1
|
Gallo A, Le Goff W, Santos RD, Fichtner I, Carugo S, Corsini A, Sirtori C, Ruscica M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur J Clin Invest 2024:e14326. [PMID: 39370572 DOI: 10.1111/eci.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
Collapse
Affiliation(s)
- Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpètriêre, Sorbonne Université, INSERM UMR1166, Paris, France
| | - Wilfried Le Goff
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpètriêre, Sorbonne Université, INSERM UMR1166, Paris, France
| | - Raul D Santos
- Academic Research Organization Hospital Israelita Albert Einstein and Lipid Clinic Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Cesare Sirtori
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Grunblatt E, Feinstein MJ. Precision Phenotyping of Heart Failure in People with HIV: Early Insights and Challenges. Curr Heart Fail Rep 2024; 21:417-427. [PMID: 38940893 DOI: 10.1007/s11897-024-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE OF REVIEW People with HIV have an elevated risk of developing heart failure even with optimally controlled disease. In this review, we outline the various mechanisms through which HIV infection may directly and indirectly contribute to heart failure pathology and highlight the emerging relationship between HIV, chronic inflammation, and cardiometabolic disease. RECENT FINDINGS HIV infection leads to chronic inflammation, immune dysregulation, and metabolic imbalances even in those with well controlled disease. These dysregulations occur through several diverse mechanisms which may lead to manifestations of different phenotypes of heart failure in people with HIV. While it has long been known that people with HIV are at risk of developing heart failure, recent studies have suggested numerous complex mechanisms involving chronic inflammation, immune dysregulation, and metabolic derangement through which this may be mediated. Further comprehensive studies are needed to elucidate the precise relationship between these mechanisms and the development of different subtypes of heart failure in people with HIV.
Collapse
Affiliation(s)
- Eli Grunblatt
- Department of Medicine, Northwestern University Feinberg School of Medicine, 300 E Superior St, Ste 12-758, Chicago, IL, 60611, USA
| | - Matthew J Feinstein
- Department of Medicine, Northwestern University Feinberg School of Medicine, 300 E Superior St, Ste 12-758, Chicago, IL, 60611, USA.
- Division of Cardiology in the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Cui C, Liu L, Qi Y, Han N, Xu H, Wang Z, Shang X, Han T, Zha Y, Wei X, Wu Z. Joint association of TyG index and high sensitivity C-reactive protein with cardiovascular disease: a national cohort study. Cardiovasc Diabetol 2024; 23:156. [PMID: 38715129 PMCID: PMC11077847 DOI: 10.1186/s12933-024-02244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Both the triglyceride-glucose (TyG) index, as a surrogate marker of insulin resistance, and systemic inflammation are predictors of cardiovascular diseases; however, little is known about the coexposures and relative contributions of TyG index and inflammation to cardiovascular diseases. Using the nationally representative data from the China Health and Retirement Longitudinal Study (CHARLS), we conducted longitudinal analyses to evaluate the joint and mutual associations of the TyG index and high-sensitivity C-reactive protein (hsCRP) with cardiovascular events in middle-aged and older Chinese population. METHODS This study comprised 8 658 participants aged at least 45 years from the CHARLS 2011 who are free of cardiovascular diseases at baseline. The TyG index was calculated as Ln [fasting triglyceride (mg/dL) × fasting glucose (mg/dL)/2]. Cardiovascular events were defined as the presence of physician-diagnosed heart disease and/or stroke followed until 2018.We performed adjusted Cox proportional hazards regression and mediation analyses. RESULTS The mean age of the participants was 58.6 ± 9.0 years, and 3988 (46.1%) were females. During a maximum follow-up of 7.0 years, 2606 (30.1%) people developed cardiovascular diseases, including 2012 (23.2%) cases of heart diseases and 848 (9.8%) cases of stroke. Compared with people with a lower TyG index (< 8.6 [median level]) and hsCRP < 1 mg/L, those concurrently with a higher TyG and hsCRP had the highest risk of overall cardiovascular disease (adjusted hazard ratio [aHR], 1.300; 95% CI 1.155-1.462), coronary heart disease (aHR, 1.294; 95% CI 1.130-1.481) and stroke (aHR, 1.333; 95% CI 1.093-1.628), which were predominant among those aged 70 years or below. High hsCRP significantly mediated 13.4% of the association between the TyG index and cardiovascular disease, while TyG simultaneously mediated 7.9% of the association between hsCRP and cardiovascular risk. CONCLUSIONS The findings highlight the coexposure effects and mutual mediation between the TyG index and hsCRP on cardiovascular diseases. Joint assessments of the TyG index and hsCRP should be underlined for the residual risk stratification and primary prevention of cardiovascular diseases, especially for middle-aged adults.
Collapse
Affiliation(s)
- Cancan Cui
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Yitian Qi
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Ning Han
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Haikun Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhijia Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Xinyun Shang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Tianjiao Han
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Yining Zha
- Harvard T H Chan School of Public Health, Boston, USA
| | - Xin Wei
- Department of Radiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China.
| | - Zhiyuan Wu
- Harvard T H Chan School of Public Health, Boston, USA.
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| |
Collapse
|
4
|
Nady A, Reichheld SE, Sharpe S. Structural studies of a serum amyloid A octamer that is primed to scaffold lipid nanodiscs. Protein Sci 2024; 33:e4983. [PMID: 38659173 PMCID: PMC11043621 DOI: 10.1002/pro.4983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Serum amyloid A (SAA) is a highly conserved acute-phase protein that plays roles in activating multiple pro-inflammatory pathways during the acute inflammatory response and is commonly used as a biomarker of inflammation. It has been linked to beneficial roles in tissue repair through improved clearance of lipids and cholesterol from sites of damage. In patients with chronic inflammatory diseases, elevated levels of SAA may contribute to increased severity of the underlying condition. The majority of circulating SAA is bound to lipoproteins, primarily high-density lipoprotein (HDL). Interaction with HDL not only stabilizes SAA but also alters its functional properties, likely through altered accessibility of protein-protein interaction sites on SAA. While high-resolution structures for lipid-free, or apo-, forms of SAA have been reported, their relationship with the HDL-bound form of the protein, and with other possible mechanisms of SAA binding to lipids, has not been established. Here, we have used multiple biophysical techniques, including SAXS, TEM, SEC-MALS, native gel electrophoresis, glutaraldehyde crosslinking, and trypsin digestion to characterize the lipid-free and lipid-bound forms of SAA. The SAXS and TEM data show the presence of soluble octamers of SAA with structural similarity to the ring-like structures reported for lipid-free ApoA-I. These SAA octamers represent a previously uncharacterized structure for lipid-free SAA and are capable of scaffolding lipid nanodiscs with similar morphology to those formed by ApoA-I. The SAA-lipid nanodiscs contain four SAA molecules and have similar exterior dimensions as the lipid-free SAA octamer, suggesting that relatively few conformational rearrangements may be required to allow SAA interactions with lipid-containing particles such as HDL. This study suggests a new model for SAA-lipid interactions and provides new insight into how SAA might stabilize protein-lipid nanodiscs or even replace ApoA-I as a scaffold for HDL particles during inflammation.
Collapse
Affiliation(s)
- Asal Nady
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Sean E. Reichheld
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoCanada
| | - Simon Sharpe
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| |
Collapse
|
5
|
Papantoniou E, Arvanitakis K, Markakis K, Papadakos SP, Tsachouridou O, Popovic DS, Germanidis G, Koufakis T, Kotsa K. Pathophysiology and Clinical Management of Dyslipidemia in People Living with HIV: Sailing through Rough Seas. Life (Basel) 2024; 14:449. [PMID: 38672720 PMCID: PMC11051320 DOI: 10.3390/life14040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Infections with human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) represent one of the greatest health burdens worldwide. The complex pathophysiological pathways that link highly active antiretroviral therapy (HAART) and HIV infection per se with dyslipidemia make the management of lipid disorders and the subsequent increase in cardiovascular risk essential for the treatment of people living with HIV (PLHIV). Amongst HAART regimens, darunavir and atazanavir, tenofovir disoproxil fumarate, nevirapine, rilpivirine, and especially integrase inhibitors have demonstrated the most favorable lipid profile, emerging as sustainable options in HAART substitution. To this day, statins remain the cornerstone pharmacotherapy for dyslipidemia in PLHIV, although important drug-drug interactions with different HAART agents should be taken into account upon treatment initiation. For those intolerant or not meeting therapeutic goals, the addition of ezetimibe, PCSK9, bempedoic acid, fibrates, or fish oils should also be considered. This review summarizes the current literature on the multifactorial etiology and intricate pathophysiology of hyperlipidemia in PLHIV, with an emphasis on the role of different HAART agents, while also providing valuable insights into potential switching strategies and therapeutic options.
Collapse
Affiliation(s)
- Eleni Papantoniou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Konstantinos Markakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Olga Tsachouridou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.P.); (K.M.); (O.T.)
| | - Djordje S. Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, 21137 Novi Sad, Serbia;
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 1 St. Kiriakidi Street, 54636 Thessaloniki, Greece
| |
Collapse
|
6
|
Hansen SB, Wang H. The shared role of cholesterol in neuronal and peripheral inflammation. Pharmacol Ther 2023; 249:108486. [PMID: 37390970 DOI: 10.1016/j.pharmthera.2023.108486] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Neurodegeneration and its loss of cognitive function is associated with inflammation and an accumulation of lipids. In the periphery, cholesterol's uptake drives a major component of chronic inflammation. In this perspective, we describe the cellular and molecular roles of cholesterol in neuroinflammation and contrast them with those in the periphery. Incorporating shared mechanisms from the periphery, cholesterol emerges as a central signal originating in astrocytes and connecting inflammatory escalation in neurons and microglia. A cholesterol uptake pathway is proposed for neuroinflammation, and we speculate on the binding of cholesterol transport protein apolipoprotein E (apoE), including the Christchurch mutant (R136S), to cell surface receptors as a potential protective modality against uptake of astrocyte cholesterol and escalated neuroinflammation. Lastly, we discuss the molecular basis of cholesterol signaling through nanoscopic clustering and peripheral sources of cholesterol after opening of the blood brain barrier.
Collapse
Affiliation(s)
- Scott B Hansen
- Department of Molecular Medicine, UF Scripps, Jupiter, FL 33458, USA; Department of Neuroscience, UF Scripps, Jupiter, FL 33458, USA.
| | - Hao Wang
- The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
7
|
Trites MJ, Stebbings BM, Aoki H, Phanse S, Akl MG, Li L, Babu M, Widenmaier SB. HDL functionality is dependent on hepatocyte stress defense factors Nrf1 and Nrf2. Front Physiol 2023; 14:1212785. [PMID: 37501930 PMCID: PMC10369849 DOI: 10.3389/fphys.2023.1212785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
High density lipoproteins (HDL) promote homeostasis and counteract stressful tissue damage that underlie cardiovascular and other diseases by mediating reverse cholesterol transport, reducing inflammation, and abrogating oxidative damage. However, metabolically stressful conditions associated with atherosclerosis can impair these effects. Hepatocytes play a major role in the genesis and maturation of circulating HDL, and liver stress elicits marked regulatory changes to circulating HDL abundance and composition, which affect its functionality. The mechanisms linking liver stress to HDL function are incompletely understood. In this study, we sought to determine whether stress defending transcription factors nuclear factor erythroid 2 related factor-1 (Nrf1) and -2 (Nrf2) promote hepatocyte production of functional HDL. Using genetically engineered mice briefly fed a mild metabolically stressful diet, we investigated the effect of hepatocyte-specific deletion of Nrf1, Nrf2, or both on circulating HDL cholesterol, protein composition, and function. Combined deletion, but not single gene deletion, reduced HDL cholesterol and apolipoprotein A1 levels as well as the capacity of HDL to accept cholesterol undergoing efflux from cultured macrophages and to counteract tumor necrosis factor α-induced inflammatory effect on cultured endothelial cells. This coincided with substantial alteration to the HDL proteome, which correlated with liver gene expression profiles of corresponding proteins. Thus, our findings show complementary actions by hepatocyte Nrf1 and Nrf2 play a role in shaping HDL abundance and composition to promote production of functionally viable HDL. Consequently, our study illuminates the possibility that enhancing stress defense programming in the liver may improve atheroprotective and perhaps other health promoting actions of HDL.
Collapse
Affiliation(s)
- Michael J. Trites
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brynne M. Stebbings
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - May G. Akl
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Lei Li
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Scott B. Widenmaier
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Luo L, Guo Y, Chen L, Zhu J, Li C. Crosstalk between cholesterol metabolism and psoriatic inflammation. Front Immunol 2023; 14:1124786. [PMID: 37234169 PMCID: PMC10206135 DOI: 10.3389/fimmu.2023.1124786] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Psoriasis is a chronic autoinflammatory skin disease associated with multiple comorbidities, with a prevalence ranging from 2 to 3% in the general population. Decades of preclinical and clinical studies have revealed that alterations in cholesterol and lipid metabolism are strongly associated with psoriasis. Cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-17), which are important in the pathogenesis of psoriasis, have been shown to affect cholesterol and lipid metabolism. Cholesterol metabolites and metabolic enzymes, on the other hand, influence not only the biofunction of keratinocytes (a primary type of cell in the epidermis) in psoriasis, but also the immune response and inflammation. However, the relationship between cholesterol metabolism and psoriasis has not been thoroughly reviewed. This review mainly focuses on cholesterol metabolism disturbances in psoriasis and their crosstalk with psoriatic inflammation.
Collapse
Affiliation(s)
- Lingling Luo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Youming Guo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Lihao Chen
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Higashi Y. Endothelial Function in Dyslipidemia: Roles of LDL-Cholesterol, HDL-Cholesterol and Triglycerides. Cells 2023; 12:1293. [PMID: 37174693 PMCID: PMC10177132 DOI: 10.3390/cells12091293] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Dyslipidemia is associated with endothelial dysfunction. Endothelial dysfunction is the initial step for atherosclerosis, resulting in cardiovascular complications. It is clinically important to break the process of endothelial dysfunction to cardiovascular complications in patients with dyslipidemia. Lipid-lowering therapy enables the improvement of endothelial function in patients with dyslipidemia. It is likely that the relationships of components of a lipid profile such as low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides with endothelial function are not simple. In this review, we focus on the roles of components of a lipid profile in endothelial function.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 743-8551, Japan; ; Tel.: +81-82-257-5831
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8553, Japan
| |
Collapse
|
10
|
Traughber CA, Iacano AJ, Neupane K, Khan MR, Opoku E, Nunn T, Prince A, Sangwan N, Hazen SL, Smith JD, Gulshan K. Impavido attenuates inflammation, reduces atherosclerosis, and alters gut microbiota in hyperlipidemic mice. iScience 2023; 26:106453. [PMID: 37020959 PMCID: PMC10067757 DOI: 10.1016/j.isci.2023.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Impavido (Miltefosine) is an FDA-approved drug for treating leishmaniasis and primary amebic meningoencephalitis. We have shown previously that Miltefosine increased cholesterol release and dampened Nlrp3 inflammasome assembly in macrophages. Here, we show that Miltefosine reduced LPS-induced choline uptake by macrophages, and attenuated Nlrp3 inflammasome assembly in mice. Miltefosine-fed mice showed reduced plasma IL-1β in a polymicrobial cecal slurry model of systemic inflammation. Miltefosine-fed mice showed increased reverse cholesterol transport to the plasma, liver, and feces. Hyperlipidemic apoE-/- mice fed with WTD + Miltefosine showed significantly reduced weight gain and markedly reduced atherosclerotic lesions versus mice fed with WTD. The 16S rDNA sequencing and analysis of gut microbiota showed marked alterations in the microbiota profile of Miltefosine-fed hyperlipidemic apoE-/- versus control, with the most notable changes in Romboutsia and Bacteriodes species. Taken together, these data indicate that Miltefosine causes pleiotropic effects on lipid metabolism, inflammasome activity, atherosclerosis, and the gut microbiota.
Collapse
|
11
|
Ronca A, Pellegrini N, Pagliai G, Dinu M, Manfredini M, Incerti M, Favari E, Sofi F. Effects of a dietary intervention with Mediterranean vs lacto-ovo vegetarian diets on HDL function: Results from the CARDIVEG study. Nutr Metab Cardiovasc Dis 2023; 33:651-658. [PMID: 36642608 DOI: 10.1016/j.numecd.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIM HDL-cholesterol efflux capacity (CEC) has been shown to be a better cardiovascular (CVD) risk marker than serum HDL concentration. Several foods and nutrients have been shown to improve HDL functions, however no effective dietetic nor pharmacological strategy is available to increase CEC. This study aims to evaluate the possible effect of Mediterranean diet (MD) and lacto-ovo-vegetarian diet (VD) on HDL function in a group of clinically healthy subjects at low-to-moderate CVD risk. METHODS AND RESULTS Thirty apparently healthy subjects with a low-to-moderate cardiovascular risk profile (21 F; mean age: 51.3 ± 9.7 years) were randomly assigned to a 3-month MD or VD diet and then crossed. Participants on VD showed a reduction in total HDL CEC by 8.99% (p < 0.001) as well as a reduction in ABCA1 mediated-CEC by 18.62% (p < 0.001) compared to participants on MD. Regarding CEC mediated by aqueous diffusion, no significant changes were observed after treatment with either diet. Finally, a significant positive association between CEC mediated by the ABCA1 transporter and adiponectin was found (r = 0.462; p = 0.010). CONCLUSION The results of this study suggest that HDL activity in promoting cholesterol efflux and thereby reducing the concentration of pro-atherogenic lipoproteins was more effective in participants undergoing MD than VD. Based on these findings, the MD could be considered a better therapeutic strategy for cardiovascular prevention than VD. CLINICAL TRIAL REGISTRATION URL http://www. CLINICALTRIALS gov. Unique identifier: NCT02641834.
Collapse
Affiliation(s)
- Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Giuditta Pagliai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Manfredini
- Department of Chemistry, Life Science, And Environmental Sustainability, University of Parma, Parma, Italy
| | - Matteo Incerti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Zhou X, Jin S, Pan J, Lin Q, Yang S, Lu Y, Qiu M, Ambe PC, Basharat Z, Zimmer V, Wang W, Hong W. Relationship between Cholesterol-Related Lipids and Severe Acute Pancreatitis: From Bench to Bedside. J Clin Med 2023; 12:jcm12051729. [PMID: 36902516 PMCID: PMC10003000 DOI: 10.3390/jcm12051729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is well known that hypercholesterolemia in the body has pro-inflammatory effects through the formation of inflammasomes and augmentation of TLR (Toll-like receptor) signaling, which gives rise to cardiovascular disease and neurodegenerative diseases. However, the interaction between cholesterol-related lipids and acute pancreatitis (AP) has not yet been summarized before. This hinders the consensus on the existence and clinical importance of cholesterol-associated AP. This review focuses on the possible interaction between AP and cholesterol-related lipids, which include total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and apolipoprotein (Apo) A1, from the bench to the bedside. With a higher serum level of total cholesterol, LDL-C is associated with the severity of AP, while the persistent inflammation of AP is allied with a decrease in serum levels of cholesterol-related lipids. Therefore, an interaction between cholesterol-related lipids and AP is postulated. Cholesterol-related lipids should be recommended as risk factors and early predictors for measuring the severity of AP. Cholesterol-lowering drugs may play a role in the treatment and prevention of AP with hypercholesterolemia.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shengchun Jin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingyi Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingyi Lin
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shaopeng Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yajing Lu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Peter C. Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20–24, 51429 Bensberg, Germany
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, 66539 Neunkirchen, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: ; Tel./Fax: +86-0577-55579122
| |
Collapse
|
13
|
Microbiota-immune-brain interactions: A lifespan perspective. Curr Opin Neurobiol 2023; 78:102652. [PMID: 36463579 DOI: 10.1016/j.conb.2022.102652] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
There is growing appreciation of key roles of the gut microbiota in maintaining homeostasis and influencing brain and behaviour at critical windows across the lifespan. Mounting evidence suggests that communication between the gut and the brain could be the key to understanding multiple neuropsychiatric disorders, with the immune system coming to the forefront as an important mechanistic mediator. Throughout the lifespan, the immune system exchanges continuous reciprocal signals with the central nervous system. Intestinal microbial cues alter immune mediators with consequences for host neurophysiology and behaviour. Several factors challenge the gut microbiota composition, which in response release molecules with neuro- and immuno-active potential that are crucial for adequate neuro-immune interactions. In this review, multiple factors contributing to the upkeep of the fine balance between health and disease of these systems are discussed, and we elucidate the potential mechanistic implications for the gut microbiota inputs on host brain and behaviour across the lifespan.
Collapse
|
14
|
Lan Y, Chen G, Wu D, Ding X, Huang Z, Wang X, Balmer L, Li X, Song M, Wang W, Wu S, Chen Y. Temporal relationship between atherogenic dyslipidemia and inflammation and their joint cumulative effect on type 2 diabetes onset: a longitudinal cohort study. BMC Med 2023; 21:31. [PMID: 36691001 PMCID: PMC9870774 DOI: 10.1186/s12916-023-02729-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Concurrent atherogenic dyslipidemia and elevated inflammation are commonly observed in overt hyperglycemia and have long been proposed to contribute to diabetogenesis. However, the temporal relationship between them and the effect of their cumulative co-exposure on future incident type 2 diabetes (T2D) remains unclear. METHODS Longitudinal analysis of data on 52,224 participants from a real-world, prospective cohort study (Kailuan Study) was performed to address the temporal relationship between high-sensitivity C-reactive protein (hsCRP) and the atherogenic index of plasma (AIP, calculated as triglyceride/high-density lipoprotein) in an approximately 4-year exposure period (2006/2007 to 2010/2011). After excluding 8824 participants with known diabetes, 43,360 nondiabetic participants were included for further analysis of the T2D outcome. Cox regression models were used to examine the adjusted hazard ratios (aHRs) upon the cumulative hsCRP (CumCRP) and AIP (CumAIP) in the exposure period. RESULTS In temporal analysis, the adjusted standardized correlation coefficient (β1) of hsCRP_2006/2007 and AIP_2010/2011 was 0.0740 (95% CI, 0.0659 to 0.0820; P < 0.001), whereas the standardized correlation coefficient (β2) of AIP_2006/2007 and hsCRP_2010/2011 was - 0.0293 (95% CI, - 0.0385 to - 0.0201; P < 0.001), which was significantly less than β1 (P < 0.001). During a median follow-up of 7.9 years, 5,118 T2D cases occurred. Isolated exposure to CumAIP or CumCRP was dose-dependently associated with T2D risks, independent of traditional risk factors. Significant interactions were observed between the median CumAIP (- 0.0701) and CumCRP thresholds (1, 3 mg/L) (P = 0.0308). Compared to CumAIP < - 0.0701 and CumCRP < 1 mg/L, those in the same CumAIP stratum but with increasing CumCRP levels had an approximately 1.5-fold higher T2D risk; those in higher CumAIP stratum had significantly higher aHRs (95% CIs): 1.64 (1.45-1.86), 1.87 (1.68-2.09), and 2.04 (1.81-2.30), respectively, in the CumCRP < 1, 1 ≤ CumCRP < 3, CumCRP ≥ 3 mg/L strata. Additionally, the T2D risks in the co-exposure were more prominent in nonhypertensive, nondyslipidemic, nonprediabetic, or female participants. CONCLUSIONS These findings suggest a stronger association between elevated hsCRP and future AIP changes than vice versa and highlight the urgent need for combined assessment and management of chronic inflammation and atherogenic dyslipidemia in primary prevention, particularly for those with subclinical risks of T2D.
Collapse
Affiliation(s)
- Yulong Lan
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North Rd, Shantou, 515041, China
- Centre for Precision Health, Edith Cowan University, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
| | - Guanzhi Chen
- China Medical University, Shenyang, 110122, China
| | - Dan Wu
- Centre for Precision Health, Edith Cowan University, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Xiong Ding
- School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Zegui Huang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North Rd, Shantou, 515041, China
| | - Xianxuan Wang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North Rd, Shantou, 515041, China
| | - Lois Balmer
- Centre for Precision Health, Edith Cowan University, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
| | - Xingang Li
- Centre for Precision Health, Edith Cowan University, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
| | - Manshu Song
- Centre for Precision Health, Edith Cowan University, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Wei Wang
- Centre for Precision Health, Edith Cowan University, Building 21/270 Joondalup Drive, Perth, WA, 6027, Australia.
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, 100069, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271099, China.
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, 57 Xinhua East Rd, Tangshan, 063000, China.
| | - Youren Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia North Rd, Shantou, 515041, China.
| |
Collapse
|
15
|
A Transient Inflammatory Response Induced by Lipopolysaccharide Infusion Lowers Markers of Endogenous Cholesterol and Bile Acid Synthesis in Healthy Normocholesterolemic Young Men. Biomedicines 2023; 11:biomedicines11010126. [PMID: 36672634 PMCID: PMC9855383 DOI: 10.3390/biomedicines11010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Inflammation is associated with changes in plasma lipids, lipoproteins, and cholesterol efflux capacity (CEC). It is unknown if the changes in lipids and lipoproteins during inflammation are related to changes in cholesterol absorption, synthesis, and bile acid synthesis. We, therefore, examined the effects of acute lipopolysaccharide (LPS)-induced transient systemic inflammation on lipids, lipoproteins, CEC, and markers of cholesterol metabolism. We also evaluated whether markers for cholesterol metabolism at baseline predict the intensity of the inflammatory response. Eight healthy young subjects received LPS infusion, and blood was sampled for the following 24 h. In addition to lipids, lipoproteins, and CEC, we also measured markers for cholesterol absorption and synthesis, bile acid synthesis, and inflammation. Compared with baseline, plasma total cholesterol, low-density lipoprotein cholesterol, and CEC decreased, while triglycerides increased in the 24 h following LPS infusion. TC-standardized levels of cholesterol synthesis markers (lathosterol, lanosterol, and desmosterol) and a bile acid synthesis marker (7α-OH-cholesterol) also decreased, with no changes in cholesterol absorption markers (campesterol, sitosterol, and cholestanol). Baseline TC-standardized levels of desmosterol and 7α-OH-cholesterol were positively correlated with concentrations of various inflammatory markers. Changes in TC-standardized desmosterol and 7α-OH-cholesterol were negatively correlated with concentrations of inflammatory markers. LPS infusion reduced endogenous cholesterol synthesis and bile acid synthesis in healthy young men.
Collapse
|
16
|
Paine A, Brookes PS, Bhattacharya S, Li D, De La Luz Garcia-Hernandez M, Tausk F, Ritchlin C. Dysregulation of Bile Acids, Lipids, and Nucleotides in Psoriatic Arthritis Revealed by Unbiased Profiling of Serum Metabolites. Arthritis Rheumatol 2023; 75:53-63. [PMID: 35818333 PMCID: PMC9797425 DOI: 10.1002/art.42288] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The transition from psoriasis to psoriatic arthritis (PsA) occurs in 20-30% of patients; however, the mechanisms underlying the emergence of musculoskeletal disease are not well understood. Metabolic disease is prevalent in psoriasis patients, but whether metabolic factors, other than obesity, increase arthritis risk in psoriasis patients is not known. This study was undertaken to investigate the link between metabolic changes and disease progression in psoriasis patients. METHODS To characterize the metabolic alterations during the progression of arthritis in psoriasis patients, we analyzed cross-sectional healthy controls and PsA samples and longitudinal psoriasis serum samples, before and after PsA onset. Nontargeted metabolomic profiling was performed using liquid chromatography mass spectrometry. RESULTS We identified several serum metabolites that differed between PsA patients, psoriasis patients, and healthy controls. Differentially abundant bile acids, purines, pyrimidines, glutathione, lipids, and amino acid metabolites were noted in these 3 groups. We also noted differences between psoriasis patients who progressed and those who did not progress to PsA. Bile acid and butyrate levels were depressed in those who progressed to PsA compared to those who did not, and the level of inflammatory lipid mediators increased following PsA diagnosis. In particular, the combination of leukotriene B4 and glycoursodeoxycholic acid sulfate were sensitive and specific predictors of PsA progression. CONCLUSION We observed notable differences in bile acid, purine, lipid, and amino acid-derived metabolites, among the healthy controls, psoriasis patients, and PsA patients and identified changes during the transition from psoriasis to PsA. The decreased bile acid and butyrate levels and elevated guanine levels in psoriasis patients at risk for PsA were particularly striking and may reflect gut microbial dysbiosis and dysregulated hepatic metabolism, leading to altered proliferation of immune cells and enhanced cytokine expression.
Collapse
Affiliation(s)
- Ananta Paine
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Paul S. Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Maria De La Luz Garcia-Hernandez
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Francisco Tausk
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Christopher Ritchlin
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
17
|
Gulshan K. Crosstalk Between Cholesterol, ABC Transporters, and PIP2 in Inflammation and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:353-377. [PMID: 36988888 DOI: 10.1007/978-3-031-21547-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The lowering of plasma low-density lipoprotein cholesterol (LDL-C) is an easily achievable and highly reliable modifiable risk factor for preventing cardiovascular disease (CVD), as validated by the unparalleled success of statins in the last three decades. However, the 2021 American Heart Association (AHA) statistics show a worrying upward trend in CVD deaths, calling into question the widely held belief that statins and available adjuvant therapies can fully resolve the CVD problem. Human biomarker studies have shown that indicators of inflammation, such as human C-reactive protein (hCRP), can serve as a reliable risk predictor for CVD, independent of all traditional risk factors. Oxidized cholesterol mediates chronic inflammation and promotes atherosclerosis, while anti-inflammatory therapies, such as an anti-interleukin-1 beta (anti-IL-1β) antibody, can reduce CVD in humans. Cholesterol removal from artery plaques, via an athero-protective reverse cholesterol transport (RCT) pathway, can dampen inflammation. Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a role in RCT by promoting adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux from arterial macrophages. Cholesterol crystals activate the nod-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome in advanced atherosclerotic plaques, leading to IL-1β release in a PIP2-dependent fashion. PIP2 thus is a central player in CVD pathogenesis, serving as a critical link between cellular cholesterol levels, ATP-binding cassette (ABC) transporters, and inflammasome-induced IL-1β release.
Collapse
Affiliation(s)
- Kailash Gulshan
- College of Sciences and Health Professions, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
18
|
Fadaei R, Mohassel Azadi S, Rhéaume E, Khazaie H. High-density lipoprotein cholesterol efflux capacity in patients with obstructive sleep apnea and its relation with disease severity. Lipids Health Dis 2022; 21:116. [PMID: 36344946 PMCID: PMC9639319 DOI: 10.1186/s12944-022-01723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is linked to an accelerated risk of cardiovascular disease (CVD). Some key CVD risk factors are present in patients suffering from OSA such as hypertension, inflammation, oxidative stress, and dyslipidemia. High-density lipoprotein (HDL) cholesterol efflux capacity (CEC) is proposed as a reliable biomarker of HDL function and the present study aimed to quantify this biomarker in patients with OSA. Methods ATP binding cassette subfamily A member 1 (ABCA1), non-ABCA1, and total CEC were determined in 69 polysomnographic-confirmed OSA patients and 23 controls. Moreover, paraoxonase (PON) activities, high-sensitivity C-reactive protein (hsCRP), apolipoprotein B (apo B), and apolipoprotein A-I (apo A-I) circulating levels were quantified in the studied population. Results: All CEC measures were reduced in the OSA group compared to the control group. Strikingly, ABCA1 CEC was diminished in severe OSA in comparison with mild OSA. Furthermore, PON activities and apo A-I showed lower levels, while hsCRP and apo B were elevated in OSA patients compared to controls. Moreover, ABCA1 CEC showed an inverse association with hsCRP and a positive association with apo A-I, while non-ABCA1 CEC presented an association with HDL-C. Conclusion These results suggest the presence of an impaired HDL function in OSA. In particular, ABCA1 CEC was associated with disease severity and inflammation which could be a factor increasing the risk of CVD. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01723-w.
Collapse
Affiliation(s)
- Reza Fadaei
- grid.412112.50000 0001 2012 5829Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samaneh Mohassel Azadi
- grid.411705.60000 0001 0166 0922Department of Clinical Biochemistry, Faculty of Medicine Tehran University of Medical Sciences, Tehran, Iran
| | - Eric Rhéaume
- grid.482476.b0000 0000 8995 9090Montreal Heart Institute, 5000 Belanger Street, Montreal, H1T 1C8 Canada ,grid.14848.310000 0001 2292 3357Department of medicine, Université de Montréal, 2900 Edouard-Montpetit boulevard, Montreal, H3T 1J4 Canada
| | - Habibolah Khazaie
- grid.412112.50000 0001 2012 5829Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Buendia J, Sears S, Mgbere O. Prevalence and risk factors of high cholesterol and triglycerides among people with HIV in Texas. AIDS Res Ther 2022; 19:43. [PMID: 36123679 PMCID: PMC9484232 DOI: 10.1186/s12981-022-00467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background People with HIV (PWH) commonly have elevated cholesterol and triglycerides levels that have been linked to medications. However, healthy behaviors including lifestyle changes can lower high cholesterol (CHOL) or high triglycerides (TG), thereby reducing individual risk for cardiovascular diseases. This study aimed to determine the prevalence and risk factors associated with high CHOL or TG among PWH in Texas. Methods Cross-sectional data of 981 PWH from the 2015–2017 Texas and Houston Medical Monitoring Projects were examined. High CHOL or TG was identified by medical chart diagnosis, CHOL or TG medication use, or most recent fasting lab ≥ 200 mg/dl (total CHOL) or ≥ 150 mg/dl (TG). High CHOL or TG associations with sociodemographic and clinical characteristics were assessed using Rao-Scott chi-square tests. Prevalence of high CHOL or TG development was calculated using multivariable logistic regression model. Results High CHOL or TG prevalence was 41% with participants being mostly male (73%), ≥ 40 years (68%), with overweight (31%) or obesity (28%), and virally suppressed (62%). Compared with PWH < 40 years of age, PWH in their 40s, 50s, and ≥ 60s were 57%, 64%, and 62% more likely to have high CHOL or TG, respectively. Participants with overweight and obesity were 41% and 30% more likely to have high CHOL or TG than those with normal weight (BMI: 18.5– < 25), respectively. Conclusion Since high CHOL and TG are modifiable CVD risk factors, increased education and lifestyle modification interventions are warranted to prevent the development of high CHOL or TG among PWH. Supplementary Information The online version contains supplementary material available at 10.1186/s12981-022-00467-y.
Collapse
Affiliation(s)
- Justin Buendia
- Texas Department of State Health Services, Austin, TX, USA
| | - Sabeena Sears
- Texas Department of State Health Services, Austin, TX, USA
| | - Osaro Mgbere
- Disease Prevention and Control Division, Houston Health Department, Houston, TX, 77054, USA.
| |
Collapse
|
20
|
Cheng W, Rosolowski M, Boettner J, Desch S, Jobs A, Thiele H, Buettner P. High-density lipoprotein cholesterol efflux capacity and incidence of coronary artery disease and cardiovascular mortality: a systematic review and meta-analysis. Lipids Health Dis 2022; 21:47. [PMID: 35643463 PMCID: PMC9148501 DOI: 10.1186/s12944-022-01657-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Background The preventive effect of cholesterol efflux capacity (CEC) on the progression of atherosclerotic lesions has been confirmed in animal models, but findings in the population are inconsistent. Therefore, this meta-analysis aimed to systematically investigate the relationship of CEC with coronary artery disease (CAD) and cardiovascular mortality in a general population. Methods Four electronic databases (PubMed, Embase database, Cochrane Library, Web of Science) were searched from inception to February 1st, 2022 for relevant studies, without any language restriction. For continuous variables, the mean and standard deviation (SD), maximum adjusted odds ratios (ORs), relative risks (RRs), or hazard ratios (HRs) and 95% confidence intervals (CIs) were extracted. The random-effects model was adopted to calculate the pooled results, and dose-response analyses were conducted. All pooled results were expressed by standardized mean difference (SMD) and ORs. Results Finally, 18 observational studies were included. Compared with the non-CAD group, the CAD group (SMD -0.48, 95% CI − 0.66 to − 0.30; I2 88.9%) had significantly lower CEC. In the high-CEC population, the risks of CAD (OR 0.52, 95% CI 0.37 to 0.71; I2 81%) significantly decreased, and a linear negative dose-response was detected. However, an association between CEC and the risk of cardiovascular mortality was not found (OR 0.44, 95% CI 0.18 to 1.06; I2 83.2%). Conclusions This meta-analysis suggests that decreased CEC is strongly associated with the risk of CAD, independent of HDL-C level. However, a decreased CEC seems not to be related to cardiovascular mortality. Meanwhile, CEC is linearly negatively correlated with the risk of CAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01657-3.
Collapse
|
21
|
Chagué C, Gautier T, Dal Zuffo L, Pais de Barros J, Wetzel A, Tarris G, Pallot G, Martin L, Valmary‐Degano S, Deckert V, Lagrost L, Daguindau E, Saas P. High-density lipoprotein infusion protects from acute graft-versus-host disease in experimental allogeneic hematopoietic cell transplantation. Am J Transplant 2022; 22:1350-1361. [PMID: 35038785 PMCID: PMC9306461 DOI: 10.1111/ajt.16960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/25/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major limitation of the therapeutic potential of allogeneic hematopoietic cell transplantation. Lipopolysaccharides (LPS) derived from intestinal gram-negative bacteria are well-known aGVHD triggers and amplifiers. Here, we explored the LPS metabolism in aGVHD mouse models using an innovative quantification method. We demonstrated that systemic LPS accumulation after transplantation was due, at least partly, to a defect in its clearance through lipoprotein-mediated transport to the liver (i.e., the so-called reverse LPS transport). After transplantation, reduced circulating HDL concentration impaired LPS neutralization and elimination through biliary flux. Accordingly, HDL-deficient (Apoa1tm1Unc ) recipient mice developed exacerbated aGVHD. Repeated administration of HDL isolated from human plasma significantly decreased the mortality and the severity of aGVHD. While the potential role of HDL in scavenging circulating LPS was examined in this study, it appears that HDL plays a more direct immunomodulatory role by limiting or controlling aGVHD. Notably, HDL infusion mitigated liver aGVHD by diminishing immune infiltration (e.g., interferon-γ-secreting CD8+ T cells and non-resident macrophages), systemic and local inflammation (notably cholangitis). Hence, our results revealed the interest of HDL-based therapies in the prevention of aGVHD.
Collapse
Affiliation(s)
- Cécile Chagué
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| | - Thomas Gautier
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Ludivine Dal Zuffo
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| | | | - Audrey Wetzel
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| | - Georges Tarris
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance,Service d’Anatomie et Cytologie PathologiquesCHU DijonDijonFrance
| | - Gaëtan Pallot
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Laurent Martin
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance,Service d’Anatomie et Cytologie PathologiquesCHU DijonDijonFrance
| | | | - Valérie Deckert
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Laurent Lagrost
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Etienne Daguindau
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance,Service d’HématologieCHU BesançonBesançonFrance
| | - Philippe Saas
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| |
Collapse
|
22
|
Kingwell BA, Nicholls SJ, Velkoska E, Didichenko SA, Duffy D, Korjian S, Gibson CM. Antiatherosclerotic Effects of CSL112 Mediated by Enhanced Cholesterol Efflux Capacity. J Am Heart Assoc 2022; 11:e024754. [PMID: 35411789 PMCID: PMC9238469 DOI: 10.1161/jaha.121.024754] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Approximately 12% of patients with acute myocardial infarction (AMI) experience a recurrent major adverse cardiovascular event within 1 year of their primary event, with most occurring within the first 90 days. Thus, there is a need for new therapeutic approaches that address this 90-day post-AMI high-risk period. The formation and eventual rupture of atherosclerotic plaque that leads to AMI is elicited by the accumulation of cholesterol within the arterial intima. Cholesterol efflux, a mechanism by which cholesterol is removed from plaque, is predominantly mediated by apolipoprotein A-I, which is rapidly lipidated to form high-density lipoprotein in the circulation and has atheroprotective properties. In this review, we outline how cholesterol efflux dysfunction leads to atherosclerosis and vulnerable plaque formation, including inflammatory cell recruitment, foam cell formation, the development of a lipid/necrotic core, and degradation of the fibrous cap. CSL112, a human plasma-derived apolipoprotein A-I, is in phase 3 of clinical development and aims to reduce the risk of recurrent cardiovascular events in patients with AMI in the first 90 days after the index event by increasing cholesterol efflux. We summarize evidence from preclinical and clinical studies suggesting that restoration of cholesterol efflux by CSL112 can stabilize plaque by several anti-inflammatory/immune-regulatory processes. These effects occur rapidly and could stabilize vulnerable plaques in patients who have recently experienced an AMI, thereby reducing the risk of recurrent major adverse cardiovascular events in the high-risk early post-AMI period.
Collapse
Affiliation(s)
| | | | | | | | | | - Serge Korjian
- PERFUSE Study Group, Cardiovascular Division Departments of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - C Michael Gibson
- PERFUSE Study Group, Cardiovascular Division Departments of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| |
Collapse
|
23
|
Diggins CE, Russo SC, Lo J. Metabolic Consequences of Antiretroviral Therapy. Curr HIV/AIDS Rep 2022; 19:141-153. [PMID: 35299263 DOI: 10.1007/s11904-022-00600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review reports on published studies describing metabolic changes associated with antiretroviral therapy (ART) to treat HIV disease including a historical perspective of earlier ART agents, but with the main focus on newer ART agents currently in use. RECENT FINDINGS Studies from different countries around the world have shown that integrase inhibitor (INSTI)-based regimens as well as tenofovir alafenamide (TAF) are associated with weight gain, with women and people of black race at especially high risk. Some studies preliminarily suggest worsened metabolic outcomes associated with this weight gain including adverse effects on glucose homeostasis. Antiretroviral therapy can affect weight, adipose tissue, glucose, and lipids. As obesity is prevalent and increasing among people with HIV, awareness of risk factors for weight gain, including the ART medications associated with greater weight gain, are needed in order to inform prevention efforts. Further research is needed to better understand the long-term health consequences of INSTI- and TAF-associated weight increases.
Collapse
Affiliation(s)
- Caroline E Diggins
- Metabolism Unit, Division of Endocrinology, Massachusetts General Hospital, LON-207, 55 Fruit Street, Boston, MA, 02114, USA
| | - Samuel C Russo
- Metabolism Unit, Division of Endocrinology, Massachusetts General Hospital, LON-207, 55 Fruit Street, Boston, MA, 02114, USA
| | - Janet Lo
- Metabolism Unit, Division of Endocrinology, Massachusetts General Hospital, LON-207, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
24
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
25
|
Anto L, Blesso CN. Interplay Between Diet, the Gut Microbiome, and Atherosclerosis: Role of Dysbiosis and Microbial Metabolites on Inflammation and Disordered Lipid Metabolism. J Nutr Biochem 2022; 105:108991. [DOI: 10.1016/j.jnutbio.2022.108991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
|
26
|
|
27
|
Zhao Q, Wang Z, Meyers AK, Madenspacher J, Zabalawi M, Zhang Q, Boudyguina E, Hsu FC, McCall CE, Furdui CM, Parks JS, Fessler MB, Zhu X. Hematopoietic Cell-Specific SLC37A2 Deficiency Accelerates Atherosclerosis in LDL Receptor-Deficient Mice. Front Cardiovasc Med 2021; 8:777098. [PMID: 34957260 PMCID: PMC8702732 DOI: 10.3389/fcvm.2021.777098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Macrophages play a central role in the pathogenesis of atherosclerosis. Our previous study demonstrated that solute carrier family 37 member 2 (SLC37A2), an endoplasmic reticulum-anchored phosphate-linked glucose-6-phosphate transporter, negatively regulates macrophage Toll-like receptor activation by fine-tuning glycolytic reprogramming in vitro. Whether macrophage SLC37A2 impacts in vivo macrophage inflammation and atherosclerosis under hyperlipidemic conditions is unknown. We generated hematopoietic cell-specific SLC37A2 knockout and control mice in C57Bl/6 Ldlr−/− background by bone marrow transplantation. Hematopoietic cell-specific SLC37A2 deletion in Ldlr−/− mice increased plasma lipid concentrations after 12-16 wks of Western diet induction, attenuated macrophage anti-inflammatory responses, and resulted in more atherosclerosis compared to Ldlr−/− mice transplanted with wild type bone marrow. Aortic root intimal area was inversely correlated with plasma IL-10 levels, but not total cholesterol concentrations, suggesting inflammation but not plasma cholesterol was responsible for increased atherosclerosis in bone marrow SLC37A2-deficient mice. Our in vitro study demonstrated that SLC37A2 deficiency impaired IL-4-induced macrophage activation, independently of glycolysis or mitochondrial respiration. Importantly, SLC37A2 deficiency impaired apoptotic cell-induced glycolysis, subsequently attenuating IL-10 production. Our study suggests that SLC37A2 expression is required to support alternative macrophage activation in vitro and in vivo. In vivo disruption of hematopoietic SLC37A2 accelerates atherosclerosis under hyperlipidemic pro-atherogenic conditions.
Collapse
Affiliation(s)
- Qingxia Zhao
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Zhan Wang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Allison K Meyers
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jennifer Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, United States
| | - Manal Zabalawi
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Qianyi Zhang
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Elena Boudyguina
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Charles E McCall
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John S Parks
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, United States
| | - Xuewei Zhu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
28
|
Kajani S, Curley S, O'Reilly ME, Yin X, Dillon ET, Guo W, Nilaweera KN, Brennan L, Roche HM, McGillicuddy FC. Sodium salicylate rewires hepatic metabolic pathways in obesity and attenuates IL-1β secretion from adipose tissue - implications for obesity-impaired reverse cholesterol transport. Mol Metab 2021; 56:101425. [PMID: 34954383 PMCID: PMC8762459 DOI: 10.1016/j.molmet.2021.101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction High-fat diet (HFD)-induced obesity impairs clearance of cholesterol through the Reverse Cholesterol Transport (RCT) pathway, with downregulation in hepatic expression of cholesterol and bile acid transporters, namely ABCG5/8 and ABCB11, and reduced high-density lipoprotein (HDL) cholesterol efflux capacity (CEC). In the current study, we hypothesized that the development of hepatosteatosis, secondary to adipose-tissue dysfunction, contributes to obesity-impaired RCT and that such effects could be mitigated using the anti-inflammatory drug sodium salicylate (NaS). Materials and methods C57BL/6J mice, fed HFD ± NaS or low-fat diet (LFD) for 24 weeks, underwent glucose and insulin tolerance testing. The 3H-cholesterol movement from macrophage-to-feces was assessed in vivo. HDL-CEC was determined ex vivo. Cytokine secretion from adipose-derived stromal vascular fraction (SVF) cells was measured ex vivo. Liver and HDL proteins were determined by mass spectrometry and analyzed using Ingenuity Pathway Analysis. Results NaS delayed HFD-induced weight gain, abrogated priming of pro-IL-1β in SVFs, attenuated insulin resistance, and prevented steatohepatitis (ectopic fat accumulation in the liver). Prevention of hepatosteatosis coincided with increased expression of PPAR-alpha/beta-oxidation proteins with NaS and reduced expression of LXR/RXR-induced proteins including apolipoproteins. The latter effects were mirrored within the HDL proteome in circulation. Despite remarkable protection shown against steatosis, HFD-induced hypercholesterolemia and repression of the liver-to-bile cholesterol transporter, ABCG5/8, could not be rescued with NaS. Discussions and conclusions The cardiometabolic health benefits of NaS may be attributed to the reprogramming of hepatic metabolic pathways to increase fatty acid utilization in the settings of nutritional overabundance. Reduced hepatic cholesterol levels, coupled with reduced LXR/RXR-induced proteins, may underlie the lack of rescue of ABCG5/8 expression with NaS. This remarkable protection against HFD-induced hepatosteatosis did not translate to improvements in cholesterol homeostasis. Sodium salicylate (NaS) initially delays weight-gain in mice fed high-fat diet (HFD) - catch-up evident in weeks 12–24. NaS prevents HFD-induced insulin resistance, hepatosteatosis and pro-IL-1β priming in adipose tissue even upon weight-gain. Hepatic expression of proteins involved in beta oxidation, oxidative phosphorylation and TCA cycle upregulated with NaS. Hepatic expression of LXR/RXR proteins eg. apolipoproteins reduced with NaS; these effects were mirrored in HDL proteome. NaS failed to improve HFD-impaired Reverse Cholesterol Transport or hypercholesterolemia despite preventing hepatosteatosis.
Collapse
Affiliation(s)
- Sarina Kajani
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Sean Curley
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Marcella E O'Reilly
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Xiaofei Yin
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | | | - Weili Guo
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Kanishka N Nilaweera
- Teagasc Food Research Centre; VistaMilk Research Centre, Moorepark, Fermoy, Ireland
| | - Lorraine Brennan
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Helen M Roche
- Diabetes Complications Research Centre; UCD Conway Institute; Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science; UCD Institute of Food and Health
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health.
| |
Collapse
|
29
|
Shridas P, Patrick AC, Tannock LR. Role of Serum Amyloid A in Abdominal Aortic Aneurysm and Related Cardiovascular Diseases. Biomolecules 2021; 11:biom11121883. [PMID: 34944527 PMCID: PMC8699432 DOI: 10.3390/biom11121883] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Epidemiological data positively correlate plasma serum amyloid A (SAA) levels with cardiovascular disease severity and mortality. Studies by several investigators have indicated a causal role for SAA in the development of atherosclerosis in animal models. Suppression of SAA attenuates the development of angiotensin II (AngII)-induced abdominal aortic aneurysm (AAA) formation in mice. Thus, SAA is not just a marker for cardiovascular disease (CVD) development, but it is a key player. However, to consider SAA as a therapeutic target for these diseases, the pathway leading to its involvement needs to be understood. This review provides a brief description of the pathobiological significance of this enigmatic molecule. The purpose of this review is to summarize the data relevant to its role in the development of CVD, the pitfalls in SAA research, and unanswered questions in the field.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40536, USA
| | - Avery C Patrick
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Lisa R Tannock
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40536, USA
- Veterans Affairs Lexington, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
30
|
Dehiba F, Allaoui A, Benomar S, Yahia S, Guillén N, Rodríguez-Yoldi MJ, Osada J, Boualga A. Protective properties of sardine and chickpea protein hydrolysates against lipoprotein oxidative damages and some inflammation markers in hypercholesterolemic rats. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-210548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE: This study evaluated the effect of sardine (SPH) and chickpea protein hydrolysates (CPH) on oxidant stress and inflammatory profile in cholesterol-fed rats. METHODS: The experiment was undertaken for thirty days on 18 cholesterol-fed Wistar rats (220±10 g) divided into three groups and receiving 1 g/kg of body weight either chickpea protein hydrolysate (CPH), sardine protein hydrolysate (SPH) or casein in water (CG). RESULTS: Compared to CG, SPH and CPH treatment reduced cholesterol, hydroperoxide and malondialdehyde contents in serum, lipoproteins, erythrocytes and aorta. These same treated groups showed also lower serum isoprostane levels. However, serum paraoxonase activity and HDL-antioxidant property were improved only by CPH compared to CG. SOD activity of aorta and erythrocytes was higher in CPH but in SPH group, SOD activity was lower in these tissues and remained unchanged in serum. Furthermore, CPH and SPH stimulated glutathione peroxidase and catalase activities of aorta and erythrocytes. In CPH group, nitric oxide levels of serum, erythrocytes and aorta were increased by respectively 1.4- to 1.8-fold compared to CG and SPH. In addition, among the three groups, CPH exhibited the best anti-inflammatory effect by lowering serum C reactive protein, uric acid and albumin concentrations. CONCLUSIONS: SPH and particularly CPH possess antioxidant and anti-inflammatory properties and could be useful as nutraceuticals for health improving and preventing numerous disorders such as cardiovascular diseases.
Collapse
Affiliation(s)
- Faiza Dehiba
- Laboratoire de Nutrition Clinique et Métabolique, Faculty of Natural and Life Sciences, University of Oran1, Thematic Agency of Research in Health Sciences, 31000 Oran, Algeria
- École Supérieure en Sciences Biologiques d’Oran, 31000 Oran, Algérie
| | - Amine Allaoui
- Laboratoire de Nutrition Clinique et Métabolique, Faculty of Natural and Life Sciences, University of Oran1, Thematic Agency of Research in Health Sciences, 31000 Oran, Algeria
- Amine Allaoui, Department of Biology, Faculty of Natural and Life Sciences, Université Blida1, Blida, 09000, Algeria
| | - Souhila Benomar
- Laboratoire de Nutrition Clinique et Métabolique, Faculty of Natural and Life Sciences, University of Oran1, Thematic Agency of Research in Health Sciences, 31000 Oran, Algeria
| | - Sanaa Yahia
- Laboratoire de Nutrition Clinique et Métabolique, Faculty of Natural and Life Sciences, University of Oran1, Thematic Agency of Research in Health Sciences, 31000 Oran, Algeria
| | - Natalia Guillén
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, CIBERobn (ISCIII), IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - María Jesús Rodríguez-Yoldi
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, CIBERobn (ISCIII), IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - Jesús Osada
- Departamento de Farmacología y Fisiologa, Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, CIBERobn (ISCIII), IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - Ahmed Boualga
- Laboratoire de Nutrition Clinique et Métabolique, Faculty of Natural and Life Sciences, University of Oran1, Thematic Agency of Research in Health Sciences, 31000 Oran, Algeria
| |
Collapse
|
31
|
Bélanger V, Benmoussa A, Napartuk M, Warin A, Laverdière C, Marcoux S, Levy E, Marcil V. The Role of Oxidative Stress and Inflammation in Cardiometabolic Health of Children During Cancer Treatment and Potential Impact of Key Nutrients. Antioxid Redox Signal 2021; 35:293-318. [PMID: 33386063 DOI: 10.1089/ars.2020.8143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: The 5-year survival rate of childhood cancers is now reaching 84%. However, treatments cause numerous acute and long-term side effects. These include cardiometabolic complications, namely hypertension, dyslipidemia, hyperglycemia, insulin resistance, and increased fat mass. Recent Advances: Many antineoplastic treatments can induce oxidative stress (OxS) and trigger an inflammatory response, which may cause acute and chronic side effects. Critical Issues: Clinical studies have reported a state of heightened OxS and inflammation during cancer treatment in children as the result of treatment cytotoxic action on both cancerous and noncancerous cells. Higher levels of OxS and inflammation are associated with treatment side effects and with the development of cardiometabolic complications. Key nutrients (omega-3 polyunsaturated fatty acids, dietary antioxidants, probiotics, and prebiotics) have the potential to modulate inflammatory and oxidative responses and, therefore, could be considered in the search for adverse complication prevention means as long as antineoplastic treatment efficiency is maintained. Future Directions: There is a need to better understand the relationship between cardiometabolic complications, OxS, inflammation and diet during pediatric cancer treatment, which represents the ultimate goal of this review. Antioxid. Redox Signal. 35, 293-318.
Collapse
Affiliation(s)
- Véronique Bélanger
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Abderrahim Benmoussa
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Mélanie Napartuk
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Alexandre Warin
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada
| | | | - Sophie Marcoux
- Department of Public Health & Preventive Medicine, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| |
Collapse
|
32
|
Opoku E, Traughber CA, Zhang D, Iacano AJ, Khan M, Han J, Smith JD, Gulshan K. Gasdermin D Mediates Inflammation-Induced Defects in Reverse Cholesterol Transport and Promotes Atherosclerosis. Front Cell Dev Biol 2021; 9:715211. [PMID: 34395445 PMCID: PMC8355565 DOI: 10.3389/fcell.2021.715211] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023] Open
Abstract
Activation of inflammasomes, such as Nlrp3 and AIM2, can exacerbate atherosclerosis in mice and humans. Gasdermin D (GsdmD) serves as a final executor of inflammasome activity, by generating membrane pores for the release of mature Interleukin-1beta (IL-1β). Inflammation dampens reverse cholesterol transport (RCT) and promotes atherogenesis, while anti-IL-1β antibodies were shown to reduce cardiovascular disease in humans. Though Nlrp3/AIM2 and IL-1β nexus is an emerging atherogenic pathway, the direct role of GsdmD in atherosclerosis is not yet fully clear. Here, we used in vivo Nlrp3 inflammasome activation to show that the GsdmD-/- mice release ∼80% less IL-1β vs. Wild type (WT) mice. The GsdmD-/- macrophages were more resistant to Nlrp3 inflammasome mediated reduction in cholesterol efflux, showing ∼26% decrease vs. ∼60% reduction in WT macrophages. GsdmD expression in macrophages exacerbated foam cell formation in an IL-1β dependent fashion. The GsdmD-/- mice were resistant to Nlrp3 inflammasome mediated defect in RCT, with ∼32% reduction in plasma RCT vs. ∼57% reduction in WT mice, ∼17% reduction in RCT to liver vs. 42% in WT mice, and ∼37% decrease in RCT to feces vs. ∼61% in WT mice. The LDLr antisense oligonucleotides (ASO) induced hyperlipidemic mouse model showed the role of GsdmD in promoting atherosclerosis. The GsdmD-/- mice exhibit ∼42% decreased atherosclerotic lesion area in females and ∼33% decreased lesion area in males vs. WT mice. The atherosclerotic plaque-bearing sections stained positive for the cleaved N-terminal fragment of GsdmD, indicating cleavage of GsdmD in atherosclerotic plaques. Our data show that GsdmD mediates inflammation-induced defects in RCT and promotes atherosclerosis.
Collapse
Affiliation(s)
- Emmanuel Opoku
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Cynthia Alicia Traughber
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States,Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, United States,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - David Zhang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Amanda J. Iacano
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Mariam Khan
- Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, United States,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Juying Han
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Jonathan D. Smith
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Kailash Gulshan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, United States,Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, United States,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States,*Correspondence: Kailash Gulshan, ;
| |
Collapse
|
33
|
Teklu M, Parel PM, Mehta NN. Psoriasis and Cardiometabolic Diseases: The Impact of Inflammation on Vascular Health. PSORIASIS-TARGETS AND THERAPY 2021; 11:99-108. [PMID: 34322373 PMCID: PMC8312325 DOI: 10.2147/ptt.s320016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
Psoriasis is a common chronic inflammatory condition associated with a higher risk of cardiovascular disease. Psoriasis confers a dose-dependent increase in risk for the metabolic syndrome and its components. The metabolic syndrome and its components have been associated with higher coronary atherosclerosis in psoriasis and cardiovascular events in the general population. In this review, we discuss the role of inflammation and psoriasis in cardiometabolic diseases with a focus on the metabolic syndrome and its components. We highlight the relationship between psoriasis and important cardiovascular risk factors encompassed by obesity, dyslipidemia, insulin resistance and hypertension. Furthermore, we briefly highlight literature on anti-inflammatory therapies and their impact on the components of the metabolic syndrome as well as directly quantified coronary atherosclerosis burden.
Collapse
Affiliation(s)
- Meron Teklu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip M Parel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
35
|
Chait A, Wang S, Goodspeed L, Gomes D, Turk KE, Wietecha T, Tang J, Storey C, O'Brien KD, Rubinow KB, Tang C, Vaisar T, Gharib SA, Lusis AJ, Den Hartigh LJ. Sexually Dimorphic Relationships Among Saa3 (Serum Amyloid A3), Inflammation, and Cholesterol Metabolism Modulate Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2021; 41:e299-e313. [PMID: 33761762 PMCID: PMC8159856 DOI: 10.1161/atvbaha.121.316066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Diego Gomes
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Katherine E Turk
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Tomasz Wietecha
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Department of Medicine, Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle
| | - Jingjing Tang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Carl Storey
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Kevin D O'Brien
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Department of Medicine, Division of Cardiology (T.W., K.D.O.), University of Washington, Seattle
| | - Katya B Rubinow
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Chongren Tang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Tomas Vaisar
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, Computational Medicine Core, Department of Medicine, Center for Lung Biology (S.A.G.), University of Washington, Seattle
| | - Aldons J Lusis
- Department of Human Genetics, University of California, Los Angeles (A.J.L.)
| | - Laura J Den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition (A.C., S.W., L.G., D.G., K.E.T., J.T., C.S., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
- Diabetes Institute (A.C., S.W., L.G., D.G., K.E.T., T.W., J.T., C.S., K.D.O., K.B.R., C.T., T.V., L.J.D.H.), University of Washington, Seattle
| |
Collapse
|
36
|
Coimbra S, Reis F, Valente MJ, Rocha S, Catarino C, Rocha-Pereira P, Sameiro-Faria M, Bronze-da-Rocha E, Belo L, Santos-Silva A. Subpopulations of High-Density Lipoprotein: Friends or Foes in Cardiovascular Disease Risk in Chronic Kidney Disease? Biomedicines 2021; 9:554. [PMID: 34065648 PMCID: PMC8157071 DOI: 10.3390/biomedicines9050554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Dyslipidemia is a major traditional risk factor for cardiovascular disease (CVD) in chronic kidney disease (CKD) patients, although the altered lipid profile does not explain the number and severity of CVD events. High-density lipoprotein (HDL) is a heterogeneous (size, composition, and functionality) population of particles with different atherogenic or atheroprotective properties. HDL-cholesterol concentrations per se may not entirely reflect a beneficial or a risk profile for CVD. Large HDL in CKD patients may have a unique proteome and lipid composition, impairing their cholesterol efflux capacity. This lack of HDL functionality may contribute to the paradoxical coexistence of increased large HDL and enhanced risk for CVD events. Moreover, CKD is associated with inflammation, oxidative stress, diabetes, and/or hypertension that are able to interfere with the anti-inflammatory, antioxidative, and antithrombotic properties of HDL subpopulations. How these changes interfere with HDL functions in CKD is still poorly understood. Further studies are warranted to fully clarify if different HDL subpopulations present different functionalities and/or atheroprotective effects. To achieve this goal, the standardization of techniques would be valuable.
Collapse
Affiliation(s)
- Susana Coimbra
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), 4585-116 Gandra-Paredes, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Maria João Valente
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Susana Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Cristina Catarino
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Petronila Rocha-Pereira
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
- Chemistry Department, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Maria Sameiro-Faria
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
- Hemodialysis Clinic Hospital Agostinho Ribeiro, 4610-106 Felgueiras, Portugal
| | - Elsa Bronze-da-Rocha
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Luís Belo
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| | - Alice Santos-Silva
- UCIBIO\REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.J.V.); (C.C.); (P.R.-P.); (M.S.-F.); (E.B.-d.-R.); (L.B.); (A.S.-S.)
| |
Collapse
|
37
|
Hydroxytyrosol Plays Antiatherosclerotic Effects through Regulating Lipid Metabolism via Inhibiting the p38 Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5036572. [PMID: 32685494 PMCID: PMC7330625 DOI: 10.1155/2020/5036572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/25/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Purpose Hydroxytyrosol (HT) processes multiaspect pharmacological properties such as antithrombosis and antidiabetes. The aim of this study was to explore the antistherosclerotic roles and relevant mechanisms of HT. Methods Male apoE−/− mice were randomly divided into 2 groups: the control group and the HT group (10 mg/kg/day orally). After 16 weeks, blood tissue, heart tissue, and liver tissue were obtained to detect the atherosclerotic lesions, histological analysis, lipid parameters, and inflammation. And the underlying molecular mechanisms of HT were also studied in vivo and in vitro. Results HT administration significantly reduced the extent of atherosclerotic lesions in the aorta of apoE−/− mice. We found that HT markedly lowered the levels of serum TG, TC, and LDL-C approximately by 17.4% (p = 0.004), 15.2% (p = 0.003), and 17.9% (p = 0.009), respectively, as well as hepatic TG and TC by 15.0% (p < 0.001) and 12.3% (p = 0.003), respectively, while inducing a 26.9% (p = 0.033) increase in serum HDL-C. Besides, HT improved hepatic steatosis and lipid deposition. Then, we discovered that HT could regulate the signal flow of AMPK/SREBP2 and increase the expression of ABCA1, apoAI, and SRBI. In addition, HT reduced the levels of serum CRP, TNF-α, IL-1β, and IL-6 approximately by 23.5% (p < 0.001), 27.8% (p < 0.001), 18.4% (p < 0.001), and 19.1% (p < 0.001), respectively, and induced a 1.4-fold increase in IL-10 level (p = 0.014). Further, we found that HT might regulate cholesterol metabolism via decreasing phosphorylation of p38, followed by activation of AMPK and inactivation of NF-κB, which in turn triggered the blockade of SREBP2/PCSK9 and upregulation of LDLR, apoAI, and ABCA1, finally leading to a reduction of LDL-C and increase of HDL-C in the circulation. Conclusion Our results provide the first evidence that HT displays antiatherosclerotic actions via mediating lipid metabolism-related pathways through regulating the activities of inflammatory signaling molecules.
Collapse
|
38
|
Wang X, Pei J, Zheng K, Hu X. High-density lipoprotein cholesterol levels are associated with major adverse cardiovascular events in male but not female patients with hypertension. Clin Cardiol 2021; 44:723-730. [PMID: 33786851 PMCID: PMC8119833 DOI: 10.1002/clc.23606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
Background The relationship between high‐density lipoprotein cholesterol (HDL‐C) levels and major adverse cardiovascular events (MACEs) in hypertensive patients of different sexes is unclear. Hypothesis Sex differences in the relationship between HDL‐C levels and the risk of MACEs among hypertensive patients. Methods We performed a post‐hoc analysis of data obtained from the Systolic Blood Pressure Intervention Trial (SPRINT) and explored sex‐based differences in the relationship between HDL‐C levels and MACEs among hypertensive patients using Cox proportional hazards regression. Results A total of 9323 hypertensive patients (6016 [64.53%] men and 3307 [35.47%] women) were assessed using SPRINT data. MACEs occurred in 395 (6.57%) men and 166 (5.02%) women after a mean follow‐up of 3.26 years. When HDL‐C levels were used as a continuous covariate, each 10 mg/dl increase in HDL‐C levels decreased the risk of MACEs in men (hazard ratio [HR], 0.78; 95% confidence interval [CI], 0.70–0.88; p < .0001). However, HDL‐C levels were not associated with MACEs in female hypertensive patients (HR, 1.02; 95% CI, 0.89–1.16; p = .7869). Compared with those in the first quartile, MACEs in the fourth quartile had the lowest risk among male patients (HR, 0.58; 95% CI, 0.41–0.82; p = .0023). Female patients in the fourth quartile of HDL‐C levels had an HR of 1.09 for MACEs (95% CI, 0.62–1.93; p = .7678). HDL‐C levels were not associated with the risk of MACEs among females. Conclusion Among elderly hypertensive patients, higher HDL‐C levels were associated with a lower MACE incidence in men but not in women. Unique identifier: NCT01206062.
Collapse
Affiliation(s)
- Xiaopu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyu Pei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Keyang Zheng
- Department of Cardiovascular Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinqun Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Ahmed MO, Byrne RE, Pazderska A, Segurado R, Guo W, Gunness A, Frizelle I, Sherlock M, Ahmed KS, McGowan A, Moore K, Boran G, McGillicuddy FC, Gibney J. HDL particle size is increased and HDL-cholesterol efflux is enhanced in type 1 diabetes: a cross-sectional study. Diabetologia 2021; 64:656-667. [PMID: 33169205 DOI: 10.1007/s00125-020-05320-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS The prevalence of atherosclerosis is increased in type 1 diabetes despite normal-to-high HDL-cholesterol levels. The cholesterol efflux capacity (CEC) of HDL is a better predictor of cardiovascular events than static HDL-cholesterol. This cross-sectional study addressed the hypothesis that impaired HDL function contributes to enhanced CVD risk within type 1 diabetes. METHODS We compared HDL particle size and concentration (by NMR), total CEC, ATP-binding cassette subfamily A, member 1 (ABCA1)-dependent CEC and ABCA1-independent CEC (by determining [3H]cholesterol efflux from J774-macrophages to ApoB-depleted serum), and carotid intima-media thickness (CIMT) in 100 individuals with type 1 diabetes (37.6 ± 1.2 years; BMI 26.9 ± 0.5 kg/m2) and 100 non-diabetic participants (37.7 ± 1.1 years; 27.1 ± 0.5 kg/m2). RESULTS Compared with non-diabetic participants, total HDL particle concentration was lower (mean ± SD 31.01 ± 8.66 vs 34.33 ± 8.04 μmol/l [mean difference (MD) -3.32 μmol/l]) in participants with type 1 diabetes. However, large HDL particle concentration was greater (9.36 ± 3.98 vs 6.99 ± 4.05 μmol/l [MD +2.37 μmol/l]), resulting in increased mean HDL particle size (9.82 ± 0.57 vs 9.44 ± 0.56 nm [MD +0.38 nm]) (p < 0.05 for all). Total CEC (14.57 ± 2.47%CEC/4 h vs 12.26 ± 3.81%CEC/4 h [MD +2.31%CEC/4 h]) was greater in participants with type 1 diabetes relative to non-diabetic participants. Increased HDL particle size was independently associated with increased total CEC; however, following adjustment for this in multivariable analysis, CEC remained greater in participants with type 1 diabetes. Both components of CEC, ABCA1-dependent (6.10 ± 2.41%CEC/4 h vs 5.22 ± 2.57%CEC/4 h [MD +0.88%CEC/4 h]) and ABCA1-independent (8.47 ± 1.79% CEC/4 h vs 7.05 ± 1.76% CEC/4 h [MD +1.42% CEC/4 h]) CEC, were greater in type 1 diabetes but the increase in ABCA1-dependent CEC was less marked and not statistically significant in multivariable analysis. CIMT was increased in participants with type 1 diabetes but in multivariable analysis it was only associated negatively with age and BMI. CONCLUSIONS/INTERPRETATION HDL particle size but not HDL-cholesterol level is independently associated with enhanced total CEC. HDL particle size is greater in individuals with type 1 diabetes but even after adjusting for this, total and ABCA1-independent CEC are enhanced in type 1 diabetes. Further studies are needed to understand the mechanisms underlying these effects, and whether they help attenuate progression of atherosclerosis in this high-risk group. Graphical abstract.
Collapse
Affiliation(s)
- Mohamad O Ahmed
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Rachel E Byrne
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Agnieszka Pazderska
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Ricardo Segurado
- School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Weili Guo
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Anjuli Gunness
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Isolda Frizelle
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Mark Sherlock
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Khalid S Ahmed
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Anne McGowan
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Kevin Moore
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Gerard Boran
- Department of Chemical Pathology, Tallaght University Hospital, Dublin, Ireland
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - James Gibney
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
40
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
41
|
Xie B, He J, Liu Y, Liu T, Liu C. A meta-analysis of HDL cholesterol efflux capacity and concentration in patients with rheumatoid arthritis. Lipids Health Dis 2021; 20:18. [PMID: 33612101 PMCID: PMC7897392 DOI: 10.1186/s12944-021-01444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/03/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Poor cholesterol efflux capacity (CEC) has been proposed to be an independent risk factor for cardiovascular diseases. However, current evidence is inconsistent, especially in rheumatoid arthritis (RA) patients. This meta-analysis aims to identify whether CEC is impaired or altered by drug therapy in RA. METHODS The PubMed/MEDLINE, Embase, Cochrane Library and ClinicalTrials.gov databases were browsed to identify studies on CEC in RA patients. The searches mainly focused on studies in human subjects that were published before November 14, 2020, without any language restrictions. The effect size was pooled by the standardized mean differences and mean differences (SMD & MD) as well as the corresponding 95% confidence intervals (CIs) in a random or fixed effect model. Heterogeneity across the studies was tested using Cochran's Q test and I2 statistic. Newcastle-Ottawa Scale and the Downs and Black scale (D&B) were applied to evaluate the quality of included studies. The GRADE-system with its 4-grade evidence scale was used to assess the quality of evidence. RESULTS A total of 11 eligible articles, including 6 observational and 5 interventional studies, were retrieved. The pooled results showed that in patients with RA, CEC was not significantly different than in healthy controls (SMD: -0.34, 95% CI: - 0.83 to 0.14), whereas the plasma HDL-C levels was significantly lower (MD: -3.91, 95% CI: - 7.15 to - 0.68). Furthermore, in the before-after studies, the CEC of RA patients (SMD: 0.20, 95% CI: 0.02 to 0.37) increased, but the plasma HDL-C levels (MD: 3.63, 95% CI: - 0.13 to 7.39) remained at a comparable quantity after anti-rheumatic treatment comparing with the baseline. In addition, the funnel plot of included studies displayed a lightly asymmetry, while Egger's and Begg's test did not suggest the existence of publication bias. The quality of evidence was rated according to GRADE as moderate to very low. CONCLUSION The current meta-analysis demonstrated that HDL-mediated CEC can be improved by the early control of inflammation and anti-rheumatic treatment in RA patients, which is independent of the plasma HDL-C levels. However, the results should be interpreted with caution because of low-quality and limited quantity of evidence. Future randomized controlled trials are needed to determine whether therapeutic strategies to enhance CEC in RA patients have beneficial effects for preventing CVD.
Collapse
Affiliation(s)
- Binbin Xie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiang He
- Department of Mathematics and Physics, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yong Liu
- Department of Laboratory Medicine, Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ting Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
42
|
Sha J, Qie G, Yao Q, Sun W, Wang C, Zhang Z, Wang X, Wang P, Jiang J, Bai X, Chu Y, Meng M. Sex Differences on Clinical Characteristics, Severity, and Mortality in Adult Patients With COVID-19: A Multicentre Retrospective Study. Front Med (Lausanne) 2021; 8:607059. [PMID: 33644092 PMCID: PMC7906985 DOI: 10.3389/fmed.2021.607059] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Coronavirus disease-2019 (COVID-19) epidemic is spreading globally. Sex differences in the severity and mortality of COVID-19 emerged. This study aims to describe the impact of sex on outcomes in COVOD-19 with a special focus on the effect of estrogen. Methods: We performed a retrospective cohort study which included 413 patients (230 males and 183 females) with COVID-19 from three designated hospitals in China with a follow up time from January 31, 2020, to April 17, 2020. Women over 55 were considered as postmenopausal patients according to the previous epidemiological data from China. The interaction between age and sex on in-hospital mortality was determined through Cox regression analysis. In addition, multivariate Cox regression models were performed to explore risk factors associated with in-hospital mortality of COVID-19. Results: Age and sex had significant interaction for the in-hospital mortality (P < 0.001). Multivariate Cox regression showed that age (HR 1.041, 95% CI 1.009–1.073, P = 0.012), male sex (HR 2.033, 95% CI 1.007–2.098, P = 0.010), the interaction between age and sex (HR 1.118, 95% CI 1.003–1.232, P = 0.018), and comorbidities (HR 9.845, 95% CI 2.280–42.520, P = 0.002) were independently associated with in-hospital mortality of COVID-19 patients. In this multicentre study, female experienced a lower fatality for COVID-19 than male (4.4 vs. 10.0%, P = 0.031). Interestingly, stratification by age group revealed no difference in-hospital mortality was noted in women under 55 compared with women over 55 (3.8 vs. 5.2%, P = 0.144), as well as in women under 55 compared with the same age men (3.8 vs. 4.0%, P = 0.918). However, there was significantly difference in women over 55 with men of the same age group (5.2 vs. 21.0%, P = 0.007). Compared with male patients, female patients had higher lymphocyte (P < 0.001) and high-density lipoprotein (P < 0.001), lower high sensitive c reaction protein level (P < 0.001), and lower incidence rate of acute cardiac injury (6.6 vs. 13.5%, P = 0.022). Conclusion: Male sex is an independent risk factor for COVID-19 in-hospital mortality. Although female mortality in COVID-19 is lower than male, it might not be directly related to the effect of estrogen. Further study is warranted to identify the sex difference in COVID-19 and mechanisms involved.
Collapse
Affiliation(s)
- Jing Sha
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Guoqiang Qie
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Qingchun Yao
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Wenqing Sun
- Department of Intensive Care Unit, Shandong Provincial Chest Hospital, Jinan, China
| | - Cuiyan Wang
- Shandong Medical Imaging Research Institute Affiliated to Shandong University, Jinan, China
| | - Zhongfa Zhang
- Jinan Infectious Diseases Hospital, Shandong University, Jinan, China
| | - Xingguang Wang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Jinjiao Jiang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Xue Bai
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Yufeng Chu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Mei Meng
- Department of Critical Care Medicine, Ruijin Hospital, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Bhargava P, Smith MD, Mische L, Harrington E, Fitzgerald KC, Martin K, Kim S, Reyes AA, Gonzalez-Cardona J, Volsko C, Tripathi A, Singh S, Varanasi K, Lord HN, Meyers K, Taylor M, Gharagozloo M, Sotirchos ES, Nourbakhsh B, Dutta R, Mowry EM, Waubant E, Calabresi PA. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J Clin Invest 2021; 130:3467-3482. [PMID: 32182223 DOI: 10.1172/jci129401] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the CNS. Bile acids are cholesterol metabolites that can signal through receptors on cells throughout the body, including in the CNS and the immune system. Whether bile acid metabolism is abnormal in MS is unknown. Using global and targeted metabolomic profiling, we identified lower levels of circulating bile acid metabolites in multiple cohorts of adult and pediatric patients with MS compared with controls. In white matter lesions from MS brain tissue, we noted the presence of bile acid receptors on immune and glial cells. To mechanistically examine the implications of lower levels of bile acids in MS, we studied the in vitro effects of an endogenous bile acid, tauroursodeoxycholic acid (TUDCA), on astrocyte and microglial polarization. TUDCA prevented neurotoxic (A1) polarization of astrocytes and proinflammatory polarization of microglia in a dose-dependent manner. TUDCA supplementation in experimental autoimmune encephalomyelitis reduced the severity of disease through its effects on G protein-coupled bile acid receptor 1 (GPBAR1). We demonstrate that bile acid metabolism was altered in MS and that bile acid supplementation prevented polarization of astrocytes and microglia to neurotoxic phenotypes and ameliorated neuropathology in an animal model of MS. These findings identify dysregulated bile acid metabolism as a potential therapeutic target in MS.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Leah Mische
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily Harrington
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Kyle Martin
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sol Kim
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Christina Volsko
- Department of Neuroscience, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ajai Tripathi
- Department of Neuroscience, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Sonal Singh
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kesava Varanasi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hannah-Noelle Lord
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Keya Meyers
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle Taylor
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bardia Nourbakhsh
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Zhang J, Ma CR, Hua YQ, Li L, Ni JY, Huang YT, Duncan SE, Li S, Gao S, Fan GW. Contradictory regulation of macrophages on atherosclerosis based on polarization, death and autophagy. Life Sci 2021; 276:118957. [PMID: 33524421 DOI: 10.1016/j.lfs.2020.118957] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The main pathological feature of atherosclerosis is lipid metabolism disorder and inflammation. Macrophages, as the most important immune cells in the body, run through the beginning and end of disease development. After macrophages overtake the atherosclerosis-susceptible area apolipoprotein low-density lipoprotein ox-LDL, they transform into foam cells that adhere to blood vessels and recruit a large number of pro-inflammatory factors to initiate the disease. Promoting the outflow of lipids in foam cells and alleviating inflammation have become the basic ideas for the study of atherosclerosis treatment strategies. The polarization of macrophages refers to the estimation of the activation of macrophages at a specific point in space and time. Determining the proportion of different macrophage phenotypes in the plaque can help identify delay or prevent disease development. However, the abnormal polarization of macrophages and the accumulation of lipid also affect the growth state of cells to some extent, thus aggravate the influence on plaque area and stability. Besides, overactive or deficient autophagy of macrophages may also lead to cell death and participate in lipid metabolism and inflammation regression. In this paper, the role of macrophages in atherosclerosis was discussed from three aspects: polarization, death, and autophagy.
Collapse
Affiliation(s)
- Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuan-Rui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yun-Qing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing-Yu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu-Ting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Sophia Esi Duncan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guan-Wei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China..
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Serum amyloid A (SAA) is a highly sensitive acute phase reactant that has been linked to a number of chronic inflammatory diseases. During a systemic inflammatory response, liver-derived SAA is primarily found on high-density lipoprotein (HDL). The purpose of this review is to discuss recent literature addressing the pathophysiological functions of SAA and the significance of its association with HDL. RECENT FINDINGS Studies in gene-targeted mice establish that SAA contributes to atherosclerosis and some metastatic cancers. Accumulating evidence indicates that the lipidation state of SAA profoundly affects its bioactivities, with lipid-poor, but not HDL-associated, SAA capable of inducing inflammatory responses in vitro and in vivo. Factors that modulate the equilibrium between lipid-free and HDL-associated SAA have been identified. HDL may serve to limit SAA's bioactivities in vivo. Understanding the factors leading to the release of systemic SAA from HDL may provide insights into chronic disease mechanisms.
Collapse
Affiliation(s)
- Nancy R Webb
- Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes Center, University of Kentucky, 553 Wethington Building, 900 South Limestone, Lexington, KY, 40536-0200, USA.
| |
Collapse
|
46
|
Fallah S, Marsche G, Mohamadinarab M, Mohassel Azadi S, Ghasri H, Fadaei R, Moradi N. Impaired cholesterol efflux capacity in patients with Helicobacter pylori infection and its relation with inflammation. J Clin Lipidol 2021; 15:218-226.e1. [PMID: 33250430 DOI: 10.1016/j.jacl.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gut microorganisms are associated with atherosclerosis and related cardiovascular disease. Helicobacter pylori (H. pylori) infection is associated with dyslipidemia and inflammation contributing to the progression of atherosclerosis. OBJECTIVE Several studies have reported reduced HDL-C levels in H. pylori infected patients, but HDL cholesterol efflux capacity (CEC) as the most important function of HDL has not been evaluated yet. METHODS This cross-sectional study was conducted with 44 biopsy confirmed H. pylori patients and 43 controls. ABCA1-mediated, non-ABCA1 and total CEC were measured in ApoB-depleted serum and levels of ApoA-I, ApoB and hsCRP were estimated using ELISA technique. RESULTS Total and ABCA1 mediated-CEC were reduced in patients compared to controls, independent of age, sex, body mass index and HDL-C (p < 0.001), while non-ABCA1 CEC indicated no significant change between the groups. In addition, patients showed lower serum levels of ApoA-I but increased levels of hsCRP when compared to controls. Total CEC and ABCA1-mediated CEC positively correlated with ApoA-I and HDL-C, furthermore, ABCA1-mediated CEC as well as ApoA-I inversely correlated with hsCRP. CONCLUSION The results of the present study indicate reduced CECs in H. pylori infected patients, especially ABCA1-mediated CEC which is associated with decreased ApoA-I and increased inflammation.
Collapse
Affiliation(s)
- Soudabeh Fallah
- Research Center of Pediatric Infectious Disease, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran; Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - Maryam Mohamadinarab
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Mohassel Azadi
- Department of Clinical Biochemistry, Faculty of Medicine Tehran, University of Medical Sciences, Tehran, Iran
| | - Hooman Ghasri
- Department of Internal Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Research Center of Pediatric Infectious Disease, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Petersen KS, Bowen KJ, Tindall AM, Sullivan VK, Johnston EA, Fleming JA, Kris-Etherton PM. The Effect of Inflammation and Insulin Resistance on Lipid and Lipoprotein Responsiveness to Dietary Intervention. Curr Dev Nutr 2020; 4:nzaa160. [PMID: 33447695 PMCID: PMC7792751 DOI: 10.1093/cdn/nzaa160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Lipids and lipoproteins are major targets for cardiovascular disease (CVD) prevention. Findings from a limited number of clinical trials suggest diet-induced atherogenic lipoprotein lowering can be altered in the presence of chronic low-grade inflammation or insulin resistance. This review summarizes results from randomized controlled trials that have examined diet-induced changes in lipids/lipoproteins by inflammatory or insulin sensitivity status. In addition, mechanisms to explain these clinical observations are explored. Post hoc analyses of data from a limited number of randomized controlled trials suggest attenuation of diet-induced lipid/lipoprotein lowering in individuals with inflammation and/or insulin resistance. These findings are supported by experimental studies showing that inflammatory stimuli and hyperinsulinemia alter genes involved in endogenous cholesterol synthesis and cholesterol uptake, reduce cholesterol efflux, and increase fatty acid biosynthesis. Further a priori defined research is required to better characterize how chronic low-grade inflammation and insulin resistance modulate lipid and lipoprotein responsiveness to guide CVD risk reduction in individuals presenting with these phenotypes.
Collapse
Affiliation(s)
- Kristina S Petersen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kate J Bowen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Alyssa M Tindall
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Valerie K Sullivan
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Emily A Johnston
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jennifer A Fleming
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
48
|
Zheng YQ, Jin MF, Suo GH, Wu YJ, Sun YX, Ni H. Proteomics for Studying the Effects of Ketogenic Diet Against Lithium Chloride/Pilocarpine Induced Epilepsy in Rats. Front Neurosci 2020; 14:562853. [PMID: 33132826 PMCID: PMC7550537 DOI: 10.3389/fnins.2020.562853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ketogenic diet (KD) demonstrates antiepileptogenic and neuroprotective efficacy, but the precise mechanisms are unclear. Here we explored the mechanism through systematic proteomics analysis of the lithium chloride-pilocarpine rat model. Sprague-Dawley rats (postnatal day 21, P21) were randomly divided into control (Ctr), seizure (SE), and KD treatment after seizure (SE + KD) groups. Tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectroscopy (LC-MS/MS) were utilized to assess changes in protein abundance in the hippocampus. A total of 5,564 proteins were identified, of which 110 showed a significant change in abundance between the SE and Ctr groups (18 upregulated and 92 downregulated), 278 between SE + KD and SE groups (218 upregulated and 60 downregulated), and 180 between Ctr and SE + KD groups (121 upregulated and 59 downregulated) (all p < 0.05). Seventy-nine proteins showing a significant change in abundance between SE and Ctr groups were reciprocally regulated in the SD + KD group compared to the SE group (i.e., the seizure-induced change was reversed by KD). Of these, five (dystrobrevin, centromere protein V, oxysterol-binding protein, tetraspanin-2, and progesterone receptor membrane component 2) were verified by parallel reaction monitoring. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that proteins of the synaptic vesicle cycle pathway were enriched both among proteins differing in abundance between SE and Ctr groups as well as between SE + KD and SE groups. This comprehensive proteomics analyze of KD-treated epilepsy by quantitative proteomics revealed novel molecular mechanisms of KD antiepileptogenic efficacy and potential treatment targets.
Collapse
Affiliation(s)
- Yu-Qin Zheng
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Mei-Fang Jin
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Gui-Hai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - You-Jia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu-Xiao Sun
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
49
|
Curley S, Gall J, Byrne R, Yvan‐Charvet L, McGillicuddy FC. Metabolic Inflammation in Obesity—At the Crossroads between Fatty Acid and Cholesterol Metabolism. Mol Nutr Food Res 2020; 65:e1900482. [DOI: 10.1002/mnfr.201900482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Sean Curley
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| | - Julie Gall
- University of Nice Unité Mixte de Recherce (UMR) Institut National de la Santé et de la Recherche Médicale U1065 062104 Nice Cedex 3 France
| | - Rachel Byrne
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| | - Laurent Yvan‐Charvet
- University of Nice Unité Mixte de Recherce (UMR) Institut National de la Santé et de la Recherche Médicale U1065 062104 Nice Cedex 3 France
| | - Fiona C. McGillicuddy
- Cardiometabolic Research Group UCD Diabetes Complications Research Centre UCD Conway Institute UCD School of Medicine University College Dublin Dublin 4 Ireland
| |
Collapse
|
50
|
Takaeko Y, Matsui S, Kajikawa M, Maruhashi T, Yamaji T, Harada T, Han Y, Hashimoto H, Kihara Y, Hida E, Chayama K, Goto C, Aibara Y, Yusoff FM, Kishimoto S, Nakashima A, Higashi Y. Relationship between high-density lipoprotein cholesterol levels and endothelial function in women: a cross-sectional study. BMJ Open 2020; 10:e038121. [PMID: 32641366 PMCID: PMC7342861 DOI: 10.1136/bmjopen-2020-038121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The purpose of this study was to evaluate the relationship between high-density lipoprotein cholesterol (HDL-C) levels and endothelial function in women. DESIGN Cross-sectional study. SETTING 22 university hospitals and affiliated clinics in Japan. PARTICIPANTS 1719 Japanese women aged 17-90 years who were not receiving lipid-lowering therapy. MEASURES We evaluated flow-mediated vasodilation (FMD) and serum levels of HDL-C. All participants were divided into four groups by HDL-C level: low HDL-C (<40 mg/dL), moderate HDL-C (40-59 mg/dL), high HDL-C (60-79 md/dL) and extremely high HDL-C (≥80 mg/dL). RESULTS Univariate regression analysis revealed a significant relationship between FMD and HDL-C (r=0.12, p<0.001). FMD values were significantly smaller in the low HDL-C group (5.2%±3.8%) and moderate HDL-C group (5.2%±3.8%) than in the extremely high HDL-C group (6.7%±3.4%) (p=0.024 and p=0.003, respectively), while there was no significant difference in FMD between the high HDL-C group and the extremely high HDL-C group. Multiple logistic regression analysis did not show a significant association between HDL-C levels and FMD. CONCLUSIONS Endothelial function increased in relation to HDL-C levels. However, there was no association of HDL-C levels with endothelial function after adjustment of traditional cardiovascular risk factors in women. TRIAL REGISTRATION NUMBER UMIN000012950; Results.
Collapse
Affiliation(s)
- Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shogo Matsui
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takayuki Yamaji
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takahiro Harada
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yiming Han
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Eisuke Hida
- Department of Biostatistics and Data Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Chikara Goto
- Department of Physical Therapy, Hiroshima International University, HigashiHiroshima, Hiroshima, Japan
| | - Yoshiki Aibara
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukihito Higashi
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| |
Collapse
|