1
|
Kim HY, Shin S, Yoon JJ, Ahn YM, Song JH, Lee DS, Park JY, Lee HS, Jung J. Exploring the potential effect of electroacupuncture on cardiovascular function and lipid profiles in spontaneously hypertensive rats. Integr Med Res 2024; 13:101041. [PMID: 38948488 PMCID: PMC11214362 DOI: 10.1016/j.imr.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 07/02/2024] Open
Abstract
Background Investigating the effects of electroacupuncture (EA) treatment on cardiovascular function and aortic lipid profiles in spontaneously hypertensive rats (SHR) constitutes the foundational focus of this study. The overarching goal is to comprehensively elucidate the alterations brought about by EA treatment and to assess its potential as an alternative therapy for hypertension. Methods Consecutive EA treatments were administered to SHR, and the effects on systolic blood pressure, cardiac function, and hypertension-related neuronal signals were assessed. Aortic lipid profiles in vehicle-treated SHR and EA-treated SHR groups were analyzed using mass spectrometry-based lipid profiling. Additionally, the expression of Cers2 and GNPAT, enzymes involved in the synthesis of specific aortic lipids, was examined. Results The study demonstrated that consecutive EA treatments restored systolic blood pressure, improved cardiovascular function, and normalized hypertension-related neuronal signals in SHR. Analysis of the aortic lipid profiles revealed distinct differences between the vehicle-treated SHR group and the EA-treated SHR group. Specifically, EA treatment significantly altered the levels of aortic sphingomyelin and phospholipids, including very long-chain fatty acyl-ceramides and ether phosphatidylcholines. These changes in aortic lipid profiles correlated significantly with systolic blood pressure and cardiac function indicators. Furthermore, EA treatment significantly altered the expression of Cers2 and GNPAT. Conclusions The findings suggest that EA may influence cardiovascular functions and aortic lipid profiles in SHR.
Collapse
Affiliation(s)
- Hye-Yoom Kim
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, South Korea
| | - Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Jung-Joo Yoon
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, South Korea
| | - You-Mee Ahn
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ji-Hye Song
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Da-Som Lee
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Ji-Yeun Park
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Ho-Sub Lee
- Hanbang Cardio-renal Research Center & Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, South Korea
| | - Jeeyoun Jung
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
2
|
Ji X, Chen Z, Wang Q, Li B, Wei Y, Li Y, Lin J, Cheng W, Guo Y, Wu S, Mao L, Xiang Y, Lan T, Gu S, Wei M, Zhang JZ, Jiang L, Wang J, Xu J, Cao N. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab 2024; 36:839-856.e8. [PMID: 38367623 DOI: 10.1016/j.cmet.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Zihao Chen
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Qiyuan Wang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Bin Li
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yan Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yun Li
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Lin
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Weisheng Cheng
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yijie Guo
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Shilin Wu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Longkun Mao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yuzhou Xiang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong 510006, China
| | - Shanshan Gu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Meng Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lan Jiang
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangdong 510080, China
| | - Nan Cao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China.
| |
Collapse
|
3
|
Abrahams T, Nicholls SJ. Perspectives on the success of plasma lipidomics in cardiovascular drug discovery and future challenges. Expert Opin Drug Discov 2024; 19:281-290. [PMID: 38402906 DOI: 10.1080/17460441.2023.2292039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/04/2023] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Plasma lipidomics has emerged as a powerful tool in cardiovascular drug discovery by providing insights into disease mechanisms, identifying potential biomarkers for diagnosis and prognosis, and discovering novel targets for drug development. Widespread application of plasma lipidomics is hampered by technological limitations and standardization and requires a collaborative approach to maximize its use in cardiovascular drug discovery. AREAS COVERED This review provides an overview of the utility of plasma lipidomics in cardiovascular drug discovery and discusses the challenges and future perspectives of this rapidly evolving field. The authors discuss the role of lipidomics in understanding the molecular mechanisms of CVD, identifying novel biomarkers for diagnosis and prognosis, and discovering new therapeutic targets for drug development. Furthermore, they highlight the challenges faced in data analysis, standardization, and integration with other omics approaches and propose future directions for the field. EXPERT OPINION Plasma lipidomics holds great promise for improving the diagnosis, treatment, and prevention of CVD. While challenges remain in standardization and technology, ongoing research and collaboration among scientists and clinicians will undoubtedly help overcome these obstacles. As lipidomics evolves, its impact on cardiovascular drug discovery and clinical practice is expected to grow, ultimately benefiting patients and healthcare systems worldwide.
Collapse
Affiliation(s)
- Timothy Abrahams
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Stephen J Nicholls
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Dzobo KE, Cupido AJ, Mol BM, Stiekema LC, Versloot M, Winkelmeijer M, Peter J, Pennekamp AM, Havik SR, Vaz FM, van Weeghel M, Prange KH, Levels JH, de Winther MP, Tsimikas S, Groen AK, Stroes ES, de Kleijn DP, Kroon J. Diacylglycerols and Lysophosphatidic Acid, Enriched on Lipoprotein(a), Contribute to Monocyte Inflammation. Arterioscler Thromb Vasc Biol 2024; 44:720-740. [PMID: 38269588 PMCID: PMC10880937 DOI: 10.1161/atvbaha.123.319937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Oxidized phospholipids play a key role in the atherogenic potential of lipoprotein(a) (Lp[a]); however, Lp(a) is a complex particle that warrants research into additional proinflammatory mediators. We hypothesized that additional Lp(a)-associated lipids contribute to the atherogenicity of Lp(a). METHODS Untargeted lipidomics was performed on plasma and isolated lipoprotein fractions. The atherogenicity of the observed Lp(a)-associated lipids was tested ex vivo in primary human monocytes by RNA sequencing, ELISA, Western blot, and transendothelial migratory assays. Using immunofluorescence staining and single-cell RNA sequencing, the phenotype of macrophages was investigated in human atherosclerotic lesions. RESULTS Compared with healthy individuals with low/normal Lp(a) levels (median, 7 mg/dL [18 nmol/L]; n=13), individuals with elevated Lp(a) levels (median, 87 mg/dL [218 nmol/L]; n=12) demonstrated an increase in lipid species, particularly diacylglycerols (DGs) and lysophosphatidic acid (LPA). DG and the LPA precursor lysophosphatidylcholine were enriched in the Lp(a) fraction. Ex vivo stimulation with DG(40:6) demonstrated a significant upregulation in proinflammatory pathways related to leukocyte migration, chemotaxis, NF-κB (nuclear factor kappa B) signaling, and cytokine production. Functional assessment showed a dose-dependent increase in the secretion of IL (interleukin)-6, IL-8, and IL-1β after DG(40:6) and DG(38:4) stimulation, which was, in part, mediated via the NLRP3 (NOD [nucleotide-binding oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome. Conversely, LPA-stimulated monocytes did not exhibit an inflammatory phenotype. Furthermore, activation of monocytes by DGs and LPA increased their transendothelial migratory capacity. Human atherosclerotic plaques from patients with high Lp(a) levels demonstrated colocalization of Lp(a) with M1 macrophages, and an enrichment of CD68+IL-18+TLR4+ (toll-like receptor) TREM2+ (triggering receptor expressed on myeloid cells) resident macrophages and CD68+CASP1+ (caspase) IL-1B+SELL+ (selectin L) inflammatory macrophages compared with patients with low Lp(a). Finally, potent Lp(a)-lowering treatment (pelacarsen) resulted in a reduction in specific circulating DG lipid subspecies in patients with cardiovascular disease with elevated Lp(a) levels (median, 82 mg/dL [205 nmol/L]). CONCLUSIONS Lp(a)-associated DGs and LPA have a potential role in Lp(a)-induced monocyte inflammation by increasing cytokine secretion and monocyte transendothelial migration. This DG-induced inflammation is, in part, NLRP3 inflammasome dependent.
Collapse
Affiliation(s)
- Kim E. Dzobo
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
| | - Arjen J. Cupido
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Barend M. Mol
- Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands (B.M.M., D.P.V.d.K.)
| | - Lotte C.A. Stiekema
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Miranda Versloot
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
| | - Maaike Winkelmeijer
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Jorge Peter
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Anne-Marije Pennekamp
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Stefan R. Havik
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Frédéric M. Vaz
- Core Facility Metabolomics (F.M.V., M.v.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Michel van Weeghel
- Core Facility Metabolomics (F.M.V., M.v.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Koen H.M. Prange
- Department of Medical Biochemistry, Amsterdam Infection and Immunity (K.H.M.P., M.P.J.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Johannes H.M. Levels
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam Infection and Immunity (K.H.M.P., M.P.J.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla (S.T.)
| | - Albert K. Groen
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Erik S.G. Stroes
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Dominique P.V. de Kleijn
- Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands (B.M.M., D.P.V.d.K.)
| | - Jeffrey Kroon
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
- Laboratory of Angiogenesis and Vascular Metabolism, Flanders Institute for Biotechnology (VIB)-KU Leuven Center for Cancer Biology, VIB, Belgium (J.K.)
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute, Belgium (J.K.)
| |
Collapse
|
5
|
Edwards M, Freitas DP, Hirtzel EA, White N, Wang H, Davidson LA, Chapkin RS, Sun Y, Yan X. Interfacial Electromigration for Analysis of Biofluid Lipids in Small Volumes. Anal Chem 2023; 95:18557-18563. [PMID: 38050376 PMCID: PMC10862378 DOI: 10.1021/acs.analchem.3c04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.
Collapse
Affiliation(s)
- Madison
E. Edwards
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Dallas P. Freitas
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Erin A. Hirtzel
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Nicholas White
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Hongying Wang
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Laurie A. Davidson
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Robert S. Chapkin
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Yuxiang Sun
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Shen EYL, U MRA, Cox IJ, Taylor-Robinson SD. The Role of Mass Spectrometry in Hepatocellular Carcinoma Biomarker Discovery. Metabolites 2023; 13:1059. [PMID: 37887384 PMCID: PMC10609223 DOI: 10.3390/metabo13101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the main liver malignancy and has a high mortality rate. The discovery of novel biomarkers for early diagnosis, prognosis, and stratification purposes has the potential to alleviate its disease burden. Mass spectrometry (MS) is one of the principal technologies used in metabolomics, with different experimental methods and machine types for different phases of the biomarker discovery process. Here, we review why MS applications are useful for liver cancer, explain the MS technique, and briefly summarise recent findings from metabolomic MS studies on HCC. We also discuss the current challenges and the direction for future research.
Collapse
Affiliation(s)
- Eric Yi-Liang Shen
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City 333, Taiwan
- Clinical Metabolomics Core Laboratory, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City 333, Taiwan
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W2 1NY, UK
| | - Mei Ran Abellona U
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W2 1NY, UK
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| | - I. Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences & Medicine, King’s College London, London SE5 8AF, UK
| | - Simon D. Taylor-Robinson
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W2 1NY, UK
| |
Collapse
|
7
|
Močnik M, Marčun Varda N. Lipid Biomarkers and Atherosclerosis-Old and New in Cardiovascular Risk in Childhood. Int J Mol Sci 2023; 24:ijms24032237. [PMID: 36768558 PMCID: PMC9916711 DOI: 10.3390/ijms24032237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Lipids are a complex group of molecules in the body, essential as structural, functional and metabolic components. When disbalanced, they are regarded as a cardiovascular risk factor, traditionally in cholesterol level evaluation. However, due to their complex nature, much research is still needed for a comprehensive understanding of their role in atherosclerosis, especially in the young. Several new lipid biomarkers are emerging, some already researched to a point, such as lipoproteins and apolipoproteins. Other lipid molecules are also being increasingly researched, including oxidized forms due to oxidative inflammation in atherosclerosis, and sphingolipids. For many, even those less new, the atherogenic potential is not clear and no clinical recommendations are in place to aid the clinician in using them in everyday clinical practice. Moreover, lipids' involvement in atherogenesis in children has yet to be elucidated. This review summarizes the current knowledge on lipids as biomarkers of cardiovascular risk in the paediatric population.
Collapse
Affiliation(s)
- Mirjam Močnik
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska Cesta 2, 2000 Maribor, Slovenia
- Correspondence:
| | - Nataša Marčun Varda
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska Cesta 2, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
| |
Collapse
|
8
|
Wang W, Song L. Landscape of lipidomics in cardiovascular medicine from 2012 to 2021: A systematic bibliometric analysis and literature review. Medicine (Baltimore) 2022; 101:e32599. [PMID: 36596038 PMCID: PMC9803420 DOI: 10.1097/md.0000000000032599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lipidomics has shaped our knowledge of how lipids play a central role in cardiovascular diseases (CVD), whereas there is a lack of a summary of existing research findings. This study performed a bibliometric analysis of lipidomics research in cardiovascular medicine to reveal the core countries, institutions, key researchers, important references, major journals, research hotspots and frontiers in this field. From 2012 to 2021, a total of 761 articles were obtained from the Web of Science Core Collection database. There is a steady increase of publications yearly. The United States and China are on the top of the list regarding article output. The institutions with the most publications were the Baker Heart and Diabetes Institute, the Chinese Academy of Sciences and Harvard Medical School. Peter J Meikle was both the most published and most co-cited author. The major journal in this field is Journal of lipid research. Keyword co-occurrence analysis indicated that coronary heart disease, mass spectrometry, risk, fatty acid, and insulin resistance have become hot topics in this field and keyword burst detection suggests that metabolomics, activation, liver, low density lipoprotein are the frontiers of research in recent years. Collectively, lipidomics in CVD is still in its infancy with a steady increase yearly. More in-depth studies in this area are warranted in the future.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Cardiovascular Disease, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * Correspondence: Wenting Wang, Department of Cardiology, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, 208 Huancheng East Road, Hangzhou 310003, China (e-mail: )
| | - Lei Song
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Segrado F, Cavalleri A, Cantalupi A, Mariani L, Dagnino S, Krogh V, Venturelli E, Agnoli C. A software-assisted untargeted liquid chromatography-mass spectrometry method for lipidomic profiling of human plasma samples. Int J Biol Markers 2022; 37:368-376. [PMID: 36310449 DOI: 10.1177/03936155221132291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION In this paper, an analytical pipeline designed for untargeted lipidomic profiling in human plasma is proposed. The analytical pipeline was developed for case-control studies nested in prospective cohorts. METHODS The procedure consisted of isopropanol protein precipitation followed by reverse phase liquid chromatography coupled to high resolution mass spectrometry and software-assisted data processing. The compounds are putatively annotated by matching experimental mass spectrometry data with spectral library data using LipidSearch software. The lipid profile of a pool of plasma samples from 10 healthy volunteers was detected in both positive and negative polarity modes. The impact of the chosen polarity on the number and quality of the lipid identification has been evaluated. RESULTS More than 1000 lipids from 12 different classes were detected, 1150 in positive mode and 273 in negative mode. Nearly half of them were unambiguously identified by the software in positive mode, and about one-third in negative mode. The method repeatability was assessed on the plasma pool samples by means of variance components analysis. The intra- and inter-assay precision was measured for 10 lipids chosen among the most abundant found within the different lipid classes. The intra-assay coefficients of variation ranged from 2.56% to 4.56% while intra- and inter-day coefficients of variance never exceeded the 15% benchmark adopted. The lipidomic profiles of the 10 healthy volunteers were also investigated. DISCUSSION This method detects a wide range of lipids and reports their degree of identification. It is particularly fit and well-designed for large case-control epidemiologic studies.
Collapse
Affiliation(s)
- Francesco Segrado
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adalberto Cavalleri
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alice Cantalupi
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Laboratorio Chimica, Mercelogia e Biologia Molecolare, Centro Ricerche sul Riso, Ente Nazionale Risi, Castello d'Agogna, Italy
| | - Luigi Mariani
- Clinical Epidemiology and Trial Organization Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sonia Dagnino
- MRC Centre for Environment and Health, School of Public Health, 4615Imperial College London, London, UK
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Venturelli
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, 9329Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
10
|
Randolph CE, Beveridge CH, Iyer S, Blanksby SJ, McLuckey SA, Chopra G. Identification of Monomethyl Branched-Chain Lipids by a Combination of Liquid Chromatography Tandem Mass Spectrometry and Charge-Switching Chemistries. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2156-2164. [PMID: 36218280 PMCID: PMC10173259 DOI: 10.1021/jasms.2c00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
While various mass spectrometric approaches have been applied to lipid analysis, unraveling the extensive structural diversity of lipids remains a significant challenge. Notably, these approaches often fail to differentiate between isomeric lipids─a challenge that is particularly acute for branched-chain fatty acids (FAs) that often share similar (or identical) mass spectra to their straight-chain isomers. Here, we utilize charge-switching strategies that combine ligated magnesium dications with deprotonated fatty acid anions. Subsequent activation of these charge inverted anions yields mass spectra that differentiate anteiso-branched- from straight-chain and iso-branched-chain FA isomers with the predictable fragmentation enabling de novo assignment of anteiso branch points. The application of these charge-inversion chemistries in both gas- and solution-phase modalities is demonstrated to assign the position of anteiso-methyl branch-points in FAs and, with the aid of liquid chromatography, can be extended to de novo assignment of additional branching sites via predictable fragmentation patterns as methyl branching site(s) move closer to the carboxyl carbon. The gas-phase approach is shown to be compatible with top-down structure elucidation of complex lipids such as phosphatidylcholines, while the integration of solution-phase charge-inversion with reversed phase liquid chromatography enables separation and unambiguous identification of FA structures within isomeric mixtures. Taken together, the presented charge-switching MS-based technique, in combination with liquid chromatography, enables the structural identification of branched-chain FA without the requirement of authentic methyl-branched FA reference standards.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Connor H. Beveridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Sanjay Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J. Blanksby
- Central Analytical Research Facility and the School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
- Department of Computer Science (by courtesy), Purdue Institutes of Drug Discovery and Integrative Neuroscience, Purdue Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
11
|
Beauclercq S, Mignon-Grasteau S, Petit A, Berger Q, Lefèvre A, Métayer-Coustard S, Tesseraud S, Emond P, Berri C, Le Bihan-Duval E. A Divergent Selection on Breast Meat Ultimate pH, a Key Factor for Chicken Meat Quality, is Associated With Different Circulating Lipid Profiles. Front Physiol 2022; 13:935868. [PMID: 35812337 PMCID: PMC9257005 DOI: 10.3389/fphys.2022.935868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Chicken meat has become a major source of protein for human consumption. However, the quality of the meat is not yet under control, especially since pH values that are too low or too high are often observed. In an attempt to get a better understanding of the genetic and biochemical determinants of the ultimate pH, two genetic lines of broilers were divergently selected for low (pHu−) or high (pHu+) breast meat pHu. In this study, the serum lipidome of 17-day-old broilers from both lines was screened for pHu markers using liquid-chromatography coupled with mass spectrometry (LC-HRMS). Results: A total of 185 lipids belonging to 4 groups (glycerolipids, glycerophospholipids, sterols, sphingolipids) were identified in the sera of 268 broilers from the pHu lines by targeted lipidomics. The glycerolipids, which are involved in energy storage, were in higher concentration in the blood of pHu− birds. The glycerophospholipids (phosphatidylcholines, phosphatidylethanolamines) with long and polyunsaturated acyl chains were more abundant in pHu+ than in pHu− while the lysophosphatidylcholines and lysophosphatidylethanolamines, known to be associated with starch, were observed in higher quantity in the serum of the pHu− line. Finally, the concentration of the sterols and the ceramides, belonging to the sphingolipids class, were higher in the pHu+ and pHu−, respectively. Furthermore, orthogonal partial least-squares analyses highlighted a set of 68 lipids explaining 77% of the differences between the two broilers lines (R2Y = 0.77, Q2 = 0.67). Among these lipids, a subset of 40 predictors of the pHu value was identified with a Root Mean Squared Error of Estimation of 0.18 pH unit (R2Y = 0.69 and Q2 = 0.62). The predictive model of the pHu value was externally validated on 68 birds with a Root Mean Squared Error of Prediction of 0.25 pH unit. Conclusion: The sets of molecules identified will be useful for a better understanding of relationship between serum lipid profile and meat quality, and will contribute to define easily accessible pHu biomarkers on live birds that could be useful in genetic selection.
Collapse
Affiliation(s)
- Stéphane Beauclercq
- INRAE, Université de Tours, BOA, Tours, France
- *Correspondence: Stéphane Beauclercq,
| | | | | | | | - Antoine Lefèvre
- Université de Tours, PST Analyse des Systèmes Biologiques, Tours, France
| | | | | | - Patrick Emond
- Université de Tours, PST Analyse des Systèmes Biologiques, Tours, France
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire In Vitro, Tours, France
| | | | | |
Collapse
|
12
|
Berkowitz L, Cabrera-Reyes F, Salazar C, Ryff CD, Coe C, Rigotti A. Sphingolipid Profiling: A Promising Tool for Stratifying the Metabolic Syndrome-Associated Risk. Front Cardiovasc Med 2022; 8:785124. [PMID: 35097004 PMCID: PMC8795367 DOI: 10.3389/fcvm.2021.785124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Metabolic syndrome (MetS) is a multicomponent risk condition that reflects the clustering of individual cardiometabolic risk factors related to abdominal obesity and insulin resistance. MetS increases the risk for cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM). However, there still is not total clinical consensus about the definition of MetS, and its pathophysiology seems to be heterogeneous. Moreover, it remains unclear whether MetS is a single syndrome or a set of diverse clinical conditions conferring different metabolic and cardiovascular risks. Indeed, traditional biomarkers alone do not explain well such heterogeneity or the risk of associated diseases. There is thus a need to identify additional biomarkers that may contribute to a better understanding of MetS, along with more accurate prognosis of its various chronic disease risks. To fulfill this need, omics technologies may offer new insights into associations between sphingolipids and cardiometabolic diseases. Particularly, ceramides –the most widely studied sphingolipid class– have been shown to play a causative role in both T2DM and CVD. However, the involvement of simple glycosphingolipids remains controversial. This review focuses on the current understanding of MetS heterogeneity and discuss recent findings to address how sphingolipid profiling can be applied to better characterize MetS-associated risks.
Collapse
Affiliation(s)
- Loni Berkowitz
- Department of Nutrition, Diabetes and Metabolism & Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Loni Berkowitz
| | - Fernanda Cabrera-Reyes
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Salazar
- Department of Nutrition, Diabetes and Metabolism & Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carol D. Ryff
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Christopher Coe
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Attilio Rigotti
- Department of Nutrition, Diabetes and Metabolism & Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Olund Villumsen S, Benfeitas R, Knudsen AD, Gelpi M, Høgh J, Thomsen MT, Murray D, Ullum H, Neogi U, Nielsen SD. Integrative Lipidomics and Metabolomics for System-Level Understanding of the Metabolic Syndrome in Long-Term Treated HIV-Infected Individuals. Front Immunol 2022; 12:742736. [PMID: 35095835 PMCID: PMC8791652 DOI: 10.3389/fimmu.2021.742736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
People living with HIV (PLWH) require life-long anti-retroviral treatment and often present with comorbidities such as metabolic syndrome (MetS). Systematic lipidomic characterization and its association with the metabolism are currently missing. We included 100 PLWH with MetS and 100 without MetS from the Copenhagen Comorbidity in HIV Infection (COCOMO) cohort to examine whether and how lipidome profiles are associated with MetS in PLWH. We combined several standard biostatistical, machine learning, and network analysis techniques to investigate the lipidome systematically and comprehensively and its association with clinical parameters. Additionally, we generated weighted lipid-metabolite networks to understand the relationship between lipidomic profiles with those metabolites associated with MetS in PLWH. The lipidomic dataset consisted of 917 lipid species including 602 glycerolipids, 228 glycerophospholipids, 61 sphingolipids, and 26 steroids. With a consensus approach using four different statistical and machine learning methods, we observed 13 differentially abundant lipids between PLWH without MetS and PLWH with MetS, which mainly belongs to diacylglyceride (DAG, n = 2) and triacylglyceride (TAG, n = 11). The comprehensive network integration of the lipidomics and metabolomics data suggested interactions between specific glycerolipids' structural composition patterns and key metabolites involved in glutamate metabolism. Further integration of the clinical data with metabolomics and lipidomics resulted in the association of visceral adipose tissue (VAT) and exposure to earlier generations of antiretroviral therapy (ART). Our integrative omics data indicated disruption of glutamate and fatty acid metabolism, suggesting their involvement in the pathogenesis of PLWH with MetS. Alterations in the lipid homeostasis and glutaminolysis need clinical interventions to prevent accelerated aging in PLWH with MetS.
Collapse
Affiliation(s)
- Sofie Olund Villumsen
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Andreas Dehlbæk Knudsen
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Marco Gelpi
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Julie Høgh
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Magda Teresa Thomsen
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Daniel Murray
- Personalized Medicine of Infectious Complications in Immune Deficiency (PERSIMUNE), Rigshospitalet, Copenhagen, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm, Sweden
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education, Manipal, India
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
Cardiovascular protective effect of black pepper (Piper nigrum L.) and its major bioactive constituent piperine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Tang S, Fan L, Cheng H, Yan X. Incorporating Electro-Epoxidation into Electrospray Ionization Mass Spectrometry for Simultaneous Analysis of Negatively and Positively Charged Unsaturated Glycerophospholipids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2288-2295. [PMID: 33232136 DOI: 10.1021/jasms.0c00356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we develop an alternating current (AC)-induced electro-epoxidation reaction and incorporate it into nanoelectrospray ionization for locating carbon-carbon double-bonds in positively and negatively charged forms of lipids simultaneously. An AC voltage plays multiple roles in this method, including initiation of the electro-epoxidation of carbon-carbon double-bonds in both charged states of lipids and protonation/deprotonation of lipids for detection in both ion modes. Moreover, the rapid switch between native lipids and their electro-epoxidation products can be achieved at different AC voltages. The efficacy of the present method was demonstrated in mixtures of lipid standards and in a biological polar lipid extract. The advantages of simultaneous detection of negatively and positively charged unsaturated lipids, the low sample consumption, and on-demand electro-epoxidation should allow its wide applications in lipid-related research.
Collapse
Affiliation(s)
- Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77845, United States
| | - Licheng Fan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77845, United States
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77845, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77845, United States
| |
Collapse
|
16
|
Montero-Bullon JF, Aveiro SS, Melo T, Martins-Marques T, Lopes D, Neves B, Girão H, Rosário M Domingues M, Domingues P. Cardiac phospholipidome is altered during ischemia and reperfusion in an ex vivo rat model. Biochem Biophys Rep 2021; 27:101037. [PMID: 34169155 PMCID: PMC8207217 DOI: 10.1016/j.bbrep.2021.101037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of death, morbidity, and health costs worldwide. In AMI, a sudden blockage of blood flow causes myocardial ischemia and cell death. Reperfusion after ischemia has paradoxical effects and may exacerbate the myocardial injury, a process known as ischemic reperfusion injury. In this work we evaluated the lipidome of isolated rat hearts, maintained in controlled perfusion (CT), undergoing global ischemia (ISC) or ischemia followed by reperfusion (IR). 153 polar lipid levels were significantly different between conditions. 48 features had q < 0.001 and included 8 phosphatidylcholines and 4 lysophospholipids, which were lower in ISC compared to CT, and even lower in the IR group, suggesting that IR induces more profound changes than ISC. We observed that the levels of 16 alkyl acyl phospholipids were significantly altered during ISC and IR. Overall, these data indicate that myocardial lipid remodelling and possibly damage occurs to a greater extent during reperfusion. The adaptation of cardiac lipidome during ISC and IR described is consistent with the presence of oxidative damage and may reflect the impact of AMI on the lipidome at the cellular level and provide new insights into the role of lipids in the pathophysiology of acute myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Javier-Fernando Montero-Bullon
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Susana S. Aveiro
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Tânia Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Diana Lopes
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - M. Rosário M Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| |
Collapse
|
17
|
Monteiro JP, Maciel E, Melo T, Flanagan C, Urbani N, Neves J, Domingues MR. The plasma phospholipidome of Tursiops truncatus: From physiological insight to the design of prospective tools for managed cetacean monitorization. Lipids 2021; 56:461-473. [PMID: 34036588 DOI: 10.1002/lipd.12307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023]
Abstract
Plasma biochemical analysis remains one of the established ways of monitoring captive marine mammal health. More recently, complementary plasma lipidomic analysis has proven to be a valid tool in disease diagnosis and prevention, with the potential to validate and complement common biochemical analysis, providing a more integrative approach. In this study, we thoroughly characterized the plasma polar lipid content of Tursiops truncatus, the most common cetacean species held under human care. Our results showed that phosphatidylcholine, lysophosphatidylcholine, and sphingomyelins (CerPCho) are the most represented phospholipid classes in T. truncatus plasma. Palmitic, oleic, and stearic acids are the major fatty acid (FA) present esterified to the plasma polar lipids of this species, although some n-3 species are also remarkably present, namely eicosapentaenoic and docosahexaenoic acids. The polar lipidome identified by HILIC LC-MS allowed identifying 304 different lipid species. These species belong to the phosphatidylcholine (103 lipid species), lysophosphatidylcholine (35), phosphatidylethanolamine (71), lysophosphatidylethanolamine (20), phosphatidylglycerol (13), lysophosphatidylglycerol (5), phosphatidylinositol (15), lysophosphatidylinositol (3), phosphatidylserine (6) lysophosphatidylserine (1), and sphimgomyelin (32) classes. This was the first time that the dolphin plasma phospholipid profile was characterized, providing a knowledge that will be important to further understand lipid metabolism and physiological regulation in small cetaceans. Furthermore, this study proved the practicability of the use of plasma lipid profiling for health assessment in marine mammals under human care.
Collapse
Affiliation(s)
- João P Monteiro
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Elisabete Maciel
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
18
|
Marron MM, Moore SC, Wendell SG, Boudreau RM, Miljkovic I, Sekikawa A, Newman AB. Using lipid profiling to better characterize metabolic differences in apolipoprotein E (APOE) genotype among community-dwelling older Black men. GeroScience 2021; 44:1083-1094. [PMID: 33991295 DOI: 10.1007/s11357-021-00382-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/03/2021] [Indexed: 01/16/2023] Open
Abstract
Apolipoprotein E (APOE) allelic variation is associated with differences in overall circulating lipids and risks of major health outcomes. Lipid profiling provides the opportunity for a more detailed description of lipids that differ by APOE, to potentially inform therapeutic targets for mitigating higher morbidity and mortality associated with certain APOE genotypes. Here, we sought to identify lipids, lipid-like molecules, and important mediators of fatty acid metabolism that differ by APOE among 278 Black men ages 70-81. Using liquid chromatography-mass spectrometry methods, 222 plasma metabolites classified as lipids, lipid-like molecules, or essential in fatty acid metabolism were detected. We applied principal factor analyses to calculate a factor score for each main lipid category. APOE was categorized as ε4 carriers (n = 83; ε3ε4 or ε4ε4), ε2 carriers (n = 58; ε2ε3 or ε2ε2), or ε3 homozygotes (n = 137; ε3ε3). Using analysis of variance, the monoacylglycerol factor, cholesterol ester factor, the factor for triacylglycerols that consist mostly of polyunsaturated fatty acids, sphingosine, and free carnitine significantly differed by APOE (p < 0.05, false discovery rate < 0.30). The monoacylglycerol factor, cholesterol ester factor, and sphingosine were lower, whereas the factor for triacylglycerols that consisted mostly of polyunsaturated fatty acids was higher among ε2 carriers than remaining participants. Free carnitine was lower among ε4 carriers than ε3 homozygotes. Lower monoacylglycerols and cholesteryl esters and higher triacylglycerols that consist mostly of polyunsaturated fatty acids may be protective metabolic characteristics of APOE ε2 carriers, whereas lower carnitine may reflect altered mitochondrial functioning among ε4 carriers in this cohort of older Black men.
Collapse
Affiliation(s)
- Megan M Marron
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Room 327, Pittsburgh, PA, 15213, USA.
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Stacy G Wendell
- Departments of Pharmacology and Chemical Biology and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert M Boudreau
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Room 327, Pittsburgh, PA, 15213, USA
| | - Iva Miljkovic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Room 327, Pittsburgh, PA, 15213, USA
| | - Akira Sekikawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Room 327, Pittsburgh, PA, 15213, USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Room 327, Pittsburgh, PA, 15213, USA.,Departments of Medicine and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Wei M, Zhou RL, Luo T, Deng ZY, Li J. Trans triacylglycerols from dairy products and industrial hydrogenated oil exhibit different effects on the function of human umbilical vein endothelial cells via modulating phospholipase A2/arachidonic acid metabolism pathways. J Dairy Sci 2021; 104:6399-6414. [PMID: 33773784 DOI: 10.3168/jds.2020-19715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Dairy fat intake has been considered as a risk factor for cardiovascular disease. Rodent models show that trans fatty acids in industrial hydrogenated oil and ruminant milk have different effects on cardiovascular diseases. One of the main reasons is that the distributions of trans fatty acids in triacylglycerols from dairy products and from industrial hydrogenated oil are different, which affects lipid absorption and metabolism. This study investigated the effects of 1,3-olein-2-elaidin (OEO, representing industrial hydrogenated oil triacylglycerols) and 1-vaccenic-2,3-olein (OOV, representing ruminant triacylglycerols in dairy products) on the function of human umbilical vein endothelial cells (HUVEC), including cell viability, lactate dehydrogenase (LDH) exudation rate, and nitric oxide secretory and nitric oxide synthase relative activity. We found that the detrimental effect of OEO on HUVEC was significantly greater than that of OOV. The results also showed that the absorption rate of OEO in HUVEC (78.25%) was significantly greater than that of OOV (63.32%). Mechanistically, based on phospholipidomics analysis, we found that calcium-independent phospholipase A2 (iPLA2) played a key role with regard to the OOV-mediated arachidonic acid (ARA)/COX-2/PG pathway, whereas secretory phospholipase A2 (sPLA2) and cytoplasmic phospholipase A2 (cPLA2) are responsible for the OEO-mediated ARA/COX-2/PG pathway. Moreover, OEO had a greater effect on the protein expression of COX-2 and PG secretion than OOV. In addition, iPLA2, sPLA2, and cPLA2 could mediate the ARA/CYP4A11 pathway in OOV-treated HUVEC, but only iPLA2 could mediate this pathway in HUVEC treated with OEO. We also found that sPLA2 could mediate the ARA/5-LOX pathway in HUVEC treated with OOV, but none of these 3 forms of PLA2 could mediate this pathway in HUVEC treated with OEO. On the other hand, after OOV treatment, trans-11 C18:1 was converted to beneficial forms of fatty acids in HUVEC, including conjugated linoleic acid (CLA) and trans-9 C16:1. In conclusion, we elucidated the potential mechanisms that might account for the diverse effects of triacylglycerols from industrial hydrogenated oil and ruminant milk on the function of HUVEC.
Collapse
Affiliation(s)
- Meng Wei
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ruo-Lin Zhou
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
20
|
Hou Q, Zhang S, Li Y, Wang H, Zhang D, Qi D, Li Y, Jiang H. New insights on association between circadian rhythm and lipid metabolism in spontaneously hypertensive rats. Life Sci 2021; 271:119145. [PMID: 33548288 DOI: 10.1016/j.lfs.2021.119145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
AIMS The aim of this study is to provide new insights on the association of lipid metabolites, circadian genes and lipid metabolism associated genes in spontaneously hypertensive rats. MATERIALS AND METHODS An untargeted lipidomics using ultrahigh performance liquid chromatography-mass spectrometry metabolomics was used to identify the differentially expressed lipid metabolites over 24 h in Spontaneously hypertensive rats (SHR) with reference to Wistar-Kyoto rats (WKY). The expression of circadian clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2) and lipid metabolism related genes (Rev-erbα, Pparα and Sirt1) was analysed RT-qPCR. KEY FINDINGS Ten lipid metabolites with significant differences in their levels in SHR compared to WKY were identified. The levels of MG (25:0), PA (36:3) and PE (38:2) were lower and the levels of LysoPCs (20:0 and 20:3) and TGs (54:5, 59:12, 28:0, 60:10 and 60:13) were found to be higher in SHR. SHR showed obvious disorders in the expression of circadian genes and lipid metabolism associated genes. A strong association between the levels of lipid metabolites and circadian genes and lipid metabolism associated genes was found. SIGNIFICANCE Rhythm genes may further affect the 24-hour lipid metabolism level of spontaneously hypertensive rats by mediating lipid metabolism associated genes. This research provides new insights on the association of lipid metabolites, circadian genes and lipid metabolism associated genes in SHR.
Collapse
Affiliation(s)
- Qingqing Hou
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Shiming Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Huanjun Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Dan Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| | - Haiqiang Jiang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
21
|
Zhang S, Liu Y, Wang X, Tian Z, Qi D, Li Y, Jiang H. Antihypertensive activity of oleanolic acid is mediated via downregulation of secretory phospholipase A2 and fatty acid synthase in spontaneously hypertensive rats. Int J Mol Med 2020; 46:2019-2034. [PMID: 33125128 PMCID: PMC7595669 DOI: 10.3892/ijmm.2020.4744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Oleanolic acid (OA) is reported to possess antihypertensive activity via the regulation of lipid metabolism; however, the mechanisms underlying lipid regulation by OA are yet to be fully elucidated. The aim of the present study was to evaluate the mechanisms via which OA regulates lipid metabolism in spontaneously hypertensive rats (SHRs) via ultra‑performance liquid chromatography‑quadrupole/Orbitrap‑mass spectrometry (MS)‑based lipidomics analysis. SHRs were treated with OA (1.08 mg/kg) for 4 weeks. The liver tissues were excised, homogenized in dichloromethane and centrifuged, and subsequently the supernatant layer was collected and concentrated under vacuum to dryness. The dichloromethane extract was subjected to MS analysis and database searching, and comparison of standards was performed to identify potential biomarkers. Partial least squares‑discriminant analysis performed on the liver lipidome revealed a total of 14 endogenous metabolites that were significantly changed in the SHR model group (SH group) compared with Wistar Kyoto rats [normal control (NC group)], including glycerophospholipids, sphingolipids and glycerides. Heatmaps revealed that the liver lipid profiles in the OA group were clustered more closely compared with those observed in the NC group, indicating that the antihypertensive effect of OA was mediated via regulation of liver lipid metabolites. It was observed that the protein levels of secretory phospholipase A2 (sPLA2) and fatty acid synthase (FAS) were increased in the SH group compared with the NC group. In addition, the levels of lysophosphatidylcholine and triglycerides in the liver were elevated, whereas the levels of low‑density lipoprotein cholesterol and high‑density lipoprotein cholesterol were reduced in the SH group. Upon treatment with OA, the mRNA and protein levels of PLA2 and FAS were observed to be downregulated. Collectively, the present study indicated that the antihypertensive activity of OA was mediated via downregulation of sPLA2 and FAS in SHRs, and that treatment with OA resulted in significant improvements in blood pressure and associated abnormalities in the lipid metabolites.
Collapse
Affiliation(s)
- Shiming Zhang
- Experimental Centre, Shandong University of Traditional Chinese Medicine
| | - Yuecheng Liu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education
| | - Xiaoming Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine
| | - Zhenhua Tian
- Experimental Centre, Shandong University of Traditional Chinese Medicine
| | - Dongmei Qi
- Experimental Centre, Shandong University of Traditional Chinese Medicine
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yunlun Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Haiqiang Jiang
- Experimental Centre, Shandong University of Traditional Chinese Medicine
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| |
Collapse
|
22
|
Bahmad HF, Daouk R, Azar J, Sapudom J, Teo JCM, Abou-Kheir W, Al-Sayegh M. Modeling Adipogenesis: Current and Future Perspective. Cells 2020; 9:cells9102326. [PMID: 33092038 PMCID: PMC7590203 DOI: 10.3390/cells9102326] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells’ differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This review focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Reem Daouk
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Joseph Azar
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, 2460 Abu Dhabi, UAE
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| |
Collapse
|
23
|
Tian Z, Zhang S, Wang H, Chen Z, Sun M, Sun L, Gong L, Li Y, Jiang H. Intervention of Uncaria and Its Components on Liver Lipid Metabolism in Spontaneously Hypertensive Rats. Front Pharmacol 2020; 11:910. [PMID: 32765256 PMCID: PMC7381107 DOI: 10.3389/fphar.2020.00910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Uncaria rhynchophylla (Miq.) Miq. ex Havil is widely used in the treatment of hypertension. The Uncaria extract and its bioactives, rhynchophylline and isorhynchophylline, reduced the blood pressure and fatty content in liver cells. In the present study, the antihypertensive effects of Uncaria ethanol extract (UET), rhynchophylline (RT) and isorhynchophylline (IT) were investigated in spontaneously hypertensive rats (SHR) using UPLC-Q-Orbitrap/MS based lipidomics approach. Histological changes in the liver were evaluated. Cytolysis and fatty degeneration in the liver tissues were observed in the SHR group. Lipid species in WKY, SHR treated with UET, RT, and IT were plotted to obtain the Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) score plots. Fifty-six endogenous metabolites in the liver such as glycerides, glycerophospholipids, unsaturated fatty acids, and sphingomyelins were selected as potential hypertension associated biomarkers. In order to further explore the metabolite targets of UET for antihypertensive, student's t test and correlation analysis were performed to recognize the pattern recognition and to select the significant metabolites. Similar and prolonged reduction in blood pressure was observed in all SHR groups treated with UET, RT, and IT, while the metabolite profiles were perturbed slightly compared to that of the untreated SHR. Further analysis showed that only a few common components were observed in both RT and IT, which showed similar antihypertensive effect in spite of the distinct metabolic pathways. These results help in understanding the mechanisms of isomeric ingredients in exhibiting the antihypertensive effect but with different targets.
Collapse
Affiliation(s)
- Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiming Zhang
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huanjuan Wang
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenshan Chen
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengjia Sun
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Gong
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Traditional Chinese Medicine Clinical Research Base for Hypertension of Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haiqiang Jiang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Ulmer CZ, Koelmel JP, Jones CM, Garrett TJ, Aristizabal-Henao JJ, Vesper HW, Bowden JA. A Review of Efforts to Improve Lipid Stability during Sample Preparation and Standardization Efforts to Ensure Accuracy in the Reporting of Lipid Measurements. Lipids 2020; 56:3-16. [PMID: 32519378 DOI: 10.1002/lipd.12263] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 11/07/2022]
Abstract
Lipidomics is a rapidly growing field, fueled by developments in analytical instrumentation and bioinformatics. To date, most researchers and industries have employed their own lipidomics workflows without a consensus on best practices. Without a community-wide consensus on best practices for the prevention of lipid degradation and transformations through sample collection and analysis, it is difficult to assess the quality of lipidomics data and hence trust results. Clinical studies often rely on samples being stored for weeks or months until they are analyzed, but inappropriate sampling techniques, storage temperatures, and analytical protocols can result in the degradation of complex lipids and the generation of oxidized or hydrolyzed metabolite artifacts. While best practices for lipid stability are sample dependent, it is generally recommended that strategies during sample preparation capable of quenching enzymatic activity and preventing oxidation should be considered. In addition, after sample preparation, lipid extracts should be stored in organic solvents with antioxidants at -20 °C or lower in an airtight container without exposure to light or oxygen. This will reduce or eliminate sublimation, and chemically and physically induced molecular transformations such as oxidation, enzymatic transformation, and photon/heat-induced degradation. This review explores the available literature on lipid stability, with a particular focus on human health and/or clinical lipidomic applications. Specifically, this includes a description of known mechanisms of lipid degradation, strategies, and considerations for lipid storage, as well as current efforts for standardization and quality insurance of protocols.
Collapse
Affiliation(s)
- Candice Z Ulmer
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, MS F25, Atlanta, GA, 30341, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Medicine, Yale University, 60 College Street, Room 510, New Haven, CT, 06520, USA
| | - Christina M Jones
- Chemical Sciences Division, Organic Chemical Metrology Group, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Juan J Aristizabal-Henao
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Hubert W Vesper
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, MS F25, Atlanta, GA, 30341, USA
| | - John A Bowden
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
25
|
Meckelmann SW, Hawksworth JI, White D, Andrews R, Rodrigues P, O'Connor A, Alvarez-Jarreta J, Tyrrell VJ, Hinz C, Zhou Y, Williams J, Aldrovandi M, Watkins WJ, Engler AJ, Lo Sardo V, Slatter DA, Allen SM, Acharya J, Mitchell J, Cooper J, Aoki J, Kano K, Humphries SE, O'Donnell VB. Metabolic Dysregulation of the Lysophospholipid/Autotaxin Axis in the Chromosome 9p21 Gene SNP rs10757274. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002806. [PMID: 32396387 PMCID: PMC7299226 DOI: 10.1161/circgen.119.002806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Common chromosome 9p21 single nucleotide polymorphisms (SNPs) increase coronary heart disease risk, independent of traditional lipid risk factors. However, lipids comprise large numbers of structurally related molecules not measured in traditional risk measurements, and many have inflammatory bioactivities. Here, we applied lipidomic and genomic approaches to 3 model systems to characterize lipid metabolic changes in common Chr9p21 SNPs, which confer ≈30% elevated coronary heart disease risk associated with altered expression of ANRIL, a long ncRNA. METHODS Untargeted and targeted lipidomics was applied to plasma from NPHSII (Northwick Park Heart Study II) homozygotes for AA or GG in rs10757274, followed by correlation and network analysis. To identify candidate genes, transcriptomic data from shRNA downregulation of ANRIL in HEK-293 cells was mined. Transcriptional data from vascular smooth muscle cells differentiated from induced pluripotent stem cells of individuals with/without Chr9p21 risk, nonrisk alleles, and corresponding knockout isogenic lines were next examined. Last, an in-silico analysis of miRNAs was conducted to identify how ANRIL might control lysoPL (lysophosphospholipid)/lysoPA (lysophosphatidic acid) genes. RESULTS Elevated risk GG correlated with reduced lysoPLs, lysoPA, and ATX (autotaxin). Five other risk SNPs did not show this phenotype. LysoPL-lysoPA interconversion was uncoupled from ATX in GG plasma, suggesting metabolic dysregulation. Significantly altered expression of several lysoPL/lysoPA metabolizing enzymes was found in HEK cells lacking ANRIL. In the vascular smooth muscle cells data set, the presence of risk alleles associated with altered expression of several lysoPL/lysoPA enzymes. Deletion of the risk locus reversed the expression of several lysoPL/lysoPA genes to nonrisk haplotype levels. Genes that were altered across both cell data sets were DGKA, MBOAT2, PLPP1, and LPL. The in-silico analysis identified 4 ANRIL-regulated miRNAs that control lysoPL genes as miR-186-3p, miR-34a-3p, miR-122-5p, and miR-34a-5p. CONCLUSIONS A Chr9p21 risk SNP associates with complex alterations in immune-bioactive phospholipids and their metabolism. Lipid metabolites and genomic pathways associated with coronary heart disease pathogenesis in Chr9p21 and ANRIL-associated disease are demonstrated.
Collapse
Affiliation(s)
- Sven W Meckelmann
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom.,Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany (S.W.M.)
| | - Jade I Hawksworth
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Daniel White
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Robert Andrews
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Patricia Rodrigues
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Anne O'Connor
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Jorge Alvarez-Jarreta
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Victoria J Tyrrell
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Christine Hinz
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - You Zhou
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Julie Williams
- Division of Neuropsychiatric Genetics and Genomics and Dementia Research Institute at Cardiff, School of Medicine (J.W.), Cardiff University, United Kingdom
| | - Maceler Aldrovandi
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - William J Watkins
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Adam J Engler
- Department of Bioengineering, University of San Diego, La Jolla, CA (A.J.E.)
| | - Valentina Lo Sardo
- Department of Cellular and Molecular Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (V.L.S.)
| | - David A Slatter
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Stuart M Allen
- School of Computer Science and Informatics (S.M.A.), Cardiff University, United Kingdom
| | - Jay Acharya
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Jacquie Mitchell
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Jackie Cooper
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Junken Aoki
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (J. Aoki, K.K.)
| | - Kuniyuki Kano
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (J. Aoki, K.K.)
| | | | - Valerie B O'Donnell
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| |
Collapse
|
26
|
Harbaum L, Rhodes CJ, Otero-Núñez P, Wharton J, Wilkins MR. The application of 'omics' to pulmonary arterial hypertension. Br J Pharmacol 2020; 178:108-120. [PMID: 32201940 DOI: 10.1111/bph.15056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide analyses of rare and common sequence variations have brought greater clarity to the genetic architecture of pulmonary arterial hypertension and implicated novel genes in disease development. Transcriptional signatures have been reported in whole lung tissue, pulmonary vascular cells and peripheral circulating cells. High-throughput platforms for plasma proteomics and metabolomics have identified novel biomarkers associated with clinical outcomes and provided molecular instruments for risk assessment. There are methodological challenges to integrating these datasets, coupled to statistical power limitations inherent to the study of a rare disease, but the expectation is that this approach will reveal novel druggable targets and biomarkers that will open the way to personalized medicine. Here, we review the current state-of-the-art and future promise of 'omics' in the field of translational medicine in pulmonary arterial hypertension. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Lars Harbaum
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Pablo Otero-Núñez
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
27
|
Torkhovskaya TI, Zakharova TS, Korotkevich EI, Ipatova OM, Markin SS. Human Blood Plasma Lipidome: Opportunities and Prospects of Its Analysis in Medical Chemistry. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s106816201905011x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Li K, Yuan M, He Z, Wu Q, Zhang C, Lei Z, Rong X, Huang Z, Turnbull JE, Guo J. Omics Insights into Metabolic Stress and Resilience of Rats in Response to Short‐term Fructose Overfeeding. Mol Nutr Food Res 2019; 63:e1900773. [DOI: 10.1002/mnfr.201900773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Kun‐Ping Li
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Min Yuan
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Zhuo‐Ru He
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Qi Wu
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Chu‐Mei Zhang
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- School of PharmacyGuangdong Pharmaceutical University Guangzhou 510006 China
| | - Zhi‐Li Lei
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Xiang‐Lu Rong
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| | - Zebo Huang
- School of Food Science and EngineeringSouth China University of Technology Guangzhou 510006 China
| | - Jeremy E. Turnbull
- Centre for Glycobiology, Department of BiochemistryInstitute of Integrative BiologyUniversity of Liverpool Liverpool L69 7ZB UK
| | - Jiao Guo
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical University Guangzhou 510006 China
- Guangdong Metabolic Disease Research Center of Integrated Medicine Guangzhou 510006 China
| |
Collapse
|
29
|
Xu Z, You W, Zhou Y, Chen W, Wang Y, Shan T. Cold-induced lipid dynamics and transcriptional programs in white adipose tissue. BMC Biol 2019; 17:74. [PMID: 31530289 PMCID: PMC6749700 DOI: 10.1186/s12915-019-0693-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background In mammals, cold exposure induces browning of white adipose tissue (WAT) and alters WAT gene expression and lipid metabolism to boost adaptive thermogenesis and maintain body temperature. Understanding the lipidomic and transcriptomic profiles of WAT upon cold exposure provides insights into the adaptive changes associated with this process. Results Here, we applied mass spectrometry and RNA sequencing (RNA-seq) to provide a comprehensive resource for describing the lipidomic or transcriptome profiles in cold-induced inguinal WAT (iWAT). We showed that short-term (3-day) cold exposure induces browning of iWAT, increases energy expenditure, and results in loss of body weight and fat mass. Lipidomic analysis shows that short-term cold exposure leads to dramatic changes of the overall composition of lipid classes WAT. Notably, cold exposure induces significant changes in the acyl-chain composition of triacylglycerols (TAGs), as well as the levels of glycerophospholipids and sphingolipids in iWAT. RNA-seq and qPCR analysis suggests that short-term cold exposure alters the expression of genes and pathways involved in fatty acid elongation, and the synthesis of TAGs, sphingolipids, and glycerophospholipids. Furthermore, the cold-induced lipid dynamics and gene expression pathways in iWAT are contrary to those previously observed in metabolic syndrome, neurodegenerative disorders, and aging, suggesting beneficial effects of cold-induced WAT browning on health and lifespan. Conclusion We described the significant alterations in the composition of glyphospholipids, glycerolipids, and sphingolipids and expression of genes involved in thermogenesis, fatty acid elongation, and fatty acid metabolism during the response of iWAT to short-term cold exposure. We also found that some changes in the levels of specific lipid species happening after cold treatment of iWAT are negatively correlated to metabolic diseases, including obesity and T2D. Electronic supplementary material The online version of this article (10.1186/s12915-019-0693-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China. .,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Alessenko AV, Zateyshchikov DA, Lebedev AТ, Kurochkin IN. Participation of Sphingolipids in the Pathogenesis of Atherosclerosis. ACTA ACUST UNITED AC 2019; 59:77-87. [DOI: 10.18087/cardio.2019.8.10270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/18/2022]
Affiliation(s)
| | - D. A. Zateyshchikov
- City Clinical Hospital № 51; Central State Medical Academy of Department of Presidential Affairs
| | | | | |
Collapse
|
31
|
Mayr M, Gerszten R, Kiechl S. Cardiovascular Risk Beyond Low-Density Lipoprotein Cholesterol. J Am Coll Cardiol 2019; 71:633-635. [PMID: 29420959 DOI: 10.1016/j.jacc.2017.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom.
| | - Robert Gerszten
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Alessenko AV, Lebedev AT, Kurochkin IN. The Role of Sphingolipids in Cardiovascular Pathologies. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Rivera-Velez SM, Broughton-Neiswanger LE, Suarez M, Piñeyro P, Navas J, Chen S, Hwang J, Villarino NF. Repeated administration of the NSAID meloxicam alters the plasma and urine lipidome. Sci Rep 2019; 9:4303. [PMID: 30867479 PMCID: PMC6416286 DOI: 10.1038/s41598-019-40686-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/21/2019] [Indexed: 12/31/2022] Open
Abstract
Non-steroidal anti-inflammatories (NSAIDs), such as meloxicam, are the mainstay for treating painful and inflammatory conditions in animals and humans; however, the repeated administration of NSAIDs can cause adverse effects, limiting the long-term administration of these drugs to some patients. The primary aim of this study was to determine the effects of repeated meloxicam administration on the feline plasma and urine lipidome. Cats (n = 12) were treated subcutaneously with either saline solution or 0.3 mg/kg body weight of meloxicam daily for up to 31 days. Plasma and urine lipidome were determined by LC-MS before the first treatment and at 4, 9 and 13 and 17 days after the first administration of meloxicam. The repeated administration of meloxicam altered the feline plasma and urine lipidome as demonstrated by multivariate statistical analysis. The intensities of 94 out of 195 plasma lipids were altered by the repeated administration of meloxicam to cats (p < 0.05). Furthermore, we identified 12 lipids in plasma and 10 lipids in urine that could serve as biomarker candidates for discriminating animals receiving NSAIDs from healthy controls. Expanding our understanding about the effects of NSAIDs in the body could lead to the discovery of mechanism(s) associated with intolerance to NSAIDs.
Collapse
Affiliation(s)
- Sol M Rivera-Velez
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Liam E Broughton-Neiswanger
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Martin Suarez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Pablo Piñeyro
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, 1134, IA, United States
| | - Jinna Navas
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Sandy Chen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Julianne Hwang
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States
| | - Nicolas F Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, 99164, WA, United States.
| |
Collapse
|
34
|
Xiang AS, Meikle PJ, Carey AL, Kingwell BA. Brown adipose tissue and lipid metabolism: New strategies for identification of activators and biomarkers with clinical potential. Pharmacol Ther 2018; 192:141-149. [DOI: 10.1016/j.pharmthera.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
CHEN Z, ZANG L, WU Y, NAKAYAMA H, SHIMADA Y, SHRESTHA R, ZHAO Y, MIURA Y, CHIBA H, HUI SP, NISHIMURA N. Lipidomic Profiling on Oxidized Phospholipids in Type 2 Diabetes Mellitus Model Zebrafish. ANAL SCI 2018; 34:1201-1208. [DOI: 10.2116/analsci.18p281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhen CHEN
- Faculty of Health Sciences, Hokkaido University
| | - Liqing ZANG
- Graduate School of Regional Innovation Studies, Mie University
| | - Yue WU
- Faculty of Health Sciences, Hokkaido University
| | - Hiroko NAKAYAMA
- Graduate School of Regional Innovation Studies, Mie University
| | - Yasuhito SHIMADA
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University
- Mie University Zebrafish Drug Screening Center
| | | | - Yaoyao ZHAO
- Faculty of Health Sciences, Hokkaido University
| | | | - Hitoshi CHIBA
- Department of Nutrition, Sapporo University of Health Sciences
| | | | | |
Collapse
|
36
|
Burla B, Arita M, Arita M, Bendt AK, Cazenave-Gassiot A, Dennis EA, Ekroos K, Han X, Ikeda K, Liebisch G, Lin MK, Loh TP, Meikle PJ, Orešič M, Quehenberger O, Shevchenko A, Torta F, Wakelam MJO, Wheelock CE, Wenk MR. MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J Lipid Res 2018; 59:2001-2017. [PMID: 30115755 PMCID: PMC6168311 DOI: 10.1194/jlr.s087163] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/11/2018] [Indexed: 12/19/2022] Open
Abstract
Human blood is a self-regenerating lipid-rich biological fluid that is routinely collected in hospital settings. The inventory of lipid molecules found in blood plasma (plasma lipidome) offers insights into individual metabolism and physiology in health and disease. Disturbances in the plasma lipidome also occur in conditions that are not directly linked to lipid metabolism; therefore, plasma lipidomics based on MS is an emerging tool in an array of clinical diagnostics and disease management. However, challenges exist in the translation of such lipidomic data to clinical applications. These relate to the reproducibility, accuracy, and precision of lipid quantitation, study design, sample handling, and data sharing. This position paper emerged from a workshop that initiated a community-led process to elaborate and define a set of generally accepted guidelines for quantitative MS-based lipidomics of blood plasma or serum, with harmonization of data acquired on different instrumentation platforms across independent laboratories as an ultimate goal. We hope that other fields may benefit from and follow such a precedent.
Collapse
Affiliation(s)
- Bo Burla
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Masanori Arita
- National Institute of Genetics, Shizuoka, Japan and RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Anne K Bendt
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore
| | - Edward A Dennis
- Departments of Pharmacology and Chemistry and Biochemistry, School of Medicine, University of California at San Diego, La Jolla, CA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and Department of Medicine-Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Michelle K Lin
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland and School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Oswald Quehenberger
- Departments of Pharmacology and Medicine, School of Medicine, University of California at San Diego, La Jolla, CA
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Federico Torta
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore
| | | | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
37
|
Yeo HC, Chen S, Ho YS, Lee DY. An LC-MS-based lipidomics pre-processing framework underpins rapid hypothesis generation towards CHO systems biotechnology. Metabolomics 2018; 14:98. [PMID: 30830409 DOI: 10.1007/s11306-018-1394-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/06/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Given a raw LC-MS dataset, it is often required to rapidly generate initial hypotheses, in conjunction with other 'omics' datasets, without time-consuming lipid verifications. Furthermore, for meta-analysis of many datasets, it may be impractical to conduct exhaustive confirmatory analyses. In other cases, samples for validation may be difficult to obtain, replicate or maintain. Thus, it is critical that the computational identification of lipids is of appropriate accuracy, coverage, and unbiased by a researcher's experience and prior knowledge. OBJECTIVES We aim to prescribe a systematic framework for lipid identifications, without usage of their characteristic retention-time by fully exploiting their underlying mass features. RESULTS Initially, a hybrid technique, for deducing both common and distinctive daughter ions, is used to infer parent lipids from deconvoluted spectra. This is followed by parent confirmation using basic knowledge of their preferred product ions. Using the framework, we could achieve an accuracy of ~ 80% by correctly identified 101 species from 18 classes in Chinese hamster ovary (CHO) cells. The resulting inferences could explain the recombinant-producing capability of CHO-SH87 cells, compared to non-producing CHO-K1 cells. For comparison, a XCMS-based study of the same dataset, guided by a user's ad-hoc knowledge, identified less than 60 species of 12 classes from thousands of possibilities. CONCLUSION We describe a systematic LC-MS-based framework that identifies lipids for rapid hypothesis generation.
Collapse
Affiliation(s)
- Hock Chuan Yeo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668, Singapore
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668, Singapore.
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
38
|
Abstract
Disturbances in cardiac metabolism underlie most cardiovascular diseases. Metabolomics, one of the newer omics technologies, has emerged as a powerful tool for defining changes in both global and cardiac-specific metabolism that occur across a spectrum of cardiovascular disease states. Findings from metabolomics studies have contributed to better understanding of the metabolic changes that occur in heart failure and ischemic heart disease and have identified new cardiovascular disease biomarkers. As technologies advance, the metabolomics field continues to evolve rapidly. In this review, we will discuss the current state of metabolomics technologies, including consideration of various metabolomics platforms and elements of study design; the emerging utility of stable isotopes for metabolic flux studies; and the use of metabolomics to better understand specific cardiovascular diseases, with an emphasis on recent advances in the field.
Collapse
Affiliation(s)
- Robert W McGarrah
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Cardiology (R.W.M., S.H.S.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
| | - Scott B Crown
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
| | - Guo-Fang Zhang
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Endocrinology (G.F.Z., C.B.N.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
| | - Svati H Shah
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Cardiology (R.W.M., S.H.S.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
| | - Christopher B Newgard
- From the Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute (R.W.M., S.B.C., G.F.Z., S.H.S., C.B.N.)
- Division of Endocrinology (G.F.Z., C.B.N.)
- Department of Medicine (R.W.M., G.F.Z., S.H.S., C.B.N.)
- Departments of Pharmacology and Cancer Biology (C.B.N.), Duke University Medical Center, Durham, NC
| |
Collapse
|
39
|
Kohno S, Keenan AL, Ntambi JM, Miyazaki M. Lipidomic insight into cardiovascular diseases. Biochem Biophys Res Commun 2018; 504:590-595. [PMID: 29665359 DOI: 10.1016/j.bbrc.2018.04.106] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/10/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023]
Abstract
Cardiovascular disease is a primary cause of mortality worldwide. Therefore, it is of major interest to identify sensitive molecular markers that predict cardiovascular events and point to therapeutic strategies that will increase lifespans. Dysregulated lipid metabolism is recognized as an established risk factor in cardiovascular diseases. However, it is still largely unknown which specific lipid molecular species reflect cardiovascular risk. In addition, understanding the whole lipidome signature in vascular pathophysiology is challenging. Recent advancements of mass-spectrometry allow researchers to detect each individual lipid species from unbiased small samples. In this review, we update the current research on lipidomic approaches in cardiovascular diseases.
Collapse
Affiliation(s)
- Shohei Kohno
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA
| | - Audrey L Keenan
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA
| | - James M Ntambi
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI 53706, USA; Department of Nutritional Sciences, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
40
|
Kubicek-Sutherland JZ, Vu DM, Mendez HM, Jakhar S, Mukundan H. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics. BIOSENSORS-BASEL 2017; 7:bios7030025. [PMID: 28677660 PMCID: PMC5618031 DOI: 10.3390/bios7030025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/24/2022]
Abstract
Rapid diagnosis is crucial to effectively treating any disease. Biological markers, or biomarkers, have been widely used to diagnose a variety of infectious and non-infectious diseases. The detection of biomarkers in patient samples can also provide valuable information regarding progression and prognosis. Interestingly, many such biomarkers are composed of lipids, and are amphiphilic in biochemistry, which leads them to be often sequestered by host carriers. Such sequestration enhances the difficulty of developing sensitive and accurate sensors for these targets. Many of the physiologically relevant molecules involved in pathogenesis and disease are indeed amphiphilic. This chemical property is likely essential for their biological function, but also makes them challenging to detect and quantify in vitro. In order to understand pathogenesis and disease progression while developing effective diagnostics, it is important to account for the biochemistry of lipid and amphiphilic biomarkers when creating novel techniques for the quantitative measurement of these targets. Here, we review techniques and methods used to detect lipid and amphiphilic biomarkers associated with disease, as well as their feasibility for use as diagnostic targets, highlighting the significance of their biochemical properties in the design and execution of laboratory and diagnostic strategies. The biochemistry of biological molecules is clearly relevant to their physiological function, and calling out the need for consideration of this feature in their study, and use as vaccine, diagnostic and therapeutic targets is the overarching motivation for this review.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Dung M Vu
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Heather M Mendez
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
- The New Mexico Consortium, Los Alamos, NM 87544, USA.
| | - Shailja Jakhar
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
41
|
Cheng S, Shah SH, Corwin EJ, Fiehn O, Fitzgerald RL, Gerszten RE, Illig T, Rhee EP, Srinivas PR, Wang TJ, Jain M. Potential Impact and Study Considerations of Metabolomics in Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association. ACTA ACUST UNITED AC 2017; 10:HCG.0000000000000032. [PMID: 28360086 DOI: 10.1161/hcg.0000000000000032] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Through the measure of thousands of small-molecule metabolites in diverse biological systems, metabolomics now offers the potential for new insights into the factors that contribute to complex human diseases such as cardiovascular disease. Targeted metabolomics methods have already identified new molecular markers and metabolomic signatures of cardiovascular disease risk (including branched-chain amino acids, select unsaturated lipid species, and trimethylamine-N-oxide), thus in effect linking diverse exposures such as those from dietary intake and the microbiota with cardiometabolic traits. As technologies for metabolomics continue to evolve, the depth and breadth of small-molecule metabolite profiling in complex systems continue to advance rapidly, along with prospects for ongoing discovery. Current challenges facing the field of metabolomics include scaling throughput and technical capacity for metabolomics approaches, bioinformatic and chemoinformatic tools for handling large-scale metabolomics data, methods for elucidating the biochemical structure and function of novel metabolites, and strategies for determining the true clinical relevance of metabolites observed in association with cardiovascular disease outcomes. Progress made in addressing these challenges will allow metabolomics the potential to substantially affect diagnostics and therapeutics in cardiovascular medicine.
Collapse
|
42
|
O'Connor A, Brasher CJ, Slatter DA, Meckelmann SW, Hawksworth JI, Allen SM, O'Donnell VB. LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets. JCI Insight 2017; 2:e91634. [PMID: 28405621 DOI: 10.1172/jci.insight.91634] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users' own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides.
Collapse
Affiliation(s)
- Anne O'Connor
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| | - Christopher J Brasher
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| | - David A Slatter
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| | - Sven W Meckelmann
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| | - Jade I Hawksworth
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| | - Stuart M Allen
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| |
Collapse
|
43
|
Jung JM, Lee J, Kim KH, Jang IG, Song JG, Kang K, Tack FMG, Oh JI, Kwon EE, Kim HW. The effect of lead exposure on fatty acid composition in mouse brain analyzed using pseudo-catalytic derivatization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:182-190. [PMID: 28104346 DOI: 10.1016/j.envpol.2016.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/10/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
We performed toxicological study of mice exposed to lead by quantifying fatty acids in brain of the mice. This study suggests that the introduced analytical method had an extremely high tolerance against impurities such as water and extractives; thus, it led to the enhanced resolution in visualizing the spectrum of fatty acid profiles in animal brain. Furthermore, one of the biggest technical advantages achieved in this study was the quantitation of fatty acid methyl ester profiles of mouse brain using a trace amount of sample (e.g., 100 μL mixture). Methanol was screened as the most effective extraction solvent for mouse brain. The behavioral test of the mice before and after lead exposure was conducted to see the effect of lead exposure on fatty acid composition of the mice' brain. The lead exposure led to changes in disease-related behavior of the mice. Also, the lead exposure induced significant alterations of fatty acid profile (C16:0, C 18:0, and C 18:1) in brain of the mice, implicated in pathology of psychiatric diseases. The alteration of fatty acid profile of brain of the mice suggests that the derivatizing technique can be applicable to most research fields associated with the environmental neurotoxins with better resolution in a short time, as compared to the current protocols for lipid analysis.
Collapse
Affiliation(s)
- Jong-Min Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jechan Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - In Geon Jang
- Department of Biological Science and Technology, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Gwang Song
- Department of Biological Science and Technology, Sejong University, Seoul 05006, Republic of Korea
| | - Kyeongjin Kang
- Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Filip M G Tack
- Department of Applied Analytical and Physical Chemistry, Ghent University, Ghent 9000, Belgium
| | - Jeong-Ik Oh
- Advanced Technology Department, Land & Housing Institute, Daejon 34047, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Hyung-Wook Kim
- Department of Biological Science and Technology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
44
|
Kulkarni H, Mamtani M, Blangero J, Curran JE. Lipidomics in the Study of Hypertension in Metabolic Syndrome. Curr Hypertens Rep 2017; 19:7. [DOI: 10.1007/s11906-017-0705-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B. Comprehensive review of trends and analytical strategies applied for biological samples preparation and storage in modern medical lipidomics: State of the art. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Syme C, Czajkowski S, Shin J, Abrahamowicz M, Leonard G, Perron M, Richer L, Veillette S, Gaudet D, Strug L, Wang Y, Xu H, Taylor G, Paus T, Bennett S, Pausova Z. Glycerophosphocholine Metabolites and Cardiovascular Disease Risk Factors in Adolescents: A Cohort Study. Circulation 2016; 134:1629-1636. [PMID: 27756781 DOI: 10.1161/circulationaha.116.022993] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glycerophosphocholine (GPC) metabolites modulate atherosclerosis and thus risk for cardiovascular disease (CVD). Preclinical CVD may start during adolescence. Here, we used targeted serum lipidomics to identify a new panel of GPCs, and tested whether any of these GPCs are associated, in adolescence, with classical risk factors of CVD, namely excess visceral fat (VF), elevated blood pressure, insulin resistance, and atherogenic dyslipidemia. METHODS We studied a population-based sample of 990 adolescents (12-18 years, 48% male), as part of the Saguenay Youth Study. Using liquid chromatography-electrospray ionization-mass spectrometry, we identified 69 serum GPCs within the 450 to 680 m/z range. We measured VF with MRI. RESULTS We identified several novel GPCs that were associated with multiple CVD risk factors. Most significantly, PC16:0/2:0 was negatively associated with VF (P=1.4×10-19), blood pressure (P=7.7×10-5), and fasting triacylglycerols (P=9.0×10-5), and PC14:1/0:0 was positively associated with VF (P=3.0×10-7), fasting insulin (P=5.4×10-32), and triacylglycerols (P=1.4×10-29). The Sobel test of mediation revealed that both GPCs mediated their respective relations between VF (as a potential primary exposure) and CVD risk factors (as outcomes, P values<1.3×10-3). Furthermore, a GPC shown recently to predict incident coronary heart disease in older adults, PC18:2/0:0, was associated with several CVD risk factors in adolescents; these associations were less strong than those with the newly identified GPCs. CONCLUSIONS We identified novel GPCs strongly associated with multiple CVD risk factors in adolescents. These GPCs may be sensitive indicators of obesity-related risk for CVD outcomes in adults, and may improve biological understanding of CVD risk.
Collapse
Affiliation(s)
- Catriona Syme
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Simon Czajkowski
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Jean Shin
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Michal Abrahamowicz
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Gabriel Leonard
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Michel Perron
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Louis Richer
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Suzanne Veillette
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Daniel Gaudet
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Lisa Strug
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Yun Wang
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Hongbin Xu
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Graeme Taylor
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Tomas Paus
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Steffany Bennett
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.)
| | - Zdenka Pausova
- From Hospital for Sick Children, University of Toronto, Canada (C.S., S.C., J.S., L.S., Z.P.); Departments of Physiology and Nutritional Sciences, University of Toronto, Canada (C.S., S.C., J.S., Z.P.); Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada (M.A.); Montreal Neurological Institute, McGill University, Canada (G.L.); Department of Human Sciences, Université du Québec à Chicoutimi, Canada (M.P., S.V.); Department of Health Sciences Université du Québec à Chicoutimi, Canada (L.R.); Community Genomic Centre, Université de Montréal, Chicoutimi, Canada (D.G.); Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Canada (Y.W., H.X., G.T., S.B.); Rotman Research Institute, Baycrest, Toronto, Canada (T.P.); and Departments of Psychology and Psychiatry, University of Toronto, Canada (T.P.).
| |
Collapse
|
47
|
Affiliation(s)
- Raimund Pechlaner
- From Department of Neurology, Medical University of Innsbruck, Austria (R.P., S.K.); and King's British Heart Foundation Centre, King's College London, United Kingdom (M.M.)
| | - Stefan Kiechl
- From Department of Neurology, Medical University of Innsbruck, Austria (R.P., S.K.); and King's British Heart Foundation Centre, King's College London, United Kingdom (M.M.)
| | - Manuel Mayr
- From Department of Neurology, Medical University of Innsbruck, Austria (R.P., S.K.); and King's British Heart Foundation Centre, King's College London, United Kingdom (M.M.).
| |
Collapse
|
48
|
Abstract
The vasculature is essential for proper organ function. Many pathologies are directly and indirectly related to vascular dysfunction, which causes significant morbidity and mortality. A common pathophysiological feature of diseased vessels is extracellular matrix (ECM) remodelling. Analysing the protein composition of the ECM by conventional antibody-based techniques is challenging; alternative splicing or post-translational modifications, such as glycosylation, can mask epitopes required for antibody recognition. By contrast, proteomic analysis by mass spectrometry enables the study of proteins without the constraints of antibodies. Recent advances in proteomic techniques make it feasible to characterize the composition of the vascular ECM and its remodelling in disease. These developments may lead to the discovery of novel prognostic and diagnostic markers. Thus, proteomics holds potential for identifying ECM signatures to monitor vascular disease processes. Furthermore, a better understanding of the ECM remodelling processes in the vasculature might make ECM-associated proteins more attractive targets for drug discovery efforts. In this review, we will summarize the role of the ECM in the vasculature. Then, we will describe the challenges associated with studying the intricate network of ECM proteins and the current proteomic strategies to analyse the vascular ECM in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- M Lynch
- King's British Heart Foundation Centre, King's College London, London, UK
| | | | | | - M Mayr
- King's British Heart Foundation Centre, King's College London, London, UK.
| |
Collapse
|
49
|
Yang K, Han X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem Sci 2016; 41:954-969. [PMID: 27663237 DOI: 10.1016/j.tibs.2016.08.010] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022]
Abstract
Lipidomics is a newly emerged discipline that studies cellular lipids on a large scale based on analytical chemistry principles and technological tools, particularly mass spectrometry. Recently, techniques have greatly advanced and novel applications of lipidomics in the biomedical sciences have emerged. This review provides a timely update on these aspects. After briefly introducing the lipidomics discipline, we compare mass spectrometry-based techniques for analysis of lipids and summarize very recent applications of lipidomics in health and disease. Finally, we discuss the status of the field, future directions, and advantages and limitations of the field.
Collapse
Affiliation(s)
- Kui Yang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA; College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
50
|
Fitó M, Melander O, Martínez JA, Toledo E, Carpéné C, Corella D. Advances in Integrating Traditional and Omic Biomarkers When Analyzing the Effects of the Mediterranean Diet Intervention in Cardiovascular Prevention. Int J Mol Sci 2016; 17:E1469. [PMID: 27598147 PMCID: PMC5037747 DOI: 10.3390/ijms17091469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/08/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
Intervention with Mediterranean diet (MedDiet) has provided a high level of evidence in primary prevention of cardiovascular events. Besides enhancing protection from classical risk factors, an improvement has also been described in a number of non-classical ones. Benefits have been reported on biomarkers of oxidation, inflammation, cellular adhesion, adipokine production, and pro-thrombotic state. Although the benefits of the MedDiet have been attributed to its richness in antioxidants, the mechanisms by which it exercises its beneficial effects are not well known. It is thought that the integration of omics including genomics, transcriptomics, epigenomics, and metabolomics, into studies analyzing nutrition and cardiovascular diseases will provide new clues regarding these mechanisms. However, omics integration is still in its infancy. Currently, some single-omics analyses have provided valuable data, mostly in the field of genomics. Thus, several gene-diet interactions in determining both intermediate (plasma lipids, etc.) and final cardiovascular phenotypes (stroke, myocardial infarction, etc.) have been reported. However, few studies have analyzed changes in gene expression and, moreover very few have focused on epigenomic or metabolomic biomarkers related to the MedDiet. Nevertheless, these preliminary results can help to better understand the inter-individual differences in cardiovascular risk and dietary response for further applications in personalized nutrition.
Collapse
Affiliation(s)
- Montserrat Fitó
- Cardiovascular Risk and Nutrition Research (REGICOR Group), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
| | - Olle Melander
- Department of Clinical Sciences, Lund University, 22100 Lund, Sweden.
- Department of Internal Medicine, Skåne University Hospital, 22241 Lund, Sweden.
| | - José Alfredo Martínez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Department of Nutrition and Food Sciences, University of Navarra, 31009 Pamplona, Spain.
| | - Estefanía Toledo
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, University of Navarra, 31009 Pamplona, Spain.
| | - Christian Carpéné
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Rangueil Hospital, 31442 Toulouse, France.
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|