1
|
Liu Z, Peng H, Ye Z, Lian C, Shen H, Xiang H, Xiong B, Mei L. Highly-Efficient Differentiation of Reactive Lymphocytes in Peripheral Blood Using Multi-Object Detection Network With Large Kernels. Microsc Res Tech 2025. [PMID: 39760201 DOI: 10.1002/jemt.24775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Reactive lymphocytes are an important type of leukocytes, which are morphologically transformed from lymphocytes. The increase in these cells is usually a sign of certain virus infections, so their detection plays an important role in the fight against diseases. Manual detection of reactive lymphocytes is undoubtedly time-consuming and labor-intensive, requiring a high level of professional knowledge. Therefore, it is highly necessary to conduct research into computer-assisted diagnosis. With the development of deep learning technology in the field of computer vision, more and more models are being applied in the field of medical imaging. We aim to propose an advanced multi-object detection network and apply it to practical medical scenarios of reactive lymphocyte detection and other leukocyte detection. First, we introduce a space-to-depth convolution (SPD-Conv), which enhances the model's ability to detect dense small objects. Next, we design a dynamic large kernel attention (DLKA) mechanism, enabling the model to better model the context of various cells in clinical scenarios. Lastly, we introduce a brand-new feature fusion network, the asymptotic feature pyramid network (AFPN), which strengthens the model's ability to fuse multi-scale features. Our model ultimately achieves mAP50 of 0.918 for reactive lymphocyte detection and 0.907 for all leukocytes, while also demonstrating good interpretability. In addition, we propose a new peripheral blood cell dataset, providing data support for subsequent related work. In summary, our work takes a significant step forward in the detection of reactive lymphocytes.
Collapse
Affiliation(s)
- Zihan Liu
- Department of Laboratory Medicine, Wuhan No. 1 Hospital, Wuhan, China
| | - Haoran Peng
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Zhaoyi Ye
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Chentao Lian
- School of Computer Science, Hubei University of Technology, Wuhan, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hengyang Xiang
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Bei Xiong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liye Mei
- School of Computer Science, Hubei University of Technology, Wuhan, China
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Gultom M, Lin L, Brandt CB, Milusev A, Despont A, Shaw J, Döring Y, Luo Y, Rieben R. Sustained Vascular Inflammatory Effects of SARS-CoV-2 Spike Protein on Human Endothelial Cells. Inflammation 2024:10.1007/s10753-024-02208-x. [PMID: 39739157 DOI: 10.1007/s10753-024-02208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with systemic inflammation and vascular injury, which contribute to the development of acute respiratory syndrome (ARDS) and the mortality of COVID-19 infection. Moreover, multiorgan complications due to persistent endothelial dysfunction have been suspected as the cause of post-acute sequelae of SARS-CoV-2 infection. Therefore, elucidation of the vascular inflammatory effect of SARS-CoV-2 will increase our understanding of how endothelial cells (ECs) contribute to the short- and long-term consequences of SARS-CoV-2 infection. Here, we investigated the interaction of SARS-CoV-2 spike protein with human ECs from aortic (HAoEC) and pulmonary microvascular (HPMC) origins, cultured under physiological flow conditions. We showed that the SARS-CoV-2 spike protein triggers prolonged expression of cell adhesion markers in both ECs, similar to the effect of TNF-α. SARS-CoV-2 spike treatment also led to the release of various cytokines and chemokines observed in severe COVID-19 patients. Moreover, increased binding of leucocytes to the endothelial surface and a procoagulant state of the endothelium were observed. Transcriptomic profiles of SARS-CoV-2 spike-activated HPMC and HAoEC showed prolonged upregulation of genes and pathways associated with responses to virus, cytokine-mediated signaling, pattern recognition, as well as complement and coagulation pathways. Our findings support experimental and clinical observations of the vascular consequences of SARS-CoV-2 infection and highlight the importance of EC protection as one of the strategies to mitigate the severe effects as well as the possible post-acute complications of COVID-19 disease.
Collapse
Affiliation(s)
- Mitra Gultom
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Camilla Blunk Brandt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Anastasia Milusev
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Alain Despont
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Jane Shaw
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Angiology, Inselspital, Bern University Hospital, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum Für Herz-Kreislauf-Forschung, DZHK), Munich Heart Alliance Partner Site, Munich, Germany
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Robert Rieben
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Wang Z, Yang T, Zhang L, Makamure J, Hong W, Liang B. Age and clinical spectrum of COVID-19 are associated with safety of transarterial chemoembolization in hepatocellular carcinoma: a retrospective cohort study. J Gastrointest Oncol 2024; 15:2642-2655. [PMID: 39816043 PMCID: PMC11732337 DOI: 10.21037/jgo-24-527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/22/2024] [Indexed: 01/18/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) patients with coronavirus disease 2019 (COVID-19) undergoing open surgery show increased adverse events (AEs) and mortality, while the safety of transarterial chemoembolization (TACE) in coinfected patients remains understudied, limiting available evidence. This study aims to investigate the safety of TACE in HCC patients coinfected with COVID-19, and to explore the potential risk factors affecting the occurrence of serious AEs (SAEs), thus providing evidence for clinical treatment strategies in such patients. Methods This retrospective study involved HCC patients who underwent TACE with or without COVID-19 infection at our institution from November 2022 to February 2023. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used for the diagnosis of COVID-19. Patients were divided into an infected group (diagnosed with COVID-19 within 2 weeks before or after the procedure) and an uninfected group (tested negative for COVID-19). SAEs were ascertained according to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) version 5.0. Logistic regression analysis of multiple clinical factors in preoperative baseline characteristics was performed to identify risk factors that might predict the occurrence of SAEs. Results A total of 118 patients (73 in the infected group, 45 in the uninfected group) were included, of whom 83.9% were male (86.3% in the infected group vs. 80.0% in the uninfected group) and the median age was 55.9±12.4 years (56.8±12.3 vs. 54.5±12.7 years). The clinical spectrum of COVID-19 in the infected group were 80.8% mild, 13.7% moderate, 1.4% severe and 4.1% critical. Sixteen of the 118 patients experienced SAEs (19.2% vs. 4.4%, P=0.046). The predominant SAEs were respiratory system diseases (9.6% vs. 0.0%) and liver damage (2.7% vs. 2.2%). In the univariate analysis, infection status [odds ratio (OR): 5.102, P=0.04, 95% confidence interval (CI): 1.102-23.627], gender (OR: 2.857, P=0.09, 95% CI: 0.862-9.468), age (OR: 1.061, P=0.03, 95% CI: 1.007-1.118) and clinical spectrum of COVID-19 (OR: 4.259, P<0.001, 1.943-9.336) were considered as the potential risk factors of grade ≥3 AEs. In multivariate analysis, younger age (OR: 1.064, P=0.044, 95% CI: 1.002-1.131) and a milder clinical spectrum of COVID-19 (OR: 5.736, P=0.004, 95% CI: 1.772-18.568) were independent factors associated with a lower occurrence of SAEs. Conclusions TACE in HCC patients co-infected with COVID-19 was considered relatively safe. Age and clinical spectrum of COVID-19 were associated with SAEs in HCC patients treated with TACE.
Collapse
Affiliation(s)
- Zizhuo Wang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Yang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijie Zhang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Joyman Makamure
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Hong
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Liang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Blasco A, Royuela A, García-Gómez S, Gómez-Lozano N, Sánchez-Arjona A, de la Fuente J, Anel J, Sánchez-Galarraga I, Pérez-Redondo M, González E, Silva L. Association of SARS-CoV-2 immunoserology and vaccination status with myocardial infarction severity and outcome. Vaccine 2024; 42:126305. [PMID: 39244425 DOI: 10.1016/j.vaccine.2024.126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The COVID-19 pandemic adversely affected the severity and prognosis of patients with acute myocardial infarction (MI) caused by atherothrombosis (type 1 MI). The effect, if any, of COVID-19 vaccination and natural SARS-CoV2 serologic immunity in these patients is unclear. Our aim was to analyze the association between the severity and outcome of patients with type 1 MI and their previous SARS-CoV2 vaccination and serostatus. METHODS A single-center retrospective cohort study conducted between March 1, 2020 and March 1, 2023. Clinical and follow-up information was collected from medical records and patients. Total antibodies (IgM, IgA, IgG) to nucleocapsid (N) antigens were measured by ECLIA (electrochemiluminescence-based immunoassay) to test the immune response to natural infection. If positive, IgM and IgG antibodies to spike (S) surface antigens were measured by CLIA to test the immune response to vaccine or natural infection. Multivariable logistic regression analysis was performed, adjusting for age, sex, hypertension, diabetes, and dyslipidemia. RESULTS Total sample of 949 patients, 656 with ST-segment elevation MI (STEMI) and 293 with non-ST-segment elevation MI (NSTEMI). Mean age was 64 (SD 13) years, 80 % men. Pre-admission vaccination status was: ≥ 1 dose, 53 % of patients; complete vaccination, 49 %; first booster dose, 25 %. The majority (84 %) of vaccines administered were mRNA-based. Six months after MI, 92 (9.7 %) patients had a major adverse cardiac event (MACE) and 50 died; 11 % of patients had severe heart failure or cardiogenic shock (Killip III-IV) after STEMI. Vaccinated patients with STEMI and positive serology (Pos/Vax group) had a higher risk of Killip III-IV on admission: OR 2.63 (1.27-5.44), p = 0.010. SARS-CoV-2 S-specific IgG titers were highest in this group (median > 2080 AU/mL, [IQR 1560- >2080] vs 91 [32-198] in the unvaccinated group). In the overall sample, a higher incidence of 6-month MACE was not demonstrated (OR 1.89 [0.98-3.61], p = 0.055). CONCLUSIONS The combination of vaccination and natural SARS-CoV2 infection was associated with the development of severe heart failure and cardiogenic shock in patients with STEMI, possibly related to an increased serological response.
Collapse
Affiliation(s)
- Ana Blasco
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain; Research Ethics Committee, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain.
| | - Ana Royuela
- Biostatistics Unit, Instituto de Investigación Puerta de Hierro-Segovia de Arana, Madrid, Spain; Center for Biomedical Research in Epidemiology and Public Health Network (CIBERESP), Madrid, Spain
| | - Sergio García-Gómez
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Natalia Gómez-Lozano
- Immunology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Alberto Sánchez-Arjona
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Jorge de la Fuente
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Jorge Anel
- Microbiology Department, Serology Section, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | - Marina Pérez-Redondo
- Intensive Care Unit, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Elisa González
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Lorenzo Silva
- Cardiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| |
Collapse
|
5
|
Singh H, Nair A, Mahajan SD. Impact of genetic variations of gene involved in regulation of metabolism, inflammation and coagulation on pathogenesis of cardiac injuries associated with COVID-19. Pathol Res Pract 2024; 263:155608. [PMID: 39447244 DOI: 10.1016/j.prp.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND SARS-CoV-2 infection can result in long-term chronic cardiovascular (CV) damage after the acute phase of the illness. COVID-19 frequently causes active myocarditis, SARS-CoV-2 can directly infect and kill cardiac cells, causing severe pathology and dysfunction across the organs and cells. Till now, the pathogenesis of COVID-19-associated cardiac injuries has not been understood, but there are several factors that contribute to the progression of cardiac injuries, such as genetic, dietary, and environmental. Among them ranges of host genetic factor including metabolizing, inflammation, and coagulation related genes have a role to contribute the cardiac injuries induced by COVID-19. Hereditary DNA sequence variations contribute to the risk of illness in almost all of these diseases. Hence, we comprehended the occurrence of genetic variations of metabolizing, inflammation and coagulation-related genes in the general population, their expression in various diseases, and their impact on cardiac injuries induced by COVID-19. METHOD We utilized multiple databases, including PubMed (Medline), EMBASE, and Google Scholar, for literature searches. DESCRIPTION The genes involved in metabolism (APOE, MTHFR), coagulation (PAI-1, ACE2), and immune factors (CRP, ESR, and troponin I) may have a role in the progression of COVID-19-associated cardiac injuries. The risk factors for CVD are significantly varied between and within different regions. In healthy individuals, the ACE I allele is responsible for the predisposition to CAD, but the ACE D haplotype is responsible for susceptibility and severity, which ultimately leads to heart failure. Patients who carry the T allele of rs12329760 in the TMPRSS2 gene are at risk for developing the severe form of COVID-19. IL-6 (rs1800796/rs1800795) polymorphism is associated with an increased mortality rate and susceptibility to severe COVID-19 disease. While the putative role of IL-6 associated with chronic, inflammatory diseases like cardiac and cerebrovascular disease is well known. CONCLUSION The occurrence of genetic variations in the ACE-2, AGT, DPP-IV, TMPRSS2, FUIRN, IL-4, IL-6, IFN-γ, and CYP2D6 genes is varied among different populations. Examining the correlation between these variations and their protein levels and cardiac injuries induced by COVID-19 may provide valuable insights into the pathogenesis of cardiac injuries induced by COVID-19.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India.
| | - Aishwarya Nair
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India
| | - Supriya D Mahajan
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Lai S, Min S. Perioperative cardiovascular risk and preventions of patients with post-COVID-19 condition. Heliyon 2024; 10:e39345. [PMID: 39640715 PMCID: PMC11620228 DOI: 10.1016/j.heliyon.2024.e39345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
COVID-19 infectious is still a widely prevalent disease today. Although most patients with COVID-19 infection are mild. Some patients still develop to post-COVID-19 conditions, significantly increasing the perioperative cardiovascular risks. To better assess and prevent the perioperative cardiovascular risks of patients with COVID-19 infection, the safety and effectiveness of clinical practice can be improved through comprehensive measures, such as medical history collection, detection of symptoms and signs, application of auxiliary examinations, selection of scales and related rehabilitation treatment.
Collapse
Affiliation(s)
- Sixu Lai
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
7
|
Hossain AT, Akter E, Siddique AB, Rahman MH, Ameen S, Jabeen S, Manna RM, Hossain MA, Rahman QSU, Ahmed A, Mostari S, Chowdhury A, Rahman SM, Chisti MJ, Cobos D, El Arifeen S, Rahman AE. Excess mortality during COVID-19 pandemic in Bangladesh - evidence from a rural survey. J Glob Health 2024; 14:05031. [PMID: 39450614 PMCID: PMC11503508 DOI: 10.7189/jogh.14.05031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) had a profound impact worldwide. In Bangladesh, the official number of deaths for COVID-19 was around 29 000. However, many countries including Bangladesh experienced substantial underreporting of COVID-19 deaths due to lack of complete national civil registration system. This study aims to estimate excess mortality in 2020, identify risk factors, and determine leading causes of death in Bangladesh. Methods In February 2021, we conducted a cross-sectional household survey in Sitakunda, a subdistrict of Chattogram, identifying deaths from January 2018 to December 2020. Excess mortality was quantified using the p-score and incidence rate ratio (IRR) utilising Poisson segmented regression. We employed the InterVA-5 algorithm to attribute causes of death. Proportional distribution and cause-specific mortality rates (CSMR) per 100 000 individuals were compared between pre-pandemic and pandemic periods. Results Among 1748 deaths from 25 669 households, we found 1.4 (95% confidence interval (CI) = 1.2-1.4) times excess mortality in 2020 compared to 2018-2019. Leading causes of death in 2020 included cardiac disease (CSMR = 121.0, CI = 115.8-127.3), stroke (CSMR = 108.0, CI = 102.6-114.0), and acute respiratory infection (CSMR = 61.0, CI = 55.1-66.5), all displaying significantly higher mortality rates than in previous years. Older age (IRR = 1.6), less education (IRR = 1.8), and lower socio-economic groups (IRR = 2.1) had higher mortality rates in 2020 compared to pre-pandemic years. Conclusion Our study suggests high rural excess mortality during COVID-19 including cardiac disease, stroke and acute respiratory infection as the leading causes of deaths. We require targeted strategies to identify high-risk patients with comorbidity and social vulnerabilities that contribute to mortality to guide the preparedness strategy for future pandemics.
Collapse
Affiliation(s)
- Aniqa Tasnim Hossain
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ema Akter
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Abu Bakkar Siddique
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Md Hafizur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Shafiqul Ameen
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Sabrina Jabeen
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ridwana Maher Manna
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Md Alamgir Hossain
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Qazi Sadeq-ur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Anisuddin Ahmed
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | | | | | - Mohammod Jobayer Chisti
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Daniel Cobos
- Health System and Policy, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Shams El Arifeen
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ahmed Ehsanur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Wang Z, Li L, Yang S, Li Z, Zhang P, Shi R, Zhou X, Tang X, Li Q. Possible mechanisms of SARS-CoV-2-associated myocardial fibrosis: reflections in the post-pandemic era. Front Microbiol 2024; 15:1470953. [PMID: 39444690 PMCID: PMC11497467 DOI: 10.3389/fmicb.2024.1470953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Since December 2019, coronavirus disease 2019 (COVID-19) has been spreading worldwide with devastating immediate or long-term effects on people's health. Although the lungs are the primary organ affected by COVID-19, individuals infected with SARS-CoV-2 also develop systemic lesions involving multiple organs throughout the body, such as the cardiovascular system. Emerging evidence reveals that COVID-19 could generate myocardial fibrosis, termed "COVID-19-associated myocardial fibrosis." It can result from the activation of fibroblasts via the renin-angiotensin-aldosterone system (RAAS), transforming growth factor-β1 (TGF-β1), microRNAs, and other pathways, and can also occur in other cellular interactions with SARS-CoV-2, such as immunocytes, endothelial cells. Nonetheless, to gain a more profound insight into the natural progression of COVID-19-related myocardial fibrosis, additional investigations are necessary. This review delves into the underlying mechanisms contributing to COVID-19-associated myocardial fibrosis while also examining the antifibrotic potential of current COVID-19 treatments, thereby offering guidance for future clinical trials of these medications. Ultimately, we propose future research directions for COVID-19-associated myocardial fibrosis in the post-COVID-19 era, such as artificial intelligence (AI) telemedicine. We also recommend that relevant tests be added to the follow-up of COVID-19 patients to detect myocardial fibrosis promptly.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luwei Li
- Department of Pediatric Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Third Clinical Medical College of Zhengzhou University, Zhengzhou, China
| | - Shuai Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Tang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Wiedmann F, Boondej E, Stanifer M, Paasche A, Kraft M, Prüser M, Seeger T, Uhrig U, Boulant S, Schmidt C. SARS-CoV-2 ORF 3a-mediated currents are inhibited by antiarrhythmic drugs. Europace 2024; 26:euae252. [PMID: 39412366 PMCID: PMC11481279 DOI: 10.1093/europace/euae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to cardiovascular complications, notably cardiac arrhythmias. The open reading frame (ORF) 3a of the coronavirus genome encodes for a transmembrane protein that can function as an ion channel. The aim of this study was to investigate the role of the SARS-CoV-2 ORF 3a protein in COVID-19-associated arrhythmias and its potential as a pharmacological target. METHODS AND RESULTS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and cultured human fibroblasts were infected with SARS-CoV-2. Subsequent immunoblotting assays revealed the expression of ORF 3a protein in hiPSC-CM but not in fibroblasts. After intracytoplasmic injection of RNA encoding ORF 3a proteins into Xenopus laevis oocytes, macroscopic outward currents could be measured. While class I, II, and IV antiarrhythmic drugs showed minor effects on ORF 3a-mediated currents, a robust inhibition was detected after application of class III antiarrhythmics. The strongest effects were observed with dofetilide and amiodarone. Finally, molecular docking simulations and mutagenesis studies identified key amino acid residues involved in drug binding. CONCLUSION Class III antiarrhythmic drugs are potential inhibitors of ORF 3a-mediated currents, offering new options for the treatment of COVID-19-related cardiac complications.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Emika Boondej
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Megan Stanifer
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Amelie Paasche
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Merten Prüser
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Timon Seeger
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Ulrike Uhrig
- Chemical Biology Core Facility, EMBL, Heidelberg, Germany
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Kole C, Stefanou Ε, Karvelas N, Schizas D, Toutouzas KP. Acute and Post-Acute COVID-19 Cardiovascular Complications: A Comprehensive Review. Cardiovasc Drugs Ther 2024; 38:1017-1032. [PMID: 37209261 PMCID: PMC10199303 DOI: 10.1007/s10557-023-07465-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE OF REVIEW The risk of cardiovascular complications due to SARS-CoV-2 are significantly increased within the first 6 months of the infection. Patients with COVID-19 have an increased risk of death, and there is evidence that many may experience a wide range of post-acute cardiovascular complications. Our work aims to provide an update on current clinical aspects of diagnosis and treatment of cardiovascular manifestations during acute and long-term COVID-19. RECENT FINDINGS SARS-CoV-2 has been shown to be associated with increased incidence of cardiovascular complications such as myocardial injury, heart failure, and dysrhythmias, as well as coagulation abnormalities not only during the acute phase but also beyond the first 30 days of the infection, associated with high mortality and poor outcomes. Cardiovascular complications during long-COVID-19 were found regardless of comorbidities such as age, hypertension, and diabetes; nevertheless, these populations remain at high risk for the worst outcomes during post-acute COVID-19. Emphasis should be given to the management of these patients. Treatment with low-dose oral propranolol, a beta blocker, for heart rate management may be considered, since it was found to significantly attenuate tachycardia and improve symptoms in postural tachycardia syndrome, while for patients on ACE inhibitors or angiotensin-receptor blockers (ARBs), under no circumstances should these medications be withdrawn. In addition, in patients at high risk after hospitalization due to COVID-19, thromboprophylaxis with rivaroxaban 10 mg/day for 35 days improved clinical outcomes compared with no extended thromboprophylaxis. In this work we provide a comprehensive review on acute and post-acute COVID-19 cardiovascular complications, symptomatology, and pathophysiology mechanisms. We also discuss therapeutic strategies for these patients during acute and long-term care and highlight populations at risk. Our findings suggest that older patients with risk factors such as hypertension, diabetes, and medical history of vascular disease have worse outcomes during acute SARS-CoV-2 infection and are more likely to develop cardiovascular complications during long-COVID-19.
Collapse
Affiliation(s)
- Christo Kole
- Cardiology Department, Sismanoglio General Hospital of Attica, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Εleni Stefanou
- Artificial Kidney Unit, General Hospital of Messinia, Kalamata, Greece
| | - Nikolaos Karvelas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | |
Collapse
|
11
|
Tan X, Gao X, Zheng H, Yuan H, Liu H, Ran Q, Luo M. Platelet dysfunction caused by differentially expressed genes as key pathogenic mechanisms in COVID-19. Minerva Cardiol Angiol 2024; 72:517-534. [PMID: 38804627 DOI: 10.23736/s2724-5683.24.06501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
At the end of 2019, the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became prevalent worldwide, which brought a heavy medical burden and tremendous economic losses to the world population. In addition to the common clinical respiratory symptoms such as fever, cough and headache, patients with COVID-19 often have hematological diseases, especially platelet dysfunction. Platelet dysfunction usually leads to multiple organ dysfunction, which is closely related to patient severity or mortality. In addition, studies have confirmed significant changes in the gene expression profile of circulating platelets under SARS-CoV-2 infection, which will further lead to changes in platelet function. At the same time, studies have shown that platelets may absorb SARS-COV-2 mRNA independently of ACE2, which further emphasizes the importance of the stability of platelet function in defense against SARS-CoV-2 infection. This study reviewed the relationship between COVID-19 and platelet and SARS-CoV-2 damage to the circulatory system, and further analyzed the significantly differentially expressed mRNA in platelets after infection with SARS-CoV-2 on the basis of previous studies. The top eight hub genes were identified as NLRP3, MT-CO1, CD86, ICAM1, MT-CYB, CASP8, CXCL8 and CXCR4. Subsequently, the effects of SARS-CoV-2 infection on platelet transcript abnormalities and platelet dysfunction were further explored on the basis of 8 hub genes. Finally, the treatment measures of complications caused by platelet dysfunction in patients with COVID-19 were discussed in detail, so as to provide reference for the prevention, diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoyong Tan
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Huanhuan Zheng
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Hui Yuan
- Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Qijun Ran
- Department of Pharmacy, Xuanhan County People's Hospital, Dazhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China -
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Accioli R, Lazzerini PE, Salvini V, Cartocci A, Verrengia D, Marzotti T, Salvadori F, Bisogno S, Cevenini G, Voglino M, Gallo S, Pacini S, Pazzaglia M, Tansini A, Otranto A, Laghi‐Pasini F, Acampa M, Boutjdir M, Capecchi PL. Increased interleukin-6 levels are associated with atrioventricular conduction delay in severe COVID-19 patients. J Arrhythm 2024; 40:1137-1148. [PMID: 39416238 PMCID: PMC11474750 DOI: 10.1002/joa3.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 10/19/2024] Open
Abstract
Background Severely ill patients with coronavirus disease 2019 (COVID-19) show an increased risk of new-onset atrioventricular blocks (AVBs), associated with high rates of short-term mortality. Recent data suggest that the uncontrolled inflammatory activation observed in these patients, specifically interleukin (IL)-6 elevation, may play an important pathogenic role by directly affecting cardiac electrophysiology. The aim of our study was to assess the acute impact of IL-6 changes on electrocardiographic indices of atrioventricular conduction in severe COVID-19. Methods We investigated (1) the behavior of PR-interval and PR-segment in patients with severe COVID-19 during active phase and recovery, and (2) their association with circulating IL-6 levels over time. Results During active disease, COVID-19 patients showed a significant increase of PR-interval and PR-segment. Such atrioventricular delay was transient as these parameters rapidly normalized during recovery. PR-indices significantly correlated with circulating IL-6 levels over time. All these changes and correlations persisted also in the absence of laboratory signs of cardiac strain/injury or concomitant treatment with PR-prolonging drugs, repurposed or not. Conclusions Our study provides evidence that in patients with severe COVID-19 and high-grade systemic inflammation, IL-6 elevation is associated with a significant delay of atrioventricular conduction, independent of concomitant confounding factors. While transient, such alterations may enhance the risk of severe AVB and associated short-term mortality. Our data provide further support to current anti-inflammatory strategies for severe COVID-19, including IL-6 antagonists.
Collapse
Affiliation(s)
- Riccardo Accioli
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Viola Salvini
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | | | - Decoroso Verrengia
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Tommaso Marzotti
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Fabio Salvadori
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Stefania Bisogno
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | | | - Michele Voglino
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Severino Gallo
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Sabrina Pacini
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Martina Pazzaglia
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Angelica Tansini
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Ambra Otranto
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | - Franco Laghi‐Pasini
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| | | | - Mohamed Boutjdir
- VA New York Harbor Healthcare SystemSUNY Downstate Health Sciences UniversityNew YorkNew YorkUSA
- NYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
- Division of Internal Medicine and Geriatrics, Electroimmununology UnitUniversity Hospital of SienaSienaItaly
| |
Collapse
|
13
|
Maurizot A, Chabay S, Roger G, Tapiero S, Georges JL, Flaujac C, Paul M, Roche A, Bruneel F, Ferré A. Incidence of deep venous thrombosis in COVID-19 critically ill patients treated with intermediate-dose of heparin for thromboprophylaxis: The COVIDOP-DVT observational study. Vascular 2024; 32:1099-1106. [PMID: 37009990 PMCID: PMC10071186 DOI: 10.1177/17085381231165083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
INTRODUCTION The high prevalence of deep vein thrombosis (DVT) in patients admitted to intensive care unit (ICU) for COVID-19-related acute respiratory distress syndrome (ARDS) would justify systematic screening of these patients or higher therapeutic dose of heparin for thromboprophylaxis. MATERIAL AND METHOD We performed a systematic echo-Doppler of the lower limb proximal veins during the first 48 h (visit 1) and from 7 to 9 days after visit 1 (visit 2) in consecutive patients admitted to the ICU of a university-affiliated tertiary hospital for severe proven COVID-19 during the second wave. All patients received intermediate-dose heparin (IDH). The primary objective was to determine DVT incidence on venous Doppler ultrasound. Secondary objectives were to determine whether the presence of DVT modifies the anticoagulation regimen, the incidence of major bleeding according to International Society on Thrombosis and Haemostasis (ISTH) criteria, and the mortality rate of patients with and without DVT. RESULTS We included 48 patients (30 [62.5%] men) with a median age of 63 years [IQR, 54-70]. The prevalence of proximal deep vein thrombosis was 4.2% (2/48). In these two patients, after DVT diagnosis, anticoagulation was changed from intermediate to curative dose. Two patients (4.2%) had a major bleeding complication according to ISTH criteria. Among the 48 patients, 9 (18.8%) died before hospital discharge. No DVT or pulmonary embolism was diagnosed in these deceased patients during their hospital stay. CONCLUSION In critically ill patients with COVID-19, management with IDH results in a low incidence of DVT. Although our study is not designed to demonstrate any difference in outcome, our results do not suggest any signal of harm when using intermediate-dose heparin (IDH) COVID-19 with a frequency of major bleeding complications less than 5%.
Collapse
Affiliation(s)
- Aurélien Maurizot
- Vascular Medicine Unit, Cardiology Department, Versailles Hospital, Le Chesnay, France
| | - Simon Chabay
- Vascular Medicine Unit, Cardiology Department, Versailles Hospital, Le Chesnay, France
| | - Guillaume Roger
- Vascular Medicine Unit, Cardiology Department, Versailles Hospital, Le Chesnay, France
| | - Stéphanie Tapiero
- Vascular Medicine Unit, Cardiology Department, Versailles Hospital, Le Chesnay, France
| | | | - Claire Flaujac
- Haemostasis Unit, Medical Biology Department, Versailles Hospital, Le Chesnay, France
| | - Marine Paul
- Intensive Care Unit, Versailles Hospital, Le Chesnay, France
| | - Anne Roche
- Intensive Care Unit, Versailles Hospital, Le Chesnay, France
| | - Fabrice Bruneel
- Intensive Care Unit, Versailles Hospital, Le Chesnay, France
| | - Alexis Ferré
- Intensive Care Unit, Versailles Hospital, Le Chesnay, France
| |
Collapse
|
14
|
Atef Y, Ito T, Masuda A, Kato Y, Nishimura A, Kanda Y, Kunisawa J, Kusakabe T, Nishida M. Diabetic Mice Spleen Vulnerability Contributes to Decreased Persistence of Antibody Production after SARS-CoV-2 Vaccine. Int J Mol Sci 2024; 25:10379. [PMID: 39408710 PMCID: PMC11476529 DOI: 10.3390/ijms251910379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
During the COVID-19 pandemic, diabetic and obese patients experienced higher rates of hospital admissions, severe illness, and mortality. However, vaccinations failed to provide those vulnerable populations the same level of protection against COVID-19 severity as those without diabetic and obese phenotypes. Our study aimed to investigate how diabetes mellitus (DM) impacts the immune response following vaccination including the artificially designed trimeric SARS-CoV-2 spike (S)-protein. By using two diabetic mouse models, ob/ob mice (obese, hyperglycemic, and insulin-resistant) and STZ-treated mice (insulin-deficient and hyperglycemic), we observed a significant reduction in S-protein-specific IgG antibody titer post-vaccination in both diabetic models compared to wild-type (WT) mice. Both diabetic mouse models exhibited significant abnormalities in spleen tissue, including marked reductions in splenic weight and the size of the white pulp regions. Furthermore, the splenic T-cell and B-cell zones were notably diminished, suggesting an underlying immune dysfunction that could contribute to impaired antibody production. Notably, vaccination with the S-protein, when paired with an optimal adjuvant, did not exacerbate diabetic cardiomyopathy, blood glucose levels, or liver function, providing reassurance about the vaccine's safety. These findings offer valuable insights into potential mechanisms responsible for the decreased persistence of antibody production in diabetic patients.
Collapse
Affiliation(s)
- Yara Atef
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomoya Ito
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akitsu Masuda
- Laboratory of Creative Science for Insect Industries, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan;
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka 819-0395, Japan;
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan;
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
| |
Collapse
|
15
|
Jiang L, Lu L, Xue C, Sun H, Ren K, Zhang L, Zhu H, Zhang B, Wang X, Qiao X, Peng X, Liu J, Duan W. ACE2 deficiency inhibits thoracic aortic dissection by enhancing SIRT3 mediated inhibition of inflammation and VSCMs phenotypic switch. Mol Med 2024; 30:154. [PMID: 39300372 DOI: 10.1186/s10020-024-00926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Thoracic aortic dissection (TAD) is an irreversible cardiovascular disorder with high mortality and morbidity. However, the molecular mechanisms remain elusive. Thus, identifying an effective therapeutic target to prevent TAD is especially critical. The purpose of this study is to elucidate the potential mechanism of inflammation and vascular smooth muscle cell (VSMCs) phenotypic switch in β-aminopropionitrile fumarate (BAPN)-induced TAD. METHODS A mouse model of TAD induced by BAPN and IL-1β -stimulated HVSMCs in vivo and in vitro models, respectively. ACE2 Knockdown mice treated with BAPN or without, and the TAD mouse model was treated with or without AAV-ACE2. Transthoracic ultrasound was conducted for assessment the maximum internal diameter of the thoracic aorta arch. RNA sequencing analysis was performed to recapitulate transcriptome profile changes. Western blot were used to detect the expression of MMP2, MMP9, ACE2, SIRT3, OPN, SM22α and other inflammatory markers. The circulating levels of ACE2 was measured by ELISA assay. Histological changes of thoracic aorta tissues were assessed by H&E, EVG and IHC analysis. RESULTS We found that circulating levels of and the protein levels of ACE2 were increased in the TAD mouse model and in patients with TAD. For further evidence, ACE2 deficiency decelerated the formation of TAD. However, overexpression of ACE2 aggravated BAPN-induced aortic injury and VSMCs phenotypic switch via lowered SIRT3 expression and elevated inflammatory cytokine expression. CONCLUSION ACE2 deficiency prevented the development of TAD by inhibiting inflammation and VSMCs phenotypic switch in a SIRT3-dependent manner, suggesting that the ACE2/SIRT3 signaling pathway played a pivotal role in the pathological process of TAD and might be a potential therapeutical target.
Collapse
MESH Headings
- Animals
- Angiotensin-Converting Enzyme 2/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Mice
- Aortic Dissection/metabolism
- Aortic Dissection/etiology
- Aortic Dissection/genetics
- Aortic Dissection/pathology
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Sirtuin 3/metabolism
- Sirtuin 3/genetics
- Sirtuin 3/deficiency
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Inflammation/metabolism
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/etiology
- Aortic Aneurysm, Thoracic/genetics
- Male
- Phenotype
- Humans
- Mice, Knockout
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/drug effects
- Aminopropionitrile/pharmacology
- Mice, Inbred C57BL
- Dissection, Thoracic Aorta
Collapse
Affiliation(s)
- Liqing Jiang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Linhe Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Chao Xue
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - He Sun
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Kai Ren
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Liyun Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xinan Qiao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xiangyan Peng
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China.
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Military Medical University, 127 Changle West Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
16
|
Gounaridi MI, Souvaliotis N, Vontetsianos A, Chynkiamis N, Lampsas S, Theofilis P, Anastasiou A, Goliopoulou A, Tzima I, Katsarou O, Bakakos P, Vavouranakis M, Koulouris N, Siasos G, Oikonomou E. The Impact of Cardiopulmonary Rehabilitation on Ventriculoarterial Coupling in Post-Coronavirus Disease-2019 Patients. J Cardiopulm Rehabil Prev 2024; 44:361-368. [PMID: 39185908 DOI: 10.1097/hcr.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
PURPOSE Coronavirus disease-2019 (COVID-19) affects the cardiovascular system even after the acute phase of the disease. Cardiopulmonary rehabilitation may improve post-COVID-19 symptoms. This study aims to evaluate the impact of a cardiopulmonary rehabilitation program after acute COVID-19 on arterial stiffness, left ventricular function, and ventriculoarterial coupling (VAC). METHODS Forty-eight adults were examined 1 (T0) and 3-mo (T1) following recovery from COVID-19 and randomized 1:1 to participate or not in a 3-mo rehabilitation program. Matched subjects were enrolled as a non-COVID-19 group. Arterial stiffness was evaluated by carotid-femoral pulse wave velocity (PWV). Left ventricular (LV) systolic performance was evaluated with global longitudinal strain (GLS). The PWV/LV-GLS ratio was calculated as an index of VAC. High-sensitivity C reactive protein (hs-CRP) was measured. RESULTS At T0, convalescent patients with COVID-19 had impaired PWV ( P = .001) and reduced VAC ( P = .001) compared to non-COVID-19 subjects. PWV (8.15 ± 1.37 to 6.55 ± 0.98 m/sec, P < .001) and LV-GLS (-19.67 ± 1.98 to -21.3 ± 1.93%, P < .001) improved only in convalescent patients with COVID-19 undergoing rehabilitation. Similarly, VAC was only improved in the rehabilitation group (-0.42 ± 0.11 to -0.31 ± 0.06 m · sec -1 ·% -1 , P < .001). A significant improvement in VO 2max was noted after rehabilitation (15.70 [13.05, 21.45] to 18.30 [13.95, 23.75] ml · kg -1 · min -1 , P = .01). Finally, hs-CRP was improved in both groups with a significantly greater improvement in the rehabilitation group. CONCLUSION A 3-mo rehabilitation program in convalesced patients with COVID-19 enhances the recovery of arterial stiffness, left ventricular function, and VAC, highlighting the beneficial mechanisms of rehabilitation in this patient population.
Collapse
Affiliation(s)
- Maria-Ioanna Gounaridi
- Author Affiliations: Department of Cardiology, "Sotiria" Chest Disease Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece (Drs Gounaridi, Souvaliotis, Lampsas, Anastasiou, Goliopoulou, Tzima, Katsarou, Vavouranakis, Siasos, and Oikonomou); Rehabilitation Unit-1st Respiratory Medicine Department, "Sotiria" Chest Disease Hospital, National and Kapodistrian University of Athens, Greece (Dr Vontetsianos, Chynkiamis, Bakakos, and Koulouris); 1st Department of Cardiology, "Hippokration" General Hospital of Athens, National and Kapodistrian University of Athens, Medical School, Athens, Greece (Dr Theofilis)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Suski M, Olszanecka A, Stachowicz A, Kiepura A, Terlecki M, Madej J, Rajzer M, Olszanecki R. Alterations in plasma proteome during acute COVID-19 and recovery. Mol Med 2024; 30:131. [PMID: 39183264 PMCID: PMC11346252 DOI: 10.1186/s10020-024-00898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The severe course of COVID-19 causes cardiovascular injuries, although the mechanisms involved are still not fully recognized, linked, and understood. Their characterization is of great importance with the establishment of the conception of post-acute sequelae of COVID-19, referred to as long COVID, where blood clotting and endothelial abnormalities are believed to be the key pathomechanisms driving circulatory system impairment. METHODS The presented study investigates temporal changes in plasma proteins in COVID-19 patients during hospitalization due to SARS-CoV-2 infection and six months after recovery by targeted SureQuant acquisition using PQ500 panel. RESULTS In total, we identified 167 proteins that were differentially regulated between follow-up and hospitalization, which functionally aggregated into immune system activation, complement and coagulation cascades, interleukins signalling, platelet activation, and extracellular matrix organization. Furthermore, we found that temporal quantitative changes in acute phase proteins correlate with selected clinical characteristics of COVID-19 patients. CONCLUSIONS In-depth targeted proteome investigation evidenced substantial changes in plasma protein composition of patients during and recovering from COVID-19, evidencing a wide range of functional pathways induced by SARS-CoV-2 infection. In addition, we show that a subset of acute phase proteins, clotting cascade regulators and lipoproteins could have clinical value as potential predictors of long-term cardiovascular events in COVID-19 convalescents.
Collapse
Affiliation(s)
- Maciej Suski
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland.
| | - Agnieszka Olszanecka
- Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, 2 Jakubowskiego str, Kraków, 30-688, Poland
- University Hospital in Kraków, 2 Jakubowskiego str, Kraków, 30-688, Poland
| | - Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| | - Anna Kiepura
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| | - Michał Terlecki
- Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, 2 Jakubowskiego str, Kraków, 30-688, Poland
- University Hospital in Kraków, 2 Jakubowskiego str, Kraków, 30-688, Poland
| | - Józef Madej
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| | - Marek Rajzer
- Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, 2 Jakubowskiego str, Kraków, 30-688, Poland
- University Hospital in Kraków, 2 Jakubowskiego str, Kraków, 30-688, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str, Kraków, 31 531, Poland
| |
Collapse
|
18
|
Wang X, Guo Q, Huang K, Ma G, Zhai L, Lin B, Ren H, Yang Z. Impact of the COVID-19 pandemic on risk of sarcopenia: From lockdown and infection perspectives: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e39257. [PMID: 39121262 PMCID: PMC11315480 DOI: 10.1097/md.0000000000039257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/19/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND During the new coronavirus disease 2019 (COVID-19) pandemic, there are numerous symptoms in the skeletal muscular system, such as decreased skeletal muscle mass, strength, and muscle function, which are the main manifestations of sarcopenia. To investigate the impact of the COVID-19 pandemic on sarcopenia from the perspectives of COVID-19 pandemic lockdown and COVID-19 infection, we conducted this study. METHODS We searched for literature related to COVID-19 and sarcopenia published in PubMed, Embase, Cochrane Library, and Web of Science. Two researchers independently searched and screened the articles, extracted data, and assessed the quality of the final included literature. RevMan 5.4 was used for meta-analysis. RESULTS A total of 8 articles with a total of 1145 patients were included. There was a significant difference in SARC-F scores (MD = 0.67, 95%CI = [0.41, 0.93], Z = 5.00, P < .00001), handgrip (MD = -1.57, 95%CI = [-2.41, -0.73], Z = 3.66, P = .0002), body weight (MD = -1.87, 95%CI = [-3.69, -0.05], Z = 2.01, P = .04), and skeletal muscle mass index (MD = -0.28, 95%CI = [-0.54, -0.02], Z = 2.13, P = .03) between the time before the COVID-19 pandemic and during the COVID-19 pandemic. However, the results showed that there was no significant difference in muscle mass between the 2 groups (MD = -1.72, 95%CI = [-4.39, 0.94], Z = 1.27, P = .21). CONCLUSION The COVID-19 pandemic has had an impact on sarcopenia. Both infection with COVID-19 and lockdown during the COVID-19 pandemic increase the risk of sarcopenia. Research should pay more attention to this disease during the COVID-19 pandemic and adopt effective interventions to minimize adverse outcomes.
Collapse
Affiliation(s)
- Xiang Wang
- The Second School of Clinical Medicine, Zhejiang Traditional Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qiaofeng Guo
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kai Huang
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Gouping Ma
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lifeng Zhai
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bingyuan Lin
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haiyong Ren
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ze Yang
- The Second School of Clinical Medicine, Zhejiang Traditional Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Liu Y, Guo Y, Zhan H, Liu X, Li X, Cui J, Li H, Feng S, Cheng L, Li X, Guo S, Li Y. Immune and inflammation features of severe and critical Omicron infected patients during Omicron wave in China. BMC Infect Dis 2024; 24:809. [PMID: 39123106 PMCID: PMC11316362 DOI: 10.1186/s12879-024-09652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE The current study aimed to investigate the baseline immune and inflammatory features and in-hospital outcomes of patients infected with the Omicron variant (PIWO) who presented with different disease severities during the first wave of mass Omicron infections in the Chinese population has occurred. METHOD A cross-sectional study was conducted on 140 hospitalized PIWO between December 11, 2022, and February 16, 2023. The clinical features, antibodies against SARS-CoV-2, immune cells, and inflammatory cytokines among mildly, severely, and critically ill PIWO at baseline and during follow-up period were compared. RESULT Patients with severe (n = 49) and critical (n = 35) disease were primarily male, needed invasive mechanical ventilation treatment, and exhibited higher mortality than those with mild disease (n = 56). During acute infection, SARS-CoV-2-specific antibody levels fluctuated with disease severity, serum antibodies increased and the incidence of severe cases decreased in critically ill PIWO over time. Antibody titers in severe or critical PIWO with no antibody responses at baseline did not increase significantly over time. Meanwhile, CD4+T cell, CD8+T cell, and natural killer cell counts were negatively correlated with disease severity, whereas interleukin (IL)-6 and IL-10 levels were positively correlated. In addition, combined diabetes, immunosuppressive therapy before infection, serum amyloid A, IL-10 and neutrophil counts were independently associated with severe and critical illness in PIWO. Among the 11 nonsurvivors, 8, 2, 1 died of respiratory failure, sudden cardiac death, and renal failure, respectively. Compared with survivors, nonsurvivors exhibited lower seropositivity of SARS-CoV-2-specific antibody, reduced CD3+T and CD4+T cell counts, and higher IL-2R, IL-6, IL-8, and IL-10 levels. Of note, lactate dehydrogenase was a significant risk factor of death in severe or critically ill PIWO. CONCLUSION This present study assessed the dynamic changes of SARS-CoV-2-specific antibodies, immune cells and inflammatory indexes between severely and critically ill PIWO. Critical and dead PIWO featured compromised humoral immune response and excessive inflammation, which broadened the understanding of the pathophysiology of Omicron infection and provides warning markers for severe disease and poor prognosis.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100010, China
| | - Yaping Guo
- Department of Clinical Laboratory, Baoding First Central HospitalBaoding NO.1 Central Hospital, No. 320, Great Wall North Street, Baoding, Hebei, 071000, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100010, China
| | - Xin Liu
- Department of Clinical Laboratory, Baoding First Central HospitalBaoding NO.1 Central Hospital, No. 320, Great Wall North Street, Baoding, Hebei, 071000, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100010, China
- Department of Clinical Laboratory, Peking University People's Hospital, NO.11, Xizhimen South Street, Beijing, 100035, China
| | - Jingjing Cui
- Department of Clinical Laboratory, Baoding First Central HospitalBaoding NO.1 Central Hospital, No. 320, Great Wall North Street, Baoding, Hebei, 071000, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100010, China
| | - Sha Feng
- Department of Clinical Laboratory, Baoding First Central HospitalBaoding NO.1 Central Hospital, No. 320, Great Wall North Street, Baoding, Hebei, 071000, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100010, China
| | - Xiaoyan Li
- Department of Clinical Laboratory, Baoding First Central HospitalBaoding NO.1 Central Hospital, No. 320, Great Wall North Street, Baoding, Hebei, 071000, China
| | - Shuqin Guo
- Department of Endocrinology, Baoding NO.1 Central Hospital, No. 320, Great Wall North Street, Baoding, Hebei, 071000, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100010, China.
| |
Collapse
|
20
|
Xu C, Sha Y, Pan J, Pan T, Zhou X, Wang H, Xu Z, Chen B. COVID-19 related acute necrotizing encephalopathy and acute myocarditis in an adult female: a novel case report of brain injury and myocarditis. BMC Neurol 2024; 24:274. [PMID: 39107681 PMCID: PMC11302840 DOI: 10.1186/s12883-024-03786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Acute necrotizing encephalopathy (ANE) and myocarditis are both acute, life-threatening conditions that can be triggered by COVID-19. We report a case of sequential ANE and myocarditis following a COVID-19 infection. CASE PRESENTATION A 27-year-old female patient was brought to the emergency department due to episodes of fever for two days and a 9-h altered state of consciousness. Her condition rapidly developed into stuporous and hemodynamic instability within serval hours. Veno-arterial extracorporeal membrane oxygenation (ECMO) was rapidly initiated with other supportive treatments. The following-up MRI showed bilateral, symmetrically distributed lesions in the brainstem, bilateral hippocampal regions, and bilateral basal ganglia, consistent with ANE. The diagnosis was confirmed through the detection of SARS-CoV-2 and the exclusion of other potential causes. After weeks of medical treatment, her condition stabilized, and she was transferred for further rehabilitation treatment. CONCLUSIONS This case study indicates that COVID-19 may simultaneously and rapidly affect the central nervous system and cardiovascular system, leading to poor outcomes. Accurate diagnosis and timely invasive bridging therapy, when necessary, can be lifesaving. Further exploration of potential mechanisms underlying COVID-19 central nervous system (CNS) and cardiovascular system manifestations will be important.
Collapse
Affiliation(s)
- Chang Xu
- Department of Intensive Care Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Yuyi Sha
- Department of Intensive Care Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Jianneng Pan
- Department of Intensive Care Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Tao Pan
- Department of Intensive Care Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Xiaoyang Zhou
- Department of Intensive Care Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Hua Wang
- Department of Intensive Care Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Zhaojun Xu
- Department of Intensive Care Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Bixin Chen
- Department of Intensive Care Medicine, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
21
|
Lee S, Lim KR, Chun KJ, Kim BS. Long-term impacts of COVID-19 in patients with prior heart failure in Korea: A nationwide cohort study using the common data model. Medicine (Baltimore) 2024; 103:e39236. [PMID: 39093748 PMCID: PMC11296475 DOI: 10.1097/md.0000000000039236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Limited data are available on the long-term prognosis and monitoring period after coronavirus disease 2019 (COVID-19) infection in the population with prior heart failure (HF). We aimed to exam the association of COVID-19 with clinical prognosis in populations with prior HF and evaluate prognosis within 30 days and 30 days to 1 year after infection. Based on insurance benefit claims sent to the Health Insurance Review and Assessment Service of Korea from January 2018 to April 2022, 9,822,577 patients were selected and converted to the Observational Medical Outcomes Partnership-common data model by the Big Data Department of Health Insurance Review and Assessment Service of Korea. In the dataset, 1,565,274 patients exhibited diagnosis of HF based on the International Statistical Classification of Diseases and Related Health Problems 10 codes. They were divided into 2 groups according to COVID-19 infection, and propensity-score-matching analysis was performed. The clinical outcome was all-cause mortality. Among the 1,565,274 patients with an HF diagnosis, 1,152,975 patients were classified into the HF with the COVID-19 group and 412,299 patients in the HF without COVID-19 group. We created 200,780 matched pairs by propensity-score-matching analysis. Within 30 days of COVID-19, the HF with COVID-19 group had a higher risk of all-cause death compared with the HF without COVID-19 group (hazard ratio [HR]: 2.19, 95% confidence interval [CI]: 2.04-2.36, P < .01). Thirty days to 1 year after COVID-19 infection, the HF with COVID-19 group exhibited a higher risk of all-cause death (HR: 2.04, 95% CI: 1.83-2.27, P < .01). In populations with prior HF, COVID-19 is associated with a higher risk of all-cause mortality within 30 days and this risk remains augmented up to 1 year after the acute phase of COVID-19. Our findings suggest that greater attention may be crucial in populations with prior HF for a prolonged period after COVID-19 infection.
Collapse
Affiliation(s)
- Seunghwa Lee
- Division of Cardiology, Department of Medicine, Wiltse Memorial Hospital, Suwon, Gyeonggi-do, South Korea
| | - Kyoung Ree Lim
- Division of Infectious Diseases, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Kwang Jin Chun
- Division of Cardiology, Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Bum Sung Kim
- Division of Cardiology, Department of Medicine, Konkuk University Medical Center, Seoul, South Korea
| |
Collapse
|
22
|
Li Y, Yang D, Kang J, Cao Y, Cui L, Liu F. COVID-19 and the risk of acute cardiovascular diseases: a two-sample Mendelian randomization study. BMC Cardiovasc Disord 2024; 24:389. [PMID: 39068390 PMCID: PMC11282648 DOI: 10.1186/s12872-024-04066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Evidence suggests that coronavirus disease 2019 (COVID-19) is associated with the risk of cardiovascular diseases (CVDs). However, the results are inconsistent, and the causality remains to be established. We aimed to investigate the potential causal relationship between COVID-19 and CVDs by using two-sample Mendelian randomization (MR) analysis. METHODS Summary-level data for COVID-19 and CVDs including myocarditis, heart failure (HF), acute myocardial infarction (AMI), arrhythmia and venous thromboembolism (VTE) were obtained from the IEU OpenGWAS project, a public genome-wide association study (GWAS). Single nucleotide polymorphisms (SNPs) were used as instrumental variables. Five complementary MR methods were performed, including inverse variance weighted (IVW), MR-Egger, weighted median, weighted mode and simple mode methods. IVW method was considered as the primary approach. Besides, sensitivity analyses, including Cochran's Q test, MR-Egger intercept test, and leave-one-out analysis, were performed to evaluate the robustness of the results. RESULTS According to the IVW results, our MR study indicated that genetically predicted COVID-19 was not causally connected with the risk of CVDs [myocarditis: odds ratio (OR) = 1.407, 95% confidence interval (CI) = 0.761-2.602, p-value = 0.277; HF: OR = 1.180, 95% CI = 0.980-1.420, p-value = 0.080; AMI: OR = 1.002, 95% CI = 0.998-1.005, p-value = 0.241; arrhythmia: OR = 0.865, 95% CI = 0.717-1.044, p-value = 0.132; VTE: OR = 1.013, 95% CI = 0.997-1.028, p-value = 0.115]. The supplementary MR methods showed similar results. Sensitivity analyses suggested that the causal estimates were robust. CONCLUSION This two-sample MR analysis did not provide sufficient evidence for a causal relationship between COVID-19 and the risk of acute CVDs, which may provide new insights into the prevention of acute CVDs in COVID-19 patients.
Collapse
Affiliation(s)
- Yuling Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | | | - Jian Kang
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital, China Medical University, 518 North Chuangxin Road, Baita Street, Hunnan District, Shenyang, Liaoning, 110102, China.
| |
Collapse
|
23
|
Dankowski R, Sacharczuk W, Fedorowicz J, Małek-Elikowska M, Ożegowski S, Baszko A. Myocardial Work Indices in Patients Recently Recovered from Mild-to-Moderate COVID-19. J Clin Med 2024; 13:4090. [PMID: 39064130 PMCID: PMC11278412 DOI: 10.3390/jcm13144090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Persistent cardiovascular issues are common in COVID-19 survivors, making the detection of subtle myocardial injuries critical. This study evaluates myocardial work (MW) indices in patients recently recovering from mild-to-moderate COVID-19. Methods: A total of 105 recently recovered COVID-19 patients (who had a mean age of 52 years) underwent comprehensive laboratory testing and advanced echocardiographic assessments. The median time since their COVID-19 infections was 56 days (IQR: 42-71). The cohort was stratified based on high-sensitive troponin I (hs-TnI) levels: undetectable versus detectable. The echocardiographic analysis utilized pressure-strain loops to evaluate MW indices. Results: Detectable hs-TnI levels were observed in 42% of patients. The median values of MW indices for the entire group were slightly below normal values: global work index (GWI)-1834 mmHg% (IQR 1168-2054 mmHg%), global constructive work (GCW)-2130 mmHg% (IQR 2010-2398 mmHg%), global wasted work (GWW)-119 mmHg% (IQR 78-175 mmHg%), and global work efficiency (GWE)-94% (IQR 92-96%). Patients with detectable hs-TnI had higher GWW (168 vs. 97 mmHg%, p < 0.005) and lower GWE (93% vs. 95%, p < 0.005). In multiple regression analysis, strain dispersion (PSD) was the sole predictor for GWW (β = 0.67, p < 0.001), while for GWE, PSD (β = -0.67, p < 0.001) and LVEF (β = 0.16, p = 0.05) were significant predictors. Conclusions: Among patients recently recovering from mild-to-moderate COVID-19, elevated hs-TnI levels are linked with a reduction in GWE and an increase in GWW. PSD is an important predictor of myocardial inefficiency and wasted work. In this group, disruptions in the timing and coordination of cardiac muscle contractions may play a key pathophysiological role in reducing the efficiency of the heart's performance.
Collapse
Affiliation(s)
- Rafał Dankowski
- 2nd Department of Cardiology, Poznan University of Medical Sciences, 60-485 Poznan, Poland; (W.S.); (J.F.); (A.B.)
| | | | | | | | | | | |
Collapse
|
24
|
Rizvi ZA, Sadhu S, Dandotiya J, Sharma P, Binayke A, Singh V, Das V, Khatri R, Kumar R, Samal S, Kalia M, Awasthi A. SARS-CoV-2 infection induces thymic atrophy mediated by IFN-γ in hACE2 transgenic mice. Eur J Immunol 2024; 54:e2350624. [PMID: 38655818 DOI: 10.1002/eji.202350624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Pathogenic infections cause thymic atrophy, perturb thymic T-cell development, and alter immunological response. Previous studies reported dysregulated T-cell function and lymphopenia in coronavirus disease-19 (COVID-19). However, immunopathological changes in the thymus associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have not been elucidated. Here, we report that SARS-CoV-2 infects thymocytes, and induces CD4+CD8+ (double positive; DP) T-cell apoptosis leading to thymic atrophy and loss of peripheral TCR repertoire in K18-hACE2 transgenic mice. Infected thymus led to increased CD44+CD25- T-cells, indicating an early arrest in the T-cell maturation pathway. Thymic atrophy was notably higher in male hACE2-Tg mice than in females and involved an upregulated de-novo synthesis pathway of thymic glucocorticoid. Further, IFN-γ was crucial for thymic atrophy, as anti-IFN-γ -antibody neutralization blunted thymic involution. Therapeutic use of Remdesivir also rescued thymic atrophy. While the Omicron variant and its sub-lineage BA.5 variant caused marginal thymic atrophy, the delta variant of SARS-CoV-2 exhibited severe thymic atrophy characterized by severely depleted DP T-cells. Recently characterized broadly SARS-CoV-2 neutralizing monoclonal antibody P4A2 was able to rescue thymic atrophy and restore the thymic maturation pathway of T-cells. Together, we report SARS-CoV-2-associated thymic atrophy resulting from impaired T-cell maturation pathway which may contribute to dyregulated T cell response during COVID-19.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Jyotsna Dandotiya
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Puja Sharma
- Regional Centre Biotechnology, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Akshay Binayke
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Virendra Singh
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Vinayaka Das
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Ritika Khatri
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre Biotechnology, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
25
|
Gómez-Mesa JE, Escalante M, Muñoz-Ordoñez JA, Azcárate-Rodriguez V, Peláez-Martínez JD, Arteaga-Tobar AA, León-Giraldo H, Valencia-Orozco A, Perna ER, Romero A, Mendoza I, Wyss F, Barisani JL, Speranza M, Alarco W, Herrera C, Lugo-Peña J, Cárdenas-Aldaz LP, Rossel V, Sierra D. Association of Abnormal Cardiac Biomarkers and Cardiovascular Complications, with Mortality in Patients with SARS-CoV-2 Infection in Latin America. J Cardiovasc Dev Dis 2024; 11:205. [PMID: 39057625 PMCID: PMC11277850 DOI: 10.3390/jcdd11070205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has highlighted a correlation between cardiac complications and elevated cardiac biomarkers, which are linked to poorer clinical outcomes. OBJECTIVE This study aims to determine the clinical impact of cardiac biomarkers in COVID-19 patients in Latin America. SUBJECTS AND METHODS The CARDIO COVID 19-20 Registry is a multicenter observational study across 44 hospitals in Latin America and the Caribbean. It included hospitalized COVID-19 patients (n = 476) who underwent troponin, natriuretic peptide, and D-dimer tests. Patients were grouped based on the number of positive biomarkers. RESULTS Among the 476 patients tested, 139 had one positive biomarker (Group C), 190 had two (Group B), 118 had three (Group A), and 29 had none (Group D). A directly proportional relationship was observed between the number of positive biomarkers and the incidence of decompensated heart failure. Similarly, there was a proportional relationship between the number of positive biomarkers and increased mortality. In Group B, patients with elevated troponin and natriuretic peptide and those with elevated troponin and D-dimer had 1.4 and 1.5 times higher mortality, respectively, than those with elevated natriuretic peptide and D-dimer. CONCLUSIONS In Latin American COVID-19 patients, a higher number of positive cardiac biomarkers is associated with increased cardiovascular complications and mortality. These findings suggest that cardiac biomarkers should be utilized to guide acute-phase treatment strategies.
Collapse
Affiliation(s)
- Juan Esteban Gómez-Mesa
- Departamento de Cardiología, Fundación Valle del Lili, Cali 760032, Colombia;
- Facultad de Ciencias de Salud, Universidad Icesi, Cali 760031, Colombia; (M.E.); (J.A.M.-O.); (V.A.-R.); (J.D.P.-M.)
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali 760032, Colombia; (H.L.-G.); (A.V.-O.)
| | - Manuela Escalante
- Facultad de Ciencias de Salud, Universidad Icesi, Cali 760031, Colombia; (M.E.); (J.A.M.-O.); (V.A.-R.); (J.D.P.-M.)
| | - Juan Andrés Muñoz-Ordoñez
- Facultad de Ciencias de Salud, Universidad Icesi, Cali 760031, Colombia; (M.E.); (J.A.M.-O.); (V.A.-R.); (J.D.P.-M.)
| | - Valeria Azcárate-Rodriguez
- Facultad de Ciencias de Salud, Universidad Icesi, Cali 760031, Colombia; (M.E.); (J.A.M.-O.); (V.A.-R.); (J.D.P.-M.)
| | - Juan David Peláez-Martínez
- Facultad de Ciencias de Salud, Universidad Icesi, Cali 760031, Colombia; (M.E.); (J.A.M.-O.); (V.A.-R.); (J.D.P.-M.)
| | - Andrea Alejandra Arteaga-Tobar
- Departamento de Cardiología, Fundación Valle del Lili, Cali 760032, Colombia;
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali 760032, Colombia; (H.L.-G.); (A.V.-O.)
| | - Hoover León-Giraldo
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali 760032, Colombia; (H.L.-G.); (A.V.-O.)
| | - Andrea Valencia-Orozco
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali 760032, Colombia; (H.L.-G.); (A.V.-O.)
| | - Eduardo Roque Perna
- Departamento de Cardiología, Instituto de Cardiología JF Cabral, Corrientes 3400, Argentina;
| | - Alexander Romero
- Departamento de Cardiología, Hospital Santo Tomas, Panama City 07093, Panama;
| | - Iván Mendoza
- Departamento de Cardiología, Universidad Central de Venezuela, Caracas 1040A, Venezuela;
| | - Fernando Wyss
- Departamento de Cardiología, Servicios y Tecnología Cardiovascular de Guatemala S.A–Cardiosolutions, Guatemala City 01010, Guatemala;
| | - José Luis Barisani
- Departamento de Cardiología, Clínica Adventista Belgrano, Buenos Aires 1710, Argentina;
| | - Mario Speranza
- Departamento de Cardiología, Hospital Clínica Bíblica, San Jose 10104, Costa Rica;
| | - Walter Alarco
- Departamento de Cardiología, Instituto Nacional Cardiovascular INCOR ESSALUD, Lima 15072, Peru;
| | - Cesar Herrera
- Departamento de Cardiología, Centro de Diagnóstico, Medicina Avanzada y Telemedicina (CEDIMAT), Santo Domingo 10216, Dominican Republic;
| | - Julián Lugo-Peña
- Departamento de Cardiología, Clínica del Occidente, Bogota 110110, Colombia;
| | | | - Victor Rossel
- Departamento de Cardiología, Hospital del Salvador, San Salvador 1101, El Salvador;
| | - Daniel Sierra
- Departamento de Cardiología, Instituto Nacional de Cardiología–Ignacio Chávez, Mexico City 14080, Mexico;
| |
Collapse
|
26
|
Müller L, Di Benedetto S. Inflammaging, immunosenescence, and cardiovascular aging: insights into long COVID implications. Front Cardiovasc Med 2024; 11:1384996. [PMID: 38988667 PMCID: PMC11233824 DOI: 10.3389/fcvm.2024.1384996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Aging leads to physiological changes, including inflammaging-a chronic low-grade inflammatory state with significant implications for various physiological systems, particularly for cardiovascular health. Concurrently, immunosenescence-the age-related decline in immune function, exacerbates vulnerabilities to cardiovascular pathologies in older individuals. Examining the dynamic connections between immunosenescence, inflammation, and cardiovascular aging, this mini-review aims to disentangle some of these interactions for a better understanding of their complex interplay. In the context of cardiovascular aging, the chronic inflammatory state associated with inflammaging compromises vascular integrity and function, contributing to atherosclerosis, endothelial dysfunction, arterial stiffening, and hypertension. The aging immune system's decline amplifies oxidative stress, fostering an environment conducive to atherosclerotic plaque formation. Noteworthy inflammatory markers, such as the high-sensitivity C-reactive protein, interleukin-6, interleukin-1β, interleukin-18, and tumor necrosis factor-alpha emerge as key players in cardiovascular aging, triggering inflammatory signaling pathways and intensifying inflammaging and immunosenescence. In this review we aim to explore the molecular and cellular mechanisms underlying inflammaging and immunosenescence, shedding light on their nuanced contributions to cardiovascular diseases. Furthermore, we explore the reciprocal relationship between immunosenescence and inflammaging, revealing a self-reinforcing cycle that intensifies cardiovascular risks. This understanding opens avenues for potential therapeutic targets to break this cycle and mitigate cardiovascular dysfunction in aging individuals. Furthermore, we address the implications of Long COVID, introducing an additional layer of complexity to the relationship between aging, immunosenescence, inflammaging, and cardiovascular health. Our review aims to stimulate continued exploration and advance our understanding within the realm of aging and cardiovascular health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | |
Collapse
|
27
|
Shao HH, Yin RX. Pathogenic mechanisms of cardiovascular damage in COVID-19. Mol Med 2024; 30:92. [PMID: 38898389 PMCID: PMC11186295 DOI: 10.1186/s10020-024-00855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND COVID-19 is a new infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Since the outbreak in December 2019, it has caused an unprecedented world pandemic, leading to a global human health crisis. Although SARS CoV-2 mainly affects the lungs, causing interstitial pneumonia and severe acute respiratory distress syndrome, a number of patients often have extensive clinical manifestations, such as gastrointestinal symptoms, cardiovascular damage and renal dysfunction. PURPOSE This review article discusses the pathogenic mechanisms of cardiovascular damage in COVID-19 patients and provides some useful suggestions for future clinical diagnosis, treatment and prevention. METHODS An English-language literature search was conducted in PubMed and Web of Science databases up to 12th April, 2024 for the terms "COVID-19", "SARS CoV-2", "cardiovascular damage", "myocardial injury", "myocarditis", "hypertension", "arrhythmia", "heart failure" and "coronary heart disease", especially update articles in 2023 and 2024. Salient medical literatures regarding the cardiovascular damage of COVID-19 were selected, extracted and synthesized. RESULTS The most common cardiovascular damage was myocarditis and pericarditis, hypertension, arrhythmia, myocardial injury and heart failure, coronary heart disease, stress cardiomyopathy, ischemic stroke, blood coagulation abnormalities, and dyslipidemia. Two important pathogenic mechanisms of the cardiovascular damage may be direct viral cytotoxicity as well as indirect hyperimmune responses of the body to SARS CoV-2 infection. CONCLUSIONS Cardiovascular damage in COVID-19 patients is common and portends a worse prognosis. Although the underlying pathophysiological mechanisms of cardiovascular damage related to COVID-19 are not completely clear, two important pathogenic mechanisms of cardiovascular damage may be the direct damage of the SARSCoV-2 infection and the indirect hyperimmune responses.
Collapse
Affiliation(s)
- Hong-Hua Shao
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, No. 1 Erli, Changgang Road, Nanning, Guangxi, 530023, People's Republic of China
| | - Rui-Xing Yin
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, No. 1 Erli, Changgang Road, Nanning, Guangxi, 530023, People's Republic of China.
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
28
|
Sritharan HP, Bhatia KS, van Gaal W, Kritharides L, Chow CK, Bhindi R. Cardiovascular outcomes for people hospitalised with COVID-19 in Australia, and the effect of vaccination: an observational cohort study. Med J Aust 2024; 220:517-522. [PMID: 38741458 DOI: 10.5694/mja2.52307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/02/2023] [Indexed: 05/16/2024]
Abstract
OBJECTIVES To assess the frequency of clinical cardiovascular outcomes for people hospitalised with coronavirus disease 2019 (COVID-19), and the impact of vaccination. STUDY DESIGN Observational cohort study. SETTING, PARTICIPANTS All index admissions of adults with laboratory-confirmed COVID-19 to 21 hospitals participating in the Australian Cardiovascular COVID-19 Registry (AUS-COVID), 4 September 2020 - 11 July 2022. MAIN OUTCOME MEASURES Frequency of elevated troponin levels, new arrhythmia, new or deteriorating heart failure or cardiomyopathy, new pericarditis or myocarditis, new permanent pacemaker or implantable cardioverter-defibrillator, and pulmonary embolism. SECONDARY OUTCOMES impact of COVID-19 vaccination on likelihood of in-hospital death, intubation, troponin elevation, and clinical cardiovascular events. RESULTS The mean age of the 1714 people admitted to hospital with COVID-19 was 60.1 years (standard deviation, 20.6 years); 926 were men (54.0%), 181 patients died during their index admissions (10.6%), 299 required intensive care (17.4%). Thirty-eight patients (2.6%) developed new atrial fibrillation or flutter, 27 (2.6%) had pulmonary embolisms, new heart failure or cardiomyopathy was identified in 13 (0.9%), and pre-existing cardiomyopathy or heart failure was exacerbated in 21 of 110 patients (19%). Troponin was elevated in 369 of the 986 patients for whom it was assessed (37.4%); in-hospital mortality was higher for people with elevated troponin levels (86, 23% v 23, 3.7%; P < 0.001). The COVID-19 vaccination status of 580 patients was known (no doses, 232; at least one dose, 348). The likelihood of in-hospital death (adjusted odds ratio [aOR], 0.38; 95% confidence interval [CI], 0.18-0.79) and intubation (aOR, 0.30; 95% CI, 0.15-0.61) were lower for people who had received at least one vaccine dose, but not the likelihood of troponin elevation (aOR, 1.44; 95% CI, 0.80-2.58) or clinical cardiovascular events (aOR, 1.56; 95% CI, 0.59-4.16). CONCLUSIONS Although troponin levels were elevated in a considerable proportion of people hospitalised with COVID-19, clinical cardiovascular events were infrequent, and their likelihood was not influenced by vaccination. COVID-19 vaccination, however, was associated with reduced likelihood of in-hospital death and intubation. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry, ACTRN12620000486921 (prospective).
Collapse
Affiliation(s)
- Hari P Sritharan
- Royal North Shore Hospital, Sydney, NSW
- Sydney Medical School, University of Sydney, Sydney, NSW
| | | | - William van Gaal
- Northern Hospital Epping, Melbourne, VIC
- The University of Melbourne, Melbourne, VIC
| | - Leonard Kritharides
- Sydney Medical School, University of Sydney, Sydney, NSW
- Concord Repatriation General Hospital, Sydney, NSW
| | - Clara K Chow
- Sydney Medical School, University of Sydney, Sydney, NSW
- Westmead Applied Research Centre, Westmead Hospital, Sydney, NSW
| | - Ravinay Bhindi
- Royal North Shore Hospital, Sydney, NSW
- The University of Sydney, Sydney, NSW
| |
Collapse
|
29
|
Li X, Zou J, Lin A, Chi J, Hao H, Chen H, Liu Z. Oxidative Stress, Endothelial Dysfunction, and N-Acetylcysteine in Type 2 Diabetes Mellitus. Antioxid Redox Signal 2024; 40:968-989. [PMID: 38497734 PMCID: PMC11535463 DOI: 10.1089/ars.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Significance: Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality globally. Endothelial dysfunction is closely associated with the development and progression of CVDs. Patients with diabetes mellitus (DM) especially type 2 DM (T2DM) exhibit a significant endothelial cell (EC) dysfunction with substantially increased risk for CVDs. Recent Advances: Excessive reactive oxygen species (ROS) and oxidative stress are important contributing factors to EC dysfunction and subsequent CVDs. ROS production is significantly increased in DM and is critically involved in the development of endothelial dysfunction in diabetic patients. In this review, efforts are made to discuss the role of excessive ROS and oxidative stress in the pathogenesis of endothelial dysfunction and the mechanisms for excessive ROS production and oxidative stress in T2DM. Critical Issues: Although studies with diabetic animal models have shown that targeting ROS with traditional antioxidant vitamins C and E or other antioxidant supplements provides promising beneficial effects on endothelial function, the cardiovascular outcomes of clinical studies with these antioxidant supplements have been inconsistent in diabetic patients. Future Directions: Preclinical and limited clinical data suggest that N-acetylcysteine (NAC) treatment may improve endothelial function in diabetic patients. However, well-designed clinical studies are needed to determine if NAC supplementation would effectively preserve endothelial function and improve the clinical outcomes of diabetic patients with reduced cardiovascular morbidity and mortality. With better understanding on the mechanisms of ROS generation and ROS-mediated endothelial damages/dysfunction, it is anticipated that new selective ROS-modulating agents and effective personalized strategies will be developed for the management of endothelial dysfunction in DM.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China
| | - Junyong Zou
- Department of Respiratory Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Aiping Lin
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jingshu Chi
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Hao
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Hong Chen
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenguo Liu
- Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
30
|
Gollapudi S, Chimurkar V. Comprehensive Insights Into the Multi-faceted Manifestations of COVID-19: A Narrative Review. Cureus 2024; 16:e63493. [PMID: 39081420 PMCID: PMC11287236 DOI: 10.7759/cureus.63493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 06/29/2024] [Indexed: 08/02/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the ensuing COVID-19 pandemic had far-reaching and multifaceted effects on global health. This paper provides a comprehensive overview of the physical, extrapulmonary, and psychological manifestations associated with COVID-19. It highlights the wide-ranging impact of the virus on various organ systems, including the respiratory, cardiovascular, renal, gastrointestinal, ocular, dermatologic, and nervous systems. Additionally, it explores the complex connections between COVID-19 infection and neuropsychiatric symptoms, shedding light on the potential underlying mechanisms. The paper also delves into the phenomenon of "long COVID," a condition characterized by persistent symptoms extending well beyond the disease's acute phase. It discusses the diverse and often debilitating symptoms that individuals with long COVID may experience, encompassing physical, cognitive, and psychological aspects. The complexity and variability of long COVID underscore the challenges it poses to healthcare professionals and the importance of ongoing research to understand its underlying mechanisms. Furthermore, the paper touches on the current state of knowledge regarding the aetiology of long COVID and the various approaches to symptom management and treatment. While a definitive cure remains elusive, efforts are underway to alleviate the burden of long COVID through pharmacological interventions, physical therapy, cognitive-behavioral therapy, and support networks. This paper comprehensively explores COVID-19's far-reaching effects, emphasizing the need for a holistic and interdisciplinary approach to understanding and managing the diverse manifestations of this global health challenge. Ongoing research and collaborative efforts are essential in addressing the complex and evolving nature of COVID-19 and its aftermath.
Collapse
Affiliation(s)
- Sairama Gollapudi
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vilas Chimurkar
- Department of Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
31
|
Zhang Y, Chen S, Tian Y, Fu X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front Cell Infect Microbiol 2024; 14:1407261. [PMID: 38846354 PMCID: PMC11155306 DOI: 10.3389/fcimb.2024.1407261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
SARS-CoV-2 is the causative virus of the devastating COVID-19 pandemic that results in an unparalleled global health and economic crisis. Despite unprecedented scientific efforts and therapeutic interventions, the fight against COVID-19 continues as the rapid emergence of different SARS-CoV-2 variants of concern and the increasing challenge of long COVID-19, raising a vast demand to understand the pathomechanisms of COVID-19 and its long-term sequelae and develop therapeutic strategies beyond the virus per se. Notably, in addition to the virus itself, the replication cycle of SARS-CoV-2 and clinical severity of COVID-19 is also governed by host factors. In this review, we therefore comprehensively overview the replication cycle and pathogenesis of SARS-CoV-2 from the perspective of host factors and host-virus interactions. We sequentially outline the pathological implications of molecular interactions between host factors and SARS-CoV-2 in multi-organ and multi-system long COVID-19, and summarize current therapeutic strategies and agents targeting host factors for treating these diseases. This knowledge would be key for the identification of new pathophysiological aspects and mechanisms, and the development of actionable therapeutic targets and strategies for tackling COVID-19 and its sequelae.
Collapse
Affiliation(s)
| | | | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| |
Collapse
|
32
|
Li J, Huang Q, Liang Y, Jiang J, Yang Y, Feng J, Tan X, Li T. The Potential Mechanisms of Arrhythmia in Coronavirus disease-2019. Int J Med Sci 2024; 21:1366-1377. [PMID: 38818469 PMCID: PMC11134579 DOI: 10.7150/ijms.94578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) leads to coronavirus disease-2019 (COVID-19) which can cause severe cardiovascular complications including myocardial injury, arrhythmias, acute coronary syndrome and others. Among these complications, arrhythmias are considered serious and life-threatening. Although arrhythmias have been associated with factors such as direct virus invasion leading to myocardial injury, myocarditis, immune response disorder, cytokine storms, myocardial ischemia/hypoxia, electrolyte abnormalities, intravascular volume imbalances, drug interactions, side effects of COVID-19 vaccines and autonomic nervous system dysfunction, the exact mechanisms of arrhythmic complications in patients with COVID-19 are complex and not well understood. In the present review, the literature was extensively searched to investigate the potential mechanisms of arrhythmias in patients with COVID-19. The aim of the current review is to provide clinicians with a comprehensive foundation for the prevention and treatment of arrhythmias associated with long COVID-19.
Collapse
Affiliation(s)
- Jianhong Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiuyuan Huang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Yifan Liang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
33
|
Yang Q, Chang A, Tong X, Jackson SL, Merritt RK. Long-term cardiovascular disease outcomes in non-hospitalized medicare beneficiaries diagnosed with COVID-19: Population-based matched cohort study. PLoS One 2024; 19:e0302593. [PMID: 38743728 PMCID: PMC11093379 DOI: 10.1371/journal.pone.0302593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND SARS-CoV2, the virus that causes coronavirus disease 2019 (COVID-19), can affect multiple human organs structurally and functionally, including the cardiovascular system and brain. Many studies focused on the acute effects of COVID-19 on risk of cardiovascular disease (CVD) and stroke especially among hospitalized patients with limited follow-up time. This study examined long-term mortality, hospitalization, CVD and stroke outcomes after non-hospitalized COVID-19 among Medicare fee-for-service (FFS) beneficiaries in the United States. METHODS This retrospective matched cohort study included 944,371 FFS beneficiaries aged ≥66 years diagnosed with non-hospitalized COVID-19 from April 1, 2020, to April 30, 2021, and followed-up to May 31, 2022, and 944,371 propensity score matched FFS beneficiaries without COVID-19. Primary outcomes were all-cause mortality, hospitalization, and incidence of 15 CVD and stroke. Because most outcomes violated the proportional hazards assumption, we used restricted cubic splines to model non-proportional hazards in Cox models and presented time-varying hazard ratios (HRs) and Bonferroni corrected 95% confidence intervals (CI). RESULTS The mean age was 75.3 years; 58.0% women and 82.6% non-Hispanic White. The median follow-up was 18.5 months (interquartile range 16.5 to 20.5). COVID-19 showed initial stronger effects on all-cause mortality, hospitalization and 12 incident CVD outcomes with adjusted HRs in 0-3 months ranging from 1.05 (95% CI 1.01-1.09) for mortality to 2.55 (2.26-2.87) for pulmonary embolism. The effects of COVID-19 on outcomes reduced significantly after 3-month follow-up. Risk of mortality, acute myocardial infarction, cardiomyopathy, deep vein thrombosis, and pulmonary embolism returned to baseline after 6-month follow-up. Patterns of initial stronger effects of COVID-19 were largely consistent across age groups, sex, and race/ethnicity. CONCLUSIONS Our results showed a consistent time-varying effects of COVID-19 on mortality, hospitalization, and incident CVD among non-hospitalized COVID-19 survivors.
Collapse
Affiliation(s)
- Quanhe Yang
- Division for Heart Disease and Stroke Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Anping Chang
- Division for Heart Disease and Stroke Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Xin Tong
- Division for Heart Disease and Stroke Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Sandra L. Jackson
- Division for Heart Disease and Stroke Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Robert K. Merritt
- Division for Heart Disease and Stroke Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| |
Collapse
|
34
|
An C, Li Z, Chen Y, Huang S, Yang F, Hu Y, Xu T, Zhang C, Ge S. The cGAS-STING pathway in cardiovascular diseases: from basic research to clinical perspectives. Cell Biosci 2024; 14:58. [PMID: 38720328 PMCID: PMC11080250 DOI: 10.1186/s13578-024-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Zhen Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Shaojun Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
35
|
Su T, Zhong B, Tang C, Qiao S, Feng Y, Peng H, Gu X. Correlation between epicardial adipose tissue and myocardial injury in patients with COVID-19. Front Physiol 2024; 15:1368542. [PMID: 38706946 PMCID: PMC11066173 DOI: 10.3389/fphys.2024.1368542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Many people infected with COVID-19 develop myocardial injury. Epicardial adipose tissue (EAT) is among the various risk factors contributing to coronary artery disease. However, its correlation with myocardial injury in patients diagnosed with COVID-19 remains uncertain. Methods: We examined myocardial biomarkers in population affected by COVID-19 during the period from December 2022 to January 2023. The patients without myocardial injury were referred to as group A (n = 152) and those with myocardial injury were referred to as group B (n = 212). Results: 1) The A group and the B group exhibitedstatistically significant differences in terms of age, TC, CRP, Cr, BUN, LDL-C, IL-6, BNP, LVEF and EAT (p < 0.05). 2) EAT volumehad a close relationship with IL-6, LDL-C, cTnI, and CRP (p < 0.05); the corresponding correlation coefficient values were 0.24, 0.21, 0.24, and 0.16. In contrast to those with lower EAT volume, more subjects with a higher volume of EAT had myocardial injury (p < 0.05). Regression analysis showed that EAT, LDL-C, Age and Cr were established as independent risk variables for myocardial injury in subjects affected by COVID-19. 3) In COVID-19 patients, the likelihood of myocardial injury rised notably as EAT levels increase (p < 0.001). Addition of EAT to the basic risk model for myocardial injury resulted in improved reclassification. (Net reclassification index: 58.17%, 95% CI: 38.35%, 77.99%, p < 0.001). Conclusion: Patients suffering from COVID-19 with higher volume EAT was prone to follow myocardial injury and EAT was an independent predictor of heart damage in these individuals.
Collapse
Affiliation(s)
- Tianhong Su
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bincheng Zhong
- Department of Emergency, The Tongren Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Chao Tang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shunsong Qiao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaosong Gu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
36
|
Ukah UV, Platt RW, Nordeng HME. Impact of COVID-19 Pandemic on Dispensing of Cardiovascular Drugs in Norway: An Interrupted Time Series Study. Am J Prev Med 2024; 66:672-680. [PMID: 37972795 DOI: 10.1016/j.amepre.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION The COVID-19 pandemic resulted in changes in prescription patterns and fillings for certain medications, but little is known about its impact on the dispensing of cardiovascular drugs. METHODS Trends in dispensing of cardiovascular drugs before and during the pandemic were examined using a population-based cohort in Norway. Using interrupted time series analyses and considering March 1, 2020 as the interruption point, the impact of the pandemic on defined daily dose dispensing of prescribed cardiovascular drugs was estimated in a population of adults with and without pre-existing cardiovascular disease from January 2018 to December 2021. All data were analyzed in 2023. RESULTS In a total of 4,053,957 adults, 690,910 (17.0%) had pre-existing cardiovascular disease. Prior to the pandemic, there was a significant monthly increase in any cardiovascular drug dispensing among those with pre-existing cardiovascular disease (0.30 defined daily dose per month per adult), including prescription of diuretics, calcium channel blockers, and lipid-modifying agents. After controlling for preinterruption trends, there was a slight decrease in level change immediately after the start of the pandemic (2.5 defined daily dose per month per adult) but an increase in the postinterruption trend (0.06 defined daily dose per month per adult) for dispensing of cardiovascular prescriptions, although these changes were not significant. CONCLUSIONS Although the COVID-19 pandemic did not appear to result in significant changes in patterns of cardiovascular drug dispensing in Norway, continued access to cardiovascular drugs remains important to prevent further related morbidity.
Collapse
Affiliation(s)
- Ugochinyere Vivian Ukah
- Pregnancy and Child Health Research Center, HealthPartners Institute, Minneapolis, Minnesota; Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, Quebec, Canada.
| | - Robert William Platt
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, Quebec, Canada
| | - Hedvig Marie Egeland Nordeng
- PharmacoEpidemiology and Drug Safety Research Group, PharmaTox Strategic Research Initiative, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
37
|
Rischard F, Altman N, Szmuszkovicz J, Sciurba F, Berman-Rosenzweig E, Lee S, Krishnan S, Truong N, Wood J, Finn AV. Long-Term Effects of COVID-19 on the Cardiopulmonary System in Adults and Children: Current Status and Questions to be Resolved by the National Institutes of Health Researching COVID to Enhance Recovery Initiative. Chest 2024; 165:978-989. [PMID: 38185377 PMCID: PMC11026169 DOI: 10.1016/j.chest.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
TOPIC IMPORTANCE Long COVID may occur in at least 10% of patients recovering from SARS-CoV-2 infection and often is associated with debilitating symptoms. Among the organ systems that might be involved in its pathogenesis, the respiratory and cardiovascular systems may be central to common symptoms seen in survivors of COVID-19, including fatigue, dyspnea, chest pain, cough, and exercise intolerance. Understand the exact symptomatology, causes, and effects of long COVID on the heart and lungs may help us to discover new therapies. To that end, the National Institutes of Health is sponsoring a national study population of diverse volunteers to support large-scale studies on the long-term effects of COVID-19. REVIEW FINDINGS The National Institutes of Health Researching COVID to Enhance Recovery (RECOVER) initiative currently is recruiting participants in the United States to answer critical questions about long COVID. The study comprises adult and pediatric cohorts as well as an electronic health record cohort. Based on symptoms, individuals undergo prespecified medical testing to understand whether abnormalities can be detected and are followed up longitudinally. Herein, we outline current understanding of the clinical symptoms and pathophysiologic features of long COVID with respect to the cardiopulmonary system in adults and children and then determine how the clinical, electronic health record, and autopsy cohorts of the RECOVER initiative will attempt to answer the most pressing questions surrounding the long-term effects of COVID-19. SUMMARY Data generated from the RECOVER initiative will provide guidance about missing gaps in our knowledge about long COVID and how they might be filled by data gathered through the RECOVER initiative.
Collapse
Affiliation(s)
- Franz Rischard
- Department of Medicine, University of Arizona, Tucson, AZ
| | - Natasha Altman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jacqueline Szmuszkovicz
- Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, CA; Division of Cardiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Simon Lee
- Heart Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Sankaran Krishnan
- Boston Children's Health Physicians, New York Medical College, Valhalla, NY
| | - Ngan Truong
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT
| | - John Wood
- Department of Pediatrics and Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Aloke V Finn
- CVPath Institute, Gaithersburg, University of Maryland School of Medicine, Baltimore, MD; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
38
|
Gu J, Han ZH, Wang CQ, Zhang JF. The Impacts of Nirmatrelvir-Ritonavir on Myocardial Injury and Long-Term Cardiovascular Outcomes in Hospitalized Patients with COVID-19 amid the Omicron Wave of the Pandemic. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07570-4. [PMID: 38466547 DOI: 10.1007/s10557-024-07570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Even though nirmatrelvir-ritonavir can improve the short-term morbidity and mortality in COVID-19 patients, the effects of this treatment on long-term major adverse cardiovascular events (MACEs), especially myocardial injury, remains undetermined. METHODS This prospective cohort study identified hospitalized adult patients with COVID-19 between April 19, 2022, and June 9, 2022, amid the omicron wave of the pandemic. Matched nirmatrelvir-ritonavir-treated and non-treated cohorts were formed using the propensity score matching method. The primary outcome of this study was the incidence of MACEs (cardiovascular death, myocardial infarction, stroke, new-onset heart failure or heart failure hospitalization or ventricular arrhythmia) from 30 days to 16 months after the diagnosis of COVID-19. RESULTS Two 949-patient cohorts with balanced baseline characteristics were formed by propensity score matching. Patients with nirmatrelvir-ritonavir, compared to those untreated, had a lower level of troponin I peak as well as the incidence of troponin I elevation. During the follow-up period, 59 patients in the nirmatrelvir-ritonavir group and 86 patients in the control group developed MACEs (P = 0.020). Regarding specific constituents of MACEs, the differences are mainly reflected in new-onset heart failure or heart failure hospitalization. COVID-19 clinical severity and troponin I peak were the independent predictors, while nirmatrelvir-ritonavir was the independent protective factor for the occurrence of MACEs in this population. CONCLUSION Nirmatrelvir-ritonavir was effective in reducing myocardial injury as well as long-term adverse cardiovascular outcomes among hospitalized patients with COVID-19 amid the omicron wave of the pandemic.
Collapse
Affiliation(s)
- Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Zhi-Hua Han
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Chang-Qian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Jun-Feng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
39
|
Aydeniz E, van Rosmalen F, de Kok J, Martens B, Mingels AMA, Canakci ME, Mihl C, Vernooy K, Prinzen FW, Wildberger JE, van der Horst ICC, van Bussel BCT, Driessen RGH. The association between coronary artery calcification and vectorcardiography in mechanically ventilated COVID-19 patients: the Maastricht Intensive Care COVID cohort. Intensive Care Med Exp 2024; 12:26. [PMID: 38451350 PMCID: PMC10920503 DOI: 10.1186/s40635-024-00611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Coronary artery calcification (CAC) is associated with poor outcome in critically ill patients. A deterioration in cardiac conduction and loss of myocardial tissue could be an underlying cause. Vectorcardiography (VCG) and cardiac biomarkers provide insight into these underlying causes. The aim of this study was to investigate whether a high degree of CAC is associated with VCG-derived variables and biomarkers, including high-sensitivity troponin-T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). METHODS Mechanically ventilated coronavirus-19 (COVID-19) patients with an available chest computed tomography (CT) and 12-lead electrocardiogram (ECG) were studied. CAC scores were determined using chest CT scans. Patients were categorized into 3 sex-specific tertiles: low, intermediate, and high CAC. Daily 12 leads-ECGs were converted to VCGs. Daily hs-cTnT and NT-proBNP levels were determined. Linear mixed-effects regression models examined the associations between CAC tertiles and VCG variables, and between CAC tertiles and hs-cTnT or NT-proBNP levels. RESULTS In this study, 205 patients (73.2% men, median age 65 years [IQR 57.0; 71.0]) were included. Compared to the lowest CAC tertile, the highest CAC tertile had a larger QRS area at baseline (6.65 µVs larger [1.50; 11.81], p = 0.012), which decreased during admission (- 0.27 µVs per day [- 0.43; - 0.11], p = 0.001). Patients with the highest CAC tertile also had a longer QRS duration (12.02 ms longer [4.74; 19.30], p = 0.001), higher levels of log hs-cTnT (0.79 ng/L higher [0.40; 1.19], p < 0.001) and log NT-proBNP (0.83 pmol/L higher [0.30; 1.37], p = 0.002). CONCLUSION Patients with a high degree of CAC had the largest QRS area and higher QRS amplitude, which decreased more over time when compared to patients with a low degree of CAC. These results suggest that CAC might contribute to loss of myocardial tissue during critical illness. These insights could improve risk stratification and prognostication of patients with critical illness.
Collapse
Affiliation(s)
- Eda Aydeniz
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | - Frank van Rosmalen
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jip de Kok
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Bibi Martens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Alma M A Mingels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Mustafa Emin Canakci
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Emergency Department, Eskisehir Osmangazi University School of Medicine, Eskisehir, Turkey
| | - Casper Mihl
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kevin Vernooy
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center +, Maastricht, The Netherlands
| | - Frits W Prinzen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joachim E Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Bas C T van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Rob G H Driessen
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center +, Maastricht, The Netherlands
| |
Collapse
|
40
|
Yan L, Li S, Hu Q, Liao D. Genetic correlations, shared risk genes and immunity landscapes between COVID-19 and venous thromboembolism: evidence from GWAS and bulk transcriptome data. Inflamm Res 2024:10.1007/s00011-024-01857-w. [PMID: 38433131 DOI: 10.1007/s00011-024-01857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Patients with coronavirus disease 2019 (COVID-19) were vulnerable to venous thromboembolism (VTE), which further increases the risk of unfavorable outcomes. However, neither genetic correlations nor shared genes underlying COVID-19 and VTE are well understood. OBJECTIVE This study aimed to characterize genetic correlations and common pathogenic mechanisms between COVID-19 and VTE. METHODS We used linkage disequilibrium score (LDSC) regression and Mendelian Randomization (MR) analysis to investigate the genetic associations and causal effects between COVID-19 and VTE, respectively. Then, the COVID-19 and VTE-related datasets were obtained from the Gene Expression Omnibus (GEO) database and analyzed by bioinformatics and systems biology approaches with R software, including weighted gene co-expression network analysis (WGCNA), enrichment analysis, and single-cell transcriptome sequencing analysis. The miRNA-genes and transcription factor (TF)-genes interaction networks were conducted by NetworkAnalyst. We performed the secondary analysis of the ATAC-seq and Chip-seq datasets to address the epigenetic-regulating relationship of the shared genes. RESULTS This study demonstrated positive correlations between VTE and COVID-19 by LDSC and bidirectional MR analysis. A total of 26 potential shared genes were discovered from the COVID-19 dataset (GSE196822) and the VTE dataset (GSE19151), with 19 genes showing positive associations and 7 genes exhibiting negative associations with these diseases. After incorporating two additional datasets, GSE164805 (COVID-19) and GSE48000 (VTE), two hub genes TP53I3 and SLPI were identified and showed up-regulation and diagnostic capabilities in both illnesses. Furthermore, this study illustrated the landscapes of immune processes in COVID-19 and VTE, revealing the downregulation in effector memory CD8+ T cells and activated B cells. The single-cell sequencing analysis suggested that the hub genes were predominantly expressed in the monocytes of COVID-19 patients at high levels. Additionally, we identified common regulators of hub genes, including five miRNAs (miR-1-3p, miR-203a-3p, miR-210-3p, miR-603, and miR-124-3p) and one transcription factor (RELA). CONCLUSIONS Collectively, our results highlighted the significant correlations between COVID-19 and VTE and pinpointed TP53I3 and SLPI as hub genes that potentially link the severity of both conditions. The hub genes and their common regulators might present an opportunity for the simultaneous treatment of these two diseases.
Collapse
Affiliation(s)
- Langchao Yan
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, Shanxi, China
| | - Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Di Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China.
| |
Collapse
|
41
|
Yeh LT, Chan CH, Wang YH, Lee CY, Yang SF, Yeh CB. Exploring the incidence of peripheral arterial occlusive disease following COVID-19 infection: A retrospective cohort study. J Med Virol 2024; 96:e29519. [PMID: 38465773 DOI: 10.1002/jmv.29519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Peripheral arterial occlusive disease (PAOD) is a clinical manifestation of systemic atherosclerosis and is always associated with cerebrovascular disease and various complications. The aim of our study is to evaluate the relationship between the coronavirus disease 2019 (COVID-19) infection and the subsequent PAOD development. A retrospective cohort study was conducted and individuals with COVID-19 infection were identified from the TriNetX analytics platform. A total of 2 206 065 patients with COVID-19 infection and 2 206 065 patients without COVID-19 infection were recruited after exclusion and matching. The primary outcome was the development of PAOD after the COVID-19 infection. The Cox proportional hazard regression was adopted to yield the hazard ratio (HR) and 95% confidence interval (CI) of PAOD between groups. After the whole follow-up period, the incidence of PAOD was significantly higher in the COVID-19 group at both the 3-month follow-up (HR: 1.27, 95% CI: 1.24-1.30) and the 12-month follow-up (HR: 1.33, 95% CI: 1.31-1.35) The Kaplan-Meier analysis with the log-rank test demonstrated a higher cumulative probability of PAOD in the COVID-19 group compared to the non-COVID-19 group (p < 0.001). In stratified analysis using 65 years as the threshold, both age groups in the COVID-19 group exhibited a higher risk of PAOD. Similarly, in the sex and race stratified analysis, the COVID-19 group performed a higher risk of PAOD in both subgroups. In conclusion, the COVID-19 infections are strongly associated with an increment of PAOD incidence.
Collapse
Affiliation(s)
- Liang-Tsai Yeh
- Department of Anesthesiology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Ho Chan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Yi Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Nobel Eye Institute, Taipei, Taiwan
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
42
|
Castelletti S, Gervasi S, Ballardini E, Casasco M, Cavarretta E, Colivicchi F, Contursi M, Cuccaro F, D'Ascenzi F, Gazale G, Mos L, Nistri S, Palmieri V, Patrizi G, Scorcu M, Spampinato A, Tiberi M, Zito GB, Zorzi A, Zeppilli P, Sciarra L. The athlete after COVID-19 infection: what the scientific evidence? What to do? A position statement. Panminerva Med 2024; 66:63-74. [PMID: 36178109 DOI: 10.23736/s0031-0808.22.04723-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The Coronavirus-19 disease (COVID-19) related pandemic have deeply impacted human health, economy, psychology and sociality. Possible serious cardiac involvement in the infection has been described, raising doubts about complete healing after the disease in many clinical settings. Moreover, there is the suspicion that the vaccines, especially those based on mRNA technology, can induce myopericarditis. Myocarditis or pericarditis related scars can represent the substrate for life-threatening arrhythmias, triggered by physical activity. A crucial point is how to evaluate an athlete after a COVID-19 infection ensuring a safe return to play without increasing the number of unnecessary disqualifications from sports competitions. The lack of conclusive scientific data significantly increases the difficulty to propose recommendations and guidelines on this topic. At the same time, the psychological and physical negative consequences of unnecessary sports restriction must be taken into account. The present document aims to provide an updated brief review of the current knowledge about the COVID-19 cardiac involvement and how to recognize it and to offer a roadmap for the management of the athletes after a COVID-19 infections, including subsequent impact on exercise recommendations. Our document exclusively refers to cardiovascular implications of the disease, but pulmonary consequences are also considered.
Collapse
Affiliation(s)
| | - Salvatore Gervasi
- Unit of Sports Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Enrico Ballardini
- Sports Medicine Centre, Mantova Salus Group, San Pellegrino Hospital, Mantua, Italy
| | | | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | | | - Maurizio Contursi
- Unit of Sports Cardiology, Centro Polidiagnostico Check-up, Salerno, Italy
| | - Francesco Cuccaro
- Unit of Sports Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Flavio D'Ascenzi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giovanni Gazale
- Center of Sports Medicine and Sports Cardiology, ASL1, Sassari, Italy
| | - Lucio Mos
- San Antonio Hospital, San Daniele del Friuli, Udine, Italy
| | - Stefano Nistri
- Cardiology Service-CMSR Veneto Medica, Altavilla Vicentina, Vicenza, Italy
| | - Vincenzo Palmieri
- Unit of Sports Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | | | - Marco Scorcu
- Department of Sports Medicine and Physical Exercise, ATS Sardegna, Cagliari, Italy
| | | | - Monica Tiberi
- Department of Public Health, Azienda Sanitaria Unica Regionale Marche AV1, Pesaro, Italy
| | | | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Paolo Zeppilli
- Unit of Sports Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
| | - Luigi Sciarra
- Department of Cardiology, Casilino Polyclinic, Rome, Italy
| |
Collapse
|
43
|
Kemerley A, Gupta A, Thirunavukkarasu M, Maloney M, Burgwardt S, Maulik N. COVID-19 Associated Cardiovascular Disease-Risks, Prevention and Management: Heart at Risk Due to COVID-19. Curr Issues Mol Biol 2024; 46:1904-1920. [PMID: 38534740 PMCID: PMC10969474 DOI: 10.3390/cimb46030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
The SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) virus and the resulting COVID-19 pandemic have had devastating and lasting impact on the global population. Although the main target of the disease is the respiratory tract, clinical outcomes, and research have also shown significant effects of infection on other organ systems. Of interest in this review is the effect of the virus on the cardiovascular system. Complications, including hyperinflammatory syndrome, myocarditis, and cardiac failure, have been documented in the context of COVID-19 infection. These complications ultimately contribute to worse patient outcomes, especially in patients with pre-existing conditions such as hypertension, diabetes, or cardiovascular disease (CVD). Importantly and interestingly, reports have demonstrated that COVID-19 also causes myocardial injury in adults without pre-existing conditions and contributes to systemic complications in pediatric populations, such as the development of multisystem inflammatory syndrome in children (MIS-C). Although there is still a debate over the exact mechanisms by which such complications arise, understanding the potential paths by which the virus can influence the cardiovascular system to create an inflammatory environment may clarify how SARS-CoV-2 interacts with human physiology. In addition to describing the mechanisms of disease propagation and patient presentation, this review discusses the diagnostic findings and treatment strategies and the evolution of management for patients presenting with cardiovascular complications, focusing on disease treatment and prevention.
Collapse
Affiliation(s)
| | | | | | | | | | - Nilanjana Maulik
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA; (A.K.); (A.G.); (M.T.); (S.B.)
| |
Collapse
|
44
|
Mostafa RH, Moustafa A. Beyond acute infection: molecular mechanisms underpinning cardiovascular complications in long COVID. Front Cardiovasc Med 2024; 11:1268571. [PMID: 38495940 PMCID: PMC10942004 DOI: 10.3389/fcvm.2024.1268571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
SARS-CoV-2, responsible for the global COVID-19 pandemic, has manifested significant cardiovascular implications for the infected population. These cardiovascular repercussions not only linger beyond the initial phase of illness but have also been observed in individuals who remain asymptomatic. This extended and pervasive impact is often called the post-acute COVID-19 syndrome (PACS) or "Long COVID". With the number of confirmed global cases approaching an alarming 756 million, the multifaceted challenges of Long COVID are undeniable. These challenges span from individual health complications to considerable burdens on worldwide healthcare systems. Our review comprehensively examines the complications of the persistent cardiovascular complications associated with COVID-19. Furthermore, we shed light on emerging therapeutic strategies that promise to manage and possibly mitigate these complications. We also introduce and discuss the profound concerns regarding the potential transgenerational repercussions of SARS-CoV-2, emphasizing the need for a proactive and informed approach to future research and clinical practice.
Collapse
Affiliation(s)
- Roba Hamed Mostafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Department of Biology, American University in Cairo, New Cairo, Egypt
| |
Collapse
|
45
|
Kanuri SH, Sirrkay PJ. Adjuvants in COVID-19 vaccines: innocent bystanders or culpable abettors for stirring up COVID-heart syndrome. Ther Adv Vaccines Immunother 2024; 12:25151355241228439. [PMID: 38322819 PMCID: PMC10846003 DOI: 10.1177/25151355241228439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
COVID-19 infection is a multi-system clinical disorder that was associated with increased morbidity and mortality. Even though antiviral therapies such as Remdesvir offered modest efficacy in reducing the mortality and morbidity, they were not efficacious in reducing the risk of future infections. So, FDA approved COVID-19 vaccines which are widely administered in the general population worldwide. These COVID-19 vaccines offered a safety net against future infections and re-infections. Most of these vaccines contain inactivated virus or spike protein mRNA that are primarily responsible for inducing innate and adaptive immunity. These vaccines were also formulated to contain supplementary adjuvants that are beneficial in boosting the immune response. During the pandemic, clinicians all over the world witnessed an uprise in the incidence and prevalence of cardiovascular diseases (COVID-Heart Syndrome) in patients with and without cardiovascular risk factors. Clinical researchers were not certain about the underlying reason for the upsurge of cardiovascular disorders with some blaming them on COVID-19 infections while others blaming them on COVID-19 vaccines. Based on the literature review, we hypothesize that adjuvants included in the COVID-19 vaccines are the real culprits for causation of cardiovascular disorders. Operation of various pathological signaling events under the influence of these adjuvants including autoimmunity, bystander effect, direct toxicity, anti-phospholipid syndrome (APS), anaphylaxis, hypersensitivity, genetic susceptibility, epitope spreading, and anti-idiotypic antibodies were partially responsible for stirring up the onset of cardiovascular disorders. With these mechanisms in place, a minor contribution from COVID-19 virus itself cannot be ruled out. With that being said, we strongly advocate for careful selection of vaccine adjuvants included in COVID-19 vaccines so that future adverse cardiac disorders can be averted.
Collapse
Affiliation(s)
- Sri Harsha Kanuri
- Research Fellow, Stark Neurosciences Institute, Indiana University School of Medicine, 320 W 15 ST, Indianapolis, IN 46202, USA
| | | |
Collapse
|
46
|
Del Vecchio L, Balafa O, Dounousi E, Ekart R, Fernandez BF, Mark PB, Sarafidis P, Valdivielso JM, Ferro CJ, Mallamaci F. COVID-19 and cardiovascular disease in patients with chronic kidney disease. Nephrol Dial Transplant 2024; 39:177-189. [PMID: 37771078 PMCID: PMC10828215 DOI: 10.1093/ndt/gfad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 09/30/2023] Open
Abstract
Millions of people worldwide have chronic kidney disease (CKD). Affected patients are at high risk for cardiovascular (CV) disease for several reasons. Among various comorbidities, CKD is associated with the more severe forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This is particularly true for patients receiving dialysis or for kidney recipients. From the start of the SARS-CoV-2 pandemic, several CV complications have been observed in affected subjects, spanning acute inflammatory manifestations, CV events, thrombotic episodes and arrythmias. Several pathogenetic mechanisms have been hypothesized, including direct cytopathic viral effects on the myocardium, endothelial damage and hypercoagulability. This spectrum of disease can occur during the acute phase of the infection, but also months after recovery. This review is focussed on the CV complications of coronavirus disease 2019 (COVID-19) with particular interest in their implications for the CKD population.
Collapse
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST Lariana, Como, Italy
| | - Olga Balafa
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Medical Center Maribor, Maribor, Slovenia
| | | | - Patrick B Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Pantelis Sarafidis
- 1st Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jose M Valdivielso
- Vascular and Renal Translational Research Group, Institute for Biomedical Research on Lleida (IRBLleida), Lleida, Spain
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham and Institute of Cardiovascular Sciences, University of Birmingham, Birmingham,UK
| | - Francesca Mallamaci
- Francesca Mallamaci Department of Nephrology, Dialysis, and Transplantation Azienda Ospedaliera “Bianchi-Melacrino-Morelli” & CNR-IFC, Reggio Calabria, Italy
| |
Collapse
|
47
|
Vukčević M, Šerović K, Despot M, Nikolić-Kokić A, Vujović A, Nikolić M, Blagojević D, Jovanović T, Despot D. Humoral and Cellular Immune Response after Three Doses of Sinopharm [Vero Cell]-Inactivated COVID-19 Vaccine in Combination with SARS-CoV-2 Infection Leads to Hybrid Immunity. Pharmaceuticals (Basel) 2024; 17:122. [PMID: 38256955 PMCID: PMC10818859 DOI: 10.3390/ph17010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Several vaccines against COVID-19 have been developed and licensed to enhance the immune response against SARS-CoV-2. Similarly, previous infection with SARS-CoV-2 has been shown to provide significant protection against severe infection and hospitalization. METHODS We investigated the effect of three doses of the Sinopharm vaccine and SARS-CoV-2 infection on the specific immune response in 103 volunteers, measuring neutralizing antibodies, anti-S1 IgG, anti-RBD IgM, anti-N IgM, anti-N IgG antibodies, and INF γ. RESULTS Our results showed that the presence of cardiovascular diseases increased the level of anti-N-IgG antibodies, while endocrinological diseases decreased the level of neutralizing antibodies and anti-N IgG antibodies, suggesting that these diseases alter the effect of vaccine-induced immunity. In addition, there was a significant decrease in anti-S1 IgG levels at 6 months and in anti-N IgG levels 18 months post-infection, while neutralizing antibodies and INF γ levels were constant at 3, 6, and 18 months post-infection. CONCLUSIONS Our results confirm the emergence of hybrid immunity, which is the strongest and most durable compared to natural immunity or vaccine-induced immunity. Significant positive correlations were found between humoral and cellular immunity markers: neutralizing antibodies, anti-S1 IgG and anti-N IgG antibodies, and INF γ, indicating a unique coordinated response specific to COVID-19.
Collapse
Affiliation(s)
- Marija Vukčević
- Institute for Biocides and Medical Ecology, Trebevićka 16, 11030 Belgrade, Serbia; (M.V.); (K.Š.); (D.D.)
| | - Katarina Šerović
- Institute for Biocides and Medical Ecology, Trebevićka 16, 11030 Belgrade, Serbia; (M.V.); (K.Š.); (D.D.)
| | - Mateja Despot
- Faculty of Medicine, University of Belgrade, dr Subotića starijeg 8, 11000 Belgrade, Serbia;
| | - Aleksandra Nikolić-Kokić
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, Department of Physiology, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.N.-K.); (D.B.)
| | | | - Milan Nikolić
- University of Belgrade, Faculty of Chemistry, Department of Biochemistry, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Duško Blagojević
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, Department of Physiology, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.N.-K.); (D.B.)
| | - Tanja Jovanović
- Institute for Biocides and Medical Ecology, Trebevićka 16, 11030 Belgrade, Serbia; (M.V.); (K.Š.); (D.D.)
| | - Dragana Despot
- Institute for Biocides and Medical Ecology, Trebevićka 16, 11030 Belgrade, Serbia; (M.V.); (K.Š.); (D.D.)
| |
Collapse
|
48
|
Chen L, Yin Z, Zhou D, Li X, Yu C, Luo C, Jin Y, Zhang L, Song J, Rasche L, Einsele H, Tu L, Zhou X, Bai T, Hou X. Lymphocyte and neutrophil count combined with intestinal bacteria abundance predict the severity of COVID-19. Microbiol Spectr 2024; 12:e0302723. [PMID: 38088542 PMCID: PMC10783053 DOI: 10.1128/spectrum.03027-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The 2019 coronavirus disease (COVID-19) patients had a unique profile of gut bacteria. In this study, we characterized the intestinal bacteria in our COVID-19 cohorts and found that there was an increased incidence of severe cases in COVID-19 patients with decreased lymphocytes and increased neutrophils. Levels of lymphocytes and neutrophils and abundances of intestinal bacteria correlated with the severity of COVID-19.
Collapse
Affiliation(s)
- Liuying Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongwei Yin
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Yu
- Ultrasonic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Luo
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Zhou
- Department of Internal Medicine II, University Hospital Würzburg, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Giugni FR, Duarte-Neto AN, da Silva LFF, Monteiro RAA, Mauad T, Saldiva PHN, Dolhnikoff M. Younger age is associated with cardiovascular pathological phenotype of severe COVID-19 at autopsy. Front Med (Lausanne) 2024; 10:1327415. [PMID: 38259848 PMCID: PMC10801169 DOI: 10.3389/fmed.2023.1327415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction COVID-19 affects patients of all ages. There are few autopsy studies focusing on the younger population. We assessed an autopsy cohort aiming to understand how age influences pathological outcomes in fatal COVID-19. Methods This study included autopsied patients, aged 6 months to 83 years, with confirmed COVID-19 in 2020-2021. We collected tissue samples from deceased patients using a minimally invasive autopsy protocol and assessed pathological data following a systematic approach. Results Eighty-six patients were included, with a median age of 55 years (IQR 32.3-66.0). We showed that age was significantly lower in patients with acute heart ischemia (p = 0.004), myocarditis (p = 0.03) and lung angiomatosis (p < 0.001), and significantly higher in patients with exudative diffuse alveolar damage (p = 0.02), proliferative diffuse alveolar damage (p < 0.001), lung squamous metaplasia (p = 0.003) and lung viral atypia (p = 0.03), compared to patients without those findings. We stratified patients by their age and showed that cardiovascular findings were more prevalent in children and young adults. We performed principal component analysis and cluster of pathological variables, and showed that cardiovascular variables clustered and covariated together, and separated from pulmonary variables. Conclusion We showed that age modulates pathological outcomes in fatal COVID-19. Younger age is associated with cardiovascular abnormalities and older age with pulmonary findings.
Collapse
Affiliation(s)
- Fernando R. Giugni
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Amaro N. Duarte-Neto
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- LIM 05 - Laboratório de Patologia Ambiental e Experimental, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Fernando F. da Silva
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- LIM 05 - Laboratório de Patologia Ambiental e Experimental, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- SVOC - Serviço de Verificação de Óbitos da Capital, Universidade de São Paulo, São Paulo, Brazil
| | - Renata A. A. Monteiro
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- LIM 05 - Laboratório de Patologia Ambiental e Experimental, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo H. N. Saldiva
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- LIM 05 - Laboratório de Patologia Ambiental e Experimental, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa Dolhnikoff
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- LIM 05 - Laboratório de Patologia Ambiental e Experimental, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Farmakis D, Richter D, Chronopoulou G, Goumas G, Kountouras D, Mastorakou A, Papingiotis G, Hahalis G, Tsioufis K. High-sensitivity cardiac troponin I for cardiovascular risk stratification in apparently healthy individuals. Hellenic J Cardiol 2024; 75:74-81. [PMID: 37743017 DOI: 10.1016/j.hjc.2023.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Troponin I and T as cardiac-specific biomarkers are highly useful tools not only in the diagnosis of acute coronary syndromes but also as independent predictors of several other clinical conditions. High-sensitivity cardiac troponin (hs-cTn) assays allow the detection of considerably low concentrations of cardiac troponin in apparently healthy and asymptomatic individuals, being a candidate tool for cardiovascular risk stratification in the general population. A group of Greek experts summarized the bulk of evidence regarding the use of hs-cTnI as a predictor of cardiovascular events and mortality in apparently healthy individuals and its additive value on top of existing risk stratification methods. This document could serve as a guide for the incorporation of hs-cTnI as an additional risk stratification tool in cardiovascular prevention strategies in apparently healthy individuals.
Collapse
Affiliation(s)
- Dimitrios Farmakis
- Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | | | | | | | - Dimitrios Kountouras
- Center for Preventive Medicine & Longevity, Bioiatriki Healthcare Group, Athens, Greece
| | | | | | | | - Konstantinos Tsioufis
- First Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University Medical School, Athens, Greece
| |
Collapse
|