1
|
McLean S, Lee M, Liu W, Hameed R, Gujjala VA, Zhou X, Kaeberlein M, Kaya A. Molecular mechanisms of genotype-dependent lifespan variation mediated by caloric restriction: insight from wild yeast isolates. FRONTIERS IN AGING 2024; 5:1408160. [PMID: 39055969 PMCID: PMC11269085 DOI: 10.3389/fragi.2024.1408160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024]
Abstract
Caloric restriction (CR) is known to extend lifespan across different species and holds great promise for preventing human age-onset pathologies. However, two major challenges exist. First, despite extensive research, the mechanisms of lifespan extension in response to CR remain elusive. Second, genetic differences causing variations in response to CR and genetic factors contributing to variability of CR response on lifespan are largely unknown. Here, we took advantage of natural genetic variation across 46 diploid wild yeast isolates of Saccharomyces species and the lifespan variation under CR conditions to uncover the molecular factors associated with CR response types. We identified genes and metabolic pathways differentially regulated in CR-responsive versus non-responsive strains. Our analysis revealed that altered mitochondrial function and activation of GCN4-mediated environmental stress response are inevitably linked to lifespan variation in response to CR and a unique mitochondrial metabolite might be utilized as a predictive marker for CR response rate. In sum, our data suggests that the effects of CR on longevity may not be universal, even among the closely related species or strains of a single species. Since mitochondrial-mediated signaling pathways are evolutionarily conserved, the dissection of related genetic pathways will be relevant to understanding the mechanism by which CR elicits its longevity effect.
Collapse
Affiliation(s)
- Samantha McLean
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Mitchell Lee
- Department of Pathology, University of Washington, Seattle, WA, United States
- Ora Biomedical, Seattle, WA, United States
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Rohil Hameed
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Vikas Anil Gujjala
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, United States
- Optispan, Seattle, WA, United States
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
2
|
McLean S, Lee M, Liu W, Hameed R, Gujjala VA, Zhou X, Kaeberlein M, Kaya A. Molecular Mechanisms of Genotype-Dependent Lifespan Variation Mediated by Caloric Restriction: Insight from Wild Yeast Isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585422. [PMID: 38559208 PMCID: PMC10979966 DOI: 10.1101/2024.03.17.585422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Caloric restriction (CR) is known to extend lifespan across different species and holds great promise for preventing human age-onset pathologies. However, two major challenges exist. First, despite extensive research, the mechanisms of lifespan extension in response to CR remain elusive. Second, genetic differences causing variations in response to CR and genetic factors contributing to variability of CR response on lifespan are largely unknown. Here, we took advantage of natural genetic variation across 46 diploid wild yeast isolates of Saccharomyces species and the lifespan variation under CR conditions to uncover the molecular factors associated with CR response types. We identified genes and metabolic pathways differentially regulated in CR-responsive versus non-responsive strains. Our analysis revealed that altered mitochondrial function and activation of GCN4-mediated environmental stress response are inevitably linked to lifespan variation in response to CR and a unique mitochondrial metabolite might be utilized as a predictive marker for CR response rate. In sum, our data suggests that the effects of CR on longevity may not be universal, even among the closely related species or strains of a single species. Since mitochondrial-mediated signaling pathways are evolutionarily conserved, the dissection of related genetic pathways will be relevant to understanding the mechanism by which CR elicits its longevity effect.
Collapse
Affiliation(s)
- Samantha McLean
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Mitchell Lee
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
- Ora Biomedical, Seattle, WA, 98168, USA
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Rohil Hameed
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vikas Anil Gujjala
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
- Optispan, Seattle, WA, 98168, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
3
|
Chen C, Zheng Y, Wu Y, Zheng K, Wang Y, Huang C, Guo J, Qi Y, Chen X, Tao Q, Zhai J, Han P, Pan Y, Guo Q. The association between time-restricted eating and arterial stiffness status in community-dwelling elderly Chinese individuals. Nutr Metab Cardiovasc Dis 2024; 34:1217-1225. [PMID: 38418352 DOI: 10.1016/j.numecd.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND AIMS Emerging studies indicate that time-restricted eating (TRE) may protect against cardiovascular disease (CVD); however, studies performed in elderly adults are limited. This study aimed to analyze the association of TRE with arterial stiffness (AS) in community-dwelling elderly Chinese individuals. METHODS AND RESULTS This cross-sectional study recruited 3487 participants aged ≥60 y from Shanghai, China. TRE was determined by calculating the end time of the last meal minus the start time of the first meal of the average day. Participants were then categorized into those with a time-restricted window lasting ≤11 h (TRE) and >11 h (non-TRE). The mean age of the sample was 71.78 ± 5.75 y, and 41.2 % were men. Having a TRE pattern was 72.2 %. In the logistic analysis, TRE was associated with borderline arterial stiffness (OR = 1.419; 95 % CI = 1.077-1.869) and elevated arterial stiffness (OR = 1.699; 95 % CI = 1.276-2.263). In a subgroup analysis, the significance remained in the group at risk of malnutrition (with borderline arterial stiffness: OR = 2.270; 95 % CI = 1.229-4.190; with elevated arterial stiffness: OR = 2.459; 95 % CI = 1.287-4.700), while in well-nourished participants, the association only remained with elevated arterial stiffness (OR = 1.530; 95 % CI = 1.107-2.115) and not with borderline arterial stiffness. CONCLUSIONS TRE is a risk factor for both borderline and elevated arterial stiffness in community-dwelling Chinese individuals and varies by nutritional status. (Protocol code 2019-WJWXM-04-310108196508064467.).
Collapse
Affiliation(s)
- Cheng Chen
- School of Health, Fujian Medical University, Fujian, China; College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | | | - Yahui Wu
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Zheng
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chuanjun Huang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiangling Guo
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqiong Qi
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China; Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xiaoyu Chen
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiongying Tao
- Jiading Subdistrict Community Health Center, Shanghai, China
| | - Jiayi Zhai
- Jiading Subdistrict Community Health Center, Shanghai, China
| | - Peipei Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Yanxia Pan
- School of Health, Fujian Medical University, Fujian, China.
| | - Qi Guo
- School of Health, Fujian Medical University, Fujian, China; Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
| |
Collapse
|
4
|
Dou P, Zhang TT, Xu Y, Xue Q, Zhang Y, Shang J, Yang XL. A Randomized Trial of the Efficacy of Three Weight Loss Diet Interventions in Overweight/Obese with Polycystic Ovary Syndrome. Endocr Metab Immune Disord Drug Targets 2024; 24:1686-1697. [PMID: 38988067 DOI: 10.2174/0118715303286777240223074922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is a highly prevalent, complex, heterogeneous, polygenic endocrine disorder characterized by metabolic and reproductive dysfunction that affects 8-13% of women of reproductive age worldwide. The pathogenesis of PCOS has not been fully clarified and includes genetics, obesity, and insulin resistance (IR). Oxidative stress (OS) of PCOS is independent of obesity. It can induce IR through post-insulin receptor defects, impair glucose uptake in muscle and adipose tissue, and exacerbate IR by reducing insulin secretion from pancreatic β-cells. OBJECTIVE To investigate the effects of Calorie Restricted Diet (CRD), High Protein Diet (HPD), and High Protein and High Dietary Fiber Diet (HPD+HDF) on body composition, insulin resistance, and oxidative stress in overweight/obese PCOS patients. METHODS A total of 90 overweight/obese patients with PCOS were selected to receive an 8- week medical nutrition weight loss intervention at our First Hospital of Peking University, and we randomly divided them into the CRD group (group A), the HPD group (group B), and the HPD+HDF group (group C), with 30 patients in each group. We measured their body composition, HOMA-IR index, and oxidative stress indicators. The t-test, Mann-Whitney U test, analysis of variance (ANOVA), and Kruskal-Wallis H test were used to compare the efficacy of the three methods. RESULTS After eight weeks, the body weights of the three groups decreased by 6.32%, 5.70% and 7.24%, respectively, and the Visceral Fat Area (VFA) values decreased by 6.8 cm2, 13.4 cm2 and 23.45 cm2, respectively, especially in group C (p <0.05). The lean body mass (LBM), also known as the Fat-Free Mass (FFM) values of group B and group C after weight loss, were higher than that of group A (p <0.05). After weight loss, the homeostatic model assessment of insulin resistance (HOMA-IR) index and malondialdehyde (MDA) were decreased. Superoxide dismutase (SOD) was increased in all three groups (p <0.05), and the changes in SOD and MDA in group B and group C were more significant (p <0.05). HOMA-IR index positively correlated with body mass index (BMI) (r=0.195; p <0.05); MDA positively correlated with percent of body fat (PBF) (r=0.186; p <0.05) and HOMA-IR index (r=0.422; p <0.01); SOD positively correlated with LMI/FFMI (r=0.195; p <0.05), negatively correlated with HOMA-IR index (r=-0.433; p <0.01). CONCLUSION All three diets were effective in reducing the body weight of overweight/obese patients with PCOS by more than 5% within 8 weeks and could improve both insulin resistance and oxidative stress damage. Compared with CRD, HPD and HPD+HDF diets could better retain lean body mass and significantly improve oxidative stress damage.
Collapse
Affiliation(s)
- Pan Dou
- Department of Clinical Nutrition, Peking University First Hospital, Beijing, 100034, China
| | - Ting-Ting Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yang Xu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yangyang Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jing Shang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xiu-Li Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
5
|
Sara JDS, Lerman LO, Lerman A. What Can Biologic Aging Tell Us About the Effects of Mental Stress on Vascular Health. Hypertension 2023; 80:2515-2522. [PMID: 37814855 DOI: 10.1161/hypertensionaha.123.19418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Cardiovascular disease is often a disease of aging. Considerable advances in our understanding of the biological mechanisms of aging have been made; yet, cardiovascular disease remains the leading cause of death in the United States urging a continued search for novel risk factors to target for preventing and treating disease. Mental stress (MS) is emerging as an important risk factor, and while progress has been made in understanding the link between MS and cardiovascular disease, the precise mechanisms of a putative causal relationship require greater clarification. In the current review, we (1) summarize our current understanding of the pathological effects of MS on vascular health; (2) describe important aspects of the pathobiology of vascular aging including inflammation, oxidative stress, mitochondrial dysfunction as well as novel processes such as genomic instability, epigenetic alterations, and nutrient signal pathways; (3) highlight similarities in the downstream biologic effects of aging and MS on vascular health with an emphasis on cellular and molecular processes that could be used to develop novel prognostic markers and treatment strategies for cardiovascular disease; (4) discuss lifestyle and pharmacological methods that target indicators of aging whose role could be translated into approaches managing the effects of MS; and (5) outline important future steps that should be considered in this area of research including the need for prospective clinical trials and for creating greater collaboration between preclinical aging researchers and clinical investigators managing MS.
Collapse
Affiliation(s)
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (L.O.L.)
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo College of Medicine, Rochester, MN (J.D.S.S., A.L.)
| |
Collapse
|
6
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Ahn JS, Mahbub NU, Kim S, Kim HB, Choi JS, Chung HJ, Hong ST. Nectandrin B significantly increases the lifespan of Drosophila - Nectandrin B for longevity. Aging (Albany NY) 2023; 15:12749-12762. [PMID: 37983180 DOI: 10.18632/aging.205234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Phytochemicals are increasingly recognized in the field of healthy aging as potential therapeutics against various aging-related diseases. Nutmeg, derived from the Myristica fragrans tree, is an example. Nutmeg has been extensively studied and proven to possess antioxidant properties that protect against aging and alleviate serious diseases such as cancer, heart disease, and liver disease. However, the specific active ingredient in nutmeg responsible for these health benefits has not been identified thus far. In this study, we present evidence that Nectandrin B (NecB), a bioactive lignan compound isolated from nutmeg, significantly extended the lifespan of the fruit fly Drosophila melanogaster by as much as 42.6% compared to the control group. NecB also improved age-related symptoms including locomotive deterioration, body weight gain, eye degeneration, and neurodegeneration in aging D. melanogaster. This result represents the most substantial improvement in lifespan observed in animal experiments to date, suggesting that NecB may hold promise as a potential therapeutic agent for promoting longevity and addressing age-related degeneration.
Collapse
Affiliation(s)
- Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Sura Kim
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Han-Byeol Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
- College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|
8
|
Melo DDS, Costa Pereira L, Santos CS, Mendes BF, Konig IFM, Garcia BCC, Queiroz IP, Moreno LG, Cassilhas RC, Esteves EA, Vieira ER, Magalhães FDC, Capettini LDSA, Sousa RALD, Sampaio KH, Dias Peixoto MF. Intense Caloric Restriction from Birth Prevents Cardiovascular Aging in Rats. Rejuvenation Res 2023; 26:194-205. [PMID: 37694594 DOI: 10.1089/rej.2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
We previously demonstrated that a 50% caloric restriction (CR) from birth improves several cardiometabolic risk factors in young rats. In this study, we investigated in middle-aged rats the consequences of a 50% CR from birth on cardiometabolic risk factors, heart function/morphology, ventricular arrhythmia, and fibrillation incidence, and cardiac intracellular proteins involved with redox status and cell survival. From birth to the age of 18 months, rats were divided into an Ad Libitum (AL18) group, which had free access to food, and a CR18 group, which had food limited to 50% of that consumed by the AL18. Resting metabolic rate, blood pressure, and heart rate were recorded, and oral glucose and intraperitoneal insulin tolerance tests were performed. Blood was collected for biochemical analyses, and visceral fat and liver were harvested and weighed. Hearts were harvested for cardiac function, histological, redox status, and western blot analyses. The 50% CR from birth potentially reduced several cardiometabolic risk factors in 18-month-old rats. Moreover, compared with AL18, the CR18 group showed a ∼50% increase in cardiac contractility and relaxation, nearly three to five times less incidence of ventricular arrhythmia and fibrillation, ∼18% lower cardiomyocyte diameter, and ∼60% lower cardiac fibrosis. CR18 hearts also improved biomarkers of antioxidant defense and cell survival. Collectively, these results reveal several metabolic and cardiac antiaging effects of a 50% CR from birth in middle-aged rats.
Collapse
Affiliation(s)
- Dirceu de Sousa Melo
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Liliane Costa Pereira
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Carina Sousa Santos
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Bruno Ferreira Mendes
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Bruna Caroline Chaves Garcia
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ilkilene Pinheiro Queiroz
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Lauane Gomes Moreno
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ricardo Cardoso Cassilhas
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Elizabethe Adriana Esteves
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Etel Rocha Vieira
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Flávio de Castro Magalhães
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Ricardo Augusto Leoni De Sousa
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Kinulpe Honorato Sampaio
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Marco Fabrício Dias Peixoto
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| |
Collapse
|
9
|
Sharma A, Singh AK. Molecular mechanism of caloric restriction mimetics-mediated neuroprotection of age-related neurodegenerative diseases: an emerging therapeutic approach. Biogerontology 2023; 24:679-708. [PMID: 37428308 DOI: 10.1007/s10522-023-10045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Aging-induced neurodegenerative diseases (NDs) are significantly increasing health problem worldwide. It has been well documented that oxidative stress is one of the potential causes of aging and age-related NDs. There are no drugs for the treatment of NDs, therefore there is an immediate necessity for the development of strategies/treatments either to prevent or cure age-related NDs. Caloric restriction (CR) and intermittent fasting have been considered as effective strategies in increasing the healthspan and lifespan, but it is difficult to adhere to these routines strictly, which has led to the development of calorie restriction mimetics (CRMs). CRMs are natural compounds that provide similar molecular and biochemical effects of CR, and activate autophagy process. CRMs have been reported to regulate redox signaling by enhancing the antioxidant defense systems through activation of the Nrf2 pathway, and inhibiting ROS generation through attenuation of mitochondrial dysfunction. Moreover, CRMs also regulate redox-sensitive signaling pathways such as the PI3K/Akt and MAPK pathways to promote neuronal cell survival. Here, we discuss the neuroprotective effects of various CRMs at molecular and cellular levels during aging of the brain. The CRMs are envisaged to become a cornerstone of the pharmaceutical arsenal against aging and age-related pathologies.
Collapse
Affiliation(s)
- Apoorv Sharma
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
10
|
Boccardi V, Pigliautile M, Guazzarini AG, Mecocci P. The Potential of Fasting-Mimicking Diet as a Preventive and Curative Strategy for Alzheimer's Disease. Biomolecules 2023; 13:1133. [PMID: 37509169 PMCID: PMC10377404 DOI: 10.3390/biom13071133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This review examines the potential of fasting-mimicking diets (FMDs) in preventing and treating Alzheimer's disease (AD). FMDs are low-calorie diets that mimic the physiological and metabolic effects of fasting, including the activation of cellular stress response pathways and autophagy. Recent studies have shown that FMDs can reduce amyloid-beta accumulation, tau phosphorylation, and inflammation, as well as improve cognitive function in animal models of AD. Human studies have also reported improvements in AD biomarkers, cognitive functions, and subjective well-being measures following FMDs. However, the optimal duration and frequency of FMDs and their long-term safety and efficacy remain to be determined. Despite these uncertainties, FMDs hold promise as a non-pharmacological approach to AD prevention and treatment, and further research in this area is warranted.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Martina Pigliautile
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Anna Giulia Guazzarini
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Patrizia Mecocci
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
11
|
Alinezhad‐Namaghi M, Eslami S, Nematy M, Rezvani R, Khoshnasab A, Bonakdaran S, Philippou E, Norouzy A. Association of time-restricted feeding, arterial age, and arterial stiffness in adults with metabolic syndrome. Health Sci Rep 2023; 6:e1385. [PMID: 37408869 PMCID: PMC10318230 DOI: 10.1002/hsr2.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023] Open
Abstract
Background Time-restricted feeding (TRF) is a kind of intermittent fasting defined as eating and drinking only during a certain number of hours in a day. It has been suggested that intermittent fasting may improve cardiovascular risk factors. This study evaluated the association of TRF and arterial stiffness, using pulse wave velocity (PWV), pulse wave analysis, and arterial age in metabolic syndrome participants. Methods A cohort study was carried out among metabolic syndrome adults who were followed over the Ramadan fasting period (used as a model of TRF since food was only allowed for about 8 h/day). The subjects were divided into Ramadan fasting and Ramadan nonfasting groups. The aortic PWV and central aortic pressure waveform were measured. Central systolic pressure, central pulse pressure, and indices of arterial compliance, such as augmentation pressure and augmentation index (AIx), were determined from waveform analysis. Results Ninety-five adults (31.57% female, age: 45.46 ± 9.10 years) with metabolic syndrome (based on the International Diabetes Federation definition) participated in this study. Ramadan fasting and Ramadan nonfasting groups were including 80 and 15 individuals respectively. A significant reduction was seen in PWV (0.29 m/s), central systolic pressure (4.03 mmHg), central pulse pressure (2.43 mmHg), central augmentation pressure (1.88 mmHg), and central AIx (2.47) in the Ramadan fasting group (p = 0.014, p < 0.001, p = 0.001, p = 0.003, and p = 0.036 respectively). There were no significant changes in these indices among the Ramadan nonfasting group. Conclusions This study suggested that TRF reduces arterial age and improves arterial stiffness among people with metabolic syndrome. This might be considered a beneficial nutrition strategy for extending healthspan (and perhaps longevity).
Collapse
Affiliation(s)
- Maryam Alinezhad‐Namaghi
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saeid Eslami
- Pharmaceutical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mohsen Nematy
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Reza Rezvani
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Adeleh Khoshnasab
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Shokoofeh Bonakdaran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Elena Philippou
- Department of Life and Health Sciences, School of Sciences and EngineeringUniversity of NicosiaCyprus
- Department of Nutritional SciencesKing's CollegeLondonUK
| | - Abdolreza Norouzy
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
12
|
Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A Role for Advanced Glycation End Products in Molecular Ageing. Int J Mol Sci 2023; 24:9881. [PMID: 37373042 PMCID: PMC10298716 DOI: 10.3390/ijms24129881] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ageing is a composite process that involves numerous changes at the cellular, tissue, organ and whole-body levels. These changes result in decreased functioning of the organism and the development of certain conditions, which ultimately lead to an increased risk of death. Advanced glycation end products (AGEs) are a family of compounds with a diverse chemical nature. They are the products of non-enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids and are synthesised in high amounts in both physiological and pathological conditions. Accumulation of these molecules increases the level of damage to tissue/organs structures (immune elements, connective tissue, brain, pancreatic beta cells, nephrons, and muscles), which consequently triggers the development of age-related diseases, such as diabetes mellitus, neurodegeneration, and cardiovascular and kidney disorders. Irrespective of the role of AGEs in the initiation or progression of chronic disorders, a reduction in their levels would certainly provide health benefits. In this review, we provide an overview of the role of AGEs in these areas. Moreover, we provide examples of lifestyle interventions, such as caloric restriction or physical activities, that may modulate AGE formation and accumulation and help to promote healthy ageing.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
13
|
Lu C, Zhao H, Liu Y, Yang Z, Yao H, Liu T, Gou T, Wang L, Zhang J, Tian Y, Yang Y, Zhang H. Novel Role of the SIRT1 in Endocrine and Metabolic Diseases. Int J Biol Sci 2023; 19:484-501. [PMID: 36632457 PMCID: PMC9830516 DOI: 10.7150/ijbs.78654] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Silent information regulator 1 (SIRT1), a highly conserved NAD+-dependent deacetylase, is a cellular regulator that has received extensive attention in recent years and regarded as a sensor of cellular energy and metabolism. The accumulated evidence suggests that SIRT1 is involved in the development of endocrine and metabolic diseases. In a variety of organisms, SIRT1 regulates gene expression through the deacetylation of histone, transcription factors, and lysine residues of other modified proteins including several metabolic and endocrine signal transcription factors, thereby enhancing the therapeutic effects of endocrine and metabolic diseases. These evidences indicate that targeting SIRT1 has promising applications in the treatment of endocrine and metabolic diseases. This review focuses on the role of SIRT1 in endocrine and metabolic diseases. First, we describe the background and structure of SIRT1. Then, we outline the role of SIRT1 in endocrine and metabolic diseases such as hyperuricemia, diabetes, hypertension, hyperlipidemia, osteoporosis, and polycystic ovarian syndrome. Subsequently, the SIRT1 agonists and inhibitors in the above diseases are summarized and future research directions are proposed. Overall, the information presents here may highlight the potential of SIRT1 as a future biomarker and therapeutic target for endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Chenxi Lu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yanqing Liu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Hairong Yao
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Tong Liu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Tiantian Gou
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Li Wang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Juan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,✉ Corresponding authors: Yang Yang: . Huan Zhang: . Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,✉ Corresponding authors: Yang Yang: . Huan Zhang: . Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| |
Collapse
|
14
|
Circadian clock controls rhythms in ketogenesis by interfering with PPARα transcriptional network. Proc Natl Acad Sci U S A 2022; 119:e2205755119. [PMID: 36161962 PMCID: PMC9546578 DOI: 10.1073/pnas.2205755119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ketone bodies are energy-rich metabolites and signaling molecules whose production is mainly regulated by diet. Caloric restriction (CR) is a dietary intervention that improves metabolism and extends longevity across the taxa. We found that CR induced high-amplitude daily rhythms in blood ketone bodies (beta-hydroxybutyrate [βOHB]) that correlated with liver βOHB level. Time-restricted feeding, another periodic fasting-based diet, also led to rhythmic βOHB but with reduced amplitude. CR induced strong circadian rhythms in the expression of fatty acid oxidation and ketogenesis genes in the liver. The transcriptional factor peroxisome-proliferator-activated-receptor α (PPARα) and its transcriptional target hepatokine fibroblast growth factor 21 (FGF21) are primary regulators of ketogenesis. Fgf21 expression and the PPARα transcriptional network became highly rhythmic in the CR liver, which implicated the involvement of the circadian clock. Mechanistically, the circadian clock proteins CLOCK, BMAL1, and cryptochromes (CRYs) interfered with PPARα transcriptional activity. Daily rhythms in the blood βOHB level and in the expression of PPARα target genes were significantly impaired in circadian clock-deficient Cry1,2-/- mice. These data suggest that blood βOHB level is tightly controlled and that the circadian clock is a regulator of diet-induced ketogenesis.
Collapse
|
15
|
Yin L, Gregg AC, Riccio AM, Hoyt N, Islam ZH, Ahn J, Le Q, Patel P, Zhang M, He X, McKinney M, Kent E, Wang B. Dietary therapy in abdominal aortic aneurysm - Insights from clinical and experimental studies. Front Cardiovasc Med 2022; 9:949262. [PMID: 36211542 PMCID: PMC9532600 DOI: 10.3389/fcvm.2022.949262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 02/03/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent vascular disease with high mortality rates upon rupture. Despite its prevalence in elderly populations, there remain limited treatment options; invasive surgical repair, while risky, is the only therapeutic intervention with proven clinical benefits. Dietary factors have long been suggested to be closely associated with AAA risks, and dietary therapies recently emerged as promising avenues to achieve non-invasive management of a wide spectrum of diseases. However, the role of dietary therapies in AAA remains elusive. In this article, we will summarize the recent clinical and pre-clinical efforts in understanding the therapeutic and mechanistic implications of various dietary patterns and therapeutic approaches in AAA.
Collapse
Affiliation(s)
- Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | | | - Alessandra Marie Riccio
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States,School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Zain Hussain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jungeun Ahn
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Quang Le
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Paranjay Patel
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Xinran He
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Matthew McKinney
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Eric Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Bowen Wang
| |
Collapse
|
16
|
Rubio C, López-López F, Rojas-Hernández D, Moreno W, Rodríguez-Quintero P, Rubio-Osornio M. Caloric restriction: Anti-inflammatory and antioxidant mechanisms against epileptic seizures. Epilepsy Res 2022; 186:107012. [PMID: 36027691 DOI: 10.1016/j.eplepsyres.2022.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Caloric restriction (CR) possesses different cellular mechanisms. Though there are still gaps in the literature regarding its plausible beneficial effects, the suggestion that this alternative therapy can improve the inflammatory and antioxidant response to control epileptic seizures is explored throughout this study. Epilepsy is the second most prevalent neurodegenerative disease in the world. However, the appropriate mechanisms for it to be fully controlled are still unknown. Neuroinflammation and oxidative stress promote epileptic seizures' appearance and might even aggravate them. There is growing evidence that caloric restriction has extensive anti-inflammatory and antioxidant properties. For instance, nuclear factor erythroid 2-related factor 2 (Nrf2) and all-trans retinoic acid (ATRA) have been proposed to induce antioxidant processes and ulteriorly improve the disease progression. Caloric restriction can be an option for those patients with refractory epilepsy since it allows for anti-inflammatory and antioxidant properties to evolve within the brain areas involved.
Collapse
Affiliation(s)
- Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico
| | - Felipe López-López
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Facultad de Medicina, Universidad Autónoma de Baja California, Campus Mexicali, Mexico
| | - Daniel Rojas-Hernández
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico
| | - Wilhelm Moreno
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Paola Rodríguez-Quintero
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Mexico; Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Moisés Rubio-Osornio
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico.
| |
Collapse
|
17
|
Impact of Non-Pharmacological Interventions on the Mechanisms of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23169097. [PMID: 36012362 PMCID: PMC9409393 DOI: 10.3390/ijms23169097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis remains the leading cause of mortality and morbidity worldwide characterized by the deposition of lipids and fibrous elements in the form of atheroma plaques in vascular areas which are hemodynamically overloaded. The global burden of atherosclerotic cardiovascular disease is steadily increasing and is considered the largest known non-infectious pandemic. The management of atherosclerotic cardiovascular disease is increasing the cost of health care worldwide, which is a concern for researchers and physicians and has caused them to strive to find effective long-term strategies to improve the efficiency of treatments by managing conventional risk factors. Primary prevention of atherosclerotic cardiovascular disease is the preferred method to reduce cardiovascular risk. Fasting, a Mediterranean diet, and caloric restriction can be considered useful clinical tools. The protective impact of physical exercise over the cardiovascular system has been studied in recent years with the intention of explaining the mechanisms involved; the increase in heat shock proteins, antioxidant enzymes and regulators of cardiac myocyte proliferation concentration seem to be the molecular and biochemical shifts that are involved. Developing new therapeutic strategies such as vagus nerve stimulation, either to prevent or slow the disease’s onset and progression, will surely have a profound effect on the lives of millions of people.
Collapse
|
18
|
Fabianová K, Babeľová J, Fabian D, Popovičová A, Martončíková M, Raček A, Račeková E. Maternal High-Energy Diet during Pregnancy and Lactation Impairs Neurogenesis and Alters the Behavior of Adult Offspring in a Phenotype-Dependent Manner. Int J Mol Sci 2022; 23:ijms23105564. [PMID: 35628378 PMCID: PMC9146615 DOI: 10.3390/ijms23105564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is one of the biggest and most costly health challenges the modern world encounters. Substantial evidence suggests that the risk of metabolic syndrome or obesity formation may be affected at a very early stage of development, in particular through fetal and/or neonatal overfeeding. Outcomes from epidemiological studies indicate that maternal nutrition during pregnancy and lactation has a profound impact on adult neurogenesis in the offspring. In the present study, an intergenerational dietary model employing overfeeding of experimental mice during prenatal and early postnatal development was applied to acquire mice with various body conditions. We investigated the impact of the maternal high-energy diet during pregnancy and lactation on adult neurogenesis in the olfactory neurogenic region involving the subventricular zone (SVZ) and the rostral migratory stream (RMS) and some behavioral tasks including memory, anxiety and nociception. Our findings show that a maternal high-energy diet administered during pregnancy and lactation modifies proliferation and differentiation, and induced degeneration of cells in the SVZ/RMS of offspring, but only in mice where extreme phenotype, such as significant overweight/adiposity or obesity is manifested. Thereafter, a maternal high-energy diet enhances anxiety-related behavior in offspring regardless of its body condition and impairs learning and memory in offspring with an extreme phenotype.
Collapse
Affiliation(s)
- Kamila Fabianová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
- Correspondence:
| | - Janka Babeľová
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Dušan Fabian
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Alexandra Popovičová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Marcela Martončíková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Adam Raček
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| |
Collapse
|
19
|
The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis. Nutrients 2021; 13:nu13113843. [PMID: 34836100 PMCID: PMC8621306 DOI: 10.3390/nu13113843] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is an additional special type of adipose tissue surrounding blood vessels. Under physiological conditions, PVAT plays a significant role in regulation of vascular tone, intravascular thermoregulation, and vascular smooth muscle cell (VSMC) proliferation. PVAT is responsible for releasing adipocytes-derived relaxing factors (ADRF) and perivascular-derived relaxing factors (PDRF), which have anticontractile properties. Obesity induces increased oxidative stress, an inflammatory state, and hypoxia, which contribute to PVAT dysfunction. The exact mechanism of vascular dysfunction in obesity is still not well clarified; however, there are some pathways such as renin-angiotensin-aldosterone system (RAAS) disorders and PVAT-derived factor dysregulation, which are involved in hypertension and endothelial dysfunction development. Physical activity has a beneficial effect on PVAT function among obese patients by reducing the oxidative stress and inflammatory state. Diet, which is the second most beneficial non-invasive strategy in obesity treatment, may have a positive impact on PVAT-derived factors and may restore the balance in their concentration.
Collapse
|
20
|
Ding YN, Wang HY, Chen HZ, Liu DP. Targeting senescent cells for vascular aging and related diseases. J Mol Cell Cardiol 2021; 162:43-52. [PMID: 34437878 DOI: 10.1016/j.yjmcc.2021.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Cardiovascular diseases are a serious threat to human health, especially in the elderly. Vascular aging makes people more susceptible to cardiovascular diseases due to significant dysfunction or senescence of vascular cells and maladaptation of vascular structure and function; moreover, vascular aging is currently viewed as a modifiable cardiovascular risk factor. To emphasize the relationship between senescent cells and vascular aging, we first summarize the roles of senescent vascular cells (endothelial cells, smooth muscle cells and immune cells) in the vascular aging process and inducers that contribute to cellular senescence. Then, we present potential strategies for directly targeting senescent cells (senotherapy) or preventively targeting senescence inducers (senoprevention) to delay vascular aging and the development of age-related vascular diseases. Finally, based on recent research, we note some important questions that still need to be addressed in the future.
Collapse
Affiliation(s)
- Yang-Nan Ding
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hui-Yu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China.
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, People's Republic of China.
| |
Collapse
|
21
|
Giacomello E, Toniolo L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021; 13:2346. [PMID: 34371855 PMCID: PMC8308705 DOI: 10.3390/nu13072346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is a biological process determined by multiple cellular mechanisms, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, that ultimately concur in the functional decline of the individual. The evidence that the old population is steadily increasing and will triplicate in the next 50 years, together with the fact the elderlies are more prone to develop pathologies such as cancer, diabetes, and degenerative disorders, stimulates an important effort in finding specific countermeasures. Calorie restriction (CR) has been demonstrated to modulate nutrient sensing mechanisms, inducing a better metabolic profile, enhanced stress resistance, reduced oxidative stress, and improved inflammatory response. Therefore, CR and CR-mimetics have been suggested as powerful means to slow aging and extend healthy life-span in experimental models and humans. Taking into consideration the difficulties and ethical issues in performing aging research and testing anti-aging interventions in humans, researchers initially need to work with experimental models. The present review reports the major experimental models utilized in the study of CR and CR-mimetics, highlighting their application in the laboratory routine, and their translation to human research.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
22
|
Wang XH, Ao QG, Cheng QL. Caloric restriction inhibits renal artery ageing by reducing endothelin-1 expression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:979. [PMID: 34277779 PMCID: PMC8267285 DOI: 10.21037/atm-21-2218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Background The renal artery plays a central role in renal perfusion and is critical for proper renal function. Ageing is an independent risk factor for both impaired renal function and vascular disorders, and associated with an increase in the expression of the vasoconstrictor endothelin-1 (ET-1), and caloric restriction (CR) without malnutrition has been shown to be an effective inhibitor of renal dysfunction induced by ageing. The objective of this study was to determine whether CR-mediated alleviation of renal dysfunction is mediated by ET-1 expression. Methods The young (2 months, 2 M) and old (12 months, 12 M) Sprague-Dawley male rats were used and fed ad libitum. The 12-month-old rats were further divided into 12 M and 12 M-caloric restriction (CR) (30% calorie restriction). After 8 weeks, the renal tissues were showed by PAS staining, and age-related metabolic parameters and renal functions were detected in each group of rats. The inflammatory cytokines of interleukin (IL)-6, IL-1β, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta 1 (TGF-β1) were analyzed using ELISA. The mRNA and protein expression in the renal artery were analysis by qRT-PCR and Immunoblot analysis. Results Ageing was associated with significant increases in 24 h urine protein content and serum triglyceride and cholesterol in 12 M rats, both of which were significantly inhibited in 12 M-CR. The mRNA expression and the secretion of IL-6, IL-1β, TNF-α, and TGF-β1 in the renal artery was significantly increased with ageing and inhibited by CR. CR also inhibited ageing-induced Edn1 (encoding ET-1) mRNA and protein expression in the renal artery. In addition, CR could regulate ET-1 expression by inhibiting the activation of NF-κB signaling and activation and induction in the expression of NF-E2-related factor 2 (Nrf2) and histone deacetylase and gene repressor sirtuin 1 (SIRT1), both of which play a central role in mitigating oxidative stress in young rats. Conclusions Moderate CR can reverse the ageing related kidney dysfunction by reducing the ET-1 expression. CR might be used as an alternative to prevent the ageing induced renal artery dysfunction.
Collapse
Affiliation(s)
- Xiao-Hua Wang
- Department of Nephrology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiang-Guo Ao
- Department of Nephrology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qing-Li Cheng
- Department of Nephrology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
24
|
Mladenovic Djordjevic A, Loncarevic-Vasiljkovic N, Gonos ES. Dietary Restriction and Oxidative Stress: Friends or Enemies? Antioxid Redox Signal 2021; 34:421-438. [PMID: 32242468 DOI: 10.1089/ars.2019.7959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: It is well established that lifestyle and dietary habits have a tremendous impact on life span, the rate of aging, and the onset/progression of age-related diseases. Specifically, dietary restriction (DR) and other healthy dietary patterns are usually accompanied by physical activity and differ from Western diet that is rich in fat and sugars. Moreover, as the generation of reactive oxidative species is the major causative factor of aging, while DR could modify the level of oxidative stress, it has been proposed that DR increases both survival and longevity. Recent Advances: Despite the documented links between DR, aging, and oxidative stress, many issues remain to be addressed. For instance, the free radical theory of aging is under "re-evaluation," while DR as a golden standard for prolonging life span and ameliorating the effects of aging is also under debate. Critical Issues: This review article pays special attention to highlight the link between DR and oxidative stress in both aging and age-related diseases. We discuss in particular DR's capability to counteract the consequences of oxidative stress and the molecular mechanisms involved in these processes. Future Directions: Although DR is undoubtedly beneficial, several considerations must be taken into account when designing the best dietary intervention. Use of intermittent fasting, daily food reduction, or DR mimetics? Future research should unravel the pros and cons of all these processes. Antioxid. Redox Signal. 34, 421-438.
Collapse
Affiliation(s)
- Aleksandra Mladenovic Djordjevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Loncarevic-Vasiljkovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
25
|
Azadian M, Tian G, Bazrafkan A, Maki N, Rafi M, Chetty N, Desai M, Otarola I, Aguirre F, Zaher SM, Khan A, Suri Y, Wang M, Lopour BA, Steward O, Akbari Y. Overnight Caloric Restriction Prior to Cardiac Arrest and Resuscitation Leads to Improved Survival and Neurological Outcome in a Rodent Model. Front Neurosci 2021; 14:609670. [PMID: 33510613 PMCID: PMC7835645 DOI: 10.3389/fnins.2020.609670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
While interest toward caloric restriction (CR) in various models of brain injury has increased in recent decades, studies have predominantly focused on the benefits of chronic or intermittent CR. The effects of ultra-short, including overnight, CR on acute ischemic brain injury are not well studied. Here, we show that overnight caloric restriction (75% over 14 h) prior to asphyxial cardiac arrest and resuscitation (CA) improves survival and neurological recovery as measured by, behavioral testing on neurological deficit scores, faster recovery of quantitative electroencephalography (EEG) burst suppression ratio, and complete prevention of neurodegeneration in multiple regions of the brain. We also show that overnight CR normalizes stress-induced hyperglycemia, while significantly decreasing insulin and glucagon production and increasing corticosterone and ketone body production. The benefits seen with ultra-short CR appear independent of Sirtuin 1 (SIRT-1) and brain-derived neurotrophic factor (BDNF) expression, which have been strongly linked to neuroprotective benefits seen in chronic CR. Mechanisms underlying neuroprotective effects remain to be defined, and may reveal targets for providing protection pre-CA or therapeutic interventions post-CA. These findings are also of high importance to basic sciences research as we demonstrate that minor, often-overlooked alterations to pre-experimental dietary procedures can significantly affect results, and by extension, research homogeneity and reproducibility, especially in acute ischemic brain injury models.
Collapse
Affiliation(s)
- Matine Azadian
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Guilian Tian
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Afsheen Bazrafkan
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Niki Maki
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Masih Rafi
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Nikole Chetty
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Monica Desai
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ieeshiah Otarola
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Francisco Aguirre
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Shuhab M. Zaher
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ashar Khan
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Yusuf Suri
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Minwei Wang
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Beth A. Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Oswald Steward
- Reeve-Irvine Research Center, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Yama Akbari
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
26
|
Balasubramanian P, DelFavero J, Ungvari A, Papp M, Tarantini A, Price N, de Cabo R, Tarantini S. Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev 2020; 64:101189. [PMID: 32998063 DOI: 10.1016/j.arr.2020.101189] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number of individuals affected by VCI is expected to exponentially increase in the upcoming decades. Yet, there are no current preventative or therapeutic treatments available against the development and progression of VCI. Therefore, there is a pressing need to better understand the pathophysiology underlying these conditions, for the development of novel tools and interventions to improve cerebrovascular health and delay the onset of VCI. There is strong epidemiological and experimental evidence that lifestyle factors, including nutrition and dietary habits, significantly affect cerebrovascular health and thereby influence the pathogenesis of VCI. Here, recent evidence is presented discussing the effects of lifestyle interventions against age-related diseases which in turn, inspired novel research aimed at investigating the possible beneficial effects of dietary interventions for the prevention of cognitive decline in older adults.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Magor Papp
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nathan Price
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
27
|
Pistollato F, Forbes-Hernandez TY, Iglesias RC, Ruiz R, Elexpuru Zabaleta M, Dominguez I, Cianciosi D, Quiles JL, Giampieri F, Battino M. Effects of caloric restriction on immunosurveillance, microbiota and cancer cell phenotype: Possible implications for cancer treatment. Semin Cancer Biol 2020; 73:45-57. [PMID: 33271317 DOI: 10.1016/j.semcancer.2020.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Fasting, caloric restriction and foods or compounds mimicking the biological effects of caloric restriction, known as caloric restriction mimetics, have been associated with a lower risk of age-related diseases, including cardiovascular diseases, cancer and cognitive decline, and a longer lifespan. Reduced calorie intake has been shown to stimulate cancer immunosurveillance, reducing the migration of immunosuppressive regulatory T cells towards the tumor bulk. Autophagy stimulation via reduction of lysine acetylation, increased sensitivity to chemo- and immunotherapy, along with a reduction of insulin-like growth factor 1 and reactive oxygen species have been described as some of the major effects triggered by caloric restriction. Fasting and caloric restriction have also been shown to beneficially influence gut microbiota composition, modify host metabolism, reduce total cholesterol and triglyceride levels, lower diastolic blood pressure and elevate morning cortisol level, with beneficial modulatory effects on cardiopulmonary fitness, body fat and weight, fatigue and weakness, and general quality of life. Moreover, caloric restriction may reduce the carcinogenic and metastatic potential of cancer stem cells, which are generally considered responsible of tumor formation and relapse. Here, we reviewed in vitro and in vivo studies describing the effects of fasting, caloric restriction and some caloric restriction mimetics on immunosurveillance, gut microbiota, metabolism, and cancer stem cell growth, highlighting the molecular and cellular mechanisms underlying these effects. Additionally, studies on caloric restriction interventions in cancer patients or cancer risk subjects are discussed. Considering the promising effects associated with caloric restriction and caloric restriction mimetics, we think that controlled-randomized large clinical trials are warranted to evaluate the inclusion of these non-pharmacological approaches in clinical practice.
Collapse
Affiliation(s)
- Francesca Pistollato
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), Santander, Spain
| | - Tamara Yuliett Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | | | - Roberto Ruiz
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), Santander, Spain
| | | | - Irma Dominguez
- Universidad Internacional Iberoamericana (UNINI), Camphece, Mexico; Universidade Internacional do Cuanza, Cuito, Angola
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Josè L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix", Biomedical Research Center, University of Granada, Granada, 18000, Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
28
|
Kwon YJ, Lee HS, Park JY, Lee JW. Associating Intake Proportion of Carbohydrate, Fat, and Protein with All-Cause Mortality in Korean Adults. Nutrients 2020; 12:nu12103208. [PMID: 33096652 PMCID: PMC7589789 DOI: 10.3390/nu12103208] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Determining the ideal ratio of macronutrients for increasing life expectancy remains a high priority in nutrition research. We aim to investigate the association between carbohydrate, fat, and protein intake and all-cause mortality in Koreans. This cohort study investigated 42,192 participants from the Korea National Health and Nutrition Examination Survey (KNHANES) linked with causes of death data (2007–2015). Hazard ratios (HRs) were calculated using the multivariable Cox proportional regression model after adjusting for confounders. We documented 2110 deaths during the follow-up period. Time to exceed 1% of the all-cause mortality rate was longest in participants with 50–60% carbohydrate, 30–40% fat, and 20–30% protein intake. Adjusted hazard ratio (HR) with 95% confidence intervals (CIs) was 1.313 (1.031–1.672, p = 0.0272) for <50% carbohydrate intake, 1.322 (1.116–1.567, p = 0.0013) for ≥60% carbohydrate intake, 1.439 (1.018–2.035, p = 0.0394) for <30% fat intake, and 3.255 (1.767–5.997, p = 0.0002) for ≥40% fat intake. There was no significant association between protein intake proportion and all-cause mortality. We found a U-shaped association between all-cause mortality and carbohydrate intake as well as fat intake, with minimal risk observed at 50–60% carbohydrate and 30–40% fat intake. Our findings suggest current Korean dietary guidelines should be revised to prolong life expectancy.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi 16995, Korea;
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul 03722, Korea; (H.S.L.); (J.-Y.P.)
| | - Ju-Young Park
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul 03722, Korea; (H.S.L.); (J.-Y.P.)
| | - Ji-Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3480; Fax: +82-3462-8209
| |
Collapse
|
29
|
Impact of Lifestyles (Diet and Exercise) on Vascular Health: Oxidative Stress and Endothelial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1496462. [PMID: 33062134 PMCID: PMC7533760 DOI: 10.1155/2020/1496462] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Healthy lifestyle and diet are associated with significant reduction in risk of obesity, type 2 diabetes, and cardiovascular diseases. Oxidative stress and the imbalance between prooxidants and antioxidants are linked to cardiovascular and metabolic diseases. Changes in antioxidant capacity of the body may lead to oxidative stress and vascular dysfunction. Diet is an important source of antioxidants, while exercise offers many health benefits as well. Recent findings have evidenced that diet and physical factors are correlated to oxidative stress. Diet and physical factors have debatable roles in modulating oxidative stress and effects on the endothelium. Since endothelium and oxidative stress play critical roles in cardiovascular and metabolic diseases, dietary and physical factors could have significant implications on prevention of the diseases. This review is aimed at summarizing the current knowledge on the impact of diet manipulation and physical factors on endothelium and oxidative stress, focusing on cardiovascular and metabolic diseases. We discuss the friend-and-foe role of dietary modification (including different diet styles, calorie restriction, and nutrient supplementation) on endothelium and oxidative stress, as well as the potential benefits and concerns of physical activity and exercise on endothelium and oxidative stress. A fine balance between oxidative stress and antioxidants is important for normal functions in the cells and interfering with this balance may lead to unfavorable effects. Further studies are needed to identify the best diet composition and exercise intensity.
Collapse
|
30
|
Adornetto A, Morrone LA, Satriano A, Laganà ML, Licastro E, Nucci C, Corasaniti MT, Tonin P, Bagetta G, Russo R. Effects of caloric restriction on retinal aging and neurodegeneration. PROGRESS IN BRAIN RESEARCH 2020; 256:189-207. [PMID: 32958212 DOI: 10.1016/bs.pbr.2020.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glaucoma is the most common neurodegenerative cause of irreversible blindness worldwide. Restricted caloric regimens are an attractive approach for delaying the progression of neurodegenerative diseases. Here we review the current literature on the effects of caloric restriction on retinal neurons, under physiological and pathological conditions. We focused on autophagy as one of the mechanisms modulated by restricted caloric regimens and involved in the death of retinal ganglion cells (RGCs) over the course of glaucoma.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Andrea Satriano
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ester Licastro
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Tiziana Corasaniti
- School of Hospital Pharmacy, University "Magna Graecia" of Catanzaro and Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Obesity increases the risk of hypertension. However, blood pressure decreases before any significant loss of body weight after bariatric surgery. We review the mechanisms of the temporal dissociation between blood pressure and body weight after bariatric surgery. RECENT FINDINGS Restrictive and bypass bariatric surgery lower blood pressure and plasma leptin levels within days of the procedure in both hypertensive and normotensive morbidly obese patients. Rapidly decreasing plasma leptin levels and minimal loss of body weight point to reduced sympathetic nervous system activity as the underlying mechanism of rapid blood pressure decline after bariatric surgery. After the early rapid decline, blood pressure does not decrease further in patients who, while still obese, experience a steady loss of body weight for the subsequent 12 months. The divergent effects of bariatric surgery on blood pressure and body weight query the role of excess body weight in the pathobiology of the obesity phenotype of hypertension. The decrease in blood pressure after bariatric surgery is moderate and independent of body weight. The lack of temporal relationship between blood pressure reduction and loss of body weight for 12 months after sleeve gastrectomy questions the nature of the mechanisms underlying obesity-associated hypertension.
Collapse
Affiliation(s)
- Rohan Samson
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenuew, SL-48, New Orleans, LA, 70112, USA
| | - Karnika Ayinapudi
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenuew, SL-48, New Orleans, LA, 70112, USA
| | - Thierry H Le Jemtel
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenuew, SL-48, New Orleans, LA, 70112, USA.
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
32
|
NoxO1 Knockout Promotes Longevity in Mice. Antioxidants (Basel) 2020; 9:antiox9030226. [PMID: 32164269 PMCID: PMC7139303 DOI: 10.3390/antiox9030226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
According to the free radical theory of aging, reactive oxygen species (ROS) have been proposed to be a major cause of aging for a long time. Meanwhile, it became clear that ROS have diverse functions in a healthy organism. They act as second messengers, and as transient inhibitors of phosphatases and others. In fact, their detrimental role is highly dependent on the context of their production. NADPH oxidases (Nox) have been discovered as a controllable source of ROS. NoxO1 enables constitutive ROS formation by Nox1 by acting as a constitutively active cytosolic subunit of the complex. We previously found that both Nox1 and NoxO1 were highly expressed in the colon, and that NoxO1-/- deficiency reduces colon health. We hypothesized that a healthy colon potentially contributes to longevity and NoxO1 deficiency would reduce lifetime, at least in mouse. In contrast, here we provide evidence that the knockout of NoxO1 results in an elongated life expectancy of mice. No better endothelial function, nor an improved expression of genes related to longevity, such as Sirt1, were found, and therefore may not serve as an explanation for a longer life in NoxO1 deficiency. Rather minor systemic differences, such as lower body weight occur. As a potential reason for longer life, we suggest better DNA repair capacity in NoxO1 deficient mice. Although final fatal DNA damage appears similar between wildtype and NoxO1 knockout animals, we identified less intermediate DNA damage in colon cells of NoxO1-/- mice, while the number of cells with intact DNA is elevated in NoxO1-/- colons. We conclude that NoxO1 deficiency prolongs lifetime of mice, which correlates with less intermediate and potentially fixable DNA damage at least in colon cells.
Collapse
|
33
|
Trubitsyn AG. The Mechanism of Programmed Aging: The Way to Create a Real Remedy for Senescence. Curr Aging Sci 2020; 13:31-41. [PMID: 31660847 PMCID: PMC7403645 DOI: 10.2174/1874609812666191014111422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Accumulation of various damages is considered the primary cause of aging throughout the history of gerontology. No progress has been made in extending animal lifespan under the guidance of this concept. This concept denies the existence of longevity genes, but it has been experimentally shown that manipulating genes that affect cell division rates can increase the maximum lifespan of animals. These methods of prolonging life are unsuitable for humans because of dangerous side effects, but they undoubtedly indicate the programmed nature of aging. OBJECTIVE The objective was to understand the mechanism of programmed aging to determine how to solve the problem of longevity. METHODS Fundamental research has already explored key details relating to the mechanism of programmed aging, but they are scattered across different fields of knowledge. The way was to recognize and combine them into a uniform mechanism. RESULTS Only a decrease in bioenergetics is under direct genetic control. This causes many different harmful processes that serve as the execution mechanism of the aging program. The aging rate and, therefore, lifespan are determined by the rate of cell proliferation and the magnitude of the decrease in bioenergetics per cell division in critical tissues. CONCLUSION The mechanism of programmed aging points the way to achieving an unlimited healthy life; it is necessary to develop a means for managing bioenergetics. It has already been substantially studied by molecular biologists and is now waiting for researchers from gerontology.
Collapse
Affiliation(s)
- Alexander G. Trubitsyn
- Institute of Biology of Far Eastern Branch of Russian Academy of Sciences, pr. 100-letiya Vladivostoka 159, Vladivostok, 690022, Russia
| |
Collapse
|
34
|
Yong-Quan Ng G, Yang-Wei Fann D, Jo DG, Sobey CG, Arumugam TV. Dietary Restriction and Epigenetics: Part I. CONDITIONING MEDICINE 2019; 2:284-299. [PMID: 32039345 PMCID: PMC7007115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Biological aging occurs concomitantly with chronological aging and is commonly burdened by the development of age-related conditions, such as neurodegenerative, cardiovascular, and a myriad of metabolic diseases. With a current global shift in disease epidemiology associated with aging and the resultant social, economic, and healthcare burdens faced by many countries, the need to achieve successful aging has fueled efforts to address this problem. Aging is a complex biological phenomenon that has confounded much of the historical research effort to understand it, with still limited knowledge of the underlying molecular mechanisms. Interestingly, dietary restriction (DR) is one intervention that produces anti-aging effects from simple organisms to mammals. Research into DR has revealed robust systemic effects that can result in attenuation of age-related diseases via a myriad of molecular mechanisms. Given that numerous age-associated diseases are often polygenic and affect individuals differently, it is possible that they are confounded by interactions between environmental influences and the genome, a process termed 'epigenetics'. In part one of the review, we summarize the different variants of DR regimens and their corresponding mechanism(s) and resultant effects, as well as in-depth analysis of current knowledge of the epigenetic landscape.
Collapse
Affiliation(s)
- Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Christopher G. Sobey
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
35
|
Wang X, Liu Y, Jia Y, Liu H, Bao X, He Z, Ge W. Proteome Profiling of Cerebral Vessels in Rhesus Macaques: Dysregulation of Antioxidant Activity and Extracellular Matrix Proteins Contributes to Cerebrovascular Aging in Rhesus Macaques. Front Aging Neurosci 2019; 11:293. [PMID: 31708766 PMCID: PMC6819311 DOI: 10.3389/fnagi.2019.00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Aging is a major risk factor for cerebrovascular disease; however, the molecular mechanisms of cerebrovascular aging remain to be clarified. The aim of this study was to reveal the molecular signaling pathways involved in cerebrovascular aging. This study used high-resolution liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), in combination with quantitative 6-plex tandem mass tag labeling, to profile protein changes in brain vessels from three groups of healthy rhesus macaques (3-years, 6-years, and 20-years). Western blot analyses were used to validate the proteomic data. A total of 2,934 proteins were identified and analyzed. Twenty-two proteins were continuously downregulated with increasing age, while three proteins were continuously upregulated. When comparing Group C vs. Group B, 270 proteins were downregulated, while 73 proteins were upregulated. All these 368 significantly changed proteins were used for further analysis. Bioinformatic analysis showed that the changed proteins were involved in several signaling pathways during cerebrovascular aging. Proteins in the NRF2 pathway, such as Glutathione S-transferase Mu (GSTM), were consistently downregulated especially after 6-years old, whereas proteins related to miRNA targets in the extracellular matrix (ECM) and membrane receptors were upregulated. Protein-protein interaction networks demonstrated that disorders of energy pathways and serine/threonine kinases were critical during cerebrovascular aging. Data are available via ProteomeXchange under the identifier PXD012306. Our results indicated that during aging, the disorders of energy metabolism and dysfunction of antioxidant activity caused over-production of reactive oxygen species (ROS) may exacerbate cerebrovascular aging. In addition, accumulation of ECM proteins during aging might be closely associated with age-related arterial stiffening and decreased compliance.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yifan Liu
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yangjie Jia
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Haotian Liu
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhanlong He
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
36
|
Piccirillo F, Carpenito M, Verolino G, Chello C, Nusca A, Lusini M, Spadaccio C, Nappi F, Di Sciascio G, Nenna A. Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice. Mech Ageing Dev 2019; 184:111161. [PMID: 31647940 DOI: 10.1016/j.mad.2019.111161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
Aging results in functional and structural changes in the cardiovascular system, translating into a progressive increase of mechanical vessel stiffness, due to a combination of changes in micro-RNA expression patterns, autophagy, arterial calcification, smooth muscle cell migration and proliferation. The two pivotal mechanisms of aging-related endothelial dysfunction are oxidative stress and inflammation, even in the absence of clinical disease. A comprehensive understanding of the aging process is emerging as a primary concern in literature, as vascular aging has recently become a target for prevention and treatment of cardiovascular disease. Change of life-style, diet, antioxidant regimens, anti-inflammatory treatments, senolytic drugs counteract the pro-aging pathways or target senescent cells modulating their detrimental effects. Such therapies aim to reduce the ineluctable burden of age and contrast aging-associated cardiovascular dysfunction. This narrative review intends to summarize the macrovascular and microvascular changes related with aging, as a better understanding of the pathways leading to arterial aging may contribute to design new mechanism-based therapeutic approaches to attenuate the features of vascular senescence and its clinical impact on the cardiovascular system.
Collapse
Affiliation(s)
| | | | | | - Camilla Chello
- Dermatology, Università "La Sapienza" di Roma, Rome, Italy
| | | | - Mario Lusini
- Cardiovascular surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Francesco Nappi
- Cardiac surgery, Centre Cardiologique du Nord de Saint Denis, Paris, France
| | | | - Antonio Nenna
- Cardiovascular surgery, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
37
|
Abstract
Aging of the vasculature plays a central role in morbidity and mortality of older people. To develop novel treatments for amelioration of unsuccessful vascular aging and prevention of age-related vascular pathologies, it is essential to understand the cellular and functional changes that occur in the vasculature during aging. In this review, the pathophysiological roles of fundamental cellular and molecular mechanisms of aging, including oxidative stress, mitochondrial dysfunction, impaired resistance to molecular stressors, chronic low-grade inflammation, genomic instability, cellular senescence, epigenetic alterations, loss of protein homeostasis, deregulated nutrient sensing, and stem cell dysfunction in the vascular system are considered in terms of their contribution to the pathogenesis of both microvascular and macrovascular diseases associated with old age. The importance of progeronic and antigeronic circulating factors in relation to development of vascular aging phenotypes are discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Zoltan Ungvari
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
- Department of Pulmonology, Semmelweis University of Medicine, Budapest, Hungary (Z.U.)
| | - Stefano Tarantini
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City (A.J.D.)
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, UT (A.J.D.)
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies (V.G.), University of Texas Health Science Center at San Antonio
- Department of Physiology (V.G.), University of Texas Health Science Center at San Antonio
| | - Anna Csiszar
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
| |
Collapse
|
38
|
Mitochondria Lysine Acetylation and Phenotypic Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:59-70. [PMID: 31452135 DOI: 10.1007/978-981-13-8367-0_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondria have a central role in cellular metabolism and reversible post-translational modifications regulate activity of mitochondrial proteins. Thanks to advances in proteomics, lysine acetylation has arisen as an important post-translational modification in the mitochondrion. During acetylation an acetyl group is covalently attached to the epsilon amino group in the side chain of lysine residues using acetyl-CoA as the substrate donor. Therefore the positive charge is neutralized, and this can affect the function of proteins thereby regulating enzyme activity, protein interactions, and protein stability. The major deacetylase in mitochondria is SIRT3 whose activity regulates many mitochondrial enzymes. The method of choice for the analysis of acetylated proteins foresees the combination of mass spectrometry-based proteomics with affinity enrichment techniques. Beyond the identification of lysine-acetylated proteins, many studies are moving towards the characterization of acetylated patterns in different diseases. Indeed, modifications in lysine acetylation status can directly alter mitochondrial function and, therefore, be linked to human diseases such as metabolic diseases, cancer, myocardial injury and neurodegenerative diseases. Despite the progress in the characterization of different lysine acetylation sites, additional studies are needed to differentiate the specific changes with a significant biological relevance.
Collapse
|
39
|
Beckwith EJ, French AS. Sleep in Drosophila and Its Context. Front Physiol 2019; 10:1167. [PMID: 31572216 PMCID: PMC6749028 DOI: 10.3389/fphys.2019.01167] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
A prominent idea emerging from the study of sleep is that this key behavioural state is regulated in a complex fashion by ecologically and physiologically relevant environmental factors. This concept implies that sleep, as a behaviour, is plastic and can be regulated by external agents and changes in internal state. Drosophila melanogaster constitutes a resourceful model system to study behaviour. In the year 2000, the utility of the fly to study sleep was realised, and has since extensively contributed to this exciting field. At the centre of this review, we will discuss studies showing that temperature, food availability/quality, and interactions with conspecifics can regulate sleep. Indeed the relationship can be reciprocal and sleep perturbation can also affect feeding and social interaction. In particular, different environmental temperatures as well as gradual changes in temperature regulate when, and how much flies sleep. Moreover, the satiation/starvation status of an individual dictates the balance between sleep and foraging. Nutritional composition of diet also has a direct impact on sleep amount and its fragmentation. Likewise, aggression between males, courtship, sexual arousal, mating, and interactions within large groups of animals has an acute and long-lasting effect on sleep amount and quality. Importantly, the genes and neuronal circuits that relay information about the external environment and internal state to sleep centres are starting to be elucidated in the fly and are the focus of this review. In conclusion, sleep, as with most behaviours, needs the full commitment of the individual, preventing participation in other vital activities. A vast array of behaviours that are modulated by external and internal factors compete with the need to sleep and thus have a significant role in regulating it.
Collapse
Affiliation(s)
- Esteban J Beckwith
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alice S French
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Sharma R, Padwad Y. In search of nutritional anti-aging targets: TOR inhibitors, SASP modulators, and BCL-2 family suppressors. Nutrition 2019; 65:33-38. [DOI: 10.1016/j.nut.2019.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/26/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
|
41
|
Islam MS, Jin YY, Chung HJ, Kim HJ, Baek SH, Hong ST. Effect of the Resveratrol Rice DJ526 on Longevity. Nutrients 2019; 11:nu11081804. [PMID: 31387244 PMCID: PMC6723356 DOI: 10.3390/nu11081804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022] Open
Abstract
Resveratrol is the best-known chemical for extending the lifespan of various organisms. Extensive recent research has shown that resveratrol can extend the lifespan of single-celled organisms, but its effects on the extension of animal lifespans are marginal. Despite the limited efficacy of pure resveratrol, resveratrol with the endogenous property of the DJ rice in the resveratrol rice DJ526 previously showed profound health benefits. Here, we report that the resveratrol rice DJ526 markedly extended the lifespan of the fruit fly Drosophila melanogaster by as much as 41.4% compared to that of the control. The resveratrol rice DJ526 also improved age-related symptoms such as locomotive deterioration, body weight gain, eye degeneration and neurodegeneration in D. melanogaster upon aging. This result shows the most significantly improved lifespan in animal experiments to date, meaning that the resveratrol rice DJ526 will assist in the development of a therapeutic agent for longevity or addressing age-related degeneration.
Collapse
Affiliation(s)
- Md Saidul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea
| | - Yan Yan Jin
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea
| | - Hea-Jong Chung
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea
| | - Hyeon-Jin Kim
- BDRD Institute, JINIS Biopharmaceuticals Co., Bongdong, Wanju, Jeonbuk 55321, Korea
| | - So-Hyeon Baek
- Department of Well-Being Resources, Sunchon National University, Suncheon, Jeonnam 57922, Korea.
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk 54907, Korea.
| |
Collapse
|
42
|
Laurent S, Boutouyrie P, Cunha PG, Lacolley P, Nilsson PM. Concept of Extremes in Vascular Aging. Hypertension 2019; 74:218-228. [DOI: 10.1161/hypertensionaha.119.12655] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Stephane Laurent
- From the Department of Pharmacology, INSERM U970, Assistance Publique Hôpitaux de Paris, Université Paris Descartes, France (S.L., P.B.)
| | - Pierre Boutouyrie
- From the Department of Pharmacology, INSERM U970, Assistance Publique Hôpitaux de Paris, Université Paris Descartes, France (S.L., P.B.)
| | - Pedro Guimarães Cunha
- Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk, Serviço de Medicina Interna do Hospital da Senhora da Oliveira, Guimarães, Portugal (P.G.C.)
- Life and Health Science Research Institute, School of Medicine, University of Minho, Guimarães, Portugal (P.G.C.)
| | | | - Peter M. Nilsson
- Department of Clinical Sciences, Lund University, Skane University Hospital, Malmo, Sweden (P.M.N.)
| |
Collapse
|
43
|
García-Prieto CF, Gil-Ortega M, Plaza A, Manzano-Lista FJ, González-Blázquez R, Alcalá M, Rodríguez-Rodríguez P, Viana M, Aránguez I, Gollasch M, Somoza B, Fernández-Alfonso MS. Caloric restriction induces H 2O 2 formation as a trigger of AMPK-eNOS-NO pathway in obese rats: Role for CAMKII. Free Radic Biol Med 2019; 139:35-45. [PMID: 31100477 DOI: 10.1016/j.freeradbiomed.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR) improves endothelial function through the upregulation of adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Moreover, hydrogen peroxide (H2O2) is upregulated in yeast subjected to CR. Our aim was to assess if mild short-term CR increases vascular H2O2 formation as a link with AMPK and eNOS activation. Twelve-week old Zucker obese (fa/fa) and control Zucker lean male rats were fed a standard chow either ad libitum (AL, n=10) or with a 20% CR (CR, n=10) for two weeks. CR significantly improved relaxation to ACh in fa/fa rats because of an enhanced endogenous production of H2O2 in aortic rings (H2O2 levels fa/faAL=0.5 ± 0.05 nmol/mg vs. H2O2 levels fa/faCR=0.76 ± 0.07 nmol/mg protein; p<0.05). Expression of mitochondrial superoxide dismutase (Mn-SOD) and total SOD activity were increased in aorta from fa/fa animals after CR. In cultured aortic endothelial cells, serum deprivation or 2-deoxy-d-glucose induced a significant increase in: i) superoxide anion and H2O2 levels, ii) p-AMPK/AMPK and p-eNOS/eNOS expression and iii) nitric oxide levels. This effect was reduced by catalase and strongly inhibited by Ca2+/calmodulin-dependent kinase II (CamkII) silencing. In conclusion, we propose that mild short-term CR might be a trigger of mechanisms aimed at protecting the vascular wall by the increase of H2O2, which then activates AMPK and nitric oxide release, thus improving endothelium-dependent relaxation. In addition, we demonstrate that CAMKII plays a key role in mediating CR-induced AMPK activation through H2O2 increase.
Collapse
Affiliation(s)
- Concha F García-Prieto
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - F J Manzano-Lista
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | | | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Isabel Aránguez
- Instituto Pluridisciplinar and Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Maik Gollasch
- Experimental and Clinical Research Center, Charité - University Medicine Berlin and the Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de La Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar and Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
44
|
Dong L, Gan L, Wang H, Cai W. Age-Related Impairment of Structure and Function of Iliac Artery Endothelium in Rats Is Improved by Elevated Fluid Shear Stress. Med Sci Monit 2019; 25:5127-5136. [PMID: 31291237 PMCID: PMC6637813 DOI: 10.12659/msm.916287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Aging plays an important role in endothelial dysfunction. Fluid shear stress (FSS) can activate endothelial cells (ECs). Herein, we tested the hypothesis that this endothelial impairment could be improved by elevated FSS (EFSS) in aged rats. Material/Methods EFSS was created through ligation of the unilateral common iliac artery in 20-−month-old rats, evaluated by measuring blood flow velocity with Doppler spectrum. The effect of FSS on aged ECs was examined by senescence-associated β-galactosidase (SA-β-Gal) staining, ultrastructural observation, and immunostaining and qPCR analysis of eNOS and SIRT1 expression on both the mRNA and protein levels. Results (1) FSS was significantly increased in the right common iliac artery (RCIA) in rats with the ligation of the left common iliac artery (LCIA). (2) SA-β-Gal staining was significantly attenuated by EFSS in the RCIA of aged rats. (3) Ultrastructural observation showed that ECs in the RCIA of normal aged rats became irregular and enlarged, with increasingly polypoid nuclei and fewer mitochondria, whereas ECs in the RCIA of aged rats with LCIA ligation became more prominent and contained more mitochondria. (4) eNOS and SIRT1 expression in the RCIA of aged rats with LCIA ligation was significantly upregulated compared with that in control group rats. Conclusions The present study for the first time shows that EFSS has the ability to improve age-related impairment of endothelial structure and functions.
Collapse
Affiliation(s)
- Liping Dong
- Department of Histology and Embryology, School of Basic Medicine, Central South University, Changsha, Hunan, China (mainland).,Department of Anatomy, Histology, and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, Hunan, China (mainland)
| | - Liaoying Gan
- Department of Histology and Embryology, School of Basic Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Hui Wang
- Department of Anatomy, School of Basic Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Weijun Cai
- Department of Histology and Embryology, School of Basic Medicine, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
45
|
Martel J, Ojcius DM, Ko YF, Ke PY, Wu CY, Peng HH, Young JD. Hormetic Effects of Phytochemicals on Health and Longevity. Trends Endocrinol Metab 2019; 30:335-346. [PMID: 31060881 DOI: 10.1016/j.tem.2019.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
Abstract
Caloric restriction, intermittent fasting, and exercise activate defensive cellular responses such as autophagy, DNA repair, and the induction of antioxidant enzymes. These processes improve health and longevity by protecting cells and organs against damage, mutations, and reactive oxygen species. Consuming a diet rich in vegetables, fruits, and mushrooms can also improve health and longevity. Phytochemicals such as alkaloids, polyphenols, and terpenoids found in plants and fungi activate the same cellular processes as caloric restriction, fasting, and exercise. Many of the beneficial effects of fruits and vegetables may thus be due to activation of stress resistance pathways by phytochemicals. A better understanding of the mechanisms of action of phytochemicals may provide important insights to delay aging and prevent chronic diseases.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Chang Gung Biotechnology Corporation, Taipei, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan; Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan; Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John D Young
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan; Chang Gung Biotechnology Corporation, Taipei, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan; Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, NY, USA.
| |
Collapse
|
46
|
Palee S, Minta W, Mantor D, Sutham W, Jaiwongkam T, Kerdphoo S, Pratchayasakul W, Chattipakorn SC, Chattipakorn N. Combination of exercise and calorie restriction exerts greater efficacy on cardioprotection than monotherapy in obese-insulin resistant rats through the improvement of cardiac calcium regulation. Metabolism 2019; 94:77-87. [PMID: 30796936 DOI: 10.1016/j.metabol.2019.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Long-term high-fat diet (HFD) consumption causes obese-insulin resistance which is known to be a major risk factor for cardiovascular diseases due to its impact on the impairment of left ventricular (LV) contractile function and cardiac mitochondrial function. Intracellular calcium [Ca2+]i regulation plays an important role in the maintenance of LV function. Although either caloric restriction (CR) or exercise (Ex) are shown to strongly affect metabolic status and LV function, the combined effects of exercise and calorie restriction on cardiometabolic status, cardiac mitochondrial dynamics and cardiac [Ca2+]i transient homeostasis under conditions of obese-insulin resistance have never been investigated. METHODS Female rats were fed with either a high-fat diet (HFD: fat, 59.28%; protein, 26.45%; carbohydrate, 14.27%) or a normal diet (fat, 19.77%; protein, 28.24%; carbohydrate, 51.99%) for 13 weeks. HFD rats were then divided into 4 groups: 1) Vehicle (HFD + Veh); 2) Calorie restriction (HFD + CR); 3) Exercise (HFD + Ex) and 4) Combined therapy (HFD + CR + Ex). After 6-week intervention, the metabolic status, heart rate variability (HRV), LV function, cardiac mitochondrial dynamics, and [Ca2+]i transients were determined. RESULTS Insulin resistance developed in HFD rats as indicated by increased plasma insulin and HOMA index. Although HFD + Veh rats had markedly impaired LV function, indicated by reduced %LVFS and impaired cardiac mitochondrial dynamics and [Ca2+]i transients, these impairments were attenuated in the HFD + CR, HFD + Ex and HFD + CR + Ex rats. However, the greatest improvement in cardiometabolic function was observed in HFD + CR + Ex rats. CONCLUSIONS Our findings indicated that a combination of calorie restriction and exercise exerted greater cardioprotection than a monotherapy through the improvement of cardiometabolic status, cardiac mitochondrial dynamics and cardiac [Ca2+]i homeostasis in obese-insulin resistant rats.
Collapse
Affiliation(s)
- Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanitchaya Minta
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duangkamol Mantor
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wissuta Sutham
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
47
|
Abiri B, Vafa M. Dietary Restriction, Cardiovascular Aging and Age-Related Cardiovascular Diseases: A Review of the Evidence. REVIEWS ON BIOMARKER STUDIES IN AGING AND ANTI-AGING RESEARCH 2019; 1178:113-127. [DOI: 10.1007/978-3-030-25650-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci 2018; 218:165-184. [PMID: 30578866 DOI: 10.1016/j.lfs.2018.12.029] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022]
Abstract
Mitochondrial function is vital for normal cellular processes. Mitochondrial damage and oxidative stress have been greatly implicated in the progression of aging, along with the pathogenesis of age-related neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Although antioxidant therapy has been proposed for the prevention and treatment of age-related NDs, unraveling the molecular mechanisms of mitochondrial dysfunction can lead to significant progress in the development of effective treatments against such diseases. Aging is associated with the generation and accumulation of reactive oxygen species (ROS) that are the major contributors to oxidative stress. Oxidative stress is caused because of the imbalance between the production of ROS and their oxidation, which can affect the mitochondrial respiratory chain function, thereby altering the membrane permeability and calcium homeostasis, along with increasing the heteroplasmic mtDNA and weakening the mitochondrial defense systems. Mitochondrial dysfunction mainly affects mitochondrial biogenesis and dynamics that are prominent in several age-related NDs. Mitochondrial dysfunction has a crucial role in the pathophysiology of age-related NDs. Several mitochondria targeted strategies, such as enhancing the antioxidant bioavailability via novel delivery systems, identifying unique mitochondrial proteins as specific drug targets, investigating the signaling pathways of mitochondrial biogenesis and dynamics, and identifying effective natural products are potentially effective to counteract mitochondrial dysfunction-related NDs.
Collapse
Affiliation(s)
- Hasnaa A Elfawy
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar 751024, Odisha, India
| | - Biswadeep Das
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
49
|
Specific alterations in the circulating levels of the SIRT1, TLR4, and IL7 proteins in patients with dementia. Exp Gerontol 2018; 111:203-209. [DOI: 10.1016/j.exger.2018.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
|
50
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|