1
|
Hwang J, Cho SM, Geocadin R, Ritzl EK. Methods of Evaluating EEG Reactivity in Adult Intensive Care Units: A Review. J Clin Neurophysiol 2024; 41:577-588. [PMID: 38857365 DOI: 10.1097/wnp.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
PURPOSE EEG reactivity (EEG-R) has become widely used in intensive care units for diagnosing and prognosticating patients with disorders of consciousness. Despite efforts toward standardization, including the establishment of terminology for critical care EEG in 2012, the processes of testing and interpreting EEG-R remain inconsistent. METHODS A review was conducted on PubMed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria consisted of articles published between January 2012, and November 2022, testing EEG-R on adult intensive care unit patients. Exclusion criteria included articles focused on highly specialized stimulation equipment or animal, basic science, or small case report studies. The Quality In Prognostic Studies tool was used to assess risk of bias. RESULTS One hundred and five articles were identified, with 26 variables collected for each. EEG-R testing varied greatly, including the number of stimuli (range: 1-8; 26 total described), stimulus length (range: 2-30 seconds), length between stimuli (range: 10 seconds-5 minutes), frequency of stimulus application (range: 1-9), frequency of EEG-R testing (range: 1-3 times daily), EEG electrodes (range: 4-64), personnel testing EEG-R (range: neurophysiologists to nonexperts), and sedation protocols (range: discontinuing all sedation to no attempt). EEG-R interpretation widely varied, including EEG-R definitions and grading scales, personnel interpreting EEG-R (range: EEG specialists to nonneurologists), use of quantitative methods, EEG filters, and time to detect EEG-R poststimulation (range: 1-30 seconds). CONCLUSIONS This study demonstrates the persistent heterogeneity of testing and interpreting EEG-R over the past decade, and contributing components were identified. Further many institutional efforts must be made toward standardization, focusing on the reproducibility and unification of these methods, and detailed documentation in the published literature.
Collapse
Affiliation(s)
- Jaeho Hwang
- Division of Epilepsy, Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland, U.S.A
| | - Sung-Min Cho
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine and Neurology, Johns Hopkins Hospital, Baltimore, Maryland, U.S.A.; and
| | - Romergryko Geocadin
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine and Neurology, Johns Hopkins Hospital, Baltimore, Maryland, U.S.A.; and
| | - Eva K Ritzl
- Division of Epilepsy, Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland, U.S.A
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine and Neurology, Johns Hopkins Hospital, Baltimore, Maryland, U.S.A.; and
- Division of Intraoperative Monitoring, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| |
Collapse
|
2
|
Beekman R, Kim N, Nguyen C, McGinniss G, Deng Y, Kitlen E, Garcia G, Wira C, Khosla A, Johnson J, Miller PE, Perman SM, Sheth KN, Greer DM, Gilmore EJ. Temperature Control Parameters Are Important: Earlier Preinduction Is Associated With Improved Outcomes Following Out-of-Hospital Cardiac Arrest. Ann Emerg Med 2024; 84:549-559. [PMID: 39033449 DOI: 10.1016/j.annemergmed.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
STUDY OBJECTIVE Temperature control trials in cardiac arrest patients have not reliably conferred neuroprotective benefit but have been limited by inconsistent treatment parameters. To evaluate the presence of a time dependent treatment effect, we assessed the association between preinduction time and clinical outcomes. METHODS In this retrospective, single academic center study between 2014 and 2022, consecutive out-of-hospital cardiac arrest (OHCA) patients treated with temperature control were identified. Preinduction was defined as the time from hospital arrival to initiation of a closed-loop temperature feedback device [door to temperature control initiation time], and early door to temperature control device time was defined a priori as <3 hours. We assessed the association between good neurologic outcome (cerebral performance category 1 to 2) and door to temperature control device time using logistic regression. The proportion of patients who survived to hospital discharge was evaluated as a secondary outcome. A sensitivity analysis using inverse probability treatment weighting, created using a propensity score, was performed to minimize measurable confounding. RESULTS Three hundred and forty-seven OHCA patients were included; the early door to temperature control device cohort included 75 (21.6%) patients with a median (interquartile range) door to temperature control device time of 2.50 (2.03 to 2.75) hours, whereas the late door to temperature control device cohort included 272 (78.4%) patients with a median (interquartile range) door to temperature control device time of 5.18 (4.19 to 6.41) hours. In the multivariable logistic regression model, early door to temperature control device time was associated with improved good neurologic outcome and survival before [adjusted odds ratio (OR) (95% confidence interval) 2.36 (1.16 to 4.81) and 3.02 (1.54 to 6.02)] and after [adjusted OR (95% confidence interval) 1.95 (1.19 to 3.79) and 2.14 (1.33 to 3.36)] inverse probability of treatment weighting, respectively. CONCLUSION In our study of OHCA patients, a shorter preinduction time for temperature control was associated with improved good neurologic outcome and survival. This finding may indicate that early initiation in the emergency department will confer benefit. Our findings are hypothesis generating and need to be validated in future prospective trials.
Collapse
Affiliation(s)
- Rachel Beekman
- Department of Neurology, Yale School of Medicine, New Haven, CT.
| | - Noah Kim
- Department of Neurology, Yale School of Medicine, New Haven, CT; Geisel School of Medicine, Dartmouth College, Hanover, NH
| | | | - George McGinniss
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT
| | - Yanhong Deng
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT
| | - Eva Kitlen
- Department of Neurology, Yale School of Medicine, New Haven, CT; UCSF School of Medicine, University of California San Francisco, San Francisco, CA
| | - Gabriella Garcia
- Department of Neurology, Yale School of Medicine, New Haven, CT; Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Charles Wira
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT
| | - Akhil Khosla
- Department of Pulmonary Critical Care, Yale School of Medicine, New Haven, CT
| | | | - P Elliott Miller
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Sarah M Perman
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT
| | - Kevin N Sheth
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - David M Greer
- Department of Neurology, Boston University Medical Center, Boston, MA
| | - Emily J Gilmore
- Department of Neurology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
3
|
Hu J, Ai M, Xie S, Qian Z, Zhang L, Huang L. NSE and S100β as serum alarmins in predicting neurological outcomes after cardiac arrest. Sci Rep 2024; 14:25539. [PMID: 39462073 PMCID: PMC11513047 DOI: 10.1038/s41598-024-76979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Cardiac arrest (CA) is a serious health concern that often results in mortality or severe neurological dysfunction in the case of survival. Our aim was to explore the neurological prognostic factors in patients with CA. This retrospective observational study included adult patients with CA. We investigated serum neuron-specific enolase (NSE), S100 calcium-binding protein β (S100β), and indices and parameters at 1, 3, 5, 7 and intensive care unit (ICU) discharge days after CA. The primary study endpoint was the Cerebral Performance Category (CPC) scale score at ICU discharge, which was dichotomized as good neurological outcome (CPC 1-2: full recovery or moderate disability) and poor neurological outcome (CPC 3-5: severe disability, vegetative state, or death). Of the 191 adult patients with CA, 42 (22%) had good neurological outcomes, and 149 (78%) had poor neurological outcomes. NSE at 1,3,5,7 and ICU discharge days showed excellent predictive accuracy for neurological outcomes (area under the curve [AUC]: 0.666, 0.716, 0.870, 0.739, and 0.901, respectively). However, S100β exhibited general predictive power (AUC: 0.666, 0.573, 0.607, 0.594, 0.727). Finally, the early warning model, which combined day 1 NSE, day 1 S100β, cardiac arrest time, SOFA scores, APACHE II scores, and age, was used to screen CA patients with poor neurological prognosis at early stages and had an AUC of 0.792. Serum concentrations of NSE and S100β were significantly elevated in CA patients and could be prognostic biomarkers to predict neurological outcomes. Day 1 NSE and S100β combined with multiple indicators could be a decent early warning model for poor neurological prognosis in patients with CA.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Meilin Ai
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Lina Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| | - Li Huang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
4
|
Park JS, Kang C, Min JH, You Y, Jeong W, Ahn HJ, In YN, Kim YM, Oh SK, Jeon SY, Lee IH, Jeong HS, Lee BK. Optimal timing of ultra-early diffusion-weighted MRI in out-of-hospital cardiac arrest patients based on a retrospective multicenter cohort study. Sci Rep 2024; 14:25284. [PMID: 39455676 PMCID: PMC11511938 DOI: 10.1038/s41598-024-76418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) performed before target temperature management, within 6 h of return of spontaneous circulation (ROSC), is defined as ultra-early DW-MRI. In previous studies, high-signal intensity (HSI) on ultra-early DW-MRI can predict poor neurological outcomes (Cerebral Performance Category 3-5 at 6-months post-ROSC). We aimed to assess the optimal-timing for ultra-early DW-MRI to avoid false-negative outcomes post out-of-hospital cardiac arrest, considering cardiopulmonary resuscitation (CPR) factors. The primary outcomes were HSI in the cerebral cortex or deep gray matter on ultra-early DW-MRI. The impact of CPR factors and ROSC to DW-MRI scan-interval on HSI-presence was assessed. Of 206 included patients, 108 exhibited HSI-presence, exclusively associated with poor neurological outcomes. In multivariate regression analysis, ROSC to DW-MRI scan-interval (adjusted odds ratio [aOR], 1.509; 95% confidence interval (CI): 1.113-2.046; P = 0.008), low-flow time (aOR, 1.176; 95%CI: 1.121-1.233; P < 0.001), and non-shockable rhythm (aOR, 9.974; 95%CI: 3.363-29.578; P < 0.001) were independently associated with HSI-presence. ROSC to DW-MRI scan-interval cutoff of ≥ 2.2 h was particularly significant in low-flow time ≤ 21 min or shockable rhythm group. In conclusion, short low-flow time and shockable rhythm require a longer ROSC to DW-MRI scan-interval. Prolonged low-flow time and non-shockable rhythm reduce the need to consider scan-interval.
Collapse
Affiliation(s)
- Jung Soo Park
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Changshin Kang
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea.
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, 7, Bodam-ro, Sejong, Republic of Korea.
| | - Yeonho You
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Wonjoon Jeong
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Yong Nam In
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, 7, Bodam-ro, Sejong, Republic of Korea
| | - Young Min Kim
- Department of Emergency Medicine, Chungbuk National University Hospital, 1473, Seobu-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Se Kwang Oh
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, 7, Bodam-ro, Sejong, Republic of Korea
| | - So Young Jeon
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - In Ho Lee
- Department of Radiology, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Hye Seon Jeong
- Department of Neurology, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Byung Kook Lee
- Department of Emergency Medicine, Chonnam National University Medical School, Chonnam National University Hospital, 160, Baekseo-ro, Dong-gu, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Mancebo JG, Sack K, Hartford J, Dominguez S, Balcarcel-Monzon M, Chartier E, Nguyen T, Cole AR, Sperotto F, Harrild DM, Polizzotti BD, Everett AD, Packard AB, Dearling J, Nedder AG, Warfield S, Yang E, Lidov HGW, Kheir JN, Peng Y. Systemically injected oxygen within rapidly dissolving microbubbles improves the outcomes of severe hypoxaemia in swine. Nat Biomed Eng 2024:10.1038/s41551-024-01266-8. [PMID: 39420063 DOI: 10.1038/s41551-024-01266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Acute respiratory failure can cause profound hypoxaemia that leads to organ injury or death within minutes. When conventional interventions are ineffective, the intravenous administration of oxygen can rescue patients from severe hypoxaemia, but at the risk of microvascular obstruction and of toxicity of the carrier material. Here we describe polymeric microbubbles as carriers of high volumes of oxygen (350-500 ml of oxygen per litre of foam) that are stable in storage yet quickly dissolve following intravenous injection, reverting to their soluble and excretable molecular constituents. In swine with profound hypoxaemia owing to acute and temporary (12 min) upper-airway obstruction, the microbubble-mediated delivery of oxygen led to: the maintenance of critical oxygenation, lowered burdens of cardiac arrest, improved survival, and substantially improved neurologic and kidney function in surviving animals. Our findings underscore the importance of maintaining a critical threshold of oxygenation and the promise of injectable oxygen as a viable therapy in acute and temporary hypoxaemic crises.
Collapse
Affiliation(s)
- Julia Garcia Mancebo
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kristen Sack
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Jay Hartford
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Saffron Dominguez
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Tien Nguyen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Alexis R Cole
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Francesca Sperotto
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David M Harrild
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Brian D Polizzotti
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Allen D Everett
- Department of Pediatrics, Blalock-Taussig-Thomas Congenital Heart Center, Johns Hopkins University, Baltimore, MD, USA
| | - Alan B Packard
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jason Dearling
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Arthur G Nedder
- Animal Resources at Children's Hospital, Boston Children's Hospital, Boston, MA, USA
| | - Simon Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - John N Kheir
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Yifeng Peng
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Mertens M. The self-fulfilling prophecy in medicine. THEORETICAL MEDICINE AND BIOETHICS 2024; 45:363-385. [PMID: 39120693 PMCID: PMC11358258 DOI: 10.1007/s11017-024-09677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 08/10/2024]
Abstract
This article first describes the mechanism of any self-fulfilling prophecy through discussion of its four conditions: credibility, employment, employment sensitivity, and realization. Each condition is illustrated with examples specific to the medical context. The descriptive account ends with the definition of self-fulfilling prophecy and an expansion on collective self-fulfilling prophecies. Second, the normative account then discusses the moral relevance of self-fulfilling prophecies in medicine. A self-fulfilling prophecy is typically considered problematic when the prediction itself changes the predicted outcome to match the prediction (transformative self-fulfillment). I argue that also self-fulfilling prophecies that do not change the outcome but change the ways in which the outcome was realized (operative self-fulfillment), have significant ethical and epistemic ramifications. Because it is difficult to distinguish, retrospectively, between a transformative and an operative self-fulfilling prophecy, and thus between a false or true positive, it becomes equally difficult to catch mistakes. Moreover, since the prediction necessarily turns out true, there is never an error signal warning that a mistake might have been made. On the contrary, accuracy is seen as the standard for quality assurance. As such, self-fulfilling prophecies inhibit our ability to learn, inviting repetition and exacerbation of mistakes. With the rise of automated diagnostic and prognostic procedures and the increased use of machine learning and artificial intelligence for the development of predictive algorithms, attention to self-fulfilling feedback loops is especially warranted. This account of self-fulfilling prophecies is practically relevant for medical research and clinical practice. With it, researchers and practitioners can detect and analyze potential self-fulfilling mechanisms in any medical case and take responsibility for their ethical and epistemic implications.
Collapse
Affiliation(s)
- Mayli Mertens
- Department of Philosophy, Center for Ethics, University of Antwerp, Antwerp, Belgium.
- Department of Public Health, Center for Medical Science and Technology Studies, University of Copenhagen, Copenhagen, Denmark.
- Atlas Bioethics Center, Andalusia, Spain.
| |
Collapse
|
7
|
Hongo T, Naito H, Nasu M, Yumoto T, Kosaki Y, Yorifuji T, Hifumi T, Inoue A, Sakamoto T, Kuroda Y, Nakao A. Prognostic performance of gray-white matter ratio in adult out-of-hospital cardiac arrest patients after receiving extracorporeal cardiopulmonary resuscitation. Resuscitation 2024; 203:110351. [PMID: 39098375 DOI: 10.1016/j.resuscitation.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Gray-to-white matter ratio (GWR), measured by computed tomography (CT), is commonly used to predict poor neurological outcomes after out-of-hospital cardiac arrest (OHCA). The prognostic performance of GWR in OHCA patients receiving extracorporeal cardiopulmonary resuscitation (ECPR) is not known. METHODS This study is a secondary analysis of data from the SAVE-J II registry, a retrospective, multicenter study. Participants were divided into four groups according to average GWR (aGWR) values ranging from 1.00 to 1.39, separated by 0.1 intervals. The aGWR values were calculated for bilateral basal ganglia, centrum semiovale, and high convexity obtained by head CT within 24 h after ECPR. Primary outcome was poor neurological outcomes at 30-day. RESULTS In total, 1,146 OHCA patients treated with ECPR were included in our analysis. Overall, participants with lower aGWR more likely had poor neurological outcomes, aGWR 1.00-1.09 (94.6%), aGWR 1.10-1-19 (87.8%), aGWR 1.20-1.29 (78.5%), and aGWR 1.30-1.39 (70.3%). Multivariable logistic regression showed that lower aGWR was associated with poor neurological outcome at 30-day, aGWR 1.30-1.39: reference, aGWR 1.00-1.09: adjusted odds ratio (aOR) 10.01 (95% confidence interval (CI) [3.58-27.99]), aGWR 1.10-1.19: aOR 4.83 (95% CI [2.31-10.12]), aGWR 1.20-1.29: aOR 2.16 (95% CI [1.02-4.55]). Receiver operating characteristic curve analysis revealed that the prognostic performance of aGWR had an area under the curve of 0.628, 95% CI [0.59-0.66]). The aGWR threshold of 1.005 for predicting poor neurological outcome reached 100% specificity with 0.1% sensitivity. CONCLUSION Early neuro-prognostication depending on GWR may not be sufficient after ECPR and requires a multimodal approach.
Collapse
Affiliation(s)
- Takashi Hongo
- Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine, 2-5-1 Shikata, Kita, Okayama, 700-8558, Japan
| | - Hiromichi Naito
- Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine, 2-5-1 Shikata, Kita, Okayama, 700-8558, Japan.
| | - Michitaka Nasu
- Department of Emergency and Critical Care Medicine, Urasoe General Hospital, 1-56-1,Maeda, Urasoe, Okinawa Japan
| | - Tetsuya Yumoto
- Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine, 2-5-1 Shikata, Kita, Okayama, 700-8558, Japan
| | - Yoshinori Kosaki
- Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine, 2-5-1 Shikata, Kita, Okayama, 700-8558, Japan
| | - Takashi Yorifuji
- Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Epidemiology, 2-5-1 Shikata, Kita, Okayama, 700-8558, Japan
| | - Toru Hifumi
- St. Luke's International Hospital, Department of Emergency and Critical Care Medicine, Akashi, Chuo, Tokyo, 104-8560, Japan
| | - Akihiko Inoue
- Hyogo Emergency Medical Center, Department of Emergency and Critical Care Medicine, 1-3-1 Wakihamakaigandori, Chuo, Kobe, Hyogo, 651-0073, Japan
| | - Tetsuya Sakamoto
- Teikyo University School of Medicine, Department of Emergency Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Yasuhiro Kuroda
- Kagawa University Hospital, Department of Emergency, Disaster, and Critical Care Medicine, 1750-1 Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Atsunori Nakao
- Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Emergency, Critical Care, and Disaster Medicine, 2-5-1 Shikata, Kita, Okayama, 700-8558, Japan
| |
Collapse
|
8
|
Koek AY, Darpel KA, Mihaylova T, Kerr WT. Myoclonus After Cardiac Arrest did not Correlate with Cortical Response on Somatosensory Evoked Potentials. J Intensive Care Med 2024:8850666241287154. [PMID: 39344464 DOI: 10.1177/08850666241287154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
PURPOSE Myoclonus after anoxic brain injury is a marker of significant cerebral injury. Absent cortical signal (N20) on somatosensory evoked potentials (SSEPs) after cardiac arrest is a reliable predictor of poor neurological recovery when combined with an overall clinical picture consistent with severe widespread neurological injury. We evaluated a clinical question of if SSEP result could be predicted from other clinical and neurodiagnostic testing results in patients with post-anoxic myoclonus. METHODS Retrospective chart review of all adult patients with post-cardiac arrest myoclonus who underwent both electroencephalographic (EEG) monitoring and SSEPs for neuroprognostication. Myoclonus was categorized as "non-myoclonic movements," "myoclonus not captured on EEG," "myoclonus without EEG correlate," "myoclonus with EEG correlate," and "status myoclonus." SSEP results were categorized as all absent, all present, N18 and N20 absent bilaterally, and N20 only absent bilaterally. Cox proportional hazards with censoring was used to evaluate the association of myoclonus category, SSEP results, and confounding factors with survival. RESULTS In 56 patients, median time from arrest to either confirmed death or last follow up was 9 days. The category of myoclonus was not associated with SSEP result or length of survival. Absence of N20 s or N18 s was associated with shorter survival (N20 hazard ratio [HR] 4.4, p = 0.0014; N18 HR 5.5, p < 0.00001). CONCLUSIONS Category of myoclonus did not reliably predict SSEP result. SSEP result was correlated with outcome consistently, but goals of care transitioned to comfort measures only in all patients with present peripheral potentials and either absent N20 s only or absence of N18 s and N20 s. Our results suggest that SSEPs may retain prognostic value in patients with post-anoxic myoclonus.
Collapse
Affiliation(s)
- Adriana Y Koek
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Kyle A Darpel
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Temenuzhka Mihaylova
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wesley T Kerr
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Neurology & Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Redfors B, Byttner A, Bengtsson D, Watson P, Lannemyr L, Lundgren P, Gäbel J, Rawshani A, Henningsson A. The Pre-ECPR Score: Developing and Validating a Multivariable Prediction Model for Favorable Neurological Outcomes in Patients Undergoing Extracorporeal Cardiopulmonary Resuscitation. J Cardiothorac Vasc Anesth 2024:S1053-0770(24)00605-0. [PMID: 39395854 DOI: 10.1053/j.jvca.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVES Extracorporeal cardiopulmonary resuscitation (ECPR) can save patients with refractory cardiac arrest; however, according to recent meta-analyses, only 20% of patients achieve favorable outcomes (Modified Rankin Scale 0-3). We aimed to develop and validate an ECPR prediction model to improve patient selection. DESIGN Prognostic model development and internal validation study. SETTING Single-center study. PARTICIPANTS All 120 normothermic ECPR patients treated at Sahlgrenska University Hospital between January 2010 and October 2021. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Multivariable logistic regression was used to develop the PRognostic Evaluation of ECPR (Pre-ECPR) score. Model performance was assessed through the area under curve (AUC) and compared with the Extracorporeal Life Support Organization (ELSO) "Example of selection criteria for ECPR" for 1-year survival with favorable outcomes. The positive predictive value (PPV) was calculated. Favorable outcomes occurred in 27.5% of the patients. The Pre-ECPR score, incorporating age, no-flow/initial rhythm (a composite variable), total cardiac arrest time, signs of life, pupil dilation, regional cerebral oxygen saturation, arterial pH, and end-tidal CO2, demonstrated an AUC of 0.87 (95% confidence interval [CI] 0.77-0.93). In internal cross-validation, the AUC of 0.79 (95% CI 0.67-0.88) significantly outperformed the ELSO criteria AUC of 0.63 (95% CI 0.54-0.72, p = 0.012). Pre-ECPR score probabilities >6.4% showed 100% sensitivity and a PPV of 40.5% for favorable outcomes. CONCLUSIONS The Pre-ECPR score combines multiple weighted predictors to provide a single balanced probability of favorable outcomes in ECPR patient selection. In cross-validation, it demonstrated significantly more favorable discriminatory performance than that of the ELSO criteria.
Collapse
Affiliation(s)
- Bengt Redfors
- Department of Cardiothoracic Anaesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Anders Byttner
- Department of Cardiothoracic Anaesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Bengtsson
- Department of Perfusion, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pia Watson
- Department of Cardiothoracic Anaesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lukas Lannemyr
- Department of Cardiothoracic Anaesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Lundgren
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jakob Gäbel
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Araz Rawshani
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Henningsson
- Department of Cardiothoracic Anaesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Guo Y, Gharibani P, Agarwal P, Modi H, Cho SM, Thakor NV, Geocadin RG. Endogenous orexin and hyperacute autonomic responses after resuscitation in a preclinical model of cardiac arrest. Front Neurosci 2024; 18:1437464. [PMID: 39347533 PMCID: PMC11427410 DOI: 10.3389/fnins.2024.1437464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Objectives The study of autonomic responses to cardiac arrest (CA) resuscitation deserves attention due to the impact of autonomic function on survival and arousal. Orexins are known to modulate autonomic function, but the role of endogenous orexin in hyperacute recovery of autonomic function post-resuscitation is not well understood. We hypothesized that endogenous orexin facilitates hyperacute cardiovascular sympathetic activity post-resuscitation, and this response could be attenuated by suvorexant, a dual orexin receptor antagonist. Methods A well-established 7-min asphyxial CA rat model was studied. Heart rate (HR) and blood pressure were monitored from baseline to 90-min post-resuscitation. Autonomic function was evaluated by spectral analysis of HR variability, whereby the ratio of low- and high-frequency components (LF/HF ratio) represents the balance between sympathetic/parasympathetic activities. Plasma orexin-A levels and orexin receptors immunoreactivity in the rostral ventrolateral medulla (RVLM), the key central region for regulating sympathetic output, were measured post-resuscitation. Neurological outcome was assessed via neurologic-deficit score at 4-h post-resuscitation. Key results A significant increase in HR was found over 25-40 min post-resuscitation (p < 0.01 vs. baseline), which was attenuated by suvorexant significantly (p < 0.05). Increased HR (from 15-to 25-min post-resuscitation) was correlated with better neurological outcomes (rs = 0.827, p = 0.005). There was no evident increase in mean arterial pressure over 25-40 min post-resuscitation, while systolic pressure was reduced greatly by suvorexant (p < 0.05). The LF/HF ratio was higher in animals with favorable outcomes than in animals injected with suvorexant over 30-40 min post-resuscitation (p < 0.05). Plasma orexin-A levels elevated at 15-min and peaked at 30-min post-resuscitation (p < 0.01 vs. baseline). Activated orexin receptors-immunoreactive neurons were found co-stained with tyrosine hydroxylase-immunopositive cells in the RVLM at 2-h post-resuscitation. Conclusion Together, increased HR and elevated LF/HF ratio indicative of sympathetic arousal during a critical window (25-40 min) post-resuscitation are observed in animals with favorable outcomes. The orexin system appears to facilitate this hyperacute autonomic response post-CA.
Collapse
Affiliation(s)
- Yu Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Payam Gharibani
- Department of Neurology, Division of Neuroimmunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Prachi Agarwal
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Engineering, Baltimore, MD, United States
| | - Hiren Modi
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sung-Min Cho
- Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Romergryko G Geocadin
- Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Fahrner MG, Hwang J, Cho SM, Thakor NV, Habela CW, Kaplan PW, Geocadin RG. EEG reactivity in neurologic prognostication in post-cardiac arrest patients: A narrative review. Resuscitation 2024; 204:110398. [PMID: 39277070 DOI: 10.1016/j.resuscitation.2024.110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Electroencephalographic reactivity (EEG-R) is a promising early predictor of arousal in comatose patients after cardiac arrest. Despite recent guidelines advocating for the integration of EEG-R into the multimodal prognostication model, EEG-R testing methods remain heterogeneous across studies. While efforts towards standardization have been made to reduce interrater variability by the development of quantitative approaches and machine learning models, future validation studies are needed to increase clinical applicability. Furthermore, the specific neurophysiological mechanisms and neuroanatomical correlates underlying EEG-R are not fully understood. In this narrative review, we explore the value and possible mechanisms of EEG-R, focusing on post-cardiac arrest comatose patients. We aim to discuss the current standard of knowledge and future directions, as well as elucidate possible implications for patient care and research.
Collapse
Affiliation(s)
- Marlen G Fahrner
- Department of Neurology, Division of Neurocritical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jaeho Hwang
- Department of Neurology, Division of Epilepsy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Min Cho
- Departments of Neurology, Surgery, and Anesthesiology - Critical Care Medicine, Division of Neurocritical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christa W Habela
- Department of Neurology, Division of Epilepsy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter W Kaplan
- Department of Neurology, Division of Epilepsy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Romergryko G Geocadin
- Departments of Neurology, Anesthesiology - Critical Care Medicine, and Neurosurgery, Division of Neurocritical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Chan WP, Nguyen C, Kim N, Tripodis Y, Gilmore EJ, Greer DM, Beekman R. A practical magnetic-resonance imaging score for outcome prediction in comatose cardiac arrest survivors. Resuscitation 2024; 202:110370. [PMID: 39178939 DOI: 10.1016/j.resuscitation.2024.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
AIM Magnetic Resonance Imaging (MRI) is an important prognostic tool in cardiac arrest (CA) survivors given its sensitivity for detecting hypoxic-ischemic brain injury (HIBI), however, it is limited by poorly defined objective thresholds. To address this limitation, we evaluated a qualitative MRI score for predicting neurological outcome in CA survivors. METHODS Adult comatose CA survivors who underwent MRI were retrospectively identified at a single academic medical center. Two blinded neurointensivists qualitatively scored HIBI amongst 12 MRI brain regions. Scores were summated to form four distinct score groups: cortex, deep grey nuclei (DGN), cortex-DGN combined, and total (cortex, DGN, brainstem, and cerebellum). Poor neurological outcome was defined as Cerebral Performance Category (CPC) score 3-5 at hospital discharge. Inter-rater reliability was tested using intra-class correlation (ICC) and discrimination of poor neurological outcome assessed using area under the receiver operating curve (AUC). RESULTS Our cohort included 219 patients with median time to MRI of 96 (IQR 81-110) hours. ICC (95% CI) was good to excellent across all MRI scores: cortex 0.92 (0.89-0.94), DGN 0.88 (0.80-0.92), cortex-DGN 0.94 (0.92-0.95), and total 0.93 (0.91-0.95). AUC (95% CI) for poor outcome was good across all MRI scores: cortex 0.84 (0.78-0.90), DGN 0.83 (0.77-0.89), cortex-DGN 0.83 (0.77-0.89), and total 0.83 (0.77-0.88). CONCLUSION A simplified, qualitative MRI score had excellent reliability and good discrimination for poor neurologic outcome. Further work is necessary to externally validate our findings in an independent, ideally prospective, cohort.
Collapse
Affiliation(s)
- Wang Pong Chan
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| | - Christine Nguyen
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Noah Kim
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| | - Emily J Gilmore
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - David M Greer
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| | - Rachel Beekman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Bougouin W, Lascarrou JB, Chelly J, Benghanem S, Geri G, Maizel J, Fage N, Sboui G, Pichon N, Daubin C, Sauneuf B, Mongardon N, Taccone F, Hermann B, Colin G, Lesieur O, Deye N, Chudeau N, Cour M, Bourenne J, Klouche K, Klein T, Raphalen JH, Muller G, Galbois A, Bruel C, Jacquier S, Paul M, Sandroni C, Cariou A. Performance of the ERC/ESICM-recommendations for neuroprognostication after cardiac arrest: Insights from a prospective multicenter cohort. Resuscitation 2024; 202:110362. [PMID: 39151721 DOI: 10.1016/j.resuscitation.2024.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
AIM To investigate the performance of the 2021 ERC/ESICM-recommended algorithm for predicting poor outcome after cardiac arrest (CA) and potential tools for predicting neurological recovery in patients with indeterminate outcome. METHODS Prospective, multicenter study on out-of-hospital CA survivors from 28 ICUs of the AfterROSC network. In patients comatose with a Glasgow Coma Scale motor score ≤3 at ≥72 h after resuscitation, we measured: (1) the accuracy of neurological examination, biomarkers (neuron-specific enolase, NSE), electrophysiology (EEG and SSEP) and neuroimaging (brain CT and MRI) for predicting poor outcome (modified Rankin scale score ≥4 at 90 days), and (2) the ability of low or decreasing NSE levels and benign EEG to predict good outcome in patients whose prognosis remained indeterminate. RESULTS Among 337 included patients, the ERC-ESICM algorithm predicted poor neurological outcome in 175 patients, and the positive predictive value for an unfavourable outcome was 100% [98-100]%. The specificity of individual predictors ranged from 90% for EEG to 100% for clinical examination and SSEP. Among the remaining 162 patients with indeterminate outcome, a combination of 2 favourable signs predicted good outcome with 99[96-100]% specificity and 23[11-38]% sensitivity. CONCLUSION All comatose resuscitated patients who fulfilled the ERC-ESICM criteria for poor outcome after CA had poor outcome at three months, even if a self-fulfilling prophecy cannot be completely excluded. In patients with indeterminate outcome (half of the population), favourable signs predicted neurological recovery, reducing prognostic uncertainty.
Collapse
Affiliation(s)
- Wulfran Bougouin
- AfterROSC Network Group, Paris, France; Université de Paris Cité, Inserm, Paris Cardiovascular Research Center, Paris, France; Ramsay Générale de Santé, Hôpital Privé Jacques Cartier, Massy, France.
| | - Jean-Baptiste Lascarrou
- AfterROSC Network Group, Paris, France; Université de Paris Cité, Inserm, Paris Cardiovascular Research Center, Paris, France; Service de Médecine Intensive Réanimation, University Hospital Center, Nantes, France
| | - Jonathan Chelly
- AfterROSC Network Group, Paris, France; Réanimation Polyvalente, Centre Hospitalier Intercommunal Toulon La Seyne sur Mer, Toulon, France
| | - Sarah Benghanem
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, APHP, CHU Cochin, Université Paris Cité, Paris, France
| | - Guillaume Geri
- AfterROSC Network Group, Paris, France; Réanimation Polyvalente, Groupe Hospitalier Privé Ambroise Paré Hartmann, Neuilly-sur-Seine, France
| | - Julien Maizel
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, CHU Amiens, Amiens, France
| | - Nicolas Fage
- AfterROSC Network Group, Paris, France; Département de médecine intensive réanimation et médecine hyperbare, CHU Angers, Angers, France
| | - Ghada Sboui
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, CH Béthune, Béthune, France
| | - Nicolas Pichon
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, CH Brive‑La‑Gaillarde, Brive, France
| | - Cédric Daubin
- AfterROSC Network Group, Paris, France; CHU de Caen Normandie, Médecine Intensive Réanimation, 14000 CAEN, France
| | - Bertrand Sauneuf
- AfterROSC Network Group, Paris, France; Réanimation Médecine Intensive, Centre Hospitalier Public du Cotentin, 50100 Cherbourg-en-Cotentin, France
| | - Nicolas Mongardon
- AfterROSC Network Group, Paris, France; Service d'Anesthésie‑Réanimation et Médecine Péri-Opératoire, APHP, CHU Henri Mondor, Créteil, France
| | - Fabio Taccone
- AfterROSC Network Group, Paris, France; Réanimation, ERASME, Brussels, Belgium
| | - Bertrand Hermann
- AfterROSC Network Group, Paris, France; Médecine Intensive-Réanimation, AP-HP, Hôpital Européen Georges Pompidou, 20 rue Leblanc, Paris, France
| | - Gwenhaël Colin
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, CHD Vendée, La Roche‑Sur‑Yon, France
| | - Olivier Lesieur
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, CH La Rochelle, La Rochelle, France
| | - Nicolas Deye
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, APHP, CHU Lariboisière, Paris, France
| | - Nicolas Chudeau
- AfterROSC Network Group, Paris, France; Réanimation médico-chirurgicale, CH Le Mans, Le Mans, France
| | - Martin Cour
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, Hospices Civils Lyon, Lyon, France
| | - Jeremy Bourenne
- AfterROSC Network Group, Paris, France; Réanimation des Urgences et Déchocage, CHU La Timone, APHM, Marseille, France
| | - Kada Klouche
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, CHU Montpellier, Montpellier, France
| | - Thomas Klein
- AfterROSC Network Group, Paris, France; Service de Médecine Intensive Réanimation Brabois, CHRU, Nancy, France
| | - Jean-Herlé Raphalen
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, APHP, CHU Necker, Paris, France
| | - Grégoire Muller
- AfterROSC Network Group, Paris, France; Centre Hospitalier Universitaire (CHU) d'Orléans, Médecine Intensive Réanimation, Université de Tours, MR INSERM 1327 ISCHEMIA, F37000 Tours, France; Clinical Research in Intensive Care and Sepsis-Trial Group for Global Evaluation and Research in Sepsis (CRICS_TRIGGERSep) French Clinical Research Infrastructure Network (F-CRIN) Research Network, France
| | - Arnaud Galbois
- AfterROSC Network Group, Paris, France; Service de Réanimation Polyvalente, Ramsay-Santé, Hôpital Privé Claude Galien, Quincy‑Sous‑Sénart, France
| | - Cédric Bruel
- AfterROSC Network Group, Paris, France; Service de Réanimation Polyvalente, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Sophie Jacquier
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, CHU Tours, Tours, France
| | - Marine Paul
- AfterROSC Network Group, Paris, France; Médecine Intensive Réanimation, CH Versailles, Le Chesnay, France
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alain Cariou
- AfterROSC Network Group, Paris, France; Université de Paris Cité, Inserm, Paris Cardiovascular Research Center, Paris, France; Ramsay Générale de Santé, Hôpital Privé Jacques Cartier, Massy, France
| |
Collapse
|
14
|
Lee DH, Lee BK, Ryu SJ, Lee JH, Bae SJ, Choi YH. The Association between Disseminated Intravascular Coagulation Profiles and Neurologic Outcome in Patients with In-Hospital Cardiac Arrest. Rev Cardiovasc Med 2024; 25:340. [PMID: 39355608 PMCID: PMC11440417 DOI: 10.31083/j.rcm2509340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 10/03/2024] Open
Abstract
Background The relationship between disseminated intravascular coagulation (DIC) profiles and survival or neurological outcomes in out-of-hospital cardiac arrest (OHCA) patients is well known. In contrast, the relationship between DIC profiles and neurological outcomes in patients with in-hospital cardiac arrest (IHCA) remains unclear. This study sought to examine the correlation between DIC profiles and neurological outcomes in IHCA patients. Methods A retrospective observational study was conducted on comatose adult IHCA patients treated with targeted temperature management between January 2017 and December 2022. DIC profiles were used to calculate the DIC score, and were measured immediately after the return of spontaneous circulation (ROSC). The primary endpoint was a poor neurological outcome at six months, defined by cerebral performance in categories 3, 4, or 5. Multivariate analysis was used to evaluate the association between DIC profiles and poor neurological outcomes. Results The study included 136 patients, of which 107 (78.7%) patients demonstrated poor neurological outcomes. These patients had higher fibrinogen (3.2 g/L vs. 2.3 g/L) and fibrin degradation product levels (50.7 mg/L vs. 30.1 mg/L) and lower anti-thrombin III (ATIII) levels (65.7% vs. 82.3%). The DIC score did not differ between the good and poor outcome groups. In multivariable analysis, fibrinogen (odds ratio [OR], 1.009; 95% confidence intervals [CI], 1.003-1.016) and ATIII levels (OR, 0.965; 95% CI, 0.942-0.989) were independently associated with poor neurological outcomes. Conclusions Decreased fibrinogen and ATIII levels after ROSC were an independent risk factor for unfavorable neurological outcomes in IHCA. The DIC score is unlikely to play a significant role in IHCA prognosis in contrast to OHCA.
Collapse
Affiliation(s)
- Dong Hun Lee
- Department of Emergency Medicine, Chonnam National University Hospital, 61469 Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, 61469 Gwangju, Republic of Korea
| | - Byung Kook Lee
- Department of Emergency Medicine, Chonnam National University Hospital, 61469 Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, 61469 Gwangju, Republic of Korea
| | - Seok Jin Ryu
- Department of Emergency Medicine, Chonnam National University Hospital, 61469 Gwangju, Republic of Korea
| | - Ji Ho Lee
- Department of Emergency Medicine, Chonnam National University Hospital, 61469 Gwangju, Republic of Korea
| | - Sung Jin Bae
- Department of Emergency Medicine, Chung-Ang University Gwangmyeong Hospital, 14353 Gyeonggi-do, Republic of Korea
| | - Yun Hyung Choi
- Department of Emergency Medicine, Chung-Ang University Gwangmyeong Hospital, 14353 Gyeonggi-do, Republic of Korea
| |
Collapse
|
15
|
Kimura N, Nishimura Y, Chung-Esaki H. Factors Associated with Favorable Outcomes in Cardiac Arrest and Target Temperature Management. Ther Hypothermia Temp Manag 2024; 14:179-185. [PMID: 37792291 DOI: 10.1089/ther.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Current guidelines strongly recommend providing targeted temperature management (TTM) after cardiac arrest, but hypothalamic dysregulation may confound TTM's impact on a patient's ultimate outcome. Although time to reach target temperature has largely been viewed as a process measure for TTM protocols, the difference between initial presenting temperature and target temperature (Δ-temperature) may be a potential surrogate marker of hypothalamic dysregulation. We performed a retrospective observational study to explore whether Δ-temperature was associated with neurologic outcomes and mortality. We included 86 patients (53 with out-of-hospital cardiac arrest [OHCA] and 33 with in-hospital cardiac arrest [IHCA]) in our analysis; more than half of the patients were cooled to 33°C (56.9% in OHCA and 57.6% in IHCA). In univariate logistic regression analysis, Δ-temperature alone did not appear to be statistically associated with mortality or neurologic outcomes regardless of target temperature. In exploratory analysis, longer time from TTM initiation-to-target was associated with worse neurological outcomes in the 33°C target (odds ratio = 0.996, 95% confidence interval = 0.992-1.000). Further research investigating the impact of hypothalamic dysregulation and Δ-temperature as well as the rate of cooling may be warranted to elucidate additional factors contributing to outcomes after cardiac arrest. In addition, our study population was noted to have a higher proportion of Asians and Native Hawaiians/Pacific Islanders, with a potential disparity in outcomes. Future studies may be warranted to ensure generalizability of TTM protocols and findings across populations.
Collapse
Affiliation(s)
- Nobuhiko Kimura
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Yoshito Nishimura
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Hangyul Chung-Esaki
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| |
Collapse
|
16
|
Yao Z, Zhao Y, Lu L, Li Y, Yu Z. Extracerebral multiple organ dysfunction and interactions with brain injury after cardiac arrest. Resusc Plus 2024; 19:100719. [PMID: 39149223 PMCID: PMC11325081 DOI: 10.1016/j.resplu.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Cardiac arrest and successful resuscitation cause whole-body ischemia and reperfusion, leading to brain injury and extracerebral multiple organ dysfunction. Brain injury is the leading cause of death and long-term disability in resuscitated survivors, and was conceptualized and treated as an isolated injury, which has neglected the brain-visceral organ crosstalk. Extracerebral organ dysfunction is common and is significantly associated with mortality and poor neurological prognosis after resuscitation. However, detailed description of the characteristics of post-resuscitation multiple organ dysfunction is lacking, and the bidirectional interactions between brain and visceral organs need to be elucidated to explore new treatment for neuroprotection. This review aims to describe current concepts of post-cardiac arrest brain injury and specific characteristics of post-resuscitation dysfunction in cardiovascular, respiratory, renal, hepatic, adrenal, gastrointestinal, and neurohumoral systems. Additionally, we discuss the crosstalk between brain and extracerebral organs, especially focusing on how visceral organ dysfunction and other factors affect brain injury progression. We think that clarifying these interactions is of profound significance on how we treat patients for neural/systemic protection to improve outcome.
Collapse
Affiliation(s)
- Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yinping Li
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430060, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
17
|
Guldbrandsen HØ, Juhl-Olsen P, Eastwood GM, Wethelund KL, Grejs AM. Sonographic evaluation of intracranial hemodynamics and pressure after out-of-hospital cardiac arrest: An exploratory sub-study of the TAME trial. CRIT CARE RESUSC 2024; 26:176-184. [PMID: 39355500 PMCID: PMC11440085 DOI: 10.1016/j.ccrj.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 10/03/2024]
Abstract
Objective Targeted mild hypercapnia is a potential neuroprotective therapy after cardiac arrest. In this exploratory observational study, we aimed to explore the effects of targeted mild hypercapnia on cerebral microvascular resistance assessed by middle cerebral artery pulsatility index (MCA PI) and intracranial pressure estimated by optic nerve sheath diameter (ONSD) in resuscitated out-of-hospital cardiac arrest (OHCA) patients. Design setting participants and interventions Comatose adults resuscitated from OHCA were randomly allocated to targeted mild hypercapnia (PaCO2 50-55 mmHg) or targeted normocapnia (PaCO2 35-45 mmHg) for 24 h in the TAME trial. Main outcome measures Using transcranial Doppler and transorbital ultrasound, we obtained MCA PI and ONSD at 4, 24, and 48 h after randomization. Ultrasound parameters were compared between groups using a linear mixed effects model. Results Twelve consecutive patients were included, with seven patients in the mild hypercapnia group. MCA PI decreased from 4 to 24 h (p = 0.019) and was lower over the first 24 h in patients allocated to targeted mild hypercapnia compared with targeted normocapnia (p = 0.047). ONSD did not differ between groups or over time. Conclusion Cerebral microvascular resistance assessed by MCA PI decreased over 24 h and was lower in OHCA patients treated with targeted mild hypercapnia compared with targeted normocapnia. Targeted mild hypercapnia did not exert substantial effect on intracranial pressure as estimated by ONSD.
Collapse
Affiliation(s)
- Halvor Ø Guldbrandsen
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Juhl-Olsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiothoracic- and Vascular Surgery, Anaesthesia Section, Aarhus University Hospital, Aarhus, Denmark
| | - Glenn M Eastwood
- Department of Intensive Care, Austin Hospital, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Kasper L Wethelund
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders M Grejs
- Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Hwang J, Akbar AF, Premraj L, Ritzl EK, Cho SM. Epidemiology of Seizures and Association With Mortality in Adult Patients Undergoing ECMO: A Systematic Review and Meta-analysis. Neurology 2024; 103:e209721. [PMID: 39079068 DOI: 10.1212/wnl.0000000000209721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Extracorporeal membrane oxygenation (ECMO) provides lifesaving support to patients with cardiopulmonary failure. Although seizures increase mortality risks among critically ill patients broadly, studies specific to adult ECMO patients have largely been limited to single-center studies. Thus, we aimed to perform a systematic review and meta-analyses of seizure prevalence, mortality, and their associations in adult ECMO patients. METHODS PubMed, EMBASE, Cochrane trial registry, Web of Science, and SCOPUS were searched on August 5, 2023. Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, we included studies of adults undergoing venovenous ECMO (VV-ECMO), venoarterial ECMO (VA-ECMO), or extracorporeal cardiopulmonary resuscitation (ECPR) that reported seizures during ECMO. The extracted data included study characteristics, patient demographics, ECMO support, EEG monitoring, and seizures, organized by ECMO types. Forest plot and meta-regression analyses were performed. Bias assessment was performed with the Egger test and Newcastle-Ottawa Scale. RESULTS Twenty-three studies (n = 40,420, mean age = 51.8 years, male = 62%) were included. Data were extracted by ECMO type as follows: VV-ECMO (n = 16,633), non-ECPR VA-ECMO (n = 11,082), ECPR (n = 3,369), combination of VA-ECMO and ECPR (n = 240), and combination of all types (n = 9,096). The pooled seizure prevalence for all ECMO types was 3.0%, not significantly different across ECMO types (VV-ECMO = 2.0% [95% CI 0.8-4.5]; VA-ECMO = 3.5% [95% CI 1.7-7.0]; ECPR = 4.9% [95% CI 1.3-17.2]). The pooled mortality was lower for VV-ECMO (46.2% [95% CI 39.3-53.2]) than VA-ECMO (63.4% [95% CI 56.6-69.6]) and ECPR (61.5% [95% CI 57.3-65.6]). Specifically, for VV-ECMO, the pooled mortality of patients with and without seizures was 55.1% and 36.7%, respectively (relative risk = 1.5 [95% CI 1.3-1.7]). Similarly, for VA-ECMO, the pooled mortality of patients with and without seizures was 74.4% and 56.1%, respectively (relative risk = 1.3 [95% CI 1.2-1.5]). Meta-regression analyses demonstrated that seizure prevalence was not associated with prior neurologic comorbidities, adjusted for ECMO type and study year. DISCUSSION Seizures are infrequent during ECMO support. However, they were associated with increased mortality when present. Multi-institutional, larger-scale studies using standardized EEG monitoring are necessary to further understand the risk factors of specific classes of seizures for individual ECMO types, and their effects on mortality. Limitations of our study include missing data for details on seizure types, sedating/antiseizure medications used during ECMO, other ECMO-related complications, and EEG recording protocols.
Collapse
Affiliation(s)
- Jaeho Hwang
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Armaan F Akbar
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Lavienraj Premraj
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Eva K Ritzl
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| | - Sung-Min Cho
- From the Division of Epilepsy (J.H., E.K.R.), Department of Neurology; Division of Cardiac Surgery (A.F.A.), Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; Griffith University School of Medicine (L.P.), Gold Coast, Queensland, Australia; Division of Neurosciences Critical Care (E.K.R., S.-M.C.), Departments of Neurology, Neurosurgery, Anesthesiology, Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD; and Division of Intraoperative Neuromonitoring (E.K.R.), Department of Neurology, Massachusetts General Brigham, Boston
| |
Collapse
|
19
|
Shao R, Wang T, Hang C, An L, Wang X, Zhang L, Yu J, Shan Z, Yang Q, Tang Z. Alteration in early resting‑state functional MRI activity in comatose survivors of cardiac arrest: a prospective cohort study. Crit Care 2024; 28:260. [PMID: 39095884 PMCID: PMC11295486 DOI: 10.1186/s13054-024-05045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND This study aimed to explore the characteristics of abnormal regional resting-state functional magnetic resonance imaging (rs-fMRI) activity in comatose patients in the early period after cardiac arrest (CA), and to investigate their relationships with neurological outcomes. We also explored the correlations between jugular venous oxygen saturation (SjvO2) and rs-fMRI activity in resuscitated comatose patients. We also examined the relationship between the amplitude of the N20-baseline and the rs-fMRI activity within the intracranial conduction pathway of somatosensory evoked potentials (SSEPs). METHODS Between January 2021 and January 2024, eligible post-resuscitated patients were screened to undergo fMRI examination. The amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) of rs-fMRI blood oxygenation level-dependent (BOLD) signals were used to characterize regional neural activity. Neurological outcomes were evaluated using the Glasgow-Pittsburgh cerebral performance category (CPC) scale at 3 months after CA. RESULTS In total, 20 healthy controls and 31 post-resuscitated patients were enrolled in this study. The rs-fMRI activity of resuscitated patients revealed complex changes, characterized by increased activity in some local brain regions and reduced activity in others compared to healthy controls (P < 0.05). However, the mean ALFF values of the whole brain were significantly greater in CA patients (P = 0.011). Among the clusters of abnormal rs-fMRI activity, the cluster values of ALFF in the left middle temporal gyrus and inferior temporal gyrus and the cluster values of ReHo in the right precentral gyrus, superior frontal gyrus and middle frontal gyrus were strongly correlated with the CPC score (P < 0.001). There was a strong correlation between the mean ALFF and SjvO2 in CA patients (r = 0.910, P < 0.001). The SSEP N20-baseline amplitudes in CA patients were negatively correlated with thalamic rs-fMRI activity (all P < 0.001). CONCLUSIONS This study revealed that abnormal rs-fMRI BOLD signals in resuscitated patients showed complex changes, characterized by increased activity in some local brain regions and reduced activity in others. Abnormal BOLD signals were associated with neurological outcomes in resuscitated patients. The mean ALFF values of the whole brain were closely related to SjvO2 levels, and changes in the thalamic BOLD signals correlated with the N20-baseline amplitudes of SSEP responses. TRIAL REGISTRATION NCT05966389 (Registered July 27, 2023).
Collapse
Affiliation(s)
- Rui Shao
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Tao Wang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Chenchen Hang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Le An
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Xingsheng Wang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Luying Zhang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Jingfei Yu
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Zhenyu Shan
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China.
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China.
| |
Collapse
|
20
|
Lissak IA, Young MJ. Limitation of life sustaining therapy in disorders of consciousness: ethics and practice. Brain 2024; 147:2274-2288. [PMID: 38387081 PMCID: PMC11224617 DOI: 10.1093/brain/awae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Clinical conversations surrounding the continuation or limitation of life-sustaining therapies (LLST) are both challenging and tragically necessary for patients with disorders of consciousness (DoC) following severe brain injury. Divergent cultural, philosophical and religious perspectives contribute to vast heterogeneity in clinical approaches to LLST-as reflected in regional differences and inter-clinician variability. Here we provide an ethical analysis of factors that inform LLST decisions among patients with DoC. We begin by introducing the clinical and ethical challenge and clarifying the distinction between withdrawing and withholding life-sustaining therapy. We then describe relevant factors that influence LLST decision-making including diagnostic and prognostic uncertainty, perception of pain, defining a 'good' outcome, and the role of clinicians. In concluding sections, we explore global variation in LLST practices as they pertain to patients with DoC and examine the impact of cultural and religious perspectives on approaches to LLST. Understanding and respecting the cultural and religious perspectives of patients and surrogates is essential to protecting patient autonomy and advancing goal-concordant care during critical moments of medical decision-making involving patients with DoC.
Collapse
Affiliation(s)
- India A Lissak
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael J Young
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
21
|
Johnson NJ, Matin N, Singh A, Davis AP, Liao HC, Town JA, Tirschwell DL, Nash MG, Longstreth WT, Khot SP. Cerebrospinal Creatine Kinase BB Isoenzyme: A Biomarker for Predicting Outcome After Cardiac Arrest. Neurocrit Care 2024:10.1007/s12028-024-02037-8. [PMID: 38955930 DOI: 10.1007/s12028-024-02037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Cerebrospinal fluid creatine kinase BB isoenzyme (CSF CK-BB) after cardiac arrest (CA) has been shown to have a high positive predictive value for poor neurological outcome, but it has not been evaluated in the setting of targeted temperature management (TTM) and modern CA care. We aimed to evaluate CSF CK-BB as a prognostic biomarker after CA. METHODS We performed a retrospective cohort study of patients with CA admitted between 2010 and 2020 to a three-hospital health system who remained comatose and had CSF CK-BB assayed between 36 and 84 h after CA. We examined the proportion of patients at hospital discharge who achieved favorable or intermediate neurological outcome, defined as Cerebral Performance Category score of 1-3, compared with those with poor outcome (Cerebral Performance Category score 4-5) for various CSF CK-BB thresholds. We also evaluated additive value of bilateral absence of somatosensory evoked potentials (SSEPs). RESULTS Among 214 eligible patients, the mean age was 54.7 ± 4.8 years, 72% of patients were male, 33% were nonwhite, 17% had shockable rhythm, 90% were out-of-hospital CA, and 83% received TTM. A total of 19 (9%) awakened. CSF CK-BB ≥ 230 U/L predicted a poor outcome at hospital discharge, with a specificity of 100% (95% confidence interval [CI] 82-100%) and sensitivity of 69% (95% CI 62-76%). When combined with bilaterally absent N20 response on SSEP, specificity remained 100% while sensitivity increased to 80% (95% CI 73-85%). Discordant CK-BB and SSEP findings were seen in 13 (9%) patients. CONCLUSIONS Cerebrospinal fluid creatine kinase BB isoenzyme levels accurately predicted poor neurological outcome among CA survivors treated with TTM. The CSF CK-BB cutoff of 230 U/L optimizes sensitivity to 69% while maintaining a specificity of 100%. CSF CK-BB could be a useful addition to multimodal neurological prognostication after CA.
Collapse
Affiliation(s)
- Nicholas J Johnson
- Department of Emergency Medicine, Harborview Medical Center, University of Washington School of Medicine, University of Washington, 325 Ninth Avenue, Box 359108, Seattle, WA, 98104, USA.
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | - Amita Singh
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Arielle P Davis
- Department of Neurology, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Hsuan-Chien Liao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - James A Town
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David L Tirschwell
- Department of Neurology, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Michael G Nash
- Center for Biomedical Statistics, University of Washington, Seattle, WA, USA
| | - W T Longstreth
- Department of Neurology, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Sandeep P Khot
- Department of Neurology, Harborview Medical Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Bird JD, Sekhon MS. Biomarker guided prognostication during veno-arterial extracorporeal membrane oxygenation: A potentially valuable tool. Resuscitation 2024; 200:110245. [PMID: 38886042 DOI: 10.1016/j.resuscitation.2024.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Jordan D Bird
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Kenda M, Lang M, Nee J, Hinrichs C, Dell'Orco A, Salih F, Kemmling A, Nielsen N, Wise M, Thomas M, Düring J, McGuigan P, Cronberg T, Scheel M, Moseby-Knappe M, Leithner C. Regional Brain Net Water Uptake in Computed Tomography after Cardiac Arrest - A Novel Biomarker for Neuroprognostication. Resuscitation 2024; 200:110243. [PMID: 38796092 DOI: 10.1016/j.resuscitation.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Selective water uptake by neurons and glial cells and subsequent brain tissue oedema are key pathophysiological processes of hypoxic-ischemic encephalopathy (HIE) after cardiac arrest (CA). Although brain computed tomography (CT) is widely used to assess the severity of HIE, changes of brain radiodensity over time have not been investigated. These could be used to quantify regional brain net water uptake (NWU), a potential prognostic biomarker. METHODS We conducted an observational prognostic accuracy study including a derivation (single center cardiac arrest registry) and a validation (international multicenter TTM2 trial) cohort. Early (<6 h) and follow-up (>24 h) head CTs of CA patients were used to determine regional NWU for grey and white matter regions after co-registration with a brain atlas. Neurological outcome was dichotomized as good versus poor using the Cerebral Performance Category Scale (CPC) in the derivation cohort and Modified Rankin Scale (mRS) in the validation cohort. RESULTS We included 115 patients (81 derivation, 34 validation) with out-of-hospital (OHCA) and in-hospital cardiac arrest (IHCA). Regional brain water content remained unchanged in patients with good outcome. In patients with poor neurological outcome, we found considerable regional water uptake with the strongest effect in the basal ganglia. NWU >8% in the putamen and caudate nucleus predicted poor outcome with 100% specificity (95%-CI: 86-100%) and 43% (moderate) sensitivity (95%-CI: 31-56%). CONCLUSION This pilot study indicates that NWU derived from serial head CTs is a promising novel biomarker for outcome prediction after CA. NWU >8% in basal ganglia grey matter regions predicted poor outcome while absence of NWU indicated good outcome. NWU and follow-up CTs should be investigated in larger, prospective trials with standardized CT acquisition protocols.
Collapse
Affiliation(s)
- Martin Kenda
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Digital Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany.
| | - Margareta Lang
- Department of Clinical Sciences Lund, Radiology, Lund University, Helsingborg Hospital, Lund, Sweden
| | - Jens Nee
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Intensive Care Medicine, Circulatory Arrest Center Berlin, Berlin, Germany
| | - Carl Hinrichs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Intensive Care Medicine, Circulatory Arrest Center Berlin, Berlin, Germany
| | - Andrea Dell'Orco
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neuroradiology, Campus Charité, Mitte, Germany
| | - Farid Salih
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - André Kemmling
- Department of Neuroradiology, University Hospital Marburg, Marburg, Germany
| | - Niklas Nielsen
- Anaesthesiology and Intensive Care, Department of Clinical Sciences Lund, Helsingborg Hospital, Lund University, Lund, Sweden
| | - Matt Wise
- Adult Critical Care, University Hospital of Wales, Cardiff, UK
| | | | - Joachim Düring
- Department of Clinical Sciences, Anesthesia and Intensive Care, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Peter McGuigan
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, UK
| | - Tobias Cronberg
- Department of Neurology, Skane University Hospital, Lund, Sweden
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neuroradiology, Campus Charité, Mitte, Germany
| | - Marion Moseby-Knappe
- Department of Clinical Sciences Lund, Neurology and Rehabilitation, Lund University, Skåne University Hospital, Lund, Sweden
| | - Christoph Leithner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
24
|
Sugimoto M, Takayama W, Inoue A, Hifumi T, Sakamoto T, Kuroda Y, Otomo Y. Impact of Lactate Clearance on Clinical and Neurological Outcomes of Patients With Out-of-Hospital Cardiac Arrest Treated With Extracorporeal Cardiopulmonary Resuscitation: A Secondary Data Analysis. Crit Care Med 2024; 52:e341-e350. [PMID: 38411442 PMCID: PMC11166734 DOI: 10.1097/ccm.0000000000006245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Serial evaluations of lactate concentration may be more useful in predicting outcomes in patients with out-of-hospital cardiac arrest (OHCA) than a single measurement. This study aimed to evaluate the impact of lactate clearance (LC) on clinical and neurologic outcomes in patients with OHCA who underwent extracorporeal cardiopulmonary resuscitation (ECPR). DESIGN Retrospective multicenter observational study. SETTING Patients with OHCA receiving ECPR at 36 hospitals in Japan between January 1, 2013, and December 31, 2018. PATIENTS This study evaluated 1227 patients, with lactate initial assessed upon emergency department admission and lactate second measured subsequently. To adjust for the disparity in the time between lactate measurements, the modified 6-hour LC was defined as follows: ([lactate initial -lactate second ]/lactate initial ) × 100 × (6/the duration between the initial and second measurements [hr]). The patients were divided into four groups according to the modified 6-hour LC with an equivalent number of patients among LC quartiles: Q1 (LC < 18.8), Q2 (18.8 < LC < 59.9), Q3 (60.0 < LC < 101.2), and Q4 (101.2 < LC). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The 30-day survival rates increased as the 6-hour LC increased (Q1, 21.2%; Q2, 36.8%; Q3, 41.4%; Q4, 53.6%; p for trend < 0.001). In the multivariate analysis, the modified 6-hour LC was significantly associated with a 30-day survival rate (adjusted odds ratio [AOR], 1.003; 95% CI, 1.001-1.005; p < 0.001) and favorable neurologic outcome (AOR, 1.002; 95% CI, 1.000-1.004; p = 0.027). CONCLUSIONS In patients with OHCA who underwent ECPR, an increase in the modified 6-hour LC was associated with favorable clinical and neurologic outcome. Thus, LC can be a criterion to assess whether ECPR should be continued.
Collapse
Affiliation(s)
- Momoko Sugimoto
- Trauma and Acute Critical Care Center, Tokyo Medical and Dental University Hospital of Medicine, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Wataru Takayama
- Trauma and Acute Critical Care Center, Tokyo Medical and Dental University Hospital of Medicine, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Inoue
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Kobe, Japan
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Tetsuya Sakamoto
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuhiro Kuroda
- Department of Emergency Medicine, Kagawa University School of Medicine, Kagawa, Japan
| | - Yasuhiro Otomo
- Trauma and Acute Critical Care Center, Tokyo Medical and Dental University Hospital of Medicine, Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
25
|
Lang M, Kenda M, Scheel M, Martola J, Wheeler M, Owen S, Johnsson M, Annborn M, Dankiewicz J, Deye N, Düring J, Friberg H, Halliday T, Jakobsen JC, Lascarrou JB, Levin H, Lilja G, Lybeck A, McGuigan P, Rylander C, Sem V, Thomas M, Ullén S, Undén J, Wise MP, Cronberg T, Wassélius J, Nielsen N, Leithner C, Moseby-Knappe M. Standardised and automated assessment of head computed tomography reliably predicts poor functional outcome after cardiac arrest: a prospective multicentre study. Intensive Care Med 2024; 50:1096-1107. [PMID: 38900283 PMCID: PMC11245448 DOI: 10.1007/s00134-024-07497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Application of standardised and automated assessments of head computed tomography (CT) for neuroprognostication after out-of-hospital cardiac arrest. METHODS Prospective, international, multicentre, observational study within the Targeted Hypothermia versus Targeted Normothermia after out-of-hospital cardiac arrest (TTM2) trial. Routine CTs from adult unconscious patients obtained > 48 h ≤ 7 days post-arrest were assessed qualitatively and quantitatively by seven international raters blinded to clinical information using a pre-published protocol. Grey-white-matter ratio (GWR) was calculated from four (GWR-4) and eight (GWR-8) regions of interest manually placed at the basal ganglia level. Additionally, GWR was obtained using an automated atlas-based approach. Prognostic accuracies for prediction of poor functional outcome (modified Rankin Scale 4-6) for the qualitative assessment and for the pre-defined GWR cutoff < 1.10 were calculated. RESULTS 140 unconscious patients were included; median age was 68 years (interquartile range [IQR] 59-76), 76% were male, and 75% had poor outcome. Standardised qualitative assessment and all GWR models predicted poor outcome with 100% specificity (95% confidence interval [CI] 90-100). Sensitivity in median was 37% for the standardised qualitative assessment, 39% for GWR-8, 30% for GWR-4 and 41% for automated GWR. GWR-8 was superior to GWR-4 regarding prognostic accuracies, intra- and interrater agreement. Overall prognostic accuracy for automated GWR (area under the curve [AUC] 0.84, 95% CI 0.77-0.91) did not significantly differ from manually obtained GWR. CONCLUSION Standardised qualitative and quantitative assessments of CT are reliable and feasible methods to predict poor functional outcome after cardiac arrest. Automated GWR has the potential to make CT quantification for neuroprognostication accessible to all centres treating cardiac arrest patients.
Collapse
Affiliation(s)
- Margareta Lang
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Radiology, Helsingborg Hospital, Helsingborg, Sweden
| | - Martin Kenda
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Digital Clinician Scientist Program, Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Juha Martola
- HUS Medical Imaging Center, Radiology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Matthew Wheeler
- University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, Wales, UK
| | - Stephanie Owen
- University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, Wales, UK
| | - Mikael Johnsson
- Department of Radiology, Helsingborg Hospital, Helsingborg, Sweden
| | - Martin Annborn
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Anaesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden
| | - Josef Dankiewicz
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Cardiology, Skåne University Hospital, Lund, Sweden
| | - Nicolas Deye
- Department of Medical and Toxicological Intensive Care Unit, Inserm UMR-S 942, Assistance Publique des Hopitaux de Paris, Lariboisière University Hospital, Paris, France
| | - Joachim Düring
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Anaesthesia and Intensive Care, Skåne University Hospital, Malmö, Sweden
| | - Hans Friberg
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Anaesthesia and Intensive Care, Skåne University Hospital, Malmö, Sweden
| | - Thomas Halliday
- Department of Operation and Intensive Care, Linköping University Hospital, Linköping, Sweden
| | - Janus Christian Jakobsen
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jean-Baptiste Lascarrou
- Medecine Intensive Reanimation, Movement-Interactions-Performance,, Nantes Université, CHU Nantes, MIP, UR 4334, 44000, Nantes, France
| | - Helena Levin
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Research and Education, Skåne University Hospital, Lund, Sweden
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Anna Lybeck
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Peter McGuigan
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Christian Rylander
- Anaesthesia and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Victoria Sem
- Department of Anaesthesia and Intensive Care, Central Hospital of Karlstad, Karlstad, Sweden
| | - Matthew Thomas
- Intensive Care Unit, University Hospitals Bristol and Weston, Bristol, UK
| | - Susann Ullén
- Clinical Studies Sweden‑Forum South, Skåne University Hospital, Lund, Sweden
| | - Johan Undén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Operation and Intensive Care, Hallands Hospital Halmstad, Halmstad, Sweden
| | - Matt P Wise
- Adult Critical Care, University Hospital of Wales, Cardiff, UK
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Johan Wassélius
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Anaesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden
| | - Christoph Leithner
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marion Moseby-Knappe
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
- Department of Neurology, Skåne University Hospital, Lund, Sweden.
- Department of Rehabilitation, Skåne University Hospital, 22185, Lund, Sweden.
| |
Collapse
|
26
|
Xiao Q, Zheng X, Wen Y, Yuan Z, Chen Z, Lan Y, Li S, Huang X, Zhong H, Xu C, Zhan C, Pan J, Xie Q. Individualized music induces theta-gamma phase-amplitude coupling in patients with disorders of consciousness. Front Neurosci 2024; 18:1395627. [PMID: 39010944 PMCID: PMC11248187 DOI: 10.3389/fnins.2024.1395627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Objective This study aimed to determine whether patients with disorders of consciousness (DoC) could experience neural entrainment to individualized music, which explored the cross-modal influences of music on patients with DoC through phase-amplitude coupling (PAC). Furthermore, the study assessed the efficacy of individualized music or preferred music (PM) versus relaxing music (RM) in impacting patient outcomes, and examined the role of cross-modal influences in determining these outcomes. Methods Thirty-two patients with DoC [17 with vegetative state/unresponsive wakefulness syndrome (VS/UWS) and 15 with minimally conscious state (MCS)], alongside 16 healthy controls (HCs), were recruited for this study. Neural activities in the frontal-parietal network were recorded using scalp electroencephalography (EEG) during baseline (BL), RM and PM. Cerebral-acoustic coherence (CACoh) was explored to investigate participants' abilitiy to track music, meanwhile, the phase-amplitude coupling (PAC) was utilized to evaluate the cross-modal influences of music. Three months post-intervention, the outcomes of patients with DoC were followed up using the Coma Recovery Scale-Revised (CRS-R). Results HCs and patients with MCS showed higher CACoh compared to VS/UWS patients within musical pulse frequency (p = 0.016, p = 0.045; p < 0.001, p = 0.048, for RM and PM, respectively, following Bonferroni correction). Only theta-gamma PAC demonstrated a significant interaction effect between groups and music conditions (F (2,44) = 2.685, p = 0.036). For HCs, the theta-gamma PAC in the frontal-parietal network was stronger in the PM condition compared to the RM (p = 0.016) and BL condition (p < 0.001). For patients with MCS, the theta-gamma PAC was stronger in the PM than in the BL (p = 0.040), while no difference was observed among the three music conditions in patients with VS/UWS. Additionally, we found that MCS patients who showed improved outcomes after 3 months exhibited evident neural responses to preferred music (p = 0.019). Furthermore, the ratio of theta-gamma coupling changes in PM relative to BL could predict clinical outcomes in MCS patients (r = 0.992, p < 0.001). Conclusion Individualized music may serve as a potential therapeutic method for patients with DoC through cross-modal influences, which rely on enhanced theta-gamma PAC within the consciousness-related network.
Collapse
Affiliation(s)
- Qiuyi Xiao
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Zheng
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun Wen
- Music and Reflection Incorporated, Guangzhou, Guangdong, China
| | - Zhanxing Yuan
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zerong Chen
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Lan
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuiyan Li
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiyan Huang
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haili Zhong
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengwei Xu
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chang'an Zhan
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiahui Pan
- School of Software, South China Normal University, Guangzhou, Guangdong, China
| | - Qiuyou Xie
- Joint Research Centre for Disorders of Consciousness, Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hyperbaric Oxygen, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Hou HX, Pang L, Zhao L, Xing J. Ferroptosis-related gene MAPK3 is associated with the neurological outcome after cardiac arrest. PLoS One 2024; 19:e0301647. [PMID: 38885209 PMCID: PMC11182507 DOI: 10.1371/journal.pone.0301647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/19/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Neuronal ferroptosis is closely related to the disease of the nervous system, and the objective of the present study was to recognize and verify the potential ferroptosis-related genes to forecast the neurological outcome after cardiac arrest. METHODS Cardiac Arrest-related microarray datasets GSE29540 and GSE92696 were downloaded from GEO and batch normalization of the expression data was performed using "sva" of the R package. GSE29540 was analyzed to identify DEGs. Venn diagram was applied to recognize ferroptosis-related DEGs from the DEGs. Subsequently, The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed, and PPI network was applied to screen hub genes. Receiver operating characteristic (ROC) curves were adopted to determine the predictive value of the biomarkers, and the GSE92696 dataset was applied to further evaluate the diagnostic efficacy of the biomarkers. We explore transcription factors and miRNAs associated with hub genes. The "CIBERSORT" package of R was utilized to analyse the proportion infiltrating immune cells. Finally, validated by a series of experiments at the cellular level. RESULTS 112 overlapping ferroptosis-related DEGs were further obtained via intersecting these DEGs and ferroptosis-related genes. The GO and KEGG analysis demonstrate that ferroptosis-related DEGs are mainly involved in response to oxidative stress, ferroptosis, apoptosis, IL-17 signalling pathway, autophagy, toll-like receptor signalling pathway. The top 10 hub genes were selected, including HIF1A, MAPK3, PPARA, IL1B, PTGS2, RELA, TLR4, KEAP1, SREBF1, SIRT6. Only MAPK3 was upregulated in both GSE29540 and GAE92696. The AUC values of the MAPK3 are 0.654 and 0.850 in GSE29540 and GSE92696 respectively. The result of miRNAs associated with hub genes indicates that hsa-miR-214-3p and hsa-miR-483-5p can regulate the expression of MAPK3. MAPK3 was positively correlated with naive B cells, macrophages M0, activated dendritic cells and negatively correlated with activated CD4 memory T cells, CD8 T cells, and memory B cells. Compared to the OGD4/R24 group, the OGD4/R12 group had higher MAPK3 expression at both mRNA and protein levels and more severe ferroptosis. CONCLUSION In summary, the MAPK3 ferroptosis-related gene could be used as a biomarker to predict the neurological outcome after cardiac arrest. Potential biological pathways provide novel insights into the pathogenesis of cardiac arrest.
Collapse
Affiliation(s)
- Hong xiang Hou
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Li Pang
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Liang Zhao
- Rehabilitation Department, The First Hospital of Jilin University, Changchun, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Kim JH, Lee J, Shin H, Lim TH, Jang BH, Cho Y, Kim W, Choi KS, Kim JG, Ahn C, Lee H, Namgung M, Na MK, Kwon SM. Association Between QRS Characteristics in Pulseless Electrical Activity and Survival Outcome in Cardiac Arrest Patients: A Systematic Review and Meta-Analysis. PREHOSP EMERG CARE 2024:1-8. [PMID: 38787646 DOI: 10.1080/10903127.2024.2360139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Recent studies have shown inconsistent results regarding the association between QRS characteristics and survival outcomes in patients with cardiac arrest and pulseless electrical activity (PEA) rhythms. This meta-analysis aimed to identify the usefulness of QRS width and frequency as prognostic tools for outcomes in patients with cardiac arrest and PEA rhythm. METHODS Extensive searches were conducted using Medline, Embase, and the Cochrane Library to find articles published from database inception to 4 June 2023. Studies that assessed the association between the QRS characteristics of cardiac arrest patients with PEA rhythm and survival outcomes were included. The Newcastle-Ottawa Scale was used to assess the methodological quality of the included studies. RESULTS A total of 9727 patients from seven observational studies were included in this systematic review and meta-analysis. The wide QRS group (QRS ≥ 120 ms) was associated with significantly higher odds of mortality than the narrow QRS group (QRS < 120 ms) (odds ratio (OR) = 1.86, 95% confidence interval (CI) = 1.11-3.11, I2 = 58%). The pooled OR for mortality was significantly higher in patients with a QRS frequency of < 60/min than in those with a QRS frequency of ≥ 60/min (OR = 1.90, 95% CI = 1.19-3.02, I2 = 65%). CONCLUSIONS Wide QRS width or low QRS frequency is associated with increased odds of mortality in patients with PEA cardiac arrest. These findings may be beneficial to guide the disposition of cardiac arrest patients with PEA during resuscitation.
Collapse
Affiliation(s)
- Jae Hwan Kim
- Department of Emergency Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Juncheol Lee
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyungoo Shin
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tae Ho Lim
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Bo-Hyoung Jang
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youngsuk Cho
- Department of Emergency Medicine, Hallym University, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Wonhee Kim
- Department of Emergency Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Sun Choi
- Department of Neurosurgery, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jae Guk Kim
- Department of Emergency Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Chiwon Ahn
- Department of Emergency Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heekyung Lee
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Myeong Namgung
- Department of Emergency Medicine, College of Medicine, Chung-Ang University Gwangmyeong Hospital, Gyeonggi-do, Republic of Korea
| | - Min Kyun Na
- Department of Neurosurgery, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sae Min Kwon
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
29
|
Amacher SA, Arpagaus A, Sahmer C, Becker C, Gross S, Urben T, Tisljar K, Sutter R, Marsch S, Hunziker S. Prediction of outcomes after cardiac arrest by a generative artificial intelligence model. Resusc Plus 2024; 18:100587. [PMID: 38433764 PMCID: PMC10906512 DOI: 10.1016/j.resplu.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Aims To investigate the prognostic accuracy of a non-medical generative artificial intelligence model (Chat Generative Pre-Trained Transformer 4 - ChatGPT-4) as a novel aspect in predicting death and poor neurological outcome at hospital discharge based on real-life data from cardiac arrest patients. Methods This prospective cohort study investigates the prognostic performance of ChatGPT-4 to predict outcomes at hospital discharge of adult cardiac arrest patients admitted to intensive care at a large Swiss tertiary academic medical center (COMMUNICATE/PROPHETIC cohort study). We prompted ChatGPT-4 with sixteen prognostic parameters derived from established post-cardiac arrest scores for each patient. We compared the prognostic performance of ChatGPT-4 regarding the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values, and likelihood ratios of three cardiac arrest scores (Out-of-Hospital Cardiac Arrest [OHCA], Cardiac Arrest Hospital Prognosis [CAHP], and PROgnostication using LOGistic regression model for Unselected adult cardiac arrest patients in the Early stages [PROLOGUE score]) for in-hospital mortality and poor neurological outcome. Results Mortality at hospital discharge was 43% (n = 309/713), 54% of patients (n = 387/713) had a poor neurological outcome. ChatGPT-4 showed good discrimination regarding in-hospital mortality with an AUC of 0.85, similar to the OHCA, CAHP, and PROLOGUE (AUCs of 0.82, 0.83, and 0.84, respectively) scores. For poor neurological outcome, ChatGPT-4 showed a similar prediction to the post-cardiac arrest scores (AUC 0.83). Conclusions ChatGPT-4 showed a similar performance in predicting mortality and poor neurological outcome compared to validated post-cardiac arrest scores. However, more research is needed regarding illogical answers for potential incorporation of an LLM in the multimodal outcome prognostication after cardiac arrest.
Collapse
Affiliation(s)
- Simon A. Amacher
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
- Emergency Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
| | - Armon Arpagaus
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Christian Sahmer
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Christoph Becker
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
- Emergency Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
| | - Sebastian Gross
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Tabita Urben
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Kai Tisljar
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
| | - Raoul Sutter
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
- Division of Neurophysiology, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Stephan Marsch
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
| | - Sabina Hunziker
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
- Post-Intensive Care Clinic, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
30
|
Muehlschlegel S. Prognostication in Neurocritical Care. Continuum (Minneap Minn) 2024; 30:878-903. [PMID: 38830074 DOI: 10.1212/con.0000000000001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE This article synthesizes the current literature on prognostication in neurocritical care, identifies existing challenges, and proposes future research directions to reduce variability and enhance scientific and patient-centered approaches to neuroprognostication. LATEST DEVELOPMENTS Patients with severe acute brain injury often lack the capacity to make their own medical decisions, leaving surrogate decision makers responsible for life-or-death choices. These decisions heavily rely on clinicians' prognostication, which is still considered an art because of the previous lack of specific guidelines. Consequently, there is significant variability in neuroprognostication practices. This article examines various aspects of neuroprognostication. It explores the cognitive approach to prognostication, highlights the use of statistical modeling such as Bayesian models and machine learning, emphasizes the importance of clinician-family communication during prognostic disclosures, and proposes shared decision making for more patient-centered care. ESSENTIAL POINTS This article identifies ongoing challenges in the field and emphasizes the need for future research to ameliorate variability in neuroprognostication. By focusing on scientific methodologies and patient-centered approaches, this research aims to provide guidance and tools that may enhance neuroprognostication in neurocritical care.
Collapse
|
31
|
Steinberg A. Emergent Management of Hypoxic-Ischemic Brain Injury. Continuum (Minneap Minn) 2024; 30:588-610. [PMID: 38830064 DOI: 10.1212/con.0000000000001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE This article outlines interventions used to improve outcomes for patients with hypoxic-ischemic brain injury after cardiac arrest. LATEST DEVELOPMENTS Emergent management of patients after cardiac arrest requires prevention and treatment of primary and secondary brain injury. Primary brain injury is minimized by excellent initial resuscitative efforts. Secondary brain injury prevention requires the detection and correction of many pathophysiologic processes that may develop in the hours to days after the initial arrest. Key physiologic parameters important to secondary brain injury prevention include optimization of mean arterial pressure, cerebral perfusion, oxygenation and ventilation, intracranial pressure, temperature, and cortical hyperexcitability. This article outlines recent data regarding the treatment and prevention of secondary brain injury. Different patients likely benefit from different treatment strategies, so an individualized approach to treatment and prevention of secondary brain injury is advisable. Clinicians must use multimodal sources of data to prognosticate outcomes after cardiac arrest while recognizing that all prognostic tools have shortcomings. ESSENTIAL POINTS Neurologists should be involved in the postarrest care of patients with hypoxic-ischemic brain injury to improve their outcomes. Postarrest care requires nuanced and patient-centered approaches to the prevention and treatment of primary and secondary brain injury and neuroprognostication.
Collapse
|
32
|
Scharink D, Hunfeld M, Albrecht M, Dulfer K, de Hoog M, van Gils A, de Jonge R, Buysse C. An 18-year, single centre, retrospective study of long-term neurological outcomes in paediatric submersion-related cardiac arrests. Resusc Plus 2024; 18:100632. [PMID: 38646092 PMCID: PMC11026833 DOI: 10.1016/j.resplu.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Aim Investigate long-term outcome in paediatric submersion-related cardiac arrests (CA). Methods Children (age one day-17 years) were included if admitted to the Erasmus MC Sophia Children's Hospital, after drowning with CA, between 2002 and 2019. Primary outcome was survival with favourable neurological outcome, defined as a Paediatric Cerebral Performance Category (PCPC) score of 1-3 at longest available follow-up. Secondary outcome were age-appropriate neuropsychological assessments at longest available follow-up. Results Upon hospital admission, 99 children were included (median age at time of CA 3.2 years [IQR 2.0-5.9] and 65% males). Forty children died in-hospital (no return of circulation (45%) or withdrawal of life sustaining therapies (55%)) and 4 children deceased after hospital discharge due to complications following the drowning-incident. Among survivors, with a median follow-up of 2.3 years [IQR 0.2-5.5], 47 children had favourable neurological outcome (i.e. PCPC 1-3) and 8 children unfavourable (unfavourable outcome group total n = 52, i.e. PCPC 4-5 or deceased). Twenty-six (47%) children participated in a neuropsychological assessment (median follow-up 4.0 years [IQR 2.3-8.7]). Compared with normative test data, participants obtained worse general (p = 0.008) and performance (p = 0.003) intelligence scores, processing speed (p = 0.002) and visual motor integration scores (p = 0.0012). Conclusions Although overall outcome in survivors was favourable at longest available follow-up, significant deficits in neuropsychological assessments were found. This study underlines the need for a standardized long term follow-up program as standard of care in paediatric drowning with CA.
Collapse
Affiliation(s)
- Denne Scharink
- Department of Neonatal and Paediatric Intensive Care, Division of Paediatric Intensive Care, Erasmus MC Sophia Children’s Hospital, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Maayke Hunfeld
- Department of Neonatal and Paediatric Intensive Care, Division of Paediatric Intensive Care, Erasmus MC Sophia Children’s Hospital, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- Department of Paediatric Neurology, Erasmus MC Sophia Children’s Hospital, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marijn Albrecht
- Department of Neonatal and Paediatric Intensive Care, Division of Paediatric Intensive Care, Erasmus MC Sophia Children’s Hospital, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Karolijn Dulfer
- Department of Neonatal and Paediatric Intensive Care, Division of Paediatric Intensive Care, Erasmus MC Sophia Children’s Hospital, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Matthijs de Hoog
- Department of Neonatal and Paediatric Intensive Care, Division of Paediatric Intensive Care, Erasmus MC Sophia Children’s Hospital, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Annabel van Gils
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC Sophia Children’s Hospital, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Rogier de Jonge
- Department of Neonatal and Paediatric Intensive Care, Division of Paediatric Intensive Care, Erasmus MC Sophia Children’s Hospital, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Corinne Buysse
- Department of Neonatal and Paediatric Intensive Care, Division of Paediatric Intensive Care, Erasmus MC Sophia Children’s Hospital, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
33
|
Amacher SA, Sahmer C, Becker C, Gross S, Arpagaus A, Urben T, Tisljar K, Emsden C, Sutter R, Marsch S, Hunziker S. Post-intensive care syndrome and health-related quality of life in long-term survivors of cardiac arrest: a prospective cohort study. Sci Rep 2024; 14:10533. [PMID: 38719863 PMCID: PMC11079009 DOI: 10.1038/s41598-024-61146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Patients discharged from intensive care are at risk for post-intensive care syndrome (PICS), which consists of physical, psychological, and/or neurological impairments. This study aimed to analyze PICS at 24 months follow-up, to identify potential risk factors for PICS, and to assess health-related quality of life in a long-term cohort of adult cardiac arrest survivors. This prospective cohort study included adult cardiac arrest survivors admitted to the intensive care unit of a Swiss tertiary academic medical center. The primary endpoint was the prevalence of PICS at 24 months follow-up, defined as impairments in physical (measured through the European Quality of Life 5-Dimensions-3-Levels instrument [EQ-5D-3L]), neurological (defined as Cerebral Performance Category Score > 2 or Modified Rankin Score > 3), and psychological (based on the Hospital Anxiety and Depression Scale and the Impact of Event Scale-Revised) domains. Among 107 cardiac arrest survivors that completed the 2-year follow-up, 46 patients (43.0%) had symptoms of PICS, with 41 patients (38.7%) experiencing symptoms in the physical domain, 16 patients (15.4%) in the psychological domain, and 3 patients (2.8%) in the neurological domain. Key predictors for PICS in multivariate analyses were female sex (adjusted odds ratio [aOR] 3.17, 95% CI 1.08 to 9.3), duration of no-flow interval during cardiac arrest (minutes) (aOR 1.17, 95% CI 1.02 to 1.33), post-discharge job-loss (aOR 31.25, 95% CI 3.63 to 268.83), need for ongoing psychological support (aOR 3.64, 95% CI 1.29 to 10.29) or psychopharmacologic treatment (aOR 9.49, 95% CI 1.9 to 47.3), and EQ-visual analogue scale (points) (aOR 0.88, 95% CI 0.84 to 0.93). More than one-third of cardiac arrest survivors experience symptoms of PICS 2 years after resuscitation, with the highest impairment observed in the physical and psychological domains. However, long-term survivors of cardiac arrest report intact health-related quality of life when compared to the general population. Future research should focus on appropriate prevention, screening, and treatment strategies for PICS in cardiac arrest patients.
Collapse
Affiliation(s)
- Simon A Amacher
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
- Emergency Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
| | - Christian Sahmer
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
| | - Christoph Becker
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
- Emergency Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
| | - Sebastian Gross
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
| | - Armon Arpagaus
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
| | - Tabita Urben
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
| | - Kai Tisljar
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
| | - Christian Emsden
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
- Post-Intensive Care Clinic, University Hospital Basel, Basel, Switzerland
| | - Raoul Sutter
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
- Division of Neurophysiology, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Stephan Marsch
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
| | - Sabina Hunziker
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland.
- Post-Intensive Care Clinic, University Hospital Basel, Basel, Switzerland.
- Medical Faculty, University of Basel, Basel, Switzerland.
| |
Collapse
|
34
|
Bencsik CM, Kramer AH, Couillard P, MacKay M, Kromm JA. Postarrest Neuroprognostication: Practices and Opinions of Canadian Physicians. Can J Neurol Sci 2024; 51:404-415. [PMID: 37489539 DOI: 10.1017/cjn.2023.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
BACKGROUND Objective, evidence-based neuroprognostication of postarrest patients is crucial to avoid inappropriate withdrawal of life-sustaining therapies or prolonged, invasive, and costly therapies that could perpetuate suffering when there is no chance of an acceptable recovery. Postarrest prognostication guidelines exist; however, guideline adherence and practice variability are unknown. OBJECTIVE To investigate Canadian practices and opinions regarding assessment of neurological prognosis in postarrest patients. METHODS An anonymous electronic survey was distributed to physicians who care for adult postarrest patients. RESULTS Of the 134 physicians who responded to the survey, 63% had no institutional protocols for neuroprognostication. While the use of targeted temperature management did not affect the timing of neuroprognostication, an increasing number of clinical findings suggestive of a poor prognosis affected the timing of when physicians were comfortable concluding patients had a poor prognosis. Variability existed in what factors clinicians' thought were confounders. Physicians identified bilaterally absent pupillary light reflexes (85%), bilaterally absent corneal reflexes (80%), and status myoclonus (75%) as useful in determining poor prognosis. Computed tomography, magnetic resonance imaging, and spot electroencephalography were the most useful and accessible tests. Somatosensory evoked potentials were useful, but logistically challenging. Serum biomarkers were unavailable at most centers. Most (79%) physicians agreed ≥2 definitive findings on neurologic exam, electrophysiologic tests, neuroimaging, and/or biomarkers are required to determine a poor prognosis with a high degree of certainty. Distress during the process of neuroprognostication was reported by 70% of physicians and 51% request a second opinion from an external expert. CONCLUSION Significant variability exists in post-cardiac arrest neuroprognostication practices among Canadian physicians.
Collapse
Affiliation(s)
- Caralyn M Bencsik
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Andreas H Kramer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Philippe Couillard
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | | | - Julie A Kromm
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Vassar R, Mehta N, Epps L, Jiang F, Amorim E, Wietstock S. Mortality and Timing of Withdrawal of Life-Sustaining Therapies After Out-of-Hospital Cardiac Arrest: Two-Center Retrospective Pediatric Cohort Study. Pediatr Crit Care Med 2024; 25:241-249. [PMID: 37982686 DOI: 10.1097/pcc.0000000000003412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Pediatric out-of-hospital cardiac arrest (OHCA) is associated with substantial morbidity and mortality. Limited data exist to guide timing and method of neurologic prognostication after pediatric OHCA, making counseling on withdrawal of life-sustaining therapies (WLSTs) challenging. This study investigates the timing and mode of death after pediatric OHCA and factors associated with mortality. Additionally, this study explores delayed recovery after comatose examination on day 3 postarrest. DESIGN This is a retrospective, observational study based on data collected from hospital databases and chart reviews. SETTING Data collection occurred in two pediatric academic hospitals between January 1, 2016, and December 31, 2020. PATIENTS Patients were identified from available databases and electronic medical record queries for the International Classification of Diseases , 10th Edition (ICD-10) code I46.9 (Cardiac Arrest). Patient inclusion criteria included age range greater than or equal to 48 hours to less than 18 years, OHCA within 24 hours of admission, greater than or equal to 1 min of cardiopulmonary resuscitation, and return-of-spontaneous circulation for greater than or equal to 20 min. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS One hundred thirty-five children (65% male) with a median age of 3 years (interquartile range 0.6-11.8) met inclusion criteria. Overall, 63 of 135 patients (47%) died before hospital discharge, including 34 of 63 patients (54%) after WLST. Among these, 20 of 34 patients underwent WLST less than or equal to 3 days postarrest, including 10 of 34 patients who underwent WLST within 1 day. WLST occurred because of poor perceived neurologic prognosis in all cases, although 7 of 34 also had poor perceived systemic prognosis. Delayed neurologic recovery from coma on day 3 postarrest was observed in 7 of 72 children (10%) who ultimately survived to discharge. CONCLUSIONS In our two centers between 2016 and 2020, more than half the deaths after pediatric OHCA occurred after WLST, and a majority of WLST occurred within 3 days postarrest. Additional research is warranted to determine optimal timing and predictors of neurologic prognosis after pediatric OHCA to better inform families during goals of care discussions.
Collapse
Affiliation(s)
- Rachel Vassar
- Division of Pediatric Neurology, Department of Neurology, Benioff Children's Hospital, University of California, San Francisco, CA
| | - Nehali Mehta
- Division of Pediatric Neurology, Department of Neurology, Benioff Children's Hospital, University of California, San Francisco, CA
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lane Epps
- Department of Emergency Medicine, University of California, San Francisco, CA
| | - Fei Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Edilberto Amorim
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Division of Neurology, Zuckerberg San Francisco General Hospital, San Francisco, CA
| | - Sharon Wietstock
- Division of Pediatric Neurology, Department of Neurology, Benioff Children's Hospital, University of California, San Francisco, CA
- Division of Pediatric Neurology, Department of Neurology, Benioff Children's Hospital Oakland, University of California, San Francisco, Oakland, CA
| |
Collapse
|
36
|
Hirsch KG, Tamura T, Ristagno G, Sekhon MS. Wolf Creek XVII Part 8: Neuroprotection. Resusc Plus 2024; 17:100556. [PMID: 38328750 PMCID: PMC10847936 DOI: 10.1016/j.resplu.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Introduction Post-cardiac arrest brain injury (PCABI) is the primary determinant of clinical outcomes for patients who achieve return of spontaneous circulation after cardiac arrest (CA). There are limited neuroprotective therapies available to mitigate the acute pathophysiology of PCABI. Methods Neuroprotection was one of six focus topics for the Wolf Creek XVII Conference held on June 14-17, 2023 in Ann Arbor, Michigan, USA. Conference invitees included international thought leaders and scientists in the field of CA resuscitation from academia and industry. Participants submitted via online survey knowledge gaps, barriers to translation, and research priorities for each focus topic. Expert panels used the survey results and their own perspectives and insights to create and present a preliminary unranked list for each category that was debated, revised and ranked by all attendees to identify the top 5 for each category. Results Top 5 knowledge gaps included developing therapies for neuroprotection; improving understanding of the pathophysiology, mechanisms, and natural history of PCABI; deploying precision medicine approaches; optimizing resuscitation and CPR quality; and determining optimal timing for and duration of interventions. Top 5 barriers to translation included patient heterogeneity; nihilism & lack of knowledge about cardiac arrest; challenges with the translational pipeline; absence of mechanistic biomarkers; and inaccurate neuro-triage and neuroprognostication. Top 5 research priorities focused on translational research and trial optimization; addressing patient heterogeneity and individualized interventions; improving understanding of pathophysiology and mechanisms; developing mechanistic and outcome biomarkers across post-CA time course; and improving implementation of science and technology. Conclusion This overview can serve as a guide to transform the care and outcome of patients with PCABI. Addressing these topics has the potential to improve both research and clinical care in the field of neuroprotection for PCABI.
Collapse
Affiliation(s)
- Karen G. Hirsch
- Department of Neurology, Stanford University, Stanford, CA, United States
| | - Tomoyoshi Tamura
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Giuseppe Ristagno
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mypinder S. Sekhon
- Division of Critical Care Medicine and Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
37
|
Qing K, Forgacs P, Schiff N. EEG Pattern With Spectral Analysis Can Prognosticate Good and Poor Neurologic Outcomes After Cardiac Arrest. J Clin Neurophysiol 2024; 41:236-244. [PMID: 36007069 PMCID: PMC9905375 DOI: 10.1097/wnp.0000000000000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To investigate the prognostic value of a simple stratification system of electroencephalographical (EEG) patterns and spectral types for patients after cardiac arrest. METHODS In this prospectively enrolled cohort, using manually selected EEG segments, patients after cardiac arrest were stratified into five independent EEG patterns (based on background continuity and burden of highly epileptiform discharges) and four independent power spectral types (based on the presence of frequency components). The primary outcome is cerebral performance category (CPC) at discharge. Results from multimodal prognostication testing were included for comparison. RESULTS Of a total of 72 patients, 6 had CPC 1-2 by discharge, all of whom had mostly continuous EEG background without highly epileptiform activity at day 3. However, for the same EEG background pattern at day 3, 19 patients were discharged at CPC 3 and 15 patients at CPC 4-5. After adding spectral analysis, overall sensitivity for predicting good outcomes (CPC 1-2) was 83.3% (95% confidence interval 35.9% to 99.6%) and specificity was 97.0% (89.5% to 99.6%). In this cohort, standard prognostication testing all yielded 100% specificity but low sensitivity, with imaging being the most sensitive at 54.1% (36.9% to 70.5%). CONCLUSIONS Adding spectral analysis to qualitative EEG analysis may further improve the diagnostic accuracy of EEG and may aid developing novel measures linked to good outcomes in postcardiac arrest coma.
Collapse
Affiliation(s)
- Kurt Qing
- New York-Presbyterian Weill Cornell Medical Center
| | | | | |
Collapse
|
38
|
Beer BN, Kellner C, Goßling A, Sundermeyer J, Besch L, Dettling A, Kirchhof P, Blankenberg S, Bernhardt AM, Brunner S, Colson P, Eckner D, Frank D, Eitel I, Frey N, Eden M, Graf T, Kupka D, Landmesser U, Majunke N, Maniuc O, Möbius-Winkler S, Morrow DA, Mourad M, Noel C, Nordbeck P, Orban M, Pappalardo F, Patel SM, Pauschinger M, Reichenspurner H, Schulze PC, Schwinger RHG, Wechsler A, Skurk C, Thiele H, Varshney AS, Sag CM, Krais J, Westermann D, Schrage B. Complications in patients with cardiogenic shock on veno-arterial extracorporeal membrane oxygenation therapy: distribution and relevance. Results from an international, multicentre cohort study. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2024; 13:203-212. [PMID: 37875127 DOI: 10.1093/ehjacc/zuad129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
AIMS Veno-arterial extracorporeal membrane oxygenation therapy (VA-ECMO) restores circulation and tissue oxygenation in cardiogenic shock (CS) patients, but can also lead to complications. This study aimed to quantify VA-ECMO complications and analyse their association with overall survival as well as favourable neurological outcome (cerebral performance categories 1 + 2). METHODS AND RESULTS All-comer patients with CS treated with VA-ECMO were retrospectively enrolled from 16 centres in four countries (2005-2019). Neurological, bleeding, and ischaemic adverse events (AEs) were considered. From these, typical VA-ECMO complications were identified and analysed separately as device-related complications. n = 501. Overall, 118 were women (24%), median age was 56.0 years, median lactate was 8.1 mmol/L. Acute myocardial infarction caused CS in 289 patients (58%). Thirty-days mortality was 40% (198/501 patients). At least one device-related complication occurred in 252/486 (52%) patients, neurological AEs in 108/469 (23%), bleeding in 192/480 (40%), ischaemic AEs in 123/478 (26%). The 22% of patients with the most AEs accounted for 50% of all AEs. All types of AEs were associated with a worse prognosis. Aside from neurological ones, all AEs and device-related complications were more likely to occur in women; although prediction of AEs outside of neurological AEs was generally poor. CONCLUSION Therapy and device-related complications occur in half of all patients treated with VA-ECMO and are associated with a worse prognosis. They accumulate in some patients, especially in women. Aside from neurological events, identification of patients at risk is difficult, highlighting the need to establish additional quantitative markers of complication risk to guide VA-ECMO treatment in CS.
Collapse
Affiliation(s)
- Benedikt N Beer
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Caroline Kellner
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Goßling
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Sundermeyer
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Lisa Besch
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Angela Dettling
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Stefan Blankenberg
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Alexander M Bernhardt
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
- Department of Cardiothoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Brunner
- Department of Internal Medicine I, LMU University Hospital, Munich, Germany
| | - Pascal Colson
- Department of Anesthesiology and Critical Care Medicine, CHU Montpellier, University Montpellier, Montpellier, France
| | - Dennis Eckner
- Department of Cardiology, Paracelsus Medical University Nürnberg, Nürnberg, Germany
| | - Derk Frank
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingo Eitel
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
- University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Eden
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias Graf
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
- University Heart Center Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Danny Kupka
- Department of Internal Medicine I, LMU University Hospital, Munich, Germany
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, Charité University Hospital, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin/Institute of Health (BIH), Berlin, Germany
| | - Nicolas Majunke
- Department of Internal Medicine and Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Octavian Maniuc
- Department of Internal Medicine I, University Hospital Würzburg, Würburg, Germany
| | | | - David A Morrow
- Cardiovascular Division, Brigham and Women's Hospital, Boston, USA
| | - Marc Mourad
- Department of Anesthesiology and Critical Care Medicine, CHU Montpellier, University Montpellier, Montpellier, France
| | - Curt Noel
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Peter Nordbeck
- Department of Internal Medicine I, University Hospital Würzburg, Würburg, Germany
| | - Martin Orban
- Department of Internal Medicine I, LMU University Hospital, Munich, Germany
| | - Federico Pappalardo
- Department of Cardiothoracic and Vascular Anaesthesia and Intensive Care, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Sandeep M Patel
- Department of Interventional Cardiology, St.Rita's Medical Center, Lima, USA
| | - Matthias Pauschinger
- Department of Cardiology, Paracelsus Medical University Nürnberg, Nürnberg, Germany
| | - Hermann Reichenspurner
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
- Department of Cardiothoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Antonia Wechsler
- Department of Internal Medicine II, Klinikum Weiden, Weiden, Germany
| | - Carsten Skurk
- Department of Cardiology, Campus Benjamin Franklin, Charité University Hospital, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin/Institute of Health (BIH), Berlin, Germany
| | - Holger Thiele
- Department of Internal Medicine and Cardiology, Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Anubodh S Varshney
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, USA
| | - Can Martin Sag
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Jannis Krais
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Bad Krozingen, Germany
| | - Benedikt Schrage
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Hamburg/Lübeck/Kiel, Hamburg, Germany
| |
Collapse
|
39
|
Molinski NS, Kenda M, Leithner C, Nee J, Storm C, Scheel M, Meddeb A. Deep learning-enabled detection of hypoxic-ischemic encephalopathy after cardiac arrest in CT scans: a comparative study of 2D and 3D approaches. Front Neurosci 2024; 18:1245791. [PMID: 38419661 PMCID: PMC10899383 DOI: 10.3389/fnins.2024.1245791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Objective To establish a deep learning model for the detection of hypoxic-ischemic encephalopathy (HIE) features on CT scans and to compare various networks to determine the best input data format. Methods 168 head CT scans of patients after cardiac arrest were retrospectively identified and classified into two categories: 88 (52.4%) with radiological evidence of severe HIE and 80 (47.6%) without signs of HIE. These images were randomly divided into a training and a test set, and five deep learning models based on based on Densely Connected Convolutional Networks (DenseNet121) were trained and validated using different image input formats (2D and 3D images). Results All optimized stacked 2D and 3D networks could detect signs of HIE. The networks based on the data as 2D image data stacks provided the best results (S100: AUC: 94%, ACC: 79%, S50: AUC: 93%, ACC: 79%). We provide visual explainability data for the decision making of our AI model using Gradient-weighted Class Activation Mapping. Conclusion Our proof-of-concept deep learning model can accurately identify signs of HIE on CT images. Comparing different 2D- and 3D-based approaches, most promising results were achieved by 2D image stack models. After further clinical validation, a deep learning model of HIE detection based on CT images could be implemented in clinical routine and thus aid clinicians in characterizing imaging data and predicting outcome.
Collapse
Affiliation(s)
- Noah S. Molinski
- Department for Neuroradiology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Kenda
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Christoph Leithner
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jens Nee
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Storm
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Scheel
- Department for Neuroradiology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aymen Meddeb
- Department for Neuroradiology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| |
Collapse
|
40
|
Sarkisian L, Isse YA, Gerke O, Obling LER, Paulin Beske R, Grand J, Schmidt H, Højgaard HF, Meyer MAS, Borregaard B, Hassager C, Kjaergaard J, Møller JE. Survival and neurological outcome after bystander versus lay responder defibrillation in out-of-hospital cardiac arrest: A sub-study of the BOX trial. Resuscitation 2024; 195:110059. [PMID: 38013147 DOI: 10.1016/j.resuscitation.2023.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIM Bystander defibrillation is associated with increased survival with good neurological outcome after out-of-hospital cardiac arrest (OHCA). Dispatch of lay responders could increase defibrillation rates, however, survival with good neurological outcome in these remain unknown. The aim was to compare long-term survival with good neurological outcome in bystander versus lay responder defibrillated OHCAs. METHODS This is a sub-study of the BOX trial, which included OHCA patients from two Danish tertiary cardiac intensive care units from March 2017 to December 2021. The main outcome was defined as 3-month survival with good neurological performance (Cerebral Performance Category of 1or 2, on a scale from 1 (good cerebral performance) to 5 (death or brain death)). For this study EMS witnessed OHCAs were excluded. RESULTS Of the 715 patients, a lay responder arrived before EMS in 125 cases (16%). In total, 81 patients were defibrillated by a lay responder (11%), 69 patients by a bystander (10%) and 565 patients by the EMS staff (79%). The 3-month survival with good neurological outcome was 65% and 81% in the lay responder and bystander defibrillated groups, respectively (P = 0.03). CONCLUSION In patients with OHCA, 3-month survival with good neurological outcome was higher in bystander defibrillated patients compared with lay responder defibrillated patients.
Collapse
Affiliation(s)
- Laura Sarkisian
- Research Unit of Cardiology, Department of Cardiology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark.
| | - Yusuf Abdi Isse
- Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000 Odense C, Denmark.
| | - Laust Emil Roelsgaard Obling
- Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Ramus Paulin Beske
- Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Johannes Grand
- Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Henrik Schmidt
- Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Odense University Hospital, Department of Anesthesiology, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| | | | - Martin Abild Stengaard Meyer
- Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Britt Borregaard
- Research Unit of Cardiology, Department of Cardiology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000 Odense C, Denmark.
| | - Christian Hassager
- Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Jesper Kjaergaard
- Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Jacob Eifer Møller
- Research Unit of Cardiology, Department of Cardiology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Cardiology, The Heart Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000 Odense C, Denmark.
| |
Collapse
|
41
|
Bachista KM, Moore JC, Labarère J, Crowe RP, Emanuelson LD, Lick CJ, Debaty GP, Holley JE, Quinn RP, Scheppke KA, Pepe PE. Survival for Nonshockable Cardiac Arrests Treated With Noninvasive Circulatory Adjuncts and Head/Thorax Elevation. Crit Care Med 2024; 52:170-181. [PMID: 38240504 DOI: 10.1097/ccm.0000000000006055] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Cardiac arrests remain a leading cause of death worldwide. Most patients have nonshockable electrocardiographic presentations (asystole/pulseless electrical activity). Despite well-performed basic and advanced cardiopulmonary resuscitation (CPR) interventions, patients with these presentations have always faced unlikely chances of survival. The primary objective was to determine if, in addition to conventional CPR (C-CPR), expeditious application of noninvasive circulation-enhancing adjuncts, and then gradual elevation of head and thorax, would be associated with higher likelihoods of survival following out-of-hospital cardiac arrest (OHCA) with nonshockable presentations. DESIGN Using a prospective observational study design (ClinicalTrials.gov NCT05588024), patient data from the national registry of emergency medical services (EMS) agencies deploying the CPR-enhancing adjuncts and automated head/thorax-up positioning (AHUP-CPR) were compared with counterpart reference control patient data derived from the two National Institutes of Health clinical trials that closely monitored quality CPR performance. Beyond unadjusted comparisons, propensity score matching and matching of time to EMS-initiated CPR (TCPR) were used to assemble cohorts with corresponding best-fit distributions of the well-established characteristics associated with OHCA outcomes. SETTING North American 9-1-1 EMS agencies. PATIENTS Adult nontraumatic OHCA patients receiving 9-1-1 responses. INTERVENTIONS In addition to C-CPR, study patients received the CPR adjuncts and AHUP (all U.S. Food and Drug Administration-cleared). MEASUREMENTS AND MAIN RESULTS The median TCPR for both AHUP-CPR and C-CPR groups was 8 minutes. Median time to AHUP initiation was 11 minutes. Combining all patients irrespective of lengthier response intervals, the collective unadjusted likelihood of AHUP-CPR group survival to hospital discharge was 7.4% (28/380) vs. 3.1% (58/1,852) for C-CPR (odds ratio [OR], 2.46 [95% CI, 1.55-3.92]) and, after propensity score matching, 7.6% (27/353) vs. 2.8% (10/353) (OR, 2.84 [95% CI, 1.35-5.96]). Faster AHUP-CPR application markedly amplified odds of survival and neurologically favorable survival. CONCLUSIONS These findings indicate that, compared with C-CPR, there are strong associations between rapid AHUP-CPR treatment and greater likelihood of patient survival, as well as survival with good neurological function, in cases of nonshockable OHCA.
Collapse
Affiliation(s)
- Kerry M Bachista
- Department of Emergency Medicine, Mayo Clinic Alix School of Health Sciences, Mayo Clinic in Florida, Jacksonville, FL
| | - Johanna C Moore
- Hennepin Healthcare, Department of Emergency Medicine, University of Minnesota School of Medicine, Minneapolis, MN
| | - José Labarère
- Quality of Care Unit, Université Grenoble Alpes, Grenoble, France
| | | | - Lauren D Emanuelson
- Division of Quality Improvement and Compliance, Advanced Medical Transport of Central Illinois, Peoria, IL
| | - Charles J Lick
- Division of Emergency Medical Services, Allina Health, Minneapolis, MN
| | - Guillaume P Debaty
- Department of Emergency Medicine, University Hospital of Grenoble Alpes, Grenoble, France
| | - Joseph E Holley
- Memphis Fire Department, City of Memphis, TN
- Division of Emergency Medical Services, State of Tennessee Department of Health, Nashville, TN
| | - Ryan P Quinn
- EMS Division, City of Edina Fire Department, Edina, MN
| | - Kenneth A Scheppke
- Florida Department of Health, Tallahassee, FL
- Office of the Medical Director, Palm Beach County Fire Rescue, West Palm Beach, FL
| | - Paul E Pepe
- Department of Emergency Medicine, Mayo Clinic Alix School of Health Sciences, Mayo Clinic in Florida, Jacksonville, FL
- Emergency Medical Services Division, St. Johns County Fire Rescue, St. Augustine, FL
- Hennepin Healthcare, Department of Emergency Medicine, University of Minnesota School of Medicine, Minneapolis, MN
- Quality of Care Unit, Université Grenoble Alpes, Grenoble, France
- Clinical and Operational Research, ESO, Austin, TX
- Division of Quality Improvement and Compliance, Advanced Medical Transport of Central Illinois, Peoria, IL
- Division of Emergency Medical Services, Allina Health, Minneapolis, MN
- Department of Emergency Medicine, University Hospital of Grenoble Alpes, Grenoble, France
- Memphis Fire Department, City of Memphis, TN
- Division of Emergency Medical Services, State of Tennessee Department of Health, Nashville, TN
- EMS Division, City of Edina Fire Department, Edina, MN
- Florida Department of Health, Tallahassee, FL
- Office of the Medical Director, Palm Beach County Fire Rescue, West Palm Beach, FL
- Department of Management, Policy and Community Health, University of Texas Health Sciences Center, Houston, School of Public Health, Houston, TX
- Dallas County Fire Rescue Department, Dallas County, Dallas, TX
- Executive Offices, Metropolitan EMS Medical Directors Global Alliance, Fort Lauderdale, FL
| |
Collapse
|
42
|
Case NP, Callaway CW, Elmer J, Coppler PJ. Simple approach to quantify hypoxic-ischemic brain injury severity from computed tomography imaging files after cardiac arrest. Resuscitation 2024; 195:110050. [PMID: 37977348 PMCID: PMC10922650 DOI: 10.1016/j.resuscitation.2023.110050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Grey-white ratio (GWR) can estimate severity of cytotoxic cerebral edema secondary to hypoxic-ischemic brain injury after cardiac arrest and predict progression to death by neurologic criteria (DNC). Current approaches to calculating GWR are not standardized and have variable interrater reliability. We tested if measures of variance of brain density on early computed tomographic (CT) imaging after cardiac arrest could predict DNC. METHODS We performed a retrospective cohort study, identifying post-arrest patients treated between 2011 and 2020 at our single center. We extracted demographic data from our registry and Digital Imaging and Communication in Medicine (DICOM) files for each patient's first brain CT. We analyzed slices 15-20 of each DICOM, corresponding to the level of the basal ganglia while accommodating differences in patient anatomy. We extracted pixel arrays and converted the radiodensities to Hounsfield units (HU). To focus on brain tissue densities, we excluded HU > 60 and < 10. We calculated the variance of each patient's HU distribution and the difference between the means of a two-group Gaussian finite mixture model. We compared these novel metrics to existing measures of cerebral edema, then randomly divided our data into 80% training and 20% test sets and used logistic regression to predict DNC. RESULTS Of 1,133 included subjects, 457 (40%) were female, mean (standard deviation) age was 58 (16) years, and 115 (10%) progressed to DNC. CTs were obtained a median [interquartile range] of 4.2 [2.8-5.7] hours post-arrest. Our novel measures correlated weakly with GWR. HU variance, but not difference between mixture model means, differed significantly between subjects with and without sulcal or cistern effacement. GWR outperformed our novel measures in predicting progression to DNC with an area under the receiver operating characteristic curve (AUC) of 0.82, compared to HU variance (AUC = 0.73) and the difference between mixture model means (AUC = 0.56). CONCLUSION There are differences in the distribution of HU on post-arrest CT in patients with qualitative measures of cerebral edema. Current methods to quantify cerebral edema outperform simple measures of attenuation variance on early brain CT. Further analyses could investigate if these measures of variance, or other distributional characteristics of brain density, have improved predictive performance on brain CTs obtained later in the clinical course or derived from discrete regions of anatomical interest.
Collapse
Affiliation(s)
- Nicholas P Case
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick J Coppler
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement from the American Heart Association and Neurocritical Care Society. Neurocrit Care 2024; 40:1-37. [PMID: 38040992 PMCID: PMC10861627 DOI: 10.1007/s12028-023-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 12/03/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
Affiliation(s)
| | | | - Edilberto Amorim
- San Francisco-Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Mary Kay Bader
- Providence Mission Hospital Nursing Center of Excellence/Critical Care Services, Mission Viejo, USA
| | | | | | | | | | | | | | - Karl B Kern
- Sarver Heart Center, University of Arizona, Tucson, USA
| | | | | | | | - Jerry P Nolan
- Warwick Medical School, University of Warwick, Coventry, UK
- Royal United Hospital, Bath, UK
| | - Mauro Oddo
- CHUV-Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | | | - Anezi Uzendu
- St. Luke's Mid America Heart Institute, Kansas City, USA
| | - Brian Walsh
- University of Texas Medical Branch School of Health Sciences, Galveston, USA
| | | | | |
Collapse
|
44
|
Spears WE, Greer DM. Hypothermia to 33 °C Following Cardiac Arrest: Time to Close the Freezer Door for Good? JAMA Neurol 2024; 81:115-117. [PMID: 38109090 DOI: 10.1001/jamaneurol.2023.4831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Affiliation(s)
- William E Spears
- Department of Neurology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - David M Greer
- Department of Neurology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| |
Collapse
|
45
|
Nikolovski SS, Lazic AD, Fiser ZZ, Obradovic IA, Tijanic JZ, Raffay V. Recovery and Survival of Patients After Out-of-Hospital Cardiac Arrest: A Literature Review Showcasing the Big Picture of Intensive Care Unit-Related Factors. Cureus 2024; 16:e54827. [PMID: 38529434 PMCID: PMC10962929 DOI: 10.7759/cureus.54827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
As an important public health issue, out-of-hospital cardiac arrest (OHCA) requires several stages of high quality medical care, both on-field and after hospital admission. Post-cardiac arrest shock can lead to severe neurological injury, resulting in poor recovery outcome and increased risk of death. These characteristics make this condition one of the most important issues to deal with in post-OHCA patients hospitalized in intensive care units (ICUs). Also, the majority of initial post-resuscitation survivors have underlying coronary diseases making revascularization procedure another crucial step in early management of these patients. Besides keeping myocardial blood flow at a satisfactory level, other tissues must not be neglected as well, and maintaining mean arterial pressure within optimal range is also preferable. All these procedures can be simplified to a certain level along with using targeted temperature management methods in order to decrease metabolic demands in ICU-hospitalized post-OHCA patients. Additionally, withdrawal of life-sustaining therapy as a controversial ethical topic is under constant re-evaluation due to its possible influence on overall mortality rates in patients initially surviving OHCA. Focusing on all of these important points in process of managing ICU patients is an imperative towards better survival and complete recovery rates.
Collapse
Affiliation(s)
- Srdjan S Nikolovski
- Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago Health Science Campus, Maywood, USA
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| | - Aleksandra D Lazic
- Emergency Center, Clinical Center of Vojvodina, Novi Sad, SRB
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| | - Zoran Z Fiser
- Emergency Medicine, Department of Emergency Medicine, Novi Sad, SRB
| | - Ivana A Obradovic
- Anesthesiology, Resuscitation, and Intensive Care, Sveti Vračevi Hospital, Bijeljina, BIH
| | - Jelena Z Tijanic
- Emergency Medicine, Municipal Institute of Emergency Medicine, Kragujevac, SRB
| | - Violetta Raffay
- School of Medicine, European University Cyprus, Nicosia, CYP
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| |
Collapse
|
46
|
Slovis JC, Bach A, Beaulieu F, Zuckerberg G, Topjian A, Kirschen MP. Neuromonitoring after Pediatric Cardiac Arrest: Cerebral Physiology and Injury Stratification. Neurocrit Care 2024; 40:99-115. [PMID: 37002474 PMCID: PMC10544744 DOI: 10.1007/s12028-023-01685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/30/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Significant long-term neurologic disability occurs in survivors of pediatric cardiac arrest, primarily due to hypoxic-ischemic brain injury. Postresuscitation care focuses on preventing secondary injury and the pathophysiologic cascade that leads to neuronal cell death. These injury processes include reperfusion injury, perturbations in cerebral blood flow, disturbed oxygen metabolism, impaired autoregulation, cerebral edema, and hyperthermia. Postresuscitation care also focuses on early injury stratification to allow clinicians to identify patients who could benefit from neuroprotective interventions in clinical trials and enable targeted therapeutics. METHODS In this review, we provide an overview of postcardiac arrest pathophysiology, explore the role of neuromonitoring in understanding postcardiac arrest cerebral physiology, and summarize the evidence supporting the use of neuromonitoring devices to guide pediatric postcardiac arrest care. We provide an in-depth review of the neuromonitoring modalities that measure cerebral perfusion, oxygenation, and function, as well as neuroimaging, serum biomarkers, and the implications of targeted temperature management. RESULTS For each modality, we provide an in-depth review of its impact on treatment, its ability to stratify hypoxic-ischemic brain injury severity, and its role in neuroprognostication. CONCLUSION Potential therapeutic targets and future directions are discussed, with the hope that multimodality monitoring can shift postarrest care from a one-size-fits-all model to an individualized model that uses cerebrovascular physiology to reduce secondary brain injury, increase accuracy of neuroprognostication, and improve outcomes.
Collapse
Affiliation(s)
- Julia C Slovis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA.
| | - Ashley Bach
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Forrest Beaulieu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Gabe Zuckerberg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| |
Collapse
|
47
|
Battaglini D, Bogossian EG, Anania P, Premraj L, Cho SM, Taccone FS, Sekhon M, Robba C. Monitoring of Brain Tissue Oxygen Tension in Cardiac Arrest: a Translational Systematic Review from Experimental to Clinical Evidence. Neurocrit Care 2024; 40:349-363. [PMID: 37081276 DOI: 10.1007/s12028-023-01721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Cardiac arrest (CA) is a sudden event that is often characterized by hypoxic-ischemic brain injury (HIBI), leading to significant mortality and long-term disability. Brain tissue oxygenation (PbtO2) is an invasive tool for monitoring brain oxygen tension, but it is not routinely used in patients with CA because of the invasiveness and the absence of high-quality data on its effect on outcome. We conducted a systematic review of experimental and clinical evidence to understand the role of PbtO2 in monitoring brain oxygenation in HIBI after CA and the effect of targeted PbtO2 therapy on outcomes. METHODS The search was conducted using four search engines (PubMed, Scopus, Embase, and Cochrane), using the Boolean operator to combine mesh terms such as PbtO2, CA, and HIBI. RESULTS Among 1,077 records, 22 studies were included (16 experimental studies and six clinical studies). In experimental studies, PbtO2 was mainly adopted to assess the impact of gas exchanges, drugs, or systemic maneuvers on brain oxygenation. In human studies, PbtO2 was rarely used to monitor the brain oxygen tension in patients with CA and HIBI. PbtO2 values had no clear association with patients' outcomes, but in the experimental studies, brain tissue hypoxia was associated with increased inflammation and neuronal damage. CONCLUSIONS Further studies are needed to validate the effect and the threshold of PbtO2 associated with outcome in patients with CA, as well as to understand the physiological mechanisms influencing PbtO2 induced by gas exchanges, drug administration, and changes in body positioning after CA.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Pasquale Anania
- Department of Neurosurgery, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
| | - Lavienraj Premraj
- Griffith University School of Medicine, Gold Coast, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Sung-Min Cho
- Departments of Neurology, Surgery, and Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chiara Robba
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
48
|
Tinti L, Lawson T, Molteni E, Kondziella D, Rass V, Sharshar T, Bodien YG, Giacino JT, Mayer SA, Amiri M, Muehlschlegel S, Venkatasubba Rao CP, Vespa PM, Menon DK, Citerio G, Helbok R, McNett M. Research considerations for prospective studies of patients with coma and disorders of consciousness. Brain Commun 2024; 6:fcae022. [PMID: 38344653 PMCID: PMC10853976 DOI: 10.1093/braincomms/fcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Disorders of consciousness are neurological conditions characterized by impaired arousal and awareness of self and environment. Behavioural responses are absent or are present but fluctuate. Disorders of consciousness are commonly encountered as a consequence of both acute and chronic brain injuries, yet reliable epidemiological estimates would require inclusive, operational definitions of the concept, as well as wider knowledge dissemination among involved professionals. Whereas several manifestations have been described, including coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state, a comprehensive neurobiological definition for disorders of consciousness is still lacking. The scientific literature is primarily observational, and studies-specific aetiologies lead to disorders of consciousness. Despite advances in these disease-related forms, there remains uncertainty about whether disorders of consciousness are a disease-agnostic unitary entity with a common mechanism, prognosis or treatment response paradigm. Our knowledge of disorders of consciousness has also been hampered by heterogeneity of study designs, variables, and outcomes, leading to results that are not comparable for evidence synthesis. The different backgrounds of professionals caring for patients with disorders of consciousness and the different goals at different stages of care could partly explain this variability. The Prospective Studies working group of the Neurocritical Care Society Curing Coma Campaign was established to create a platform for observational studies and future clinical trials on disorders of consciousness and coma across the continuum of care. In this narrative review, the author panel presents limitations of prior observational clinical research and outlines practical considerations for future investigations. A narrative review format was selected to ensure that the full breadth of study design considerations could be addressed and to facilitate a future consensus-based statement (e.g. via a modified Delphi) and series of recommendations. The panel convened weekly online meetings from October 2021 to December 2022. Research considerations addressed the nosographic status of disorders of consciousness, case ascertainment and verification, selection of dependent variables, choice of covariates and measurement and analysis of outcomes and covariates, aiming to promote more homogeneous designs and practices in future observational studies. The goal of this review is to inform a broad community of professionals with different backgrounds and clinical interests to address the methodological challenges imposed by the transition of care from acute to chronic stages and to streamline data gathering for patients with disorders of consciousness. A coordinated effort will be a key to allow reliable observational data synthesis and epidemiological estimates and ultimately inform condition-modifying clinical trials.
Collapse
Affiliation(s)
- Lorenzo Tinti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Thomas Lawson
- Critical Care, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Erika Molteni
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EU, UK
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Verena Rass
- Department of Neurology, Neuro-Intensive Care Unit, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Tarek Sharshar
- Neuro-Intensive Care Medicine, Anaesthesiology and ICU Department, GHU-Psychiatry and Neurosciences, Pole Neuro, Sainte-Anne Hospital, Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université Paris Cité, Paris 75006, France
| | - Yelena G Bodien
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, MA 02129, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, MA 02129, USA
| | - Stephan A Mayer
- Department of Neurology, New York Medical College, Valhalla, NY 10595, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | - Moshgan Amiri
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Susanne Muehlschlegel
- Department of Neurology and Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chethan P Venkatasubba Rao
- Division of Vascular Neurology and Neurocritical Care, Baylor College of Medicine and CHI Baylor St Luke’s Medical Center, Houston, TX 77030, USA
| | - Paul M Vespa
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 1TN, UK
| | - Giuseppe Citerio
- NeuroIntensive Care, IRCSS Fondazione San Gerardo dei Tintori, Monza 20900, Italy
- School of Medicine and Surgery, Università Milano Bicocca, Milan 20854, Italy
| | - Raimund Helbok
- Department of Neurology, Neuro-Intensive Care Unit, Medical University of Innsbruck, Innsbruck 6020, Austria
- Department of Neurology, Johannes Kepler University, Linz 4040, Austria
| | - Molly McNett
- College of Nursing, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Pluta R, Czuczwar SJ. Ischemia-Reperfusion Programming of Alzheimer's Disease-Related Genes-A New Perspective on Brain Neurodegeneration after Cardiac Arrest. Int J Mol Sci 2024; 25:1291. [PMID: 38279289 PMCID: PMC10816023 DOI: 10.3390/ijms25021291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The article presents the latest data on pathological changes after cerebral ischemia caused by cardiac arrest. The data include amyloid accumulation, tau protein modification, neurodegenerative and cognitive changes, and gene and protein changes associated with Alzheimer's disease. We present the latest data on the dysregulation of genes related to the metabolism of the amyloid protein precursor, tau protein, autophagy, mitophagy, apoptosis, and amyloid and tau protein transport genes. We report that neuronal death after cerebral ischemia due to cardiac arrest may be dependent and independent of caspase. Moreover, neuronal death dependent on amyloid and modified tau protein has been demonstrated. Finally, the results clearly indicate that changes in the expression of the presented genes play an important role in acute and secondary brain damage and the development of post-ischemic brain neurodegeneration with the Alzheimer's disease phenotype. The data indicate that the above genes may be a potential therapeutic target for brain therapy after ischemia due to cardiac arrest. Overall, the studies show that the genes studied represent attractive targets for the development of new therapies to minimize ischemic brain injury and neurological dysfunction. Additionally, amyloid-related genes expression and tau protein gene modification after cerebral ischemia due to cardiac arrest are useful in identifying ischemic mechanisms associated with Alzheimer's disease. Cardiac arrest illustrates the progressive, time- and area-specific development of neuropathology in the brain with the expression of genes responsible for the processing of amyloid protein precursor and the occurrence of tau protein and symptoms of dementia such as those occurring in patients with Alzheimer's disease. By carefully examining the common genetic processes involved in these two diseases, these data may help unravel phenomena associated with the development of Alzheimer's disease and neurodegeneration after cerebral ischemia and may lead future research on Alzheimer's disease or cerebral ischemia in new directions.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | | |
Collapse
|
50
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement From the American Heart Association and Neurocritical Care Society. Circulation 2024; 149:e168-e200. [PMID: 38014539 PMCID: PMC10775969 DOI: 10.1161/cir.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
|