez-Ramirez MA, Marchuk DA, Ginsberg MH, Kahn ML, Shi C, Awad IA. Transcriptomic signatures of individual cell types in cerebral cavernous malformation. Cell Commun Signal 2024; 22:23. [PMID: 38195510 PMCID: PMC10775676 DOI: 10.1186/s12964-023-01301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 01/11/2024] Open
Abstract
Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Romuald Girard
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Diana Vera Cruz
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Cezary Ciszewski
- Human Disease and Immune Discovery Core, The University of Chicago, Chicago, IL, USA
| | - Chang Chen
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Sharbel Romanos
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Je Yeong Sone
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Thomas Moore
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Dorothy DeBiasse
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Agnieszka Stadnik
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Justine J Lee
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Janne Koskimäki
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
- Department of Neurosurgery, Oulu University Hospital, Neurocenter, Oulu, Finland
| | - Miguel A Lopez-Ramirez
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Issam A Awad
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA.
- Department of Neurological Surgery, University of Chicago Medicine, 5841 S Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
29
|
Zhang X, Yin T, Wang Y, Du J, Dou J, Zhang X. Effects of scutellarin on the mechanism of cardiovascular diseases: a review. Front Pharmacol 2024; 14:1329969. [PMID: 38259289 PMCID: PMC10800556 DOI: 10.3389/fphar.2023.1329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases represent a significant worldwide problem, jeopardizing individuals' physical and mental wellbeing as well as their quality of life as a result of their widespread incidence and fatality. With the aging society, the occurrence of Cardiovascular diseases is progressively rising each year. However, although drugs developed for treating Cardiovascular diseases have clear targets and proven efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe, effective, and practical treatment options is crucial. Scutellarin is the primary constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to establish a theoretical foundation for the creation and use of secure, productive, and logical medications for Scutellarin in curing heart-related illnesses. Additionally, the examination and analysis of the signal pathway and its associated mechanisms with regard to the employment of SCU in treating heart diseases will impart innovative resolving concepts for the treatment and prevention of Cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyu Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Yin
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiazhe Du
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
30
|
Chen J, Chen FY, Lu CJ, Yi SW. Baicalein alleviates palmitic acid-induced endothelial cell dysfunction via inhibiting endoplasmic reticulum stress. Clin Hemorheol Microcirc 2024; 88:235-245. [PMID: 38905036 DOI: 10.3233/ch-242230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Endothelial cells play a critical role in maintaining vascular function and kinetic homeostasis, but excessive accumulation of palmitic acid (PA) may lead to endoplasmic reticulum stress and trigger endothelial cell dysfunction. Baicalin (BCL), a natural plant extract, has received widespread attention for its biological activities in anti-inflammation and anti-oxidative stress. However, the mechanism of BCL on PA-induced endothelial cell dysfunction is unclear. Therefore, the aim of this study was to investigate whether BCL could inhibit PA-induced endoplasmic reticulum stress and thus attenuate endothelial cell dysfunction. METHODS Human umbilical vein endothelial cells (HUVECs) were divided into Control, PA, PA + BCL-10 μM, PA + BCL-20 μM, and PA + BCL-50 μM groups. The PA group was treated with PA (200 μM), while the PA + BCL groups were co-treated with different concentrations of BCL (10 μM, 20 μM, 50 μM) for 24 hours. Cell viability was detected by MTT. Cell migration ability was determined by Transwell assay, apoptosis level by flow cytometry, and tube formation ability by tube formation assay. Finally, the levels of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and angiogenesis-related proteins (VEGFA and FGF2) were detected by western blot, MMP-9, as well as the protein levels of endoplasmic reticulum stress biomarkers (GRP78, CHOP, PERK, and ATF4). RESULTS The results at the cellular level showed that cell viability, migration ability and tube formation ability of PA-induced HUVECs were significantly reduced, while apoptosis level was significantly increased. However, administration of different concentrations of BCL significantly enhanced PA-induced cell viability, migration ability and tube formation ability of HUVECs while inhibiting apoptosis. The results of protein levels showed that the protein levels of Bax and cleaved caspase-3 were observably up-regulated in the cells of the PA group, while the protein level of Bcl-2 was significantly down-regulated; compared with the PA group, the protein levels of Bax and cleaved caspase-3 were much lower and the Bcl-2 protein level was much higher in the PA + BCL group. Additionally, the protein levels of VEGFA, FGF2 and MMP-9 were raised and those of GRP78, CHOP, PERK and ATF4 were lowered in the PA + BCL group of cells in a concentration-dependent manner. CONCLUSION BCL significantly attenuates PA-induced endothelial cell dysfunction by inhibiting endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jian Chen
- Vascular Surgery, Wuhan First Hospital, Wuhan, Hubei, China
| | - Fei-Yu Chen
- Vascular Surgery, Wuhan First Hospital, Wuhan, Hubei, China
| | - Chan-Jun Lu
- Vascular Surgery, Wuhan First Hospital, Wuhan, Hubei, China
| | - Sheng-Wu Yi
- Vascular Surgery, Wuhan First Hospital, Wuhan, Hubei, China
| |
Collapse
|
31
|
Mimouni M, Lajoix AD, Desmetz C. Experimental Models to Study Endothelial to Mesenchymal Transition in Myocardial Fibrosis and Cardiovascular Diseases. Int J Mol Sci 2023; 25:382. [PMID: 38203553 PMCID: PMC10779210 DOI: 10.3390/ijms25010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is a common feature of cardiovascular diseases and targets multiple organs, such as the heart and vessels. Endothelial to mesenchymal transition is a complex, vital process that occurs during embryonic formation and plays a crucial role in cardiac development. It is also a fundamental process implicated in cardiac fibrosis and repair, but also in other organs. Indeed, in numerous cardiovascular diseases, the endothelial-to-mesenchymal transition has been shown to be involved in the generation of fibroblasts that are able to produce extracellular matrix proteins such as type I collagen. This massive deposition results in tissue stiffening and organ dysfunction. To advance our understanding of this process for the development of new specific diagnostic and therapeutic strategies, it is essential to develop relevant cellular and animal models of this process. In this review, our aim was to gain an in-depth insight into existing in vitro and in vivo models of endothelial to mesenchymal transition in cardiovascular diseases with a focus on cardiac fibrosis. We discuss important parameters impacting endothelial to mesenchymal transition, and we give perspectives for the development of relevant models to decipher the underlying mechanisms and ultimately find new treatments specific to fibrosis happening in cardiovascular diseases.
Collapse
Affiliation(s)
- Mohammed Mimouni
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, 34000 Montpellier, France
| | - Anne-Dominique Lajoix
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, 34000 Montpellier, France
| | - Caroline Desmetz
- Biocommunication in Cardio-Metabolism (BC2M), University of Montpellier, 34000 Montpellier, France
| |
Collapse
|
32
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheng L, Yue H, Zhang H, Liu Q, Du L, Liu X, Xie J, Shen Y. The influence of microenvironment stiffness on endothelial cell fate: Implication for occurrence and progression of atherosclerosis. Life Sci 2023; 334:122233. [PMID: 37918628 DOI: 10.1016/j.lfs.2023.122233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Atherosclerosis, the primary cause of cardiovascular diseases (CVDs), is characterized by phenotypic changes in fibrous proliferation, chronic inflammation and lipid accumulation mediated by vascular endothelial cells (ECs) and vascular smooth muscle cells (SMCs) which are correlated with the stiffening and ectopic remodeling of local extracellular matrix (ECM). The native residents, ECs and SMCs, are not only affected by various chemical factors including inflammatory mediators and chemokines, but also by a range of physical stimuli, such as shear stress and ECM stiffness, presented in the microenvironmental niche. Especially, ECs, as a semi-selective barrier, can sense mechanical forces, respond quickly to changes in mechanical loading and provide context-specific adaptive responses to restore homeostasis. However, blood arteries undergo stiffening and lose their elasticity with age. Reports have shown that the ECM stiffening could influence EC fate by changing the cell adhesion, spreading, proliferation, cell to cell contact, migration and even communication with SMCs. The cell behaviour changes mediated by ECM stiffening are dependent on the activation of a signaling cascade of mechanoperception and mechanotransduction. Although the substantial evidence directly indicates the importance of ECM stiffening on the native ECs, the understanding about this complex interplay is still largely limited. In this review, we systematically summarize the roles of ECM stiffening on the behaviours of endothelial cells and elucidate the underlying details in biological mechanism, aiming to provide the process of how ECs integrate ECM mechanics and the highlights for bioaffinity of tissue-specific engineered scaffolds.
Collapse
Affiliation(s)
- Lin Cheng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Huaiyi Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Qiao Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lingyu Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; JinFeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
34
|
Cooke JP, Lai L. Transflammation in tissue regeneration and response to injury: How cell-autonomous inflammatory signaling mediates cell plasticity. Adv Drug Deliv Rev 2023; 203:115118. [PMID: 37884127 PMCID: PMC10842620 DOI: 10.1016/j.addr.2023.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Inflammation is a first responder against injury and infection and is also critical for the regeneration and repair of tissue after injury. The role of professional immune cells in tissue healing is well characterized. Professional immune cells respond to pathogens with humoral and cytotoxic responses; remove cellular debris through efferocytosis; secrete angiogenic cytokines and growth factors to repair the microvasculature and parenchyma. However, non-immune cells are also capable of responding to damage or pathogens. Non-immune somatic cells express pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The PRRs activation leads to the release of inflammatory cytokines required for tissue defense and repair. Notably, the activation of PRRs also triggers epigenetic changes that promote DNA accessibility and cellular plasticity. Thus, non-immune cells directly respond to the local inflammatory cues and can undergo phenotypic modifications or even cell lineage transitions to facilitate tissue regeneration. This review will focus on the novel role of cell-autonomous inflammatory signaling in mediating cell plasticity, a process which is termed transflammation. We will discuss the regulation of this process by changes in the functions and expression levels of epigenetic modifiers, as well as metabolic and ROS/RNS-mediated epigenetic modulation of DNA accessibility during cell fate transition. We will highlight the recent technological developments in detecting cell plasticity and potential therapeutic applications of transflammation in tissue regeneration.
Collapse
Affiliation(s)
- John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Li Lai
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States.
| |
Collapse
|
35
|
Bełtowski J. Role of Endothelial-to-Mesenchymal Transition in Kidney Injury Associated With Salt-Sensitive Hypertension. Am J Hypertens 2023; 36:641-642. [PMID: 37688319 DOI: 10.1093/ajh/hpad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/07/2023] [Indexed: 09/10/2023] Open
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
36
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
37
|
Monaco CF, Davis JS. Mechanisms of angioregression of the corpus luteum. Front Physiol 2023; 14:1254943. [PMID: 37841308 PMCID: PMC10568036 DOI: 10.3389/fphys.2023.1254943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The corpus luteum is a transient ovarian endocrine gland that produces the progesterone necessary for the establishment and maintenance of pregnancy. The formation and function of this gland involves angiogenesis, establishing the tissue with a robust blood flow and vast microvasculature required to support production of progesterone. Every steroidogenic cell within the corpus luteum is in direct contact with a capillary, and disruption of angiogenesis impairs luteal development and function. At the end of a reproductive cycle, the corpus luteum ceases progesterone production and undergoes rapid structural regression into a nonfunctional corpus albicans in a process initiated and exacerbated by the luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by complete regression of the luteal microvasculature in which endothelial cells die and are sloughed off into capillaries and lymphatic vessels. During luteal regression, changes in nitric oxide transiently increase blood flow, followed by a reduction in blood flow and progesterone secretion. Early luteal regression is marked by an increased production of cytokines and chemokines and influx of immune cells. Microvascular endothelial cells are sensitive to released factors during luteolysis, including thrombospondin, endothelin, and cytokines like tumor necrosis factor alpha (TNF) and transforming growth factor β 1 (TGFB1). Although PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors for PGF2α, therefore it is believed that the angioregression occurring during luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact mechanisms responsible for angioregression in the corpus luteum remain unknown. This review describes the current knowledge on angioregression of the corpus luteum and the roles of vasoactive factors released during luteolysis on luteal vasculature and endothelial cells of the microvasculature.
Collapse
Affiliation(s)
- Corrine F. Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
- US Department of Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, NE, United States
| |
Collapse
|
38
|
Maltabe VA, Melidoni AN, Beis D, Kokkinopoulos I, Paschalidis N, Kouklis P. VE-CADHERIN is expressed transiently in early ISL1 + cardiovascular progenitor cells and facilitates cardiac differentiation. Stem Cell Reports 2023; 18:1827-1840. [PMID: 37541259 PMCID: PMC10545488 DOI: 10.1016/j.stemcr.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 08/06/2023] Open
Abstract
Adherens junctions (AJs) provide adhesive properties through cadherins and associated cytoplasmic catenins and participate in morphogenetic processes. We examined AJs formed between ISL1+ cardiovascular progenitor cells during differentiation of embryonic stem cells (ESCs) in vitro and in mouse embryogenesis in vivo. We found that, in addition to N-CADHERIN, a percentage of ISL1+ cells transiently formed vascular endothelial (VE)-CADHERIN-mediated AJs during in vitro differentiation on days 4 and 5, and the same pattern was observed in vivo. Fluorescence-activated cell sorting (FACS) analysis extended morphological data showing that VE-CADHERIN+/ISL1+ cells constitute a significant percentage of cardiac progenitors on days 4 and 5. The VE-CADHERIN+/ISL1+ cell population represented one-third of the emerging FLK1+/PDGFRa+ cardiac progenitor cells (CPCs) for a restricted time window (days 4-6). Ablation of VE-CADHERIN during ESC differentiation results in severe inhibition of cardiac differentiation. Disruption of all classic cadherins in the VE-CADHERIN+ population via a cadherin dominant-negative mutant's expression resulted in a dramatic decrease in the ISL1+ population and inhibition of cardiac differentiation.
Collapse
Affiliation(s)
- Violetta A Maltabe
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece; Division of Biomedical Research, Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Anna N Melidoni
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitris Beis
- Developmental Biology, Center for Experimental Surgery Clinical and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), 11527 Athens, Greece; Laboratory of Biochemistry, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Ioannis Kokkinopoulos
- Developmental Biology and Immunobiology Laboratories, Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Nikolaos Paschalidis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Panos Kouklis
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece; Division of Biomedical Research, Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Ioannina, Greece.
| |
Collapse
|
39
|
Nijim W, Moustafa M, Humble J, Al-Shabrawey M. Endothelial to mesenchymal cell transition in diabetic retinopathy: targets and therapeutics. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1230581. [PMID: 38983088 PMCID: PMC11182279 DOI: 10.3389/fopht.2023.1230581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/11/2023] [Indexed: 07/11/2024]
Abstract
Diabetic retinopathy (DR) is a result of neurovacular insults from hyperglycemia in diabetes mellitus (DM), and it is one of the top causes of vision loss throughout the modern world. This review article explores the role endothelial to mesenchymal transition (EndMT) has on the pathogenesis of DR. EndMT contributes to the disruption of the blood-retinal barrier, vascular leakage, neovascularization, and fibrosis observed in DR. Risk factors and biomarkers associated with DR severity are discussed, highlighting the importance of early detection and targeted therapies. Current treatments primarily focus on anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation. However, emerging therapeutic strategies aimed at inhibiting EndMT and its downstream effects show promise in preventing the development and progression of DR. Understanding the molecular and cellular mechanisms underlying EndMT in DR provides valuable insights into the disease process and offers potential options for the development of potential treatments.
Collapse
Affiliation(s)
- Wasef Nijim
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mohamed Moustafa
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Eye Research Institute, Oakland University, Rochester, MI, United States
| | - Julia Humble
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Eye Research Institute, Oakland University, Rochester, MI, United States
| | - Mohamed Al-Shabrawey
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Eye Research Institute, Oakland University, Rochester, MI, United States
- Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
40
|
Lu Y, Sun Y, Saaoud F, Shao Y, Xu K, Jiang X, Wu S, Yu J, Snyder NW, Yang L, Shi XM, Zhao H, Wang H, Yang X. ER stress mediates Angiotensin II-augmented innate immunity memory and facilitates distinct susceptibilities of thoracic from abdominal aorta to aneurysm development. Front Immunol 2023; 14:1268916. [PMID: 37731512 PMCID: PMC10507336 DOI: 10.3389/fimmu.2023.1268916] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
To determine the roles of endoplasmic reticulum (ER) stress and trained immunity, we performed transcriptome analyses on the thoracic aorta (TA) and abdominal aorta (AA) from the angiotensin II (Ang II)-HFD-ApoE-KO aneurysm model and made significant findings: 1) Ang II bypassed HFD-induced metabolic reprogramming and induced stronger inflammation in AA than in TA; 2) Ang II and HFD upregulated 890 genes in AA versus TA and induced cytokine signaling; 3) Ang II AA and TA upregulated 73 and 68 cytokines, scRNA-Seq identified markers of macrophages and immune cells, cell death regulators, respectively; transdifferentiation markers of neuron, glial, and squamous epithelial cells were upregulated by Ang II-AA and TA; and pyroptosis signaling with IL-1β and caspase-4 were more upregulated in Ang II-AA than in TA; 4) Six upregulated transcriptomes in patients with AAA, Ang II AA, Ang II TA, additional aneurysm models, PPE-AAA and BAPN-Ang II-AAA, were partially overlapped with 10 lists of new ER stress gene sets including 3 interaction protein lists of ER stress regulators ATF6, PERK, and IRE1, HPA ER localization genes, KEGG signal genes, XBP1 transcription targets, ATF4 (PERK) targets, ATF6 targets, thapsigargin ER stress genes, tunicamycin-ER stress genes, respectively; 5) Ang II-AA and TA upregulated ROS regulators, MitoCarta genes, trained immunity genes, and glycolysis genes; and 6) Gene KO transcriptomes indicated that ATF6 and PERK played more significant roles than IRE1 in promoting AAA and trained immunity whereas antioxidant NRF2 inhibited them. Our unprecedented ER-focused transcriptomic analyses have provided novel insights on the roles of ER as an immune organelle in sensing various DAMPs and initiating ER stress that triggers Ang II-accelerated trained immunity and differs susceptibilities of thoracic and abdominal aortas to diseases.
Collapse
Affiliation(s)
- Yifan Lu
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jun Yu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Biomedical Education and Data Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
41
|
Daou D, Gillette TG, Hill JA. Inflammatory Mechanisms in Heart Failure with Preserved Ejection Fraction. Physiology (Bethesda) 2023; 38:0. [PMID: 37013947 PMCID: PMC10396273 DOI: 10.1152/physiol.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is now the most common form of heart failure and a significant public health concern for which limited effective therapies exist. Inflammation triggered by comorbidity burden is a critical element of HFpEF pathophysiology. Here, we discuss evidence for comorbidity-driven systemic and myocardial inflammation and the mechanistic role of inflammation in pathological myocardial remodeling in HFpEF.
Collapse
Affiliation(s)
- Daniel Daou
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
42
|
Wang EL, Zhang JJ, Luo FM, Fu MY, Li D, Peng J, Liu B. Cerebellin-2 promotes endothelial-mesenchymal transition in hypoxic pulmonary hypertension rats by activating NF-κB/HIF-1α/Twist1 pathway. Life Sci 2023; 328:121879. [PMID: 37355224 DOI: 10.1016/j.lfs.2023.121879] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
AIMS Endothelial-mesenchymal transition (EndMT) is one of the critical factors leading to vascular remodeling in pulmonary hypertension (PH). Recent studies found that the expression of Cerebellin-2 (CBLN2) is significantly increased in the lung tissue of patients with PH, suggesting that CBLN2 may be closely related to the development of PH. This study aims to investigate the role and potential mechanism of CBLN2 in the hypoxia-induced EndMT of PH rats. MATERIAL AND METHODS Hypoxia-induced PH rat model or EndMT cell model was constructed to investigate the role of CBLN2 in the process of endothelial mesenchymal transition during PH. The effects of CBLN2 siRNA, KC7F2 (HIF-1α inhibitor), and PDTC (NF-κB inhibitor) on hypoxia-induced EndMT were observed to evaluate the potential mechanism of CBLN2 in promoting EndMT. KEY FINDINGS The right ventricular systolic pressure and pulmonary vascular remodeling index in hypoxia-treated rats were significantly increased. The transformation of endothelial cells (marked by CD31) to mesenchymal cells (marked by α-SMA) can be observed in the pulmonary vessels of PH rats, and the expression of CBLN2 in the intima was also significantly up-regulated. In the hypoxia-induced HPAECs, endothelial cell markers such as VE-cadherin and CD31 expression were significantly down-regulated, while mesenchymal-like cell markers such as α-SMA and vimentin were increased considerably, along with the increased expressions of CBLN2, p-p65, HIF-1α, and Twist1; CBLN2 siRNA, PDTC, and KC7F2 could inhibit those phenomena. SIGNIFICANCE CBLN2 can promote EndMT by activating NF-κB/HIF-1α/Twist1 pathway. Therefore, CBLN2 may be a new therapeutic target for PH.
Collapse
Affiliation(s)
- E-Li Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jie-Jie Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fang-Mei Luo
- Department of Pharmacy, Hunan Children's Hospital, Changsha 410007, China
| | - Min-Yi Fu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dai Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
43
|
Wang M, Liu Y, Dai L, Zhong X, Zhang W, Xie Y, Zeng H, Wang H. ONX0914 inhibition of immunoproteasome subunit LMP7 ameliorates diabetic cardiomyopathy via restraining endothelial-mesenchymal transition. Clin Sci (Lond) 2023; 137:1297-1309. [PMID: 37551616 DOI: 10.1042/cs20230732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a chronic metabolic disease with few effective therapeutic options. Immunoproteasome is an inducible proteasome that plays an important role in the regulation of many cardiovascular diseases, while its role in DCM remains under discussion. The present study aims to demonstrate whether inhibiting immunoproteasome subunit low molecular weight polypeptide 7 (LMP7) could alleviate DCM. Here, we established a type I diabetes mellitus mouse model by streptozotocin (STZ) in 8-week-old male wild-type C57BL/6J mice. We found that immunoproteasome subunit LMP7 was overexpressed in the heart of diabetic mice, while inhibiting LMP7 with pharmacological inhibitor ONX0914 significantly alleviated myocardial fibrosis and improved cardiac function. Besides, compared with diabetic mice, ONX0914 treatment reduced protein levels of mesenchymal markers (Vimentin, α-smooth muscle actin, and SM22α) and increased endothelial markers (VE-cadherin and CD31). In TGFβ1 stimulated HUVECs, we also observed that ONX0914 could inhibit endothelial-mesenchymal transition (EndMT). Mechanistically, we prove that ONX0914 could regulate autophagy activity both in vivo and vitro. Meanwhile, the protective effect of ONX0914 on TGFβ1 stimulated HUVECs could be abolished by 3-methyladenine (3MA) or hydroxychloroquine (CQ). All in all, our data highlight that inhibition of LMP7 with ONX0914 could ameliorate EndMT in diabetic mouse hearts at least in part via autophagy activation. Thus, LMP7 may be a potential therapeutic target for the DCM.
Collapse
Affiliation(s)
- Mengwen Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Yujian Liu
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Lei Dai
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Xiaodan Zhong
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Wenjun Zhang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Yang Xie
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Hesong Zeng
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| | - Hongjie Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan 430030, Hubei, China
| |
Collapse
|
44
|
Luo Z, Li X, Wang L, Shu C. Impact of the transforming growth factor-β pathway on vascular restenosis and its mechanism. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1252-1259. [PMID: 37875366 PMCID: PMC10930841 DOI: 10.11817/j.issn.1672-7347.2023.230064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 10/26/2023]
Abstract
As a crucial regulatory molecule in the context of vascular stenosis, transforming growth factor-β (TGF-β), plays a pivotal role in its initiation and progression. TGF-β, a member of the TGF-β superfamily, can bind to the TGF-β receptor and transduce extracellular to intracellular signals through canonical Smad dependent or noncanonical signaling pathways to regulate cell growth, proliferation, differentiation, and apoptosis. Restenosis remains one of the most challenging problems in cardiac, cerebral, and peripheral vascular disease worldwide. The mechanisms for occurrence and development of restenosis are diverse and complex. The TGF-β pathway exhibits diversity across various cell types. Hence, clarifying the specific roles of TGF-β within different cell types and its precise impact on vascular stenosis provides strategies for future research in the field of stenosis.
Collapse
Affiliation(s)
- Zhongchen Luo
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Xin Li
- Institute of Vascular Diseases, Central South University, Changsha 410011
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Lunchang Wang
- Institute of Vascular Diseases, Central South University, Changsha 410011
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Chang Shu
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Department of Vascular Surgery, Vascular Center, Second Xiangya Hospital, Central South University, Changsha 410011.
- Center of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science, Beijing 100037, China.
| |
Collapse
|
45
|
Song J, Gerecht S. Hydrogels to Recapture Extracellular Matrix Cues That Regulate Vascularization. Arterioscler Thromb Vasc Biol 2023; 43:e291-e302. [PMID: 37317849 DOI: 10.1161/atvbaha.122.318235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
The ECM (extracellular matrix) is a 3-dimensional network that supports cellular responses and maintains structural tissue integrity in healthy and pathological conditions. The interactions between ECM and cells trigger signaling cascades that lead to phenotypic changes and structural and compositional turnover of the ECM, which in turn regulates vascular cell behavior. Hydrogel biomaterials are a powerful platform for basic and translational studies and clinical applications due to their high swelling capacity and exceptional versatility in compositions and properties. This review highlights recent developments and uses of engineered natural hydrogel platforms that mimic the ECM and present defined biochemical and mechanical cues for vascularization. Specifically, we focus on modulating vascular cell stimulation and cell-ECM/cell-cell interactions in the microvasculature that are the established biomimetic microenvironment.
Collapse
Affiliation(s)
- Jiyeon Song
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC
| |
Collapse
|
46
|
Grewal N, Klautz RJM, Poelmann RE. Intrinsic histological and morphological abnormalities of the pediatric thoracic aorta in bicuspid aortic valve patients are predictive for future aortopathy. Pathol Res Pract 2023; 248:154620. [PMID: 37392550 DOI: 10.1016/j.prp.2023.154620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Patients with a bicuspid aortic valve (BAV) have an increased risk to develop aortic complications. Many studies are pointing towards a possible embryonic explanation for the development of both a bicuspid aortic valve as well as a defective ascending aortic wall in these patients. The fetal and newborn ascending aortic wall has however scarcely been studied in bicuspid aortic valve patients. We hypothesize that early histopathological defects might already be visible in the fetal and pediatric ascending aortic wall of bicuspid aortic valve patients, indicating at an early embryonic defect. METHODS Non-dilated BAV ascending aortic wall samples were collected (n = 40), categorized in five age groups: premature (age range 17.5 weeks + days GA till 37.6 weeks + days GA) 2. neonate (age range 1 - 21 days) 3. infant (age range 1 month - 4 years) 4. adolescent (age range 12 years - 15 years) and 5. adult (age range 41 - 72 years). Specimen were studied for intimal and medial histopathological features. RESULTS The premature ascending aortic wall has a significantly thicker intimal and significantly thinner medial layer as compared to all other age categories (p < 0.05). After birth the intimal thickness decreases significantly. The medial layer increases in thickness before adulthood (p < 0.05) with an increasing number of elastic lamellae (p < 0.01) and interlamellar mucoid extracellular matrix accumulation (p < 0.0001). Intimal atherosclerosis was scarce and medial histopathological features such as overall medial degeneration, smooth muscle cell nuclei loss and elastic fiber fragmentation were not appreciated in the BAV ascending aortic wall of any age. CONCLUSIONS The main characteristics of a bicuspid ascending aortic wall are already present before adulthood, albeit not before birth. Considering the early manifestations of ascending aortic wall pathology in bicuspid aortic valve patients, the pediatric population should be considered while searching for markers predictive for future aortopathy.
Collapse
Affiliation(s)
- Nimrat Grewal
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert J M Klautz
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert E Poelmann
- Institute of Biology, Animal Sciences and Health, Leiden University, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Zhu WH, Chen J, Huang RK, Zhang Y, Huang ZX, Pang XQ, Hu B, Yang Y, Li X. Erythroid-transdifferentiated myeloid cells promote portal vein tumor thrombus in hepatocellular carcinoma. Theranostics 2023; 13:4316-4332. [PMID: 37649603 PMCID: PMC10465220 DOI: 10.7150/thno.82907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Rationale: Hepatocellular carcinoma (HCC) is primarily characterized by a high incidence of vascular invasion. However, the specific mechanism underlying portal vein tumor thrombus (PVTT) in HCC remains unclear. As a consequence of myeloid cell developmental arrest, CD71+ erythroid progenitor cells (EPCs) and myeloid-derived suppressor cells play important roles in HCC; however, their roles in PVTT remain unclear. Methods: The role of CD71+ EPCs in the HCC tumor microenvironment (TME) was evaluated via morphological, RNA-sequencing, enzyme-linked immunosorbent assay, and flow cytometric analyses. Co-culture techniques were employed to assess the CD45+ EPCs and their vascular compromising effect. Additionally, the PVTT-promoting function of CD45+ EPCs was explored in vivo in a murine model. Results: The CD45+EPCs in HCC tissues exhibited increased myeloid cell features, including morphology, surface markers, transforming growth factor (TGF)-β generation, and gene expression, compared with those in circulation. Hence, a large proportion of CD45+EPCs, particularly those in TMEs, comprise erythroid-transdifferentiated myeloid cells (EDMCs). Additionally, the expression of C-C chemokine receptor type 2 (CCR2) mRNA was upregulated in CD45+EPCs within the TME. Tumor macrophages from HCC tissues induced substantial migration of CD45+EPCs in a dose-dependent manner. Meanwhile, results from immunofluorescence analyses revealed that these two cell types are positively associated in the TME and circulation. That is, EDMCs are chemoattracted by HCC macrophages mainly via CCR2 from CD45+ EPCs in the circulation. Additionally, the expressions of FX, FVII, FGB, C4b, CFB, and CFH were elevated in CD45+EPCs within the TME compared with those in the spleen. The CD45+EPCs from the HCC TME promoted vessel endothelial cell migration and compromised tube formation through TGF-β and FGB, respectively. Additionally, CD45+EPCs from the TME induced HCC cell migration. HCC macrophage-induced CD45+EPCs to exhibit higher levels of FX, FVII, FGB, and TGF-β. Meanwhile, upregulation of CCAAT/enhancer binding protein beta expression induced FGB and TGF-β generation in CD45+EPCs in the TME. WTAP, a major RNA m6A writer, stabilized FX and FVII mRNA and enhanced their nuclear export in CD45+EPCs from the TME. CD45+EPCs from the TME were positively associated with PVTT and poor prognosis. Splenectomy reduced the level of CD45+EPCs in the circulation and TME, as well as the incidence of microvascular invasion. The incidence of microvascular invasion increased following the transfer of HCC tissue CD45+EPCs to splenectomized HCC-bearing mice. Conclusions: The CD45+EPCs enriched in the HCC microenvironment are EDMCs, which are induced by HCC macrophages to migrate from the circulation to the TME. Subsequently, EDMCs promote PVTT by compromising the blood vessel endothelium, aggravating coagulation, and promoting HCC cell migration.
Collapse
Affiliation(s)
- Wei-Hang Zhu
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
- Guangdong Key laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Jie Chen
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
- Guangdong Key laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Run-Kai Huang
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
- Guangdong Key laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Yuan Zhang
- Department of Obstetrics, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Ze-Xuan Huang
- Guangdong Key laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Xiu-Qing Pang
- Guangdong Key laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Bo Hu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center & Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Xing Li
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
- Guangdong Key laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| |
Collapse
|
48
|
Reventun P, Sánchez-Esteban S, Cook-Calvete A, Delgado-Marín M, Roza C, Jorquera-Ortega S, Hernandez I, Tesoro L, Botana L, Zamorano JL, Zaragoza C, Saura M. Endothelial ILK induces cardioprotection by preventing coronary microvascular dysfunction and endothelial-to-mesenchymal transition. Basic Res Cardiol 2023; 118:28. [PMID: 37452166 PMCID: PMC10348984 DOI: 10.1007/s00395-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Endothelial dysfunction is an early event in coronary microvascular disease. Integrin-linked kinase (ILK) prevents endothelial nitric oxide synthase (eNOS) uncoupling and, thus, endothelial dysfunction. However, the specific role of endothelial ILK in cardiac function remains to be fully elucidated. We hypothesised that endothelial ILK plays a crucial role in maintaining coronary microvascular function and contractile performance in the heart. We generated an endothelial cell-specific ILK conditional knock-out mouse (ecILK cKO) and investigated cardiovascular function. Coronary endothelial ILK deletion significantly impaired cardiac function: ejection fraction, fractional shortening and cardiac output decreased, whilst left ventricle diastolic internal diameter decreased and E/A and E/E' ratios increased, indicating not only systolic but also diastolic dysfunction. The functional data correlated with extensive extracellular matrix remodelling and perivascular fibrosis, indicative of adverse cardiac remodelling. Mice with endothelial ILK deletion suffered early ischaemic-like events with ST elevation and transient increases in cardiac troponins, which correlated with fibrotic remodelling. In addition, ecILK cKO mice exhibited many features of coronary microvascular disease: reduced cardiac perfusion, impaired coronary flow reserve and arterial remodelling with patent epicardial coronary arteries. Moreover, endothelial ILK deletion induced a moderate increase in blood pressure, but the antihypertensive drug Losartan did not affect microvascular remodelling whilst only partially ameliorated fibrotic remodelling. The plasma miRNA profile reveals endothelial-to-mesenchymal transition (endMT) as an upregulated pathway in endothelial ILK conditional KO mice. Our results show that endothelial cells in the microvasculature in endothelial ILK conditional KO mice underwent endMT. Moreover, endothelial cells isolated from these mice and ILK-silenced human microvascular endothelial cells underwent endMT, indicating that decreased endothelial ILK contributes directly to this endothelial phenotype shift. Our results identify ILK as a crucial regulator of microvascular endothelial homeostasis. Endothelial ILK prevents microvascular dysfunction and cardiac remodelling, contributing to the maintenance of the endothelial cell phenotype.
Collapse
Affiliation(s)
- P Reventun
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
- School of Medicine, Department of Medicine, Cardiology Division, Johns Hopkins University, Baltimore, MD, United States
| | - S Sánchez-Esteban
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - A Cook-Calvete
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - M Delgado-Marín
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - C Roza
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - S Jorquera-Ortega
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - I Hernandez
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - L Tesoro
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
| | - L Botana
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
| | - J L Zamorano
- Servicio Cardiología, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - C Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - M Saura
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
49
|
Bishop D, Schwarz Q, Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front Cell Dev Biol 2023; 11:1172114. [PMID: 37457293 PMCID: PMC10339107 DOI: 10.3389/fcell.2023.1172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Blood vessels are well-known to play roles in organ development and repair, primarily owing to their fundamental function in delivering oxygen and nutrients to tissues to promote their growth and homeostasis. Endothelial cells however are not merely passive conduits for carrying blood. There is now evidence that endothelial cells of the vasculature actively regulate tissue-specific development, morphogenesis and organ function, as well as playing roles in disease and cancer. Angiocrine factors are growth factors, cytokines, signaling molecules or other regulators produced directly from endothelial cells to instruct a diverse range of signaling outcomes in the cellular microenvironment, and are critical mediators of the vascular control of organ function. The roles of angiocrine signaling are only beginning to be uncovered in diverse fields such as homeostasis, regeneration, organogenesis, stem-cell maintenance, cell differentiation and tumour growth. While in some cases the specific angiocrine factor involved in these processes has been identified, in many cases the molecular identity of the angiocrine factor(s) remain to be discovered, even though the importance of angiocrine signaling has been implicated. In this review, we will specifically focus on roles for endothelial-derived angiocrine signaling in instructing tissue morphogenesis and organogenesis during embryonic and perinatal development.
Collapse
|
50
|
Zhang W, Li X, Li M, He H, Yang C, Wang M, Liu D, Zhang L, Shu C. Empagliflozin inhibits neointimal hyperplasia through attenuating endothelial-to-mesenchymal transition via TAK-1/NF-κB pathway. Eur J Pharmacol 2023:175826. [PMID: 37321472 DOI: 10.1016/j.ejphar.2023.175826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To investigate whether empagliflozin could prevent injury-induced vascular neointimal hyperplasia and to further explore its mechanism. METHODS Male C57BL/6J mice were divided into two groups with or without the empagliflozin treatment, and carotid ligation injury was performed to induce neointimal hyperplasia. The injured carotid arteries were collected for Western blotting (WB), histology and immunofluorescence analysis after four weeks. The inflammatory responses were analyzed by qRT-PCR to detect the inflammatory gene mRNA expression. To further explore its mechanism, HUVECs were treated with TGFβ-1 to induce EndMT followed by empagliflozin or vehicle treatment in vitro. A23187 (Calcimycin), an agonist of NF-κB signaling was used in the experiment. RESULTS The wall thickness and the neointima area was significantly reduced in the empagliflozin treatment group on day 28 after artery ligation. The Ki-67 positive cells were 28.33 ± 12.66% and 48.83 ± 10.41% in the empagliflozin-treated group and control group, respectively (P < 0.05). The mRNA expression levels of the inflammatory genes and inflammatory cells were decreased in the empagliflozin treatment group, as well as the MMP2 and MMP9. Meanwhile, empagliflozin can significantly reduce the migratory ability of inflammatory-treated HUVECs. The CD31 was increased in the TGFβ1+empagliflozin group, whereas the FSP-1, phosphorylation of TAK-1 (p-TAK-1) and phosphorylation of NF-κB (p- NF-κB) expression level were decreased, compared to the control group without empagliflozin treatment. However, the expression level of FSP-1 and p-NF-κB were reversed after co-treatment with A23187, whereas the (p-TAK-1 expression level was without any significant difference. CONCLUSION Empagliflozin inhibits the inflammation-induced EndMT via the TAK-1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weichang Zhang
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Xin Li
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Ming Li
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Hao He
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Chenzi Yang
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Mo Wang
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Dingxiao Liu
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Lei Zhang
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| | - Chang Shu
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Number 139, Renmin Road, Changsha, Hunan, 410011, PR China; State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, PR China; Vascular Disease Institute, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|