1
|
Rolf-Pissarczyk M, Schussnig R, Fries TP, Fleischmann D, Elefteriades JA, Humphrey JD, Holzapfel GA. Mechanisms of aortic dissection: From pathological changes to experimental and in silico models. PROGRESS IN MATERIALS SCIENCE 2025; 150:101363. [PMID: 39830801 PMCID: PMC11737592 DOI: 10.1016/j.pmatsci.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and in silico models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants. While experimental models were once the only option available, more recently they are also being used to validate in silico models. Based on an improved understanding of the deteriorated microstructure of the aortic wall, numerous multiscale material models have been proposed in recent decades to study the state of stress in dissected aortas, including the changes associated with damage and failure. Furthermore, when integrated with accessible patient-derived medical data, in silico models prove to be an invaluable tool for identifying correlations between hemodynamics, wall stresses, or thrombus formation in the deteriorated aortic wall. They are also advantageous for model-guided design of medical implants with the aim of evaluating the deployment and migration of implants in patients. Nonetheless, the utility of in silico models depends largely on patient-derived medical data, such as chosen boundary conditions or tissue properties. In this review article, our objective is to provide a thorough summary of medical data elucidating the pathological alterations associated with this disease. Concurrently, we aim to assess experimental models, as well as multiscale material and patient data-informed in silico models, that investigate various aspects of aortic dissection. In conclusion, we present a discourse on future perspectives, encompassing aspects of disease modeling, numerical challenges, and clinical applications, with a particular focus on aortic dissection. The aspiration is to inspire future studies, deepen our comprehension of the disease, and ultimately shape clinical care and treatment decisions.
Collapse
Affiliation(s)
| | - Richard Schussnig
- High-Performance Scientific Computing, University of Augsburg, Germany
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Thomas-Peter Fries
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, USA
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Henry M, Campello Jorge CA, van Bakel PAJ, Knauer HA, MacEachern M, van Herwaarden JA, Teixidó-Tura G, Evangelista A, Jeremy RW, Figueroa CA, Patel HJ, Hofmann Bowman M, Eagle K, Burris NS. Thoracic Aortic Aneurysm Growth Rates and Predicting Factors: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2025:e038821. [PMID: 40145320 DOI: 10.1161/jaha.124.038821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/30/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is an indolent, potentially fatal disease, which progresses at variable rates that are influenced by pathogenesis and patient characteristics. We conducted a systematic review and meta-analysis to synthesize the current evidence on growth rate (GR) and predictive factors among patients with syndromic and nonsyndromic heritable thoracic aortic disease, bicuspid aortic valve, and sporadic TAA. METHODS AND RESULTS Online databases were searched for studies that reported aortic growth on adult patients with asymptomatic TAA. Pooled GRs were calculated for 3 different TAA groups: syndromic heritable thoracic aortic disease, bicuspid aortic valve, and sporadic TAA. The search yielded 6297 studies, of which 85 were included in the systematic review, and 55 in the meta-analysis of growth rate (10 syndromic heritable thoracic aortic disease, 31 bicuspid aortic valve, and 34 sporadic subgroups). Mean observed TAA GR was 0.25 mm/y (95% CI, -0.18 to 0.68) in Turner syndrome, 0.45 mm/y (95% CI, 0.00-0.90) in Marfan syndrome, and 0.81 mm/y (95% CI, -0.46 to 2.08) in Loeys-Dietz syndrome. The mean observed GR in patients with bicuspid aortic valve before aortic valve surgery was 0.37 mm/y (95% CI, 0.29-0.46), compared with 0.18 mm/y (95% CI, 0.14-0.33) in postsurgical studies. Mean observed GR in sporadic ascending TAA was 0.33 mm/y (95% CI, 0.13-0.52) and 2.71 mm/y (95% CI, 0.53-4.88) in descending TAA. CONCLUSIONS Considering all pathogeneses, ascending TAAs typically grow at 0.25 to 1 mm/y, and thus annual surveillance is likely too frequent to detect growth in most patients. Studies vary widely in populations, methodology, and outcomes, with few high-quality longitudinal studies and no predictors of aortic GR.
Collapse
Affiliation(s)
- Matthew Henry
- Department of Radiology University of Michigan Ann Arbor MI USA
| | | | - Pieter A J van Bakel
- Department of Cardiac Surgery University of Michigan Ann Arbor MI USA
- Department of Vascular Surgery University Medical Center Utrecht Utrecht The Netherlands
| | | | - Mark MacEachern
- Taubman Health Sciences Library University of Michigan Ann Arbor MI USA
| | - Joost A van Herwaarden
- Department of Vascular Surgery University Medical Center Utrecht Utrecht The Netherlands
| | - Gisela Teixidó-Tura
- Department of Cardiology. Hospital Vall d'Hebron. CIBERCV Universitat Autonoma de Barcelona Barcelona Spain
| | - Arturo Evangelista
- Department of Cardiology. Hospital Vall d'Hebron. CIBERCV Universitat Autonoma de Barcelona Barcelona Spain
| | | | - C A Figueroa
- Department of Vascular Surgery University of Michigan Ann Arbor MI USA
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Himanshu J Patel
- Department of Cardiac Surgery University of Michigan Ann Arbor MI USA
| | - Marion Hofmann Bowman
- Division of Cardiovascular Medicine, Department of Internal Medicine University of Michigan Ann Arbor MI USA
| | - Kim Eagle
- Division of Cardiovascular Medicine, Department of Internal Medicine University of Michigan Ann Arbor MI USA
| | - Nicholas S Burris
- Department of Radiology University of Michigan Ann Arbor MI USA
- Department of Radiology University of Wisconsin-Madison Madison WI USA
| |
Collapse
|
3
|
Daugherty A, Milewicz DM, Dichek DA, Ghaghada KB, Humphrey JD, LeMaire SA, Li Y, Mallat Z, Saeys Y, Sawada H, Shen YH, Suzuki T, Zhou Z. Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models. Arterioscler Thromb Vasc Biol 2025. [PMID: 40079138 DOI: 10.1161/atvbaha.124.320259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
There is a recent dramatic increase in research on thoracic aortic diseases that includes aneurysms, dissections, and rupture. Experimental studies predominantly use mice in which aortopathy is induced by chemical interventions, genetic manipulations, or both. Many parameters should be deliberated in experimental design in concert with multiple considerations when providing dimensional data and characterization of aortic tissues. The purpose of this review is to provide recommendations on guidance in (1) the selection of a mouse model and experimental conditions for the study, (2) parameters for standardizing detection and measurements of aortic diseases, (3) meaningful interpretation of characteristics of diseased aortic tissue, and (4) reporting standards that include rigor and transparency.
Collapse
Affiliation(s)
- Alan Daugherty
- Department of Physiology, Saha Cardiovascular Research Center, Saha Aortic Center, University of Kentucky (A.D., H.S.)
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (D.M.M., Z.Z.)
| | - David A Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle (D.A.D.)
| | - Ketan B Ghaghada
- Department of Radiology, Texas Children's Hospital, Houston (K.B.G.)
- Department of Radiology, Baylor College of Medicine, Houston, TX. (K.B.G.)
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (J.D.H.)
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX. (S.A.L., Y.L., Y.H.S.)
- Heart and Vascular Institute, Geisinger Health System, Danville, PA (S.A.L.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX. (S.A.L., Y.L., Y.H.S.)
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (Z.M.)
- Inserm U970, Paris Cardiovascular Research Centre, Unversité de Paris, France (Z.M.)
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium (Y.S.)
| | - Hisashi Sawada
- Department of Physiology, Saha Cardiovascular Research Center, Saha Aortic Center, University of Kentucky (A.D., H.S.)
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX. (S.A.L., Y.L., Y.H.S.)
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, United Kingdom (T.S.)
- Institute of Medical Science, University of Tokyo, Japan (T.S.)
| | - Zhen Zhou
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (D.M.M., Z.Z.)
| |
Collapse
|
4
|
Valencia OM, Powell T, Khalifa A, Orozco-Sevilla V, Tolpin DA. Anesthetic Considerations for Endovascular Repair of the Thoracic Aorta. Semin Cardiothorac Vasc Anesth 2025; 29:49-63. [PMID: 39484793 PMCID: PMC11872058 DOI: 10.1177/10892532241297608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Thoracic aorta pathologies, especially those of the ascending aorta and aortic arch, were traditionally approached via open surgical repair. This carries risk of ischemic end-organ damage and other complications. Endovascular repair of ascending aorta and aortic arch pathologies is becoming more successful and widespread, thereby posing numerous challenges to the anesthesiologist. This article reviews the anesthesia-pertinent pathophysiology, repair techniques, preoperative evaluation, intraoperative management, and postoperative care of patients presenting for endovascular repair of thoracic aorta pathologies.
Collapse
Affiliation(s)
- Olivia M. Valencia
- Division of Cardiovascular Anesthesiology, Texas Heart Institute, Baylor College of Medicine, Houston, TX, USA
| | - Thomas Powell
- Division of Cardiovascular Anesthesiology, Texas Heart Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ali Khalifa
- Division of Cardiovascular Anesthesiology, Texas Heart Institute, Baylor College of Medicine, Houston, TX, USA
| | - Vicente Orozco-Sevilla
- Division of Cardiothoracic Surgery, Texas Heart Institute, Baylor College of Medicine, Houston, TX, USA
| | - Daniel A. Tolpin
- Division of Cardiovascular Anesthesiology, Texas Heart Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Yagi H, Akazawa H, Liu Q, Yamamoto K, Nawata K, Saga-Kamo A, Umei M, Kadowaki H, Matsuoka R, Shindo A, Okamura S, Toko H, Takeda N, Ando M, Yamauchi H, Takeda N, Fini MA, Ono M, Komuro I. XOR-Derived ROS in Tie2-Lineage Cells Including Endothelial Cells Promotes Aortic Aneurysm Progression in Marfan Syndrome. Arterioscler Thromb Vasc Biol 2025; 45:e63-e77. [PMID: 39882602 DOI: 10.1161/atvbaha.124.321527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Marfan syndrome (MFS) is an inherited disorder caused by mutations in the FBN1 gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined. METHODS To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the Xdh gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the Fbn1 missense mutation p.(Cys1041Gly). We assessed the aberrant activation of mechanosensitive signaling in the ascending aorta of Fbn1C1041G/+ mice. Further analysis of human aortic ECs investigated the mechanisms by which mechanical stress upregulates XOR expression. RESULTS We found a significant increase in reactive oxygen species generation in the ascending aorta of patients with MFS and Fbn1C1041G/+ mice, which was associated with a significant increase in protein expression and enzymatic activity of XOR protein in aortic ECs. Genetic disruption of Xdh in ECs or treatment with febuxostat significantly suppressed aortic aneurysm progression and improved perivascular infiltration of macrophages. Mechanistically, mechanosensitive signaling involving FAK (focal adhesion kinase)-p38 MAPK (p38 mitogen-activated protein kinase) and Egr-1 (early growth response-1) was aberrantly activated in the ascending aorta of Fbn1C1041G/+ mice, and mechanical stress on human aortic ECs upregulated XOR expression through Egr-1 upregulation. Consistently, EC-specific knockout of XOR or systemic administration of febuxostat in Fbn1C1041G/+ mice suppressed reactive oxygen species generation, FAK-p38 MAPK activation, and Egr-1 upregulation. CONCLUSIONS Aberrant activation of mechanosensitive signaling in vascular ECs triggered endothelial XOR activation and reactive oxygen species generation, which contributes to the progression of aortic aneurysms in MFS. These findings highlight a drug repositioning approach using a uric acid-lowering drug febuxostat as a potential therapy for MFS.
Collapse
Affiliation(s)
- Hiroki Yagi
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
- Marfan Syndrome Center, The University of Tokyo Hospital, Bunkyo-ku, Japan (H. Yagi, Norifumi Takeda, M.A., H. Yamauchi)
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
| | - Qing Liu
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
| | - Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine (K.Y.)
| | - Kan Nawata
- Department of Cardiovascular Surgery, St. Marianna University School of Medicine, Kawasaki, Japan (K.N.)
| | - Akiko Saga-Kamo
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
| | - Masahiko Umei
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroshi Kadowaki
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
| | - Ryo Matsuoka
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
| | - Akito Shindo
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
| | - Shun Okamura
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
| | - Haruhiro Toko
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
- Marfan Syndrome Center, The University of Tokyo Hospital, Bunkyo-ku, Japan (H. Yagi, Norifumi Takeda, M.A., H. Yamauchi)
| | - Masahiko Ando
- Department of Cardiac Surgery, Graduate School of Medicine (M.A., H. Yamauchi, M.O.), The University of Tokyo, Bunkyo-ku, Japan
- Marfan Syndrome Center, The University of Tokyo Hospital, Bunkyo-ku, Japan (H. Yagi, Norifumi Takeda, M.A., H. Yamauchi)
| | - Haruo Yamauchi
- Department of Cardiac Surgery, Graduate School of Medicine (M.A., H. Yamauchi, M.O.), The University of Tokyo, Bunkyo-ku, Japan
- Marfan Syndrome Center, The University of Tokyo Hospital, Bunkyo-ku, Japan (H. Yagi, Norifumi Takeda, M.A., H. Yamauchi)
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan (Norihiko Takeda)
| | - Mehdi A Fini
- Division of Pulmonary and Critical Care, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora (M.A.F.)
| | - Minoru Ono
- Department of Cardiac Surgery, Graduate School of Medicine (M.A., H. Yamauchi, M.O.), The University of Tokyo, Bunkyo-ku, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.), The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
6
|
Phillips M, Nimmo M, Rugonyi S. Developmental and Evolutionary Heart Adaptations Through Structure-Function Relationships. J Cardiovasc Dev Dis 2025; 12:83. [PMID: 40137081 PMCID: PMC11942974 DOI: 10.3390/jcdd12030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
While the heart works as an efficient pump, it also has a high level of adaptivity by changing its structure to maintain function during healthy and diseased states. In this Review, we present examples of structure-function relationships across species and throughout embryonic development in mammals and birds. We also summarize current research on avian models aiming at understanding how biophysical and biological mechanisms closely interact during heart formation. We conclude by underscoring similarities between cardiac adaptations and structural changes over developmental and evolutionary time scales and how understanding the mechanisms behind these adaptations can help prevent or alleviate the effects of cardiac malformations and contribute to cardiac regeneration efforts.
Collapse
Affiliation(s)
| | | | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA; (M.P.); (M.N.)
| |
Collapse
|
7
|
Dubacher N, Sugiyama K, Smith JD, Nussbaumer V, Csonka M, Ferenczi S, Kovács KJ, Caspar SM, Lamberti L, Meienberg J, Yanagisawa H, Sheppard MB, Matyas G. Novel Insights into the Aortic Mechanical Properties of Mice Modeling Hereditary Aortic Diseases. Thromb Haemost 2025; 125:142-152. [PMID: 38950604 PMCID: PMC11737803 DOI: 10.1055/s-0044-1787957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE Hereditary aortic diseases (hADs) increase the risk of aortic dissections and ruptures. Recently, we have established an objective approach to measure the rupture force of the murine aorta, thereby explaining the outcomes of clinical studies and assessing the added value of approved drugs in vascular Ehlers-Danlos syndrome (vEDS). Here, we applied our approach to six additional mouse hAD models. MATERIAL AND METHODS We used two mouse models (Fbn1C1041G and Fbn1mgR ) of Marfan syndrome (MFS) as well as one smooth-muscle-cell-specific knockout (SMKO) of Efemp2 and three CRISPR/Cas9-engineered knock-in models (Ltbp1, Mfap4, and Timp1). One of the two MFS models was subjected to 4-week-long losartan treatment. Per mouse, three rings of the thoracic aorta were prepared, mounted on a tissue puller, and uniaxially stretched until rupture. RESULTS The aortic rupture force of the SMKO and both MFS models was significantly lower compared with wild-type mice but in both MFS models higher than in mice modeling vEDS. In contrast, the Ltbp1, Mfap4, and Timp1 knock-in models presented no impaired aortic integrity. As expected, losartan treatment reduced aneurysm formation but surprisingly had no impact on the aortic rupture force of our MFS mice. CONCLUSION Our read-out system can characterize the aortic biomechanical integrity of mice modeling not only vEDS but also related hADs, allowing the aortic-rupture-force-focused comparison of mouse models. Furthermore, aneurysm progression alone may not be a sufficient read-out for aortic rupture, as antihypertensive drugs reducing aortic dilatation might not strengthen the weakened aortic wall. Our results may enable identification of improved medical therapies of hADs.
Collapse
Affiliation(s)
- Nicolo Dubacher
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
- Translational Cardiovascular Technologies, Department of Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Jeffrey D. Smith
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Vanessa Nussbaumer
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Máté Csonka
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina J. Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Sylvan M. Caspar
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Lisa Lamberti
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Janine Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Mary B. Sheppard
- Department of Family and Community Medicine, University of Kentucky, Lexington, Kentucky, United States
- Saha Aortic Center, University of Kentucky, Lexington, Kentucky, United States
| | - Gabor Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Swiss Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Shukla S, Jana S, Sanford N, Lee CY, Liu L, Cheng P, Quertermous T, Dichek DA. Single-Cell Transcriptomics Identifies Selective Lineage-Specific Regulation of Genes in Aortic Smooth Muscle Cells in Mice. Arterioscler Thromb Vasc Biol 2025; 45:e15-e29. [PMID: 39744838 PMCID: PMC11875902 DOI: 10.1161/atvbaha.124.321482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Smooth muscle cells (SMCs) of the proximal thoracic aorta are derived from second heart field (SHF) and cardiac neural crest (CNC) lineages. Recent studies, both in vitro and in vivo, have implied relevance of lineage-specific SMC functions in the pathophysiology of thoracic aortic diseases; however, whether 2 lineage-derived SMCs have any predisposed transcriptional differences in the control aorta remains unexplored. METHODS Single-cell RNA sequencing and single-nucleus assay for transposase-accessible chromatin sequencing were performed on isolated cells from the aortic root and ascending aortas of 14-week-old SHF-traced (Mef2c-Cre+/0-Yfp+/0) and CNC-traced (Wnt1-Cre+/0-Yfp+/0) male mice. RNA in situ hybridization was performed for spatial expression of selected differentially expressed genes (DEGs) of both lineages. RESULTS Lineage stratification of SMCs in the proximal thoracic aorta was identified using antibody-based immunofluorescence staining. Single-cell RNA sequencing recognized 12 consistently upregulated DEGs (Des, Tnnt2, Hand2os1, Psd, Gpc3, Meis2, Dcn, Gm34030, Palld, Nrtn, Lum, and Cfh) in SHF-derived SMCs and 9 consistently upregulated DEGs (Ccn5, Ccdc42, Tes, Eln, Aebp1, Galnt6, Ccn2, Aopep, and Wtip) in CNC-derived SMCs. RNA in situ hybridization validated upregulated expressions of selective SHF-specific DEGs at the aortic root. We found SHF-derived SMCs contain a distinct, large subpopulation of SMCs that is enriched with Des and Tnnt2 expressions. Single-nucleus assay for transposase-accessible chromatin analysis further confirmed higher chromosomal accessibility for upregulated DEGs of SHF-derived SMCs. CONCLUSIONS The present study recognizes the presence of limited but distinct transcriptomic differences between CNC-derived and SHF-derived SMCs in the control proximal thoracic aorta.
Collapse
Affiliation(s)
- Shalabh Shukla
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| | - Sayantan Jana
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| | - Nicole Sanford
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| | - Chloe Y Lee
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| | - Li Liu
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| | - Paul Cheng
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, CA, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, CA, USA
| | - David A Dichek
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| |
Collapse
|
9
|
Ibrahim AM, Roshdy M, Latif N, Elsawy A, Sarathchandra P, Hosny M, Hekal S, Attia A, Elmozy W, Elaithy A, Elguindy A, Afifi A, Aguib Y, Yacoub M. Structural and Functional Characterization of the Aorta in Hypertrophic Obstructive Cardiomyopathy. Circ Heart Fail 2025; 18:e012384. [PMID: 39846175 PMCID: PMC11832182 DOI: 10.1161/circheartfailure.124.012384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/14/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Changes in the phenotype and genotype in hypertrophic cardiomyopathy (HCM) are thought to involve the myocardium as well as extracardiac tissues. Here, we describe the structural and functional changes in the ascending aorta of obstructive patients with HCM. METHODS Changes in the aortic wall were studied in a cohort of 101 consecutive patients with HCM undergoing myectomy and 9 normal controls. Biopsies were examined histologically, immunohistochemically, and by electron microscopy. Changes in protein expression were quantified using morphometry and Western blotting. Pulse wave velocity was measured using cardiac magnetic resonance in 85 patients with HCM and compared with 117 age-matched normal controls. RESULTS In HCM, the number of medial lamellar units was significantly decreased, associated with an increase in interlamellar distance and aortic wall thickness, as compared with controls. Electron microscopy showed an altered lamellar structure with disorientation of elastin fibers from the circumferential direction. There was a significant decrease in collagen content, α-smooth muscle actin, smooth muscle myosin, smooth muscle 22 and integrin β1, as well as a significant increase in calponin and caspase-3. Fibulins 1, 2, and 5 showed reduced expression in HCM-aortic biopsies. Functionally, pulse wave velocity was significantly higher in patients with HCM compared with healthy controls, with an association between higher pulse wave velocity and more severe molecular and clinical parameters. CONCLUSIONS The increased wall stiffness observed in the aortas of obstructive patients with HCM is associated with structural alterations in the medial lamellar unit, including changes in smooth muscle cells and the extracellular matrix, indicating potential arterial dysfunction.
Collapse
Affiliation(s)
- Ayman M. Ibrahim
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
- Institute of Cardiovascular Physiology, University Göttingen, Germany (A.M.I.)
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt (A.M.I.)
| | - Mohamed Roshdy
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Najma Latif
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.L., Y.A., M.Y.)
- The Magdi Yacoub Institute, Heart Science Centre, Harefield, United Kingdom (N.L., P.S.)
| | - Amr Elsawy
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Padmini Sarathchandra
- The Magdi Yacoub Institute, Heart Science Centre, Harefield, United Kingdom (N.L., P.S.)
| | - Mohammed Hosny
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
- Cardiology Department, Faculty of Medicine, Cairo University, Egypt (M.H.)
| | - Soha Hekal
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Ahmed Attia
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
- Institute of Cardiovascular Physiology, University Göttingen, Germany (A.M.I.)
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt (A.M.I.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.L., Y.A., M.Y.)
- The Magdi Yacoub Institute, Heart Science Centre, Harefield, United Kingdom (N.L., P.S.)
- Cardiology Department, Faculty of Medicine, Cairo University, Egypt (M.H.)
| | - Wesam Elmozy
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Amany Elaithy
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Ahmed Elguindy
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Ahmed Afifi
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
| | - Yasmine Aguib
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.L., Y.A., M.Y.)
| | - Magdi Yacoub
- Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.L., Y.A., M.Y.)
| |
Collapse
|
10
|
Huang J, Liu H, Liu Z, Wang Z, Xu H, Li Z, Huang S, Yang X, Shen Y, Yu F, Li Y, Zhu J, Li W, Wang L, Kong W, Fu Y. Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice. J Clin Invest 2025; 135:e178198. [PMID: 39817456 PMCID: PMC11735105 DOI: 10.1172/jci178198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 11/15/2024] [Indexed: 01/30/2025] Open
Abstract
The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients. Specific elimination of CX3CR1+ cells by diphtheria toxin in Cx3cr1-CreERT2iDTRF/+Fbn1C1041G/+ mice efficiently ameliorated TAA progression. Administering the monoclonal antibodies to respectively neutralize TNF-α and IGF1 produced by CX3CR1+ cells from MFS patients greatly suppressed the cocultured MFS patient-specific induced pluripotent stem cell-derived VSMC inflammation. BM transplantation and parabiosis revealed that CX3CR1+ macrophages are mainly originated from BM-derived monocytes. Targeting TNF-α and IGF1 in CX3CR1+ macrophages via shRNA lentivirus transduction in BM cells efficiently suppressed TAA development in BM-transplanted Fbn1C1041G/+ mice. Application of the CCR2 antagonist RS504393 to inhibit monocyte infiltration markedly reduced the accumulation of CX3CR1+ macrophages and subsequently alleviated TAA progression in Fbn1C1041G/+ mice. In summary, CX3CR1+ macrophages mainly located in aortic intima mediate TAA formation by paracrinally causing VSMC inflammation, and targeting them offers a potential antiinflammatory therapeutic strategy for MFS-related TAA.
Collapse
MESH Headings
- Animals
- Mice
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages/immunology
- Marfan Syndrome/pathology
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/immunology
- Humans
- Disease Progression
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Mice, Transgenic
- Male
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor I/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Adipokines
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing, China
| | - Zhujiang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhenting Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanshi Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Shan Huang
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing, China
| | - Wei Li
- Department of Vascular Surgery, Peking University People’s Hospital, Beijing, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
11
|
Andreas M, Lang IM. Chemokine receptor-directed imaging, prognostication, and treatment of abdominal aortic aneurysm: can we do it all with CXCR4? Cardiovasc Res 2025:cvae259. [PMID: 39760698 DOI: 10.1093/cvr/cvae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Affiliation(s)
- Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria
| | - Irene M Lang
- Department of Cardiac Surgery, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna A-1090, Austria
| |
Collapse
|
12
|
Zhang L, Zhou J, Kong W. Extracellular matrix in vascular homeostasis and disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01103-0. [PMID: 39743560 DOI: 10.1038/s41569-024-01103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
The extracellular matrix is an essential component and constitutes a dynamic microenvironment of the vessel wall with an indispensable role in vascular homeostasis and disease. From early development through to ageing, the vascular extracellular matrix undergoes various biochemical and biomechanical alterations in response to diverse environmental cues and exerts precise regulatory control over vessel remodelling. Advances in novel technologies that enable the comprehensive evaluation of extracellular matrix components and cell-matrix interactions have led to the emergence of therapeutic strategies that specifically target this fine-tuned network. In this Review, we explore various aspects of extracellular matrix biology in vascular development, disorders and ageing, emphasizing the effect of the extracellular matrix on disease initiation and progression. Additionally, we provide an overview of the potential therapeutic implications of targeting the extracellular matrix microenvironment in vascular diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
13
|
Bark DL, Vital EF, Oury C, Lam WA, Gardiner EE. Recommendations for defining disturbed flow as laminar, transitional, or turbulent in assays of hemostasis and thrombosis: communication from the ISTH SSC Subcommittee on Biorheology. J Thromb Haemost 2025; 23:345-358. [PMID: 39395542 DOI: 10.1016/j.jtha.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
Blood flow is vital to life, yet disturbed flow has been linked to atherosclerosis, thrombosis, and endothelial dysfunction. The commonly used hemodynamic descriptor "disturbed flow" found in disease and medical devices is not clearly defined in many studies. However, the specific flow regime-laminar, transitional, or turbulent-can have very different effects on hemostasis, thrombosis, and vascular health. Therefore, it remains important to clinically identify turbulence in cardiovascular flow and to have available assays that can be used to study effects of turbulence. The objective of the current communication was to 1) provide clarity and guidance for how to clinically identify turbulence, 2) define standard measures of turbulence that can allow the recreation of flow conditions in a benchtop assay, and 3) review how cells and proteins in the blood can be impacted by turbulence based on current literature.
Collapse
Affiliation(s)
- David L Bark
- Department of Pediatrics, Division of Hematology and Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Eudorah F Vital
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cécile Oury
- GIGA Metabolism and Cardiovascular Biology - Laboratory of Cardiology, University of Liège, Liège, Belgium
| | - Wilbur A Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
14
|
Parikh S, Wehrens A, Giudici A, Ganizada B, Saraber P, Schurgers L, Debeij G, Natour E, Maessen J, Huberts W, Delhaas T, Reesink K, Bidar E. Interpretation of intra-operative strain differences in ascending thoracic aortic repair patients. J Biomech 2025; 179:112447. [PMID: 39644801 DOI: 10.1016/j.jbiomech.2024.112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Local biaxial deformation plays a pivotal role in evaluating the tissue state of the ascending aorta and in driving intramural cell-mediated tissue remodeling. Unfortunately, the absence of anatomical markers on the ascending aorta presents challenges in capturing deformation. Utilizing our established intra-operative biaxial strain measurement method, we delineated local biaxial deformation characteristics in patients undergoing aortic valve replacement and coronary artery bypass graft surgery recipients (n = 20), and Aortic Repair surgery patients (n = 47). Expectedly, mean circumferential strains positively correlated with pulse pressure and negatively correlated with age and diameter. A new observation was that the mean axial strains exhibited the same trend as the mean circumferential strains when correlated with pulse pressure, age and diameter. Interestingly, on analyzing local biaxial strains, our findings revealed higher circumferential strains (by 1 %) proximal to the heart compared to distal regions across the cohorts and within each patient cohort. Furthermore, no discernible regional strain distinctions were noted between the medial and lateral sides of the ascending aorta for the entire patient population and individual cohorts. Patients undergoing Aortic Repair surgery indicated lower strains (ranging from 1 to 3 %) as compared to the other cohort. Our approach holds the potential to establish a foundational framework for the integrated examination of the mechanical and biological conditions and their role in ascending aortic aneurysm development.
Collapse
Affiliation(s)
- Shaiv Parikh
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Anne Wehrens
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| | - Berta Ganizada
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands; Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Pepijn Saraber
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Leon Schurgers
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Gijs Debeij
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| | - Ehsan Natour
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| | - Jos Maessen
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| | - Wouter Huberts
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Biomedical Engineering, Cardiovascular Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Koen Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Elham Bidar
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| |
Collapse
|
15
|
Ben Hassine A, Petit C, Thomas M, Mundweiler S, Guignandon A, Avril S. Gene expression modulation in human aortic smooth muscle cells under induced physiological mechanical stretch. Sci Rep 2024; 14:31147. [PMID: 39732782 DOI: 10.1038/s41598-024-82495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
In this study, we investigated gene expression in vitro of human primary Aortic smooth muscle cells (AoSMCs) in response to 9% physiological dynamic stretch over a 4 to 72-h timeframe using RT-qPCR. AoSMC were derived from primary culture and were exposed to continuous cycles of stretch and relaxation at 1 Hz by a computer-controlled Flex Jr.™ Tension System. Unstretched control AoSMCs were simultaneously cultured in the same dishes. Our results revealed a rapid and significant upregulation of specific genes (COL1A1, FBN1, LAMA5, TGFBR1 and TGFBR2) within the initial 4 h for AoSMCs subjected to dynamic stretching, whilst control cells did not respond within the same 4 h. The upregulated genes were the ones associated with extracellular matrix (ECM) fibrillogenesis and regulation of traction forces. Interestingly, stretched cells maintained stable gene expression between 4 and 72 h, whilst control cells exhibited variations over time in the absence of mechanical cues. These findings shed light on the essential role played by pulsatile stretches in the regulation of gene expressions by AoSMCs and the intricate processes governing their mechanobiological function, paving the way for further investigations in cardiovascular health.
Collapse
Affiliation(s)
- Amira Ben Hassine
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France
| | - Claudie Petit
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France
| | - Mireille Thomas
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France
| | - Stéphanie Mundweiler
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France
| | - Alain Guignandon
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France
| | - Stéphane Avril
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France.
| |
Collapse
|
16
|
Weiss D, Yeung N, Ramachandra AB, Humphrey JD. Transcriptional regulation of postnatal aortic development. Cells Dev 2024; 180:203971. [PMID: 39426523 PMCID: PMC11634634 DOI: 10.1016/j.cdev.2024.203971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The aorta exhibits tremendous changes in geometry, composition, and mechanical properties during postnatal development. These changes are necessarily driven by transcriptional changes, both genetically programmed and mechano-responsive, but there has not been a careful comparison of time-course changes in the transcriptional profile and biomechanical phenotype. Here, we show that the greatest period of differential gene expression in the normal postnatal mouse aorta occurs prior to weaning at three weeks of age though with important evolution of many transcripts thereafter. We identify six general temporal patterns, including transcripts that monotonically decrease to lower or increase to higher steady state values as well as those that either peak or dip prior to or near weaning. We show that diverse transcripts within individual groupings correlate well over time, and that sub-sets of these groups correlate well with the developmental progression of different biomechanical metrics that are expected to be involved in mechano-sensing. In particular, expression of genes for elastin and elastin-associated glycoproteins tend to correlate well with the ratio of systolic-to-diastolic stress whereas genes for collagen fibers correlate well with the daily rate of change of systolic stress and genes for mechano-sensing proteins tend to correlate well with the systolic stress itself. We conclude that different groupings of genes having different temporal expression patterns correlate well with different measures of the wall mechanics, hence emphasizing a need for age-dependent, gene-specific computational modeling of postnatal development.
Collapse
Affiliation(s)
- D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical & Materials Engineering, University of Denver, Denver, CO, USA
| | - N Yeung
- School of the Biological Sciences, University of Cambridge, Cambridge, UK
| | - A B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Barry M, Barry F, Gun M, Padurean P, Havet E, Gara Ali B, Caus T. Impact of aortic and pulmonary artery wall histology on radicular dilatation during the Ross procedure. J Cardiothorac Surg 2024; 19:618. [PMID: 39487528 PMCID: PMC11531152 DOI: 10.1186/s13019-024-03125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVE In our study, we aim to explore the structural differences between the aortic root and the pulmonary artery to better understand the process of pulmonary autograft dilatation during the Ross procedure. MATERIALS AND METHODS We studied twenty human fetuses (aged 14-36 weeks of gestation) and four adults (one female and three males, aged 30-45 years, mean age = 37 ± 16 years). Samples of aortic root and pulmonary artery were obtained through dissection. Histological examinations, including hematoxylin-eosin, Masson's trichrome, and orcein staining, as well as immunohistochemical technique with caldesmon staining, were performed. Microscopic counting was conducted to assess the number of elastic laminae and smooth muscle cells in each arterial wall. Statistical analyses were performed using R software. Means and standard deviations were used to present central tendencies and data dispersion for elastic laminae and smooth muscle. RESULTS Significant histological differences were observed between the aortic root and pulmonary artery in both adults and fetuses. In fetuses, no difference was found between the two vessels in terms of elastic laminae (p = 0.26) and smooth muscle cells (p = 0.69). However, in adults, significant differences were found for elastic laminae (p < 0.001) and smooth muscle cells (p < 0.001) between the aorta and pulmonary artery. CONCLUSIONS The microscopic vascular structure impacts the mechanical properties of the pulmonary autograft wall and explains its observed dilatation remote from the Ross procedure due to wall stresses related to systemic pressure.
Collapse
Affiliation(s)
- Misbaou Barry
- Department of Cardiac Surgery, Heart-Chest-Vascular Surgery Center, Amiens Picardie University Hospital Center, 1 Rue du Professeur Christian Cabrol, 80054, Amiens, Cedex1, France.
- Anatomy Laboratory, Faculty of Medicine University of Amiens, Amiens, France.
| | - Fatoumata Barry
- Department of Pathological Anatomy and Cytology, Ambroise-Paré Hospital, AP-HP, 9 Avenue Charles-de-Gaulle, 92100, Boulogne-Billancourt, France
| | - Mesut Gun
- Department of Cardiology, Amiens Picardie University Hospital Center, 1 Rue du Professeur Christian Cabrol, 80054, Amiens, Cedex1, France
| | - Paul Padurean
- Department of Cardiac Surgery, Amiens Picardie University Hospital Center, 1 Rue du Professeur Christian Cabrol, 80054, Amiens, Cedex1, France
| | - Eric Havet
- Anatomy Laboratory, Faculty of Medicine University of Amiens, Amiens, France
| | - Bessem Gara Ali
- Department of Cardiac Surgery, Amiens Picardie University Hospital Center, 1 Rue du Professeur Christian Cabrol, 80054, Amiens, Cedex1, France
| | - Thierry Caus
- Department of Cardiac Surgery, Amiens Picardie University Hospital Center, 1 Rue du Professeur Christian Cabrol, 80054, Amiens, Cedex1, France
| |
Collapse
|
18
|
Marway PS, Tjahjadi N, Campello Jorge CA, Knauer H, Spahlinger G, Masotti M, Eagle KA, Hofmann Bowman MA, Patel HJ, Burris NS. Baseline Diameter Does Not Predict Growth Rate in a Presurgical Ascending Thoracic Aortic Aneurysm Population. J Am Heart Assoc 2024; 13:e036896. [PMID: 39392167 PMCID: PMC11935589 DOI: 10.1161/jaha.124.036896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Patients with ascending thoracic aortic aneurysm are recommended to undergo routine imaging surveillance. Although maximal diameter is the primary metric of disease severity, recent American College of Cardiology/American Heart Association guidelines emphasize the importance of aortic growth in determining surgical candidacy and risk. As diameter increases, it is assumed that aortic growth rate accelerates because of increased wall tension; however, this relationship is poorly studied. We aim to investigate the relationship between ascending thoracic aortic aneurysm diameter and growth rate using vascular deformation mapping, a validated technique for 3-dimensional growth mapping with submillimeter accuracy. METHODS AND RESULTS We retrospectively identified adult patients with ascending aortic dilation (≥4.0 cm) and serial gated computed tomography angiograms separated by ≥2 years, excluding confirmed heritable thoracic aortic disease. Ascending growth rate was defined as 90th percentile radial wall deformation by vascular deformation mapping. Maximal diameter measurements were derived from the baseline computed tomography angiogram, and aortic length and body size-adjusted indexes were calculated. Among 258 included patients (63.2% men; age of 63 years [interquartile range, 55-69 years]), mean±SD baseline diameter was 46.3±3.6 mm and median growth rate was 0.21 mm/year (interquartile range, 0.13-0.38 mm/year). No correlation was noted between growth rate and baseline diameter (r=0.02, P=0.74) or other aortic size metrics. On multivariate analysis, age was independently predictive of growth rate (β=-0.007, P=0.021), alongside weight (β=0.003, P=0.016) and the presence of moderate or severe aortic valve insufficiency (β=0.146, P=0.049). CONCLUSIONS Maximal aortic diameter is not predictive of aortic growth rate, in this contemporary cohort of patients with sizes under current surgical thresholds (<55 mm).
Collapse
Affiliation(s)
| | | | | | - Heather Knauer
- Department of RadiologyUniversity of MichiganAnn ArborMI
| | | | - Maria Masotti
- Biostatistics, School of Public HealthUniversity of MichiganAnn ArborMI
| | - Kim A. Eagle
- Department of Internal Medicine—CardiologyUniversity of MichiganAnn ArborMI
| | | | | | | |
Collapse
|
19
|
Kwartler CS, Pinelo JEE. Use of iPSC-Derived Smooth Muscle Cells to Model Physiology and Pathology. Arterioscler Thromb Vasc Biol 2024; 44:1523-1536. [PMID: 38695171 PMCID: PMC11209779 DOI: 10.1161/atvbaha.123.319703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The implementation of human induced pluripotent stem cell (hiPSC) models has introduced an additional tool for identifying molecular mechanisms of disease that complement animal models. Patient-derived or CRISPR/Cas9-edited induced pluripotent stem cells differentiated into smooth muscle cells (SMCs) have been leveraged to discover novel mechanisms, screen potential therapeutic strategies, and model in vivo development. The field has evolved over almost 15 years of research using hiPSC-SMCs and has made significant strides toward overcoming initial challenges such as the lineage specificity of SMC phenotypes. However, challenges both specific (eg, the lack of specific markers to thoroughly validate hiPSC-SMCs) and general (eg, a lack of transparency and consensus around methodology in the field) remain. In this review, we highlight the recent successes and remaining challenges of the hiPSC-SMC model.
Collapse
Affiliation(s)
- Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Jose Emiliano Esparza Pinelo
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
20
|
Franklin MK, Sawada H, Ito S, Howatt DA, Amioka N, Liang CL, Zhang N, Graf DB, Moorleghen JJ, Katsumata Y, Lu HS, Daugherty A. β-Aminopropionitrile Induces Distinct Pathologies in the Ascending and Descending Thoracic Aortic Regions of Mice. Arterioscler Thromb Vasc Biol 2024; 44:1555-1569. [PMID: 38779856 PMCID: PMC11209774 DOI: 10.1161/atvbaha.123.320402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND β-aminopropionitrile (BAPN) is a pharmacological inhibitor of LOX (lysyl oxidase) and LOXLs (LOX-like proteins). Administration of BAPN promotes aortopathies, although there is a paucity of data on experimental conditions to generate pathology. The objective of this study was to define experimental parameters and determine whether equivalent or variable aortopathies were generated throughout the aortic tree during BAPN administration in mice. METHODS BAPN was administered in drinking water for a period ranging from 1 to 12 weeks. The impacts of BAPN were first assessed with regard to BAPN dose, and mouse strain, age, and sex. BAPN-induced aortic pathological characterization was conducted using histology and immunostaining. To investigate the mechanistic basis of regional heterogeneity, the ascending and descending thoracic aortas were harvested after 1 week of BAPN administration before the appearance of overt pathology. RESULTS BAPN-induced aortic rupture predominantly occurred or originated in the descending thoracic aorta in young C57BL/6J or N mice. No apparent differences were found between male and female mice. For mice surviving 12 weeks of BAPN administration, profound dilatation was consistently observed in the ascending region, while there were more heterogeneous changes in the descending thoracic region. Pathological features were distinct between the ascending and descending thoracic regions. Aortic pathology in the ascending region was characterized by luminal dilatation and elastic fiber disruption throughout the media. The descending thoracic region frequently had dissections with false lumen formation, collagen deposition, and remodeling of the wall surrounding the false lumen. Cells surrounding the false lumen were predominantly positive for α-SMA (α-smooth muscle actin). One week of BAPN administration compromised contractile properties in both regions equivalently, and RNA sequencing did not show obvious differences between the 2 aortic regions in smooth muscle cell markers, cell proliferation markers, and extracellular components. CONCLUSIONS BAPN-induced pathologies show distinct, heterogeneous features within and between ascending and descending aortic regions in mice.
Collapse
MESH Headings
- Animals
- Aminopropionitrile/toxicity
- Aminopropionitrile/pharmacology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Female
- Male
- Mice, Inbred C57BL
- Disease Models, Animal
- Aortic Rupture/chemically induced
- Aortic Rupture/pathology
- Aortic Rupture/metabolism
- Aortic Rupture/prevention & control
- Mice
- Vascular Remodeling/drug effects
- Dilatation, Pathologic
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Age Factors
- Time Factors
- Sex Factors
- Cell Proliferation/drug effects
- Protein-Lysine 6-Oxidase/metabolism
Collapse
Affiliation(s)
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Naofumi Amioka
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Ching-Ling Liang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Nancy Zhang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - David B. Graf
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | | | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
21
|
Czerny M, Grabenwöger M, Berger T, Aboyans V, Della Corte A, Chen EP, Desai ND, Dumfarth J, Elefteriades JA, Etz CD, Kim KM, Kreibich M, Lescan M, Di Marco L, Martens A, Mestres CA, Milojevic M, Nienaber CA, Piffaretti G, Preventza O, Quintana E, Rylski B, Schlett CL, Schoenhoff F, Trimarchi S, Tsagakis K, Siepe M, Estrera AL, Bavaria JE, Pacini D, Okita Y, Evangelista A, Harrington KB, Kachroo P, Hughes GC. EACTS/STS Guidelines for Diagnosing and Treating Acute and Chronic Syndromes of the Aortic Organ. Ann Thorac Surg 2024; 118:5-115. [PMID: 38416090 DOI: 10.1016/j.athoracsur.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Martin Czerny
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany.
| | - Martin Grabenwöger
- Department of Cardiovascular Surgery, Clinic Floridsdorf, Vienna, Austria; Medical Faculty, Sigmund Freud Private University, Vienna, Austria.
| | - Tim Berger
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Victor Aboyans
- Department of Cardiology, Dupuytren-2 University Hospital, Limoges, France; EpiMaCT, Inserm 1094 & IRD 270, Limoges University, Limoges, France
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy; Cardiac Surgery Unit, Monaldi Hospital, Naples, Italy
| | - Edward P Chen
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Nimesh D Desai
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Dumfarth
- University Clinic for Cardiac Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - John A Elefteriades
- Aortic Institute at Yale New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Christian D Etz
- Department of Cardiac Surgery, University Medicine Rostock, University of Rostock, Rostock, Germany
| | - Karen M Kim
- Division of Cardiovascular and Thoracic Surgery, The University of Texas at Austin/Dell Medical School, Austin, Texas
| | - Maximilian Kreibich
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Mario Lescan
- Department of Thoracic and Cardiovascular Surgery, University Medical Centre Tübingen, Tübingen, Germany
| | - Luca Di Marco
- Cardiac Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andreas Martens
- Department of Cardiac Surgery, Klinikum Oldenburg, Oldenburg, Germany; The Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carlos A Mestres
- Department of Cardiothoracic Surgery and the Robert WM Frater Cardiovascular Research Centre, The University of the Free State, Bloemfontein, South Africa
| | - Milan Milojevic
- Department of Cardiac Surgery and Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia
| | - Christoph A Nienaber
- Division of Cardiology at the Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gabriele Piffaretti
- Vascular Surgery Department of Medicine and Surgery, University of Insubria School of Medicine, Varese, Italy
| | - Ourania Preventza
- Division of Cardiothoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Eduard Quintana
- Department of Cardiovascular Surgery, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Bartosz Rylski
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany; Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Christopher L Schlett
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Florian Schoenhoff
- Department of Cardiac Surgery, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Santi Trimarchi
- Department of Cardiac Thoracic and Vascular Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Tsagakis
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Medicine Essen, Essen, Germany
| | - Matthias Siepe
- EACTS Review Coordinator; Department of Cardiac Surgery, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Anthony L Estrera
- STS Review Coordinator; Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Joseph E Bavaria
- Department of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Davide Pacini
- Division of Cardiac Surgery, S. Orsola University Hospital, IRCCS Bologna, Bologna, Italy
| | - Yutaka Okita
- Cardio-Aortic Center, Takatsuki General Hospital, Osaka, Japan
| | - Arturo Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Instituto del Corazón, Quirónsalud-Teknon, Barcelona, Spain
| | - Katherine B Harrington
- Department of Cardiothoracic Surgery, Baylor Scott and White The Heart Hospital, Plano, Texas
| | - Puja Kachroo
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, Missouri
| | - G Chad Hughes
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Duke University, Durham, North Carolina
| |
Collapse
|
22
|
Thaxton C, Kano M, Mendes-Pinto D, Navarro TP, Nishibe T, Dardik A. Implications of preoperative arterial stiffness for patients treated with endovascular repair of abdominal aortic aneurysms. JVS Vasc Sci 2024; 5:100209. [PMID: 39677517 PMCID: PMC11639741 DOI: 10.1016/j.jvssci.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/09/2024] [Indexed: 12/17/2024] Open
Abstract
Arterial stiffening is associated with adverse cardiovascular patient outcomes; stiffness may also be associated with postsurgical events and has been suggested to be a fundamental mechanism in the pathogenesis of aortic aneurysms. Although open repair of aneurysms decreases aortic stiffness, implantation of a rigid endograft is associated with increased aortic stiffness after endovascular aneurysm repair (EVAR). This review provides an overview of aortic wall physiology and the contemporary understanding of aortic stiffness and its implications for patients undergoing abdominal aortic aneurysm repair. Recent data suggests that increased central arterial stiffness, estimated preoperatively using the pulse wave velocity (PWV), may predict aneurysm sac behavior after EVAR, with elevated preoperative PWV associated with less sac shrinkage, and even sac enlargement, after EVAR. With the development of several simple noninvasive methods to measure PWV, such as brachial-ankle PWV and single cuff brachial oscillometry, there may be a role for monitoring ambulatory PWV to predict outcomes after EVAR. Additionally, because aortic stiffness is associated with adverse cardiovascular outcomes, and EVAR increases aortic stiffness, assessment of aortic stiffness before aortic interventions may help to guide therapeutic decisions as well as surveillance protocols, leading to optimized patient outcomes.
Collapse
Affiliation(s)
- Carly Thaxton
- Departments of Surgery and the Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Masaki Kano
- Departments of Surgery and the Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Daniel Mendes-Pinto
- Department of Vascular Surgery, Hospital Felício Rocho, Belo Horizonte, Minas Gerais, Brazil
| | - Túlio Pinho Navarro
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Toshiya Nishibe
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
- Faculty of Medical Informatics, Hokkaido Information University, Ebetsu, Japan
| | - Alan Dardik
- Departments of Surgery and the Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
23
|
Phua DY, Sun X, Alushin GM. Force-activated zyxin assemblies coordinate actin nucleation and crosslinking to orchestrate stress fiber repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594765. [PMID: 38798419 PMCID: PMC11118565 DOI: 10.1101/2024.05.17.594765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
As the cytoskeleton sustains cell and tissue forces, it incurs physical damage that must be repaired to maintain mechanical homeostasis. The LIM-domain protein zyxin detects force-induced ruptures in actin-myosin stress fibers, coordinating downstream repair factors to restore stress fiber integrity through unclear mechanisms. Here, we reconstitute stress fiber repair with purified proteins, uncovering detailed links between zyxin's force-regulated binding interactions and cytoskeletal dynamics. In addition to binding individual tensed actin filaments (F-actin), zyxin's LIM domains form force-dependent assemblies that bridge broken filament fragments. Zyxin assemblies engage repair factors through multi-valent interactions, coordinating nucleation of new F-actin by VASP and its crosslinking into aligned bundles by ɑ-actinin. Through these combined activities, stress fiber repair initiates within the cores of micron-scale damage sites in cells, explaining how these F-actin depleted regions are rapidly restored. Thus, zyxin's force-dependent organization of actin repair machinery inherently operates at the network scale to maintain cytoskeletal integrity.
Collapse
Affiliation(s)
- Donovan Y.Z. Phua
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
24
|
Hao L, Ya X, Wu J, Tao C, Ma R, Zheng Z, Mou S, Ling Y, Yang Y, Wang J, Zhang Y, Lin Q, Zhao J. Somatic PDGFRB activating variants promote smooth muscle cell phenotype modulation in intracranial fusiform aneurysm. J Biomed Sci 2024; 31:51. [PMID: 38741091 PMCID: PMC11092182 DOI: 10.1186/s12929-024-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The fusiform aneurysm is a nonsaccular dilatation affecting the entire vessel wall over a short distance. Although PDGFRB somatic variants have been identified in fusiform intracranial aneurysms, the molecular and cellular mechanisms driving fusiform intracranial aneurysms due to PDGFRB somatic variants remain poorly understood. METHODS In this study, single-cell sequencing and immunofluorescence were employed to investigate the phenotypic changes in smooth muscle cells within fusiform intracranial aneurysms. Whole-exome sequencing revealed the presence of PDGFRB gene mutations in fusiform intracranial aneurysms. Subsequent immunoprecipitation experiments further explored the functional alterations of these mutated PDGFRB proteins. For the common c.1684 mutation site of PDGFRβ, we established mutant smooth muscle cell lines and zebrafish models. These models allowed us to simulate the effects of PDGFRB mutations. We explored the major downstream cellular pathways affected by PDGFRBY562D mutations and evaluated the potential therapeutic effects of Ruxolitinib. RESULTS Single-cell sequencing of two fusiform intracranial aneurysms sample revealed downregulated smooth muscle cell markers and overexpression of inflammation-related markers in vascular smooth muscle cells, which was validated by immunofluorescence staining, indicating smooth muscle cell phenotype modulation is involved in fusiform aneurysm. Whole-exome sequencing was performed on seven intracranial aneurysms (six fusiform and one saccular) and PDGFRB somatic mutations were detected in four fusiform aneurysms. Laser microdissection and Sanger sequencing results indicated that the PDGFRB mutations were present in smooth muscle layer. For the c.1684 (chr5: 149505131) site mutation reported many times, further cell experiments showed that PDGFRBY562D mutations promoted inflammatory-related vascular smooth muscle cell phenotype and JAK-STAT pathway played a crucial role in the process. Notably, transfection of PDGFRBY562D in zebrafish embryos resulted in cerebral vascular anomalies. Ruxolitinib, the JAK inhibitor, could reversed the smooth muscle cells phenotype modulation in vitro and inhibit the vascular anomalies in zebrafish induced by PDGFRB mutation. CONCLUSION Our findings suggested that PDGFRB somatic variants played a role in regulating smooth muscle cells phenotype modulation in fusiform aneurysms and offered a potential therapeutic option for fusiform aneurysms.
Collapse
Affiliation(s)
- Li Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Joint Laboratory of School of Pharmacy, Capital Medical University and National Clinical Research Center for Nervous System Diseases, Beijing, China
| | - Xiaolong Ya
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Joint Laboratory of School of Pharmacy, Capital Medical University and National Clinical Research Center for Nervous System Diseases, Beijing, China
| | - Jiaye Wu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Ruochen Ma
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, HKSAR, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Ling
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiguang Wang
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
- Department of Chemical and Biological Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, HKSAR, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Qing Lin
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Joint Laboratory of School of Pharmacy, Capital Medical University and National Clinical Research Center for Nervous System Diseases, Beijing, China.
| |
Collapse
|
25
|
Sharma S, Kishen A. Bioarchitectural Design of Bioactive Biopolymers: Structure-Function Paradigm for Diabetic Wound Healing. Biomimetics (Basel) 2024; 9:275. [PMID: 38786486 PMCID: PMC11117869 DOI: 10.3390/biomimetics9050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic wounds such as diabetic ulcers are a major complication in diabetes caused by hyperglycemia, prolonged inflammation, high oxidative stress, and bacterial bioburden. Bioactive biopolymers have been found to have a biological response in wound tissue microenvironments and are used for developing advanced tissue engineering strategies to enhance wound healing. These biopolymers possess innate bioactivity and are biodegradable, with favourable mechanical properties. However, their bioactivity is highly dependent on their structural properties, which need to be carefully considered while developing wound healing strategies. Biopolymers such as alginate, chitosan, hyaluronic acid, and collagen have previously been used in wound healing solutions but the modulation of structural/physico-chemical properties for differential bioactivity have not been the prime focus. Factors such as molecular weight, degree of polymerization, amino acid sequences, and hierarchical structures can have a spectrum of immunomodulatory, anti-bacterial, and anti-oxidant properties that could determine the fate of the wound. The current narrative review addresses the structure-function relationship in bioactive biopolymers for promoting healing in chronic wounds with emphasis on diabetic ulcers. This review highlights the need for characterization of the biopolymers under research while designing biomaterials to maximize the inherent bioactive potency for better tissue regeneration outcomes, especially in the context of diabetic ulcers.
Collapse
Affiliation(s)
- Shivam Sharma
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
26
|
Franklin MK, Sawada H, Ito S, Howatt DA, Amioka N, Liang CL, Zhang N, Graf DB, Moorleghen JJ, Katsumata Y, Lu HS, Daugherty A. β-aminopropionitrile Induces Distinct Pathologies in the Ascending and Descending Thoracic Aortic Regions of Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.22.563474. [PMID: 37886537 PMCID: PMC10602045 DOI: 10.1101/2023.10.22.563474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
BACKGROUND β-aminopropionitrile (BAPN) is a pharmacological inhibitor of lysyl oxidase and lysyl oxidase-like proteins. Administration of BAPN promotes aortopathies, although there is a paucity of data on experimental conditions to generate pathology. The objective of this study was to define experimental parameters and determine whether equivalent or variable aortopathies were generated throughout the aortic tree during BAPN administration in mice. METHODS BAPN was administered in drinking water for a period ranging from 1 to 12 weeks. The impacts of BAPN were first assessed with regard to dose, strain, age, and sex. BAPN-induced aortic pathological characterization was conducted using histology and immunostaining. To investigate the mechanistic basis of regional heterogeneity, ascending and descending thoracic aortas were harvested after one week of BAPN administration before the appearance of overt pathology. RESULTS BAPN-induced aortic rupture predominantly occurred or originated in the descending thoracic aorta in young C57BL/6J or N mice. No apparent differences were found between male and female mice. For mice surviving 12 weeks of BAPN administration, profound dilatation was consistently observed in the ascending region, while there were more heterogeneous changes in the descending thoracic region. Pathological features were distinct between the ascending and descending thoracic regions. Aortic pathology in the ascending region was characterized by luminal dilatation and elastic fiber disruption throughout the media. The descending thoracic region frequently had dissections with false lumen formation, collagen deposition, and remodeling of the wall surrounding the false lumen. Cells surrounding the false lumen were predominantly positive for α-smooth muscle actin. One week of BAPN administration compromised contractile properties in both regions equivalently, and RNA sequencing did not show obvious differences between the two aortic regions in smooth muscle cell markers, cell proliferation markers, and extracellular components. CONCLUSIONS BAPN-induced pathologies show distinct, heterogeneous features within and between ascending and descending aortic regions in mice.
Collapse
Affiliation(s)
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Naofumi Amioka
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Ching-Ling Liang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Nancy Zhang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - David B. Graf
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | | | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY
- Sanders-Brown Center on Aging University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
27
|
Mills AC, Sandhu HK, Ikeno Y, Tanaka A. Heritable thoracic aortic disease: a literature review on genetic aortopathies and current surgical management. Gen Thorac Cardiovasc Surg 2024; 72:293-304. [PMID: 38480670 DOI: 10.1007/s11748-024-02017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/09/2024] [Indexed: 04/16/2024]
Abstract
Heritable thoracic aortic disease puts patients at risk for aortic aneurysms, rupture, and dissections. The diagnosis and management of this heterogenous patient population continues to evolve. Last year, the American Heart Association/American College of Cardiology Joint Committee published diagnosis and management guidelines for aortic disease, which included those with genetic aortopathies. Additionally, evolving research studying the implications of underlying genetic aberrations with new genetic testing continues to become available. In this review, we evaluate the current literature surrounding the diagnosis and management of heritable thoracic aortic disease, as well as novel therapeutic approaches and future directions of research.
Collapse
Affiliation(s)
- Alexander C Mills
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Harleen K Sandhu
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Yuki Ikeno
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Akiko Tanaka
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Klessinger D, Mamazhakypov A, Glaeser S, Emig R, Peyronnet R, Meier L, Proelss K, Marenne K, Smolka C, Grundmann S, Pankratz F, Esser PR, Moser M, Zhou Q, Esser JS. Divergent and Compensatory Effects of BMP2 and BMP4 on the VSMC Phenotype and BMP4's Role in Thoracic Aortic Aneurysm Development. Cells 2024; 13:735. [PMID: 38727271 PMCID: PMC11083443 DOI: 10.3390/cells13090735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) play a key role in aortic aneurysm formation. Bone morphogenetic proteins (BMPs) have been implicated as important regulators of VSMC phenotype, and dysregulation of the BMP pathway has been shown to be associated with vascular diseases. The aim of this study was to investigate for the first time the effects of BMP-4 on the VSMC phenotype and to understand its role in the development of thoracic aortic aneurysms (TAAs). Using the angiotensin II (AngII) osmotic pump model in mice, aortas from mice with VSMC-specific BMP-4 deficiency showed changes similar to AngII-infused aortas, characterised by a loss of contractile markers, increased fibrosis, and activation of matrix metalloproteinase 9. When BMP-4 deficiency was combined with AngII infusion, there was a significantly higher rate of apoptosis and aortic dilatation. In vitro, VSMCs with mRNA silencing of BMP-4 displayed a dedifferentiated phenotype with activated canonical BMP signalling. In contrast, BMP-2-deficient VSMCs exhibited the opposite phenotype. The compensatory regulation between BMP-2 and BMP-4, with BMP-4 promoting the contractile phenotype, appeared to be independent of the canonical signalling pathway. Taken together, these results demonstrate the impact of VSMC-specific BMP-4 deficiency on TAA development.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Angiotensin II/pharmacology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Apoptosis/drug effects
- Bone Morphogenetic Protein 2/metabolism
- Bone Morphogenetic Protein 4/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Signal Transduction
Collapse
Affiliation(s)
- Daniel Klessinger
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Argen Mamazhakypov
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg im Breisgau, Germany;
| | - Sophie Glaeser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (R.E.); (R.P.)
- CIBSS Centre for Integrative Biological Signalling Studies, Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Remi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (R.E.); (R.P.)
| | - Lena Meier
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Kora Proelss
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Katia Marenne
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Christian Smolka
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Sebastian Grundmann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Franziska Pankratz
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Philipp R. Esser
- Allergy Research Group, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany;
| | - Martin Moser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Qian Zhou
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
- Division of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Jennifer S. Esser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| |
Collapse
|
29
|
Singh AA, Shetty DK, Jacob AG, Bayraktar S, Sinha S. Understanding genomic medicine for thoracic aortic disease through the lens of induced pluripotent stem cells. Front Cardiovasc Med 2024; 11:1349548. [PMID: 38440211 PMCID: PMC10910110 DOI: 10.3389/fcvm.2024.1349548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Thoracic aortic disease (TAD) is often silent until a life-threatening complication occurs. However, genetic information can inform both identification and treatment at an early stage. Indeed, a diagnosis is important for personalised surveillance and intervention plans, as well as cascade screening of family members. Currently, only 20% of heritable TAD patients have a causative mutation identified and, consequently, further advances in genetic coverage are required to define the remaining molecular landscape. The rapid expansion of next generation sequencing technologies is providing a huge resource of genetic data, but a critical issue remains in functionally validating these findings. Induced pluripotent stem cells (iPSCs) are patient-derived, reprogrammed cell lines which allow mechanistic insights, complex modelling of genetic disease and a platform to study aortic genetic variants. This review will address the need for iPSCs as a frontline diagnostic tool to evaluate variants identified by genomic discovery studies and explore their evolving role in biological insight through to drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
30
|
Buja LM, Zhao B, Sadaf H, McDonald M, Segura AM, Li L, Cecchi A, Prakash SK, Afifi RO, Miller CC, Estrera AL, Milewicz DM. Insights From the Histopathologic Analysis of Acquired and Genetic Thoracic Aortic Aneurysms and Dissections. Tex Heart Inst J 2024; 51:e238253. [PMID: 38345902 DOI: 10.14503/thij-23-8253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
OBJECTIVE The purpose of this study was to apply contemporary consensus criteria developed by the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology to the evaluation of aortic pathology, with the expectation that the additional pathologic information may enhance the understanding and management of aortic diseases. METHODS A scoring system was applied to ascending aortic specimens from 42 patients with heritable thoracic aortic disease and known genetic variations and from 86 patients from a single year, including patients with known genetic variations (n = 12) and patients with sporadic disease (n = 74). RESULTS The various types of lesions of medial degeneration and the overall severity of medial degeneration overlapped considerably between those patients with heritable disease and those with sporadic disease; however, patients with heritable thoracic aortic disease had significantly more overall medial degeneration (P = .004) and higher levels of elastic fiber fragmentation (P = .03) and mucoid extracellular matrix accumulation (P = .04) than patients with sporadic thoracic aortic disease. Heritable thoracic aortic disease with known genetic variation was more prevalent in women than in men (27.2% vs 9.8%; P = .04), and women had more severe medial degeneration than men (P = .04). Medial degeneration scores were significantly lower for patients with bicuspid aortic valves than for patients with tricuspid aortic valves (P = .03). CONCLUSION The study's findings indicate considerable overlap in the pattern, extent, and severity of medial degeneration between sporadic and hereditary types of thoracic aortic disease. This finding suggests that histopathologic medial degeneration represents the final common outcome of diverse pathogenetic factors and mechanisms.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Cardiovascular Pathology Research, The Texas Heart Institute, Houston, Texas
| | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Humaira Sadaf
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Michelle McDonald
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ana M Segura
- Department of Cardiovascular Pathology Research, The Texas Heart Institute, Houston, Texas
| | - Li Li
- Department of Pathology, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Alana Cecchi
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Siddharth K Prakash
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Rana O Afifi
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Charles C Miller
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Anthony L Estrera
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
31
|
Czerny M, Grabenwöger M, Berger T, Aboyans V, Della Corte A, Chen EP, Desai ND, Dumfarth J, Elefteriades JA, Etz CD, Kim KM, Kreibich M, Lescan M, Di Marco L, Martens A, Mestres CA, Milojevic M, Nienaber CA, Piffaretti G, Preventza O, Quintana E, Rylski B, Schlett CL, Schoenhoff F, Trimarchi S, Tsagakis K. EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ. Eur J Cardiothorac Surg 2024; 65:ezad426. [PMID: 38408364 DOI: 10.1093/ejcts/ezad426] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 02/28/2024] Open
Affiliation(s)
- Martin Czerny
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Martin Grabenwöger
- Department of Cardiovascular Surgery, Clinic Floridsdorf, Vienna, Austria
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| | - Tim Berger
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Victor Aboyans
- Department of Cardiology, Dupuytren-2 University Hospital, Limoges, France
- EpiMaCT, Inserm 1094 & IRD 270, Limoges University, Limoges, France
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
- Cardiac Surgery Unit, Monaldi Hospital, Naples, Italy
| | - Edward P Chen
- Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Nimesh D Desai
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Dumfarth
- University Clinic for Cardiac Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - John A Elefteriades
- Aortic Institute at Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Christian D Etz
- Department of Cardiac Surgery, University Medicine Rostock, University of Rostock, Rostock, Germany
| | - Karen M Kim
- Division of Cardiovascular and Thoracic Surgery, The University of Texas at Austin/Dell Medical School, Austin, TX, USA
| | - Maximilian Kreibich
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Mario Lescan
- Department of Thoracic and Cardiovascular Surgery, University Medical Centre Tübingen, Tübingen, Germany
| | - Luca Di Marco
- Cardiac Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andreas Martens
- Department of Cardiac Surgery, Klinikum Oldenburg, Oldenburg, Germany
- The Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carlos A Mestres
- Department of Cardiothoracic Surgery and the Robert WM Frater Cardiovascular Research Centre, The University of the Free State, Bloemfontein, South Africa
| | - Milan Milojevic
- Department of Cardiac Surgery and Cardiovascular Research, Dedinje Cardiovascular Institute, Belgrade, Serbia
| | - Christoph A Nienaber
- Division of Cardiology at the Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Gabriele Piffaretti
- Vascular Surgery Department of Medicine and Surgery, University of Insubria School of Medicine, Varese, Italy
| | - Ourania Preventza
- Division of Cardiothoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Eduard Quintana
- Department of Cardiovascular Surgery, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Bartosz Rylski
- Clinic for Cardiovascular Surgery, Department University Heart Center Freiburg Bad Krozingen, University Clinic Freiburg, Freiburg, Germany
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Christopher L Schlett
- Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Florian Schoenhoff
- Department of Cardiac Surgery, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Santi Trimarchi
- Department of Cardiac Thoracic and Vascular Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Tsagakis
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Medicine Essen, Essen, Germany
| |
Collapse
|
32
|
Crosier R, Lopez Laporte MA, Unni RR, Coutinho T. Female-Specific Considerations in Aortic Health and Disease. CJC Open 2024; 6:391-406. [PMID: 38487044 PMCID: PMC10935703 DOI: 10.1016/j.cjco.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 03/17/2024] Open
Abstract
The aorta plays a central role in the modulation of blood flow to supply end organs and to optimize the workload of the left ventricle. The constant interaction of the arterial wall with protective and deleterious circulating factors, and the cumulative exposure to ventriculoarterial pulsatile load, with its associated intimal-medial changes, are important players in the complex process of vascular aging. Vascular aging is also modulated by biomolecular processes such as oxidative stress, genomic instability, and cellular senescence. Concomitantly with well-established cardiometabolic and sex-specific risk factors and environmental stressors, arterial stiffness is associated with cardiovascular disease, which remains the leading cause of morbidity and mortality in women worldwide. Sexual dimorphisms in aortic health and disease are increasingly recognized and explain-at least in part-some of the observable sex differences in cardiovascular disease, which will be explored in this review. Specifically, we will discuss how biological sex affects arterial health and vascular aging and the implications this has for development of certain cardiovascular diseases uniquely or predominantly affecting women. We will then expand on sex differences in thoracic and abdominal aortic aneurysms, with special considerations for aortopathies in pregnancy.
Collapse
Affiliation(s)
- Rebecca Crosier
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | - Rudy R. Unni
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Thais Coutinho
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
33
|
de Lima Sanches B, Souza-Neto F, de Alcântara-Leonídeo TC, Silva MM, Guatimosim S, Vieira MAR, Santos RAS, da Silva RF. Alamandine attenuates oxidative stress in the right carotid following transverse aortic constriction in mice. Peptides 2024; 171:171094. [PMID: 37696437 DOI: 10.1016/j.peptides.2023.171094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Pressure overload can result in significant changes to the structure of blood vessels, a process known as vascular remodeling. High levels of tension can cause vascular inflammation, fibrosis, and structural alterations to the vascular wall. Prior research from our team has demonstrated that the oral administration of alamandine can promote vasculoprotective effects in mice aorta that have undergone transverse aortic constriction (TAC). Furthermore, changes in local hemodynamics can affect the right and left carotid arteries differently after TAC. Thus, in this study, we aimed to assess the effects of alamandine treatment on right carotid remodeling and the expression of oxidative stress-related substances induced by TAC. METHODS AND RESULTS Male C57BL/6 mice were categorized into three groups: Sham, TAC, and TAC treated with alamandine (TAC+ALA). Alamandine treatment was administered orally by gavage (30 µg/kg/day), starting three days before the surgery, and continuing for a period of fourteen days. Morphometric analysis of hematoxylin and eosin-stained sections revealed that TAC induced hypertrophic and positive remodeling in the right carotid artery. Picrosirius Red staining also demonstrated an increase in total collagen deposition in the right carotid artery due to TAC-induced vascular changes. Alamandine treatment effectively prevented the increase in reactive oxygen species production and depletion of nitric oxide levels, which were induced by TAC. Finally, alamandine treatment was also shown to prevent the increased expression of nuclear factor erythroid 2-related factor 2 and 3-nitrotyrosine that were induced by TAC. CONCLUSION Our results suggest that alamandine can effectively attenuate pathophysiological stress in the right carotid artery of animals subjected to TAC.
Collapse
Affiliation(s)
- Bruno de Lima Sanches
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Souza-Neto
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Cancer & Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA
| | | | - Mário Morais Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil
| | | | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Belo Horizonte, Minas Gerais, Brazil.
| | - Rafaela Fernandes da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
34
|
Zhang X, Peng Y, Li G, Li J, Luo M, Che Y, Zheng L, Anzai H, Ohta M, Shu C. Elongation of the proximal descending thoracic aorta and associated hemodynamics increase the risk of acute type B aortic dissection. Technol Health Care 2024; 32:765-777. [PMID: 37545271 DOI: 10.3233/thc-230194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Acute type B aortic dissection (ATBAD) is a life-threatening aortic disease. However, little information is available on predicting and understanding of ATBAD. OBJECTIVE The study sought to explore the underlying mechanism of ATBAD by analyzing the morphological and hemodynamic characteristics related to aortic length. METHODS The length and tortuosity of the segment and the whole aorta in the ATBAD group (n= 163) and control group (n= 120) were measured. A fixed anatomic landmark from the distal of left subclavian artery (LSA) to the superior border of sixth thoracic vertebra was proposed as the proximal descending thoracic aorta (PDTA), and the dimensionless parameter, length ratio, was introduced to eliminate the individual differences. The significant morphological parameters were filtrated and the associations between parameters were investigated using statistical approaches. Furthermore, how aortic morphology influenced ATBAD was explored based on idealized aortic models and hemodynamic-related metrics. RESULTS The PDTA length was significantly increased in the ATBAD group compared with the control group and had a strong positive correlation with the whole aortic length (r= 0.89). The length ratio (LR2) and tortuosity (T2) of PDTA in the ATBAD group were significantly increased (0.15 ± 0.02 vs 0.12 ± 0.02 and 1.73 ± 0.48 vs 1.50 ± 0.36; P< 0.001), and LR2 was positive correlation with T2 (r= 0.73). In receiver-operating curve analysis, the area under the curve was 0.835 for LR2 and 0.641 for T2. Low and oscillatory shear (LOS) was positive correlation with LR2, and the elevated LOS occurred in the distal of LSA. CONCLUSION Elongation of PDTA is associated with ATBAD, and the length ratio is a novel predictor. Elongated PDTA induced more aggressive hemodynamic forces, and high LOS regions may correspond to the entry tear location. The synergy of the morphological variation and aggressive hemodynamics creates contributory conditions for ATBAD.
Collapse
Affiliation(s)
- Xuelan Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuan Peng
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gaoyang Li
- Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Jiehua Li
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingyao Luo
- Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yue Che
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Liancun Zheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Hitomi Anzai
- Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Makoto Ohta
- Institute of Fluid Science, Tohoku University, Sendai, Japan
| | - Chang Shu
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Seeburun S, Wu S, Hemani D, Pham L, Ju D, Xie Y, Kata P, Li L. Insights into elastic fiber fragmentation: Mechanisms and treatment of aortic aneurysm in Marfan syndrome. Vascul Pharmacol 2023; 153:107215. [PMID: 37640090 PMCID: PMC10872825 DOI: 10.1016/j.vph.2023.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutations in fibrillin 1 (FBN1) gene. These mutations result in defects in the skeletal, ocular, and cardiovascular systems. Aortic aneurysm is the leading cause of premature mortality in untreated MFS patients. Elastic fiber fragmentation in the aortic vessel wall is a hallmark of MFS-associated aortic aneurysms. FBN1 mutations result in FBN1 fragments that also contribute to elastic fiber fragmentation. Although recent research has advanced our understanding of MFS, the contribution of elastic fiber fragmentation to the pathogenesis of aneurysm formation remains poorly understood. This review provides a comprehensive overview of the molecular mechanisms of elastic fiber fragmentation and its role in the pathogenesis of aortic aneurysm progression. Increased comprehension of elastic fragmentation has significant clinical implications for developing targeted interventions to block aneurysm progression, which would benefit not only individuals with Marfan syndrome but also other patients with aneurysms. Moreover, this review highlights an overlooked connection between inhibiting aneurysm and the restoration of elastic fibers in the vessel wall with various aneurysm inhibitors, including drugs and chemicals. Investigating the underlying molecular mechanisms could uncover innovative therapeutic strategies to inhibit elastin fragmentation and prevent the progression of aneurysms.
Collapse
Affiliation(s)
- Sheilabi Seeburun
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
| | - Shichao Wu
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
| | - Darshi Hemani
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit MI, USA
| | - Lucynda Pham
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit MI, USA
| | - Donghong Ju
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
- Department of Oncology, Wayne State University, Detroit MI, USA
| | - Youming Xie
- Department of Oncology, Wayne State University, Detroit MI, USA
| | - Priyaranjan Kata
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
| | - Li Li
- Department of Internal Medicine, Wayne State University, Detroit MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit MI, USA
| |
Collapse
|
36
|
Momenzadeh A, Kreimer S, Guo D, Ayres M, Berman D, Chyu KY, Shah PK, Milewicz D, Azizzadeh A, Meyer JG, Parker S. Differentiation between Descending Thoracic Aortic Diseases using Machine Learning and Plasma Proteomic Signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538468. [PMID: 37162892 PMCID: PMC10168345 DOI: 10.1101/2023.04.26.538468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Descending thoracic aortic aneurysms and dissections can go undetected until severe and catastrophic, and few clinical indices exist to screen for aneurysms or predict risk of dissection. Methods This study generated a plasma proteomic dataset from 75 patients with descending type B dissection (Type B) and 62 patients with descending thoracic aortic aneurysm (DTAA). Standard statistical approaches were compared to supervised machine learning (ML) algorithms to distinguish Type B from DTAA cases. Quantitatively similar proteins were clustered based on linkage distance from hierarchical clustering and ML models were trained with uncorrelated protein lists across various linkage distances with hyperparameter optimization using 5-fold cross validation. Permutation importance (PI) was used for ranking the most important predictor proteins of ML classification between disease states and the proteins among the top 10 PI protein groups were submitted for pathway analysis. Results Of the 1,549 peptides and 198 proteins used in this study, no peptides and only one protein, hemopexin (HPX), were significantly different at an adjusted p-value <0.01 between Type B and DTAA cases. The highest performing model on the training set (Support Vector Classifier) and its corresponding linkage distance (0.5) were used for evaluation of the test set, yielding a precision-recall area under the curve of 0.7 to classify between Type B from DTAA cases. The five proteins with the highest PI scores were immunoglobulin heavy variable 6-1 (IGHV6-1), lecithin-cholesterol acyltransferase (LCAT), coagulation factor 12 (F12), HPX, and immunoglobulin heavy variable 4-4 (IGHV4-4). All proteins from the top 10 most important correlated groups generated the following significantly enriched pathways in the plasma of Type B versus DTAA patients: complement activation, humoral immune response, and blood coagulation. Conclusions We conclude that ML may be useful in differentiating the plasma proteome of highly similar disease states that would otherwise not be distinguishable using statistics, and, in such cases, ML may enable prioritizing important proteins for model prediction.
Collapse
Affiliation(s)
- Amanda Momenzadeh
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Simion Kreimer
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Dongchuan Guo
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Matthew Ayres
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Daniel Berman
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Cedars-Sinai Imaging Department, Cedars Sinai Medical Center, Lost Angeles, California, USA
| | - Kuang-Yuh Chyu
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Prediman K Shah
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Dianna Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Ali Azizzadeh
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Jesse G. Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Sarah Parker
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles California, USA
| |
Collapse
|
37
|
Porto FG, Tanaka LY, de Bessa TC, Oliveira PVS, Souza JMFD, Kajihara D, Fernandes CG, Santos PN, Laurindo FRM. Evidence for a protective role of Protein Disulfide Isomerase-A1 against aortic dissection. Atherosclerosis 2023; 382:117283. [PMID: 37774430 DOI: 10.1016/j.atherosclerosis.2023.117283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND AND AIMS Redox signaling is involved in the pathophysiology of aortic aneurysm/dissection. Protein Disulfide Isomerases and its prototype PDIA1 are thiol redox chaperones mainly from endoplasmic reticulum (ER), while PDIA1 cell surface pool redox-regulates thrombosis, cytoskeleton remodeling and integrin activation, which are mechanisms involved in aortic disease. Here we investigate the roles of PDIA1 in aortic dissection. METHODS Initially, we assessed the outcome of aortic aneurysm/dissection in transgenic PDIA1-overexpressing FVB mice using a model of 28-day exposure to lysyl oxidase inhibitor BAPN plus angiotensin-II infusion. In a second protocol, we assessed the effects of PDIA1 inhibitor isoquercetin (IQ) against aortic dissection in C57BL/6 mice exposed to BAPN for 28 days. RESULTS Transgenic PDIA1 overexpression associated with ca. 50% (p = 0.022) decrease (vs.wild-type) in mortality due to abdominal aortic rupture and protected against elastic fiber breaks in thoracic aorta. Conversely, exposure of mice to IQ increased thoracic aorta dissection-related mortality rates, from ca. 18%-50% within 28-days (p = 0.019); elastic fiber disruption and collagen deposition were also enhanced. The structurally-related compound diosmetin, which does not inhibit PDI, had negligible effects. In parallel, stretch-tension curves indicated that IQ amplified a ductile-type of biomechanical failure vs. control or BAPN-exposed mice aortas. IQ-induced effects seemed unassociated with nonspecific antioxidant effects or ER stress. In both models, echocardiographic analysis of surviving mice suggested that aortic rupture was dissociated from progressive dilatation. CONCLUSIONS Our data indicate a protective role of PDIA1 against aortic dissection/rupture and potentially uncovers a novel integrative mechanism coupling redox and biomechanical homeostasis in vascular remodeling.
Collapse
Affiliation(s)
- Fernando Garcez Porto
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Leonardo Yuji Tanaka
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiphany Coralie de Bessa
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percillia Victoria Santos Oliveira
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Júlia Martins Felipe de Souza
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniela Kajihara
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolina Gonçalves Fernandes
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Patricia Nolasco Santos
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
38
|
Salmasi MY, Pirola S, Asimakopoulos G, Nienaber C, Athanasiou T. Risk prediction for thoracic aortic dissection: Is it time to go with the flow? J Thorac Cardiovasc Surg 2023; 166:1034-1042. [PMID: 35672182 DOI: 10.1016/j.jtcvs.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Affiliation(s)
- M Yousuf Salmasi
- Department of Surgery, Imperial College London, London, United Kingdom.
| | - Selene Pirola
- BHF Centre of Research Excellence, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - George Asimakopoulos
- Department of Cardiology, Royal Brompton and Harefield Trust, London, United Kingdom
| | - Christoph Nienaber
- Department of Cardiology, Royal Brompton and Harefield Trust, London, United Kingdom
| | - Thanos Athanasiou
- Department of Surgery, Imperial College London, London, United Kingdom
| |
Collapse
|
39
|
Nappi F, Alzamil A, Avtaar Singh SS, Spadaccio C, Bonnet N. Current Knowledge on the Interaction of Human Cytomegalovirus Infection, Encoded miRNAs, and Acute Aortic Syndrome. Viruses 2023; 15:2027. [PMID: 37896804 PMCID: PMC10611417 DOI: 10.3390/v15102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Aortic dissection is a clinicopathological entity caused by rupture of the intima, leading to a high mortality if not treated. Over time, diagnostic and investigative methods, antihypertensive therapy, and early referrals have resulted in improved outcomes according to registry data. Some data have also emerged from recent studies suggesting a link between Human Cytomegalovirus (HCMV) infection and aortic dissection. Furthermore, the use of microRNAs has also become increasingly widespread in the literature. These have been noted to play a role in aortic dissections with elevated levels noted in studies as early as 2017. This review aims to provide a broad and holistic overview of the role of miRNAs, while studying the role of HCMV infection in the context of aortic dissections. The roles of long non-coding RNAs, circular RNAs, and microRNAs are explored to identify changes in expression during aortic dissections. The use of such biomarkers may one day be translated into clinical practice to allow early detection and prognostication of outcomes and drive preventative and therapeutic options in the future.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| | | | - Cristiano Spadaccio
- Department of Cardiothoracic Surgery, Mayo Clinic, Rochester, Rochester, MN 55905, USA;
| | - Nicolas Bonnet
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (N.B.)
| |
Collapse
|
40
|
Weiss D, Rego BV, Cavinato C, Li DS, Kawamura Y, Emuna N, Humphrey JD. Effects of Age, Sex, and Extracellular Matrix Integrity on Aortic Dilatation and Rupture in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:e358-e372. [PMID: 37470181 PMCID: PMC10528515 DOI: 10.1161/atvbaha.123.319122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Transmural failure of the aorta is responsible for substantial morbidity and mortality; it occurs when mechanical stress exceeds strength. The aortic root and ascending aorta are susceptible to dissection and rupture in Marfan syndrome, a connective tissue disorder characterized by a progressive reduction in elastic fiber integrity. Whereas competent elastic fibers endow the aorta with compliance and resilience, cross-linked collagen fibers confer stiffness and strength. We hypothesized that postnatal reductions in matrix cross-linking increase aortopathy when turnover rates are high. METHODS We combined ex vivo biaxial mechanical testing with multimodality histological examinations to quantify expected age- and sex-dependent structural vulnerability of the ascending aorta in Fbn1C1041G/+ Marfan versus wild-type mice without and with 4-week exposures to β-aminopropionitrile, an inhibitor of lysyl oxidase-mediated cross-linking of newly synthesized elastic and collagen fibers. RESULTS We found a strong β-aminopropionitrile-associated sexual dimorphism in aortic dilatation in Marfan mice and aortic rupture in wild-type mice, with dilatation correlating with compromised elastic fiber integrity and rupture correlating with compromised collagen fibril organization. A lower incidence of rupture of β-aminopropionitrile-exposed Marfan aortas associated with increased lysyl oxidase, suggesting a compensatory remodeling of collagen that slows disease progression in the otherwise compromised Fbn1C1041G/+ aorta. CONCLUSIONS Collagen fiber structure and function in the Marfan aorta are augmented, in part, by increased lysyl oxidase in female and especially male mice, which improves structural integrity, particularly via fibrils in the adventitia. Preserving or promoting collagen cross-linking may represent a therapeutic target for an otherwise vulnerable aorta.
Collapse
Affiliation(s)
- Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - Bruno V Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - Yuki Kawamura
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - Nir Emuna
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT (D.W., B.V.R., C.C., D.S.L., Y.K., N.E., J.D.H.)
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT (J.D.H.)
| |
Collapse
|
41
|
Lin PK, Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol 2023; 43:1599-1616. [PMID: 37409533 PMCID: PMC10527588 DOI: 10.1161/atvbaha.123.318237] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.
Collapse
Affiliation(s)
- Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
42
|
Mian O, Santi N, Boodhwani M, Beauchesne L, Chan K, Dennie C, Wells GA, Coutinho T. Arterial Age and Early Vascular Aging, But Not Chronological Age, Are Associated With Faster Thoracic Aortic Aneurysm Growth. J Am Heart Assoc 2023; 12:e029466. [PMID: 37581401 PMCID: PMC10492926 DOI: 10.1161/jaha.122.029466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/27/2023] [Indexed: 08/16/2023]
Abstract
Background Aneurysm size is an imperfect risk assessment tool for those with thoracic aortic aneurysm (TAA). Assessing arterial age may help TAA risk stratification, as it better reflects aortic health. We sought to evaluate arterial age as a predictor of faster TAA growth, independently of chronological age. Methods and Results We examined 137 patients with TAA. Arterial age was estimated according to validated equations, using patients' blood pressure and carotid-femoral pulse wave velocity. Aneurysm growth was determined prospectively from available imaging studies. Multivariable linear regression assessed the association of chronological age and arterial age with TAA growth, and multivariable logistic regression assessed associations of chronological and arterial age with the presence of accelerated aneurysm growth (defined as growth>median in the sample). Mean±SD chronological and arterial ages were 62.2±11.3 and 54.2±24.5 years, respectively. Mean baseline TAA size and follow-up time were 45.9±4.0 mm and 4.5±1.9 years, respectively. Median (interquartile range) TAA growth was 0.31 (0.14-0.52) mm/year. Older arterial age (ß±SE for 1 year: 0.004±0.001, P<0.0001) was independently associated with faster TAA growth, while chronological age was not (P=0.083). In logistic regression, each 5-year increase in arterial age was associated with a 23% increase in the odds of accelerated TAA growth (95% CI, 1.085-1.394; P=0.001). Conclusions Arterial age is independently associated with accelerated aneurysm expansion, while chronological age is not. Our results highlight that a noninvasive and inexpensive assessment of arterial age can potentially be useful for TAA risk stratification and disease monitoring as compared with the current clinical standard (chronological age).
Collapse
Affiliation(s)
- Owais Mian
- Department of Internal MedicineUniversity of TorontoOntarioCanada
| | - Nicolas Santi
- Division of CardiologyUniversity of TorontoOntarioCanada
| | - Munir Boodhwani
- Division of Cardiac SurgeryUniversity of Ottawa Heart InstituteOntarioCanada
| | - Luc Beauchesne
- Division of CardiologyUniversity of Ottawa Heart InstituteOntarioCanada
| | - Kwan‐Leung Chan
- Division of CardiologyUniversity of Ottawa Heart InstituteOntarioCanada
| | - Carole Dennie
- Department of RadiologyThe Ottawa HospitalOntarioCanada
| | - George A. Wells
- School of Epidemiology and Public HealthUniversity of OttawaOntarioCanada
- Cardiovascular Research Methods CentreUniversity of Ottawa Heart InstituteOntarioCanada
| | - Thais Coutinho
- Division of CardiologyUniversity of Ottawa Heart InstituteOntarioCanada
- School of Epidemiology and Public HealthUniversity of OttawaOntarioCanada
- Division of Cardiac Prevention and RehabilitationUniversity of Ottawa Heart InstituteOntarioCanada
| |
Collapse
|
43
|
Nakamura K, Dalal AR, Yokoyama N, Pedroza AJ, Kusadokoro S, Mitchel O, Gilles C, Masoudian B, Leipzig M, Casey KM, Hiesinger W, Uchida T, Fischbein MP. Lineage-Specific Induced Pluripotent Stem Cell-Derived Smooth Muscle Cell Modeling Predicts Integrin Alpha-V Antagonism Reduces Aortic Root Aneurysm Formation in Marfan Syndrome Mice. Arterioscler Thromb Vasc Biol 2023; 43:1134-1153. [PMID: 37078287 PMCID: PMC10330156 DOI: 10.1161/atvbaha.122.318448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND The role of increased smooth muscle cell (SMC) integrin αv signaling in Marfan syndrome (MFS) aortic aneurysm remains unclear. Herein, we examine the mechanism and potential efficacy of integrin αv blockade as a therapeutic strategy to reduce aneurysm progression in MFS. METHODS Induced pluripotent stem cells (iPSCs) were differentiated into aortic SMCs of the second heart field (SHF) and neural crest (NC) lineages, enabling in vitro modeling of MFS thoracic aortic aneurysms. The pathological role of integrin αv during aneurysm formation was confirmed by blockade of integrin αv with GLPG0187 in Fbn1C1039G/+ MFS mice. RESULTS iPSC-derived MFS SHF SMCs overexpress integrin αv relative to MFS NC and healthy control SHF cells. Furthermore, integrin αv downstream targets (FAK [focal adhesion kinase]/AktThr308/mTORC1 [mechanistic target of rapamycin complex 1]) were activated, especially in MFS SHF. Treatment of MFS SHF SMCs with GLPG0187 reduced p-FAK/p-AktThr308/mTORC1 activity back to control SHF levels. Functionally, MFS SHF SMCs had increased proliferation and migration compared to MFS NC SMCs and control SMCs, which normalized with GLPG0187 treatment. In the Fbn1C1039G/+ MFS mouse model, integrin αv, p-AktThr308, and downstream targets of mTORC1 proteins were elevated in the aortic root/ascending segment compared to littermate wild-type control. Mice treated with GLPG0187 (age 6-14 weeks) had reduced aneurysm growth, elastin fragmentation, and reduction of the FAK/AktThr308/mTORC1 pathway. GLPG0187 treatment reduced the amount and severity of SMC modulation assessed by single-cell RNA sequencing. CONCLUSIONS The integrin αv-FAK-AktThr308 signaling pathway is activated in iPSC SMCs from MFS patients, specifically from the SHF lineage. Mechanistically, this signaling pathway promotes SMC proliferation and migration in vitro. As biological proof of concept, GLPG0187 treatment slowed aneurysm growth and p-AktThr308 signaling in Fbn1C1039G/+ mice. Integrin αv blockade via GLPG0187 may be a promising therapeutic approach to inhibit MFS aneurysmal growth.
Collapse
Affiliation(s)
- Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Alex R. Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Sho Kusadokoro
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Olivia Mitchel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Casey Gilles
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Bahar Masoudian
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Matthew Leipzig
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Kerriann M. Casey
- Department of Comparative Medicine, Stanford University School of Medicine. Stanford CA, USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Tetsuro Uchida
- Second Department of Surgery, Yamagata University Faculty of Medicine. Yamagata, Japan
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| |
Collapse
|
44
|
Noh KM, Park SJ, Moon SH, Jung SY. Extracellular matrix cues regulate the differentiation of pluripotent stem cell-derived endothelial cells. Front Cardiovasc Med 2023; 10:1169331. [PMID: 37435057 PMCID: PMC10330705 DOI: 10.3389/fcvm.2023.1169331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
The generation of endothelial cells (ECs) from human pluripotent stem cells (PSCs) has been a promising approach for treating cardiovascular diseases for several years. Human PSCs, particularly induced pluripotent stem cells (iPSCs), are an attractive source of ECs for cell therapy. Although there is a diversity of methods for endothelial cell differentiation using biochemical factors, such as small molecules and cytokines, the efficiency of EC production varies depending on the type and dose of biochemical factors. Moreover, the protocols in which most EC differentiation studies have been performed were in very unphysiological conditions that do not reflect the microenvironment of native tissue. The microenvironment surrounding stem cells exerts variable biochemical and biomechanical stimuli that can affect stem cell differentiation and behavior. The stiffness and components of the extracellular microenvironment are critical inducers of stem cell behavior and fate specification by sensing the extracellular matrix (ECM) cues, adjusting the cytoskeleton tension, and delivering external signals to the nucleus. Differentiation of stem cells into ECs using a cocktail of biochemical factors has been performed for decades. However, the effects of mechanical stimuli on endothelial cell differentiation remain poorly understood. This review provides an overview of the methods used to differentiate ECs from stem cells by chemical and mechanical stimuli. We also propose the possibility of a novel EC differentiation strategy using a synthetic and natural extracellular matrix.
Collapse
Affiliation(s)
- Kyung Mu Noh
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| | - Soon-Jung Park
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Republic of Korea
| | - Seok Yun Jung
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| |
Collapse
|
45
|
Karkhaneh Yousefi AA, Petit C, Ben Hassine A, Avril S. Stiffness sensing by smooth muscle cells: Continuum mechanics modeling of the acto-myosin role. J Mech Behav Biomed Mater 2023; 144:105990. [PMID: 37385127 DOI: 10.1016/j.jmbbm.2023.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Aortic smooth muscle cells (SMCs) play a vital role in maintaining homeostasis in the aorta by sensing and responding to mechanical stimuli. However, the mechanisms that underlie the ability of SMCs to sense and respond to stiffness change in their environment are still partially unclear. In this study, we focus on the role of acto-myosin contractility in stiffness sensing and introduce a novel continuum mechanics approach based on the principles of thermal strains. Each stress fiber satisfies a universal stress-strain relationship driven by a Young's modulus, a contraction coefficient scaling the fictitious thermal strain, a maximum contraction stress and a softening parameter describing the sliding effects between actin and myosin filaments. To account for the inherent variability of cellular responses, large populations of SMCs are modeled with the finite-element method, each cell having a random number and a random arrangement of stress fibers. Moreover, the level of myosin activation in each stress fiber satisfies a Weibull probability density function. Model predictions are compared to traction force measurements on different SMC lineages. It is demonstrated that the model not only predicts well the effects of substrate stiffness on cellular traction, but it can also successfully approximate the statistical variations of cellular tractions induced by intercellular variability. Finally, stresses in the nuclear envelope and in the nucleus are computed with the model, showing that the variations of cytoskeletal forces induced by substrate stiffness directly induce deformations of the nucleus which can potentially alter gene expression. The predictability of the model combined to its relative simplicity are promising assets for further investigation of stiffness sensing in 3D environments. Eventually, this could contribute to decipher the effects of mechanosensitivity impairment, which are known to be at the root of aortic aneurysms.
Collapse
Affiliation(s)
| | - Claudie Petit
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 SAINBIOSE, 42023, Saint-Etienne, France
| | - Amira Ben Hassine
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 SAINBIOSE, 42023, Saint-Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Université Jean Monnet, INSERM, U1059 SAINBIOSE, 42023, Saint-Etienne, France.
| |
Collapse
|
46
|
Okamura DM, Nguyen ED, Collins SJ, Yoon K, Gere JB, Weiser-Evans MCM, Beier DR, Majesky MW. Mammalian organ regeneration in spiny mice. J Muscle Res Cell Motil 2023; 44:39-52. [PMID: 36131170 DOI: 10.1007/s10974-022-09631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Fibrosis-driven solid organ failure is a major world-wide health burden with few therapeutic options. Spiny mice (genus: Acomys) are terrestrial mammals that regenerate severe skin wounds without fibrotic scars to evade predators. Recent studies have shown that spiny mice also regenerate acute ischemic and traumatic injuries to kidney, heart, spinal cord, and skeletal muscle. A common feature of this evolved wound healing response is a lack of formation of fibrotic scar tissue that degrades organ function, inhibits regeneration, and leads to organ failure. Complex tissue regeneration is an extremely rare property among mammalian species. In this article, we discuss the evidence that Acomys represents an emerging model organism that offers a unique opportunity for the biomedical community to investigate and clinically translate molecular mechanisms of scarless wound healing and regeneration of organ function in a mammalian species.
Collapse
Affiliation(s)
- Daryl M Okamura
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth D Nguyen
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Sarah J Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Kevin Yoon
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Joshua B Gere
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases & Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David R Beier
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
47
|
Arishe OO, McKenzie J, Dela Justina V, Dos Anjos Moraes R, Webb RC, Priviero F. Piezo1 channels mediate vasorelaxation of uterine arteries from pseudopregnant rats. Front Physiol 2023; 14:1140989. [PMID: 37324378 PMCID: PMC10267476 DOI: 10.3389/fphys.2023.1140989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: There is a great increase in uterine arterial blood flow during normal pregnancy, which is a result of the cardiovascular changes that occur in pregnancy to adapt the maternal vascular system to meet the increased metabolic needs of both the mother and the fetus. The cardiovascular changes include an increase in cardiac output and more importantly, dilation of the maternal uterine arteries. However, the exact mechanism for the vasodilation is not fully known. Piezo1 mechanosensitive channels are highly expressed in endothelial and vascular smooth muscle cells of small-diameter arteries and play a role in structural remodeling. In this study, we hypothesize that the mechanosensitive Piezo1 channel plays a role in the dilation of the uterine artery (UA) during pregnancy. Methods: For this, 14-week-old pseudopregnant and virgin Sprague Dawley rats were used. In isolated segments of UA and mesenteric resistance arteries (MRA) mounted in a wire myograph, we investigated the effects of chemical activation of Piezo1, using Yoda 1. The mechanism of Yoda 1 induced relaxation was assessed by incubating the vessels with either vehicle or some inhibitors or in the presence of a potassium-free physiological salt solution (K+-free PSS). Results: Our results show that concentration-dependent relaxation responses to Yoda 1 are greater in the UA of the pseudo-pregnant rats than in those from the virgin rats while no differences between groups were observed in the MRAs. In both vascular beds, either in virgin or in pseudopregnant, relaxation to Yoda 1 was at least in part nitric oxide dependent. Discussion: Piezo1 channel mediates nitric oxide dependent relaxation, and this channel seems to contribute to the greater dilation that occurs in the uterine arteries of pseudo-pregnant rats.
Collapse
Affiliation(s)
- Olufunke O. Arishe
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Jaine McKenzie
- Department of General Surgery, Vanderbilt University, Nashville, TN, United States
| | - Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goias, Goiânia, Goias, Brazil
| | - Raiana Dos Anjos Moraes
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States
- Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States
- Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, MO, United States
| | - Fernanda Priviero
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States
- Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, MO, United States
| |
Collapse
|
48
|
Jiang H, Jiang Y, Qu Y, Lv J, Zeng H. sGC agonist BAY1021189 promotes thoracic aortic dissection formation by accelerating vascular smooth muscle cell phenotype switch. Eur J Pharmacol 2023:175789. [PMID: 37244376 DOI: 10.1016/j.ejphar.2023.175789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Thoracic aortic dissection (TAD) is common but lethal cardiovascular disease with high mortality. This study aimed to expound whether and how sGC-PRKG1 signaling pathway might promote the formation of TAD. Our work identified two modules with high relevance to TAD using WGCNA method. Combined with previous studies, we focused on the participation of endothelial NOS (eNOS) in the progression of TAD. Through immunohistochemistry, immunofluorescence and western blot we verified that eNOS expression was elevated in the tissues of patients and mice with aortic dissection, and the phosphorylation Ser1177 of eNOS was activated. In a BAPN-induced TAD mouse model, sGC-PRKG1 signaling pathway promotes TAD formation by inducing vascular smooth muscle cells (VSMCs) phenotype transition, which was demonstrated as a decrease in markers of the contractile phenotype of VSMCs such as αSMA, SM22α, and Calponin. These results were also verified by experiments in vitro. To explore the further mechanism, we conducted immunohistochemistry, western blot and quantitative RT-PCR (qPCR), the results of which indicated that sGC-PRKG1 signaling pathway was activated when TAD occurred. In conclusion, our current study revealed that sGC-PRKG1 signaling pathway could promote TAD formation by accelerating VSMCs phenotype switch.
Collapse
Affiliation(s)
- Hongcheng Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
49
|
Pang KT, Loo LSW, Chia S, Ong FYT, Yu H, Walsh I. Insight into muscle stem cell regeneration and mechanobiology. Stem Cell Res Ther 2023; 14:129. [PMID: 37173707 PMCID: PMC10176686 DOI: 10.1186/s13287-023-03363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Stem cells possess the unique ability to differentiate into specialized cell types. These specialized cell types can be used for regenerative medicine purposes such as cell therapy. Myosatellite cells, also known as skeletal muscle stem cells (MuSCs), play important roles in the growth, repair, and regeneration of skeletal muscle tissues. However, despite its therapeutic potential, the successful differentiation, proliferation, and expansion processes of MuSCs remain a significant challenge due to a variety of factors. For example, the growth and differentiation of MuSCs can be greatly influenced by actively replicating the MuSCs microenvironment (known as the niche) using mechanical forces. However, the molecular role of mechanobiology in MuSC growth, proliferation, and differentiation for regenerative medicine is still poorly understood. In this present review, we comprehensively summarize, compare, and critically analyze how different mechanical cues shape stem cell growth, proliferation, differentiation, and their potential role in disease development (Fig. 1). The insights developed from the mechanobiology of stem cells will also contribute to how these applications can be used for regenerative purposes using MuSCs.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, 62 Nanyang Drive, N1.2-B3, Singapore, 637459, Singapore.
| | - Larry Sai Weng Loo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Francesca Yi Teng Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Interdisplinary Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
50
|
高 文, 余 泓, 张 瑶, 钱 宏, 刘 肖. [Latest Findings on the Pathogenic Mechanisms of Thoracic Aortic Dissection]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:699-704. [PMID: 37248608 PMCID: PMC10475406 DOI: 10.12182/20230260101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 05/31/2023]
Abstract
Thoracic aortic dissection (TAD) is a cardiovascular disease entailing a high lethality between 65% and 85%. Surgery-assissed implant/interventional stenting is the prevailing treatment of TAD. However, surgical treatment can cause severe postoperative complications and patients incur a relatively higher risk of postoperative mortality. Since the pathogenic mechanism underlying TAD is not clear, effective medication therapies are still not available. In recent years, along with advances in single-cell sequencing and other molecular biological technologies, there have been prelimiary findings suggesting the special role of dysfunctional vascular smooth muscle cells (VSMCs) in the pathogenesis and development of TAD. Furthermore, the molecular mechanisms regulating the dysfunction of VSMCs have been initially explored. It is expected that these new findings will contribute to the development of new strategies to prevent TAD and lead to new ideas for the identifiction of potential drug therapeutic targets. Herein, we summarized the critical role of dysfunctional VSMCs in the pathogenesis and development of TAD and presented in detail the biological factors and the related molecular mechanisms that regulate the dysfunction of VSMCs. We hope this review will provide a reference for further investigation into the central role of dysfunctional VSMCs in the pathogenesis and development of TAD and exploration for effective molecular drug targets for TAD.
Collapse
Affiliation(s)
- 文博 高
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Faculty of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 泓池 余
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Faculty of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 瑶佳 张
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Faculty of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 宏 钱
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Faculty of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 肖珩 刘
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Faculty of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|