1
|
Wang H, Li C, Zhu L, Liu Z, Li N, Zheng Z, Liang S, Yan J. Adiponectin attenuates H2O2-induced apoptosis in chicken skeletal myoblasts through the lysosomal-mitochondrial axis. In Vitro Cell Dev Biol Anim 2024; 60:805-814. [PMID: 38427138 DOI: 10.1007/s11626-024-00857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Adiponectin has previously been investigated for exerting its protective effect against myocardial injury through anti-apoptotic and anti-oxidative actions. Therefore, the present study aimed to investigate the nature and mechanism of adiponectin inhibition of H2O2-induced apoptosis in chicken skeletal myoblasts. Skeletal muscle satellite cells were differentiated and assigned into three groups. Group C was on the blank control group, group H was stimulated with the H2O2 (500 μmol/L, 4 h) alone group, group A + H was pre-treated with adiponectin (10 μg/mL, 24 h) and stimulated with the H2O2 (500 μmol/L, 4 h) group. Cytotoxicity inhibited by adiponectin was evaluated by the CCK-8 assay. The degree of apoptosis and oxidative damage was investigated by the TdT-mediated dUTP nick end labeling (TUNEL) and reactive oxygen species (ROS) staining assays. Oxidative stress was assessed by evaluating lipid peroxidation, superoxide dismutase, and reduced glutathione. Acridine orange (AO) staining detected lysosomal membrane permeability. The changes in mitochondrial membrane potential (MMP) were analyzed using 5,5,6,6'-tetrachloro-1,1,3,3-tetraethylimidacarbocyanine iodide (JC-1) dye under a fluorescence microscope. The lysosomal function, mitochondrial function, and apoptosis-related mRNA and protein expression levels were quantified by real-time quantitative PCR and western blot, respectively. The results suggested that adiponectin treatment attenuated H2O2-induced cytotoxicity and oxidative stress in skeletal myoblasts. Compared with H2O2 treatment, TUNEL and ROS staining demonstrated lower apoptosis upon adiponectin treatment. AO staining confirmed the amelioration of lysosomal membrane damage, and JC-1 staining revealed an increase in mitochondrial membrane potential after adiponectin treatment. At the molecular level, adiponectin treatment inhibited the expression of the lysosomal apoptotic factors cathepsin B, chymotrypsin B, and the mitochondrial apoptotic pathway cytochrome-c (cyt-c) and caspase-8; decreased the apoptotic marker gene Bax; and increased the expression of the anti-apoptotic marker gene Bcl-2. Adiponectin treatment attenuated H2O2-induced apoptosis in skeletal myoblasts, possibly by inhibiting oxidative stress and apoptosis through the lysosomal-mitochondrial axis.
Collapse
Affiliation(s)
- Han Wang
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chi Li
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Longbo Zhu
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengqun Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Ning Li
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Zi Zheng
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Shiyue Liang
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Jun Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| |
Collapse
|
2
|
Cheng PP, Wang XT, Liu Q, Hu YR, Dai ER, Zhang MH, Yang TS, Qu HY, Zhou H. Nrf2 mediated signaling axis in heart failure: Potential pharmacological receptor. Pharmacol Res 2024; 206:107268. [PMID: 38908614 DOI: 10.1016/j.phrs.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Heart failure (HF) has emerged as the most pressing health concerns globally, and extant clinical therapies are accompanied by side effects and patients have a high burden of financial. The protein products of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes have a variety of cardioprotective effects, including antioxidant, metabolic functions and anti-inflammatory. By evaluating established preclinical and clinical research in HF to date, we explored the potential of Nrf2 to exert unique cardioprotective functions as a novel therapeutic receptor for HF. In this review, we generalize the progression, structure, and function of Nrf2 research in the cardiovascular system. The mechanism of action of Nrf2 involved in HF as well as agonists of Nrf2 in natural compounds are summarized. Additionally, we discuss the challenges and implications for future clinical translation and application of pharmacology targeting Nrf2. It's critical to developing new drugs for HF.
Collapse
Affiliation(s)
- Pei-Pei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Ting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Ran Hu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - En-Rui Dai
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming-Hao Zhang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Shu Yang
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hui-Yan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Dao L, Liu H, Xiu R, Yao T, Tong R, Xu L. Gramine improves sepsis-induced myocardial dysfunction by binding to NF-κB p105 and inhibiting its ubiquitination. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155325. [PMID: 38295663 DOI: 10.1016/j.phymed.2023.155325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Sepsis and its associated heart failure are among the leading causes of death. Gramine, a natural indole alkaloid, can be extracted from a wide variety of raw plants, and it exhibits therapeutic potential in pathological cardiac hypertrophy. However, the effect of gramine on inflammatory cardiomyopathy, particularly sepsis-induced myocardial injury, remains an unexplored area. PURPOSE To determine the role of gramine in sepsis-induced myocardial dysfunction and explore its underlying mechanism. STUDY DESIGN AND METHODS In mice, sepsis was established by intraperitoneally injecting lipopolysaccharide (LPS, 10 mg/kg). Subsequently, the effects of gramine administration (50 or 100 mg/kg) on LPS-triggered cardiac dysfunction in mice were investigated. For in vitro studies, isolated primary cardiomyocytes were used to assess the effect of gramine (25 or 50 µM) on LPS-induced apoptosis and inflammation. Additionally, molecular docking, co-immunoprecipitation and ubiquitination analyzes were conducted to explore the underlying mechanisms. RESULTS Gramine visibly ameliorated sepsis-induced cardiac dysfunction, inflammatory response, and mortality in vivo. Moreover, it significantly alleviated LPS-induced apoptotic and inflammatory responses in vitro. Furthermore, target prediction for gramine using the SuperPred website indicated that the nuclear factor NF-κB p105 subunit was one of the molecules ranked in priority order with a high model accuracy and a high probability score. Molecular docking studies demonstrated that gramine effectively docked to the death domain of NF-κB p105. Mechanistic studies revealed that gramine suppressed the processing of NF-κB p105 to p50 by inhibiting NF-κB p105 ubiquitination. Additionally, the protective effect of gramine on cardiac injury was almost abolished by overexpressing NF-κB p105. CONCLUSION Gramine is a promising bioactive small molecule for treating sepsis-induced myocardial dysfunction, which acts by docking to NF-κB p105 and inhibiting NF-κB p105 ubiquitination, thus preventing its processing to NF-κB p50. Therefore, gramine holds potential as a clinical drug for treating myocardial depression during sepsis.
Collapse
Affiliation(s)
- Ling Dao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Hengdao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Ruizhen Xiu
- Department of Radiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Tianbao Yao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renyang Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongtinan Road, Beijing 100020, China.
| | - Longwei Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China.
| |
Collapse
|
4
|
Yue H, Zhang Q, Chang S, Zhao X, Wang M, Li W. Adiponectin protects against myocardial ischemia-reperfusion injury: a systematic review and meta-analysis of preclinical animal studies. Lipids Health Dis 2024; 23:51. [PMID: 38368320 PMCID: PMC10874037 DOI: 10.1186/s12944-024-02028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/22/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) is widespread in the treatment of ischemic heart disease, and its treatment options are currently limited. Adiponectin (APN) is an adipocytokine with cardioprotective properties; however, the mechanisms of APN in MIRI are unclear. Therefore, based on preclinical (animal model) evidence, the cardioprotective effects of APN and the underlying mechanisms were explored. METHODS The literature was searched for the protective effect of APN on MIRI in six databases until 16 November 2023, and data were extracted according to selection criteria. The outcomes were the size of the myocardial necrosis area and hemodynamics. Markers of oxidation, apoptosis, and inflammation were secondary outcome indicators. The quality evaluation was performed using the animal study evaluation scale recommended by the Systematic Review Center for Laboratory animal Experimentation statement. Stata/MP 14.0 software was used for the summary analysis. RESULTS In total, 20 papers with 426 animals were included in this study. The pooled analysis revealed that APN significantly reduced myocardial infarct size [weighted mean difference (WMD) = 16.67 (95% confidence interval (CI) = 13.18 to 20.16, P < 0.001)] and improved hemodynamics compared to the MIRI group [Left ventricular end-diastolic pressure: WMD = 5.96 (95% CI = 4.23 to 7.70, P < 0.001); + dP/dtmax: WMD = 1393.59 (95% CI = 972.57 to 1814.60, P < 0.001); -dP/dtmax: WMD = 850.06 (95% CI = 541.22 to 1158.90, P < 0.001); Left ventricular ejection fraction: WMD = 9.96 (95% CI = 7.29 to 12.63, P < 0.001)]. Apoptosis indicators [caspase-3: standardized mean difference (SMD) = 3.86 (95% CI = 2.97 to 4.76, P < 0.001); TUNEL-positive cells: WMD = 13.10 (95% CI = 8.15 to 18.05, P < 0.001)], inflammatory factor levels [TNF-α: SMD = 4.23 (95% CI = 2.48 to 5.98, P < 0.001)], oxidative stress indicators [Superoxide production: SMD = 4.53 (95% CI = 2.39 to 6.67, P < 0.001)], and lactate dehydrogenase levels [SMD = 2.82 (95% CI = 1.60 to 4.04, P < 0.001)] were significantly reduced. However, the superoxide dismutase content was significantly increased [SMD = 1.91 (95% CI = 1.17 to 2.65, P < 0.001)]. CONCLUSION APN protects against MIRI via anti-inflammatory, antiapoptotic, and antioxidant effects, and this effect is achieved by activating different signaling pathways.
Collapse
Affiliation(s)
- Hongyi Yue
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Qunhui Zhang
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hunan, 421001, China
| | - Senhao Chang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Xinjie Zhao
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Mengjie Wang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China
| | - Wenhua Li
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.
| |
Collapse
|
5
|
Kumar M, Kumar V, Singh Y, Srivastava A, Kushwaha R, Vaswani S, Kumar A, Khare S, Yadav B, Yadav R, Sirohi R, Shukla PK. Does the peroral chromium administration in young Hariana calves reduce the risk of calf diarrhea by ameliorating insulin response, lactose intolerance, antioxidant status, and immune response? J Trace Elem Med Biol 2023; 80:127313. [PMID: 37801788 DOI: 10.1016/j.jtemb.2023.127313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The reduction in insulin sensitivity during rumen development may predispose dairy calves towards lactose intolerance, which could be the reason behind neonatal calf diarrhea (NCD). Chromium (Cr) results in a range of effects when fed to ruminants, but most studies have shown improved insulin sensitivity. The aim of this study was to determine the effect of Cr supplementation on insulin sensitivity, lactose intolerance, diarrhoea and antioxidant, and immune response in young Hariana calves. METHODS A total of 20 milk-fed Hariana calves were randomly assigned to 1 of 2 treatments, each consisted of 10 calves: (1) a control group without supplemental Cr and (2) a 0.15 mg Cr as Cr-picolinate (CrPic)/kg BW0.75 supplemented group (Cr0.15). RESULTS A more rapid glucose disappearance with unaltered insulin kinetics during intravenous glucose tolerance test (IVGTT) and oral lactose tolerance test (OLTT) indicates greater insulin sensitivity in Cr supplemented calves. Better insulin sensitivity in Cr supplemented calves was further confirmed by higher values of the quantitative insulin sensitivity check index (QUICKI), revised quantitative insulin sensitivity check index (RQUICKI) and insulin receptor substrate-1 (IRS-1) and lower (P < 0.05) values of homeostasis model assessment-insulin resistance (HOMA-IR) and glucose-to-insulin ratio in Cr supplemented calves during IVGTT. Cr supplementation resulted in a lower (P < 0.05) serum cortisol concentration, whereas serum non-esterified fatty acid (NEFA) concentrations during IVGTT did not differ among the groups. The rise in serum glucose concentrations within 2 h post lactose infusion during OLTT peaked at more than twice the basal glucose concentration, therefore calves were not considered as lactose intolerant. Within monthly blood samples, concentrations of serum insulin were similar among treatments, whereas the Cr supplemented group had lower (P < 0.05) serum glucose concentration and glucose-to-insulin ratio compared with the control group. No treatment differences were detected in the biomarkers of antioxidant status and immunity. Serum Cr concentrations were higher (P < 0.05) in Cr supplemented calves while concentrations of other studied minerals were remained unaltered. The incidence, duration of diarrhea, and faecal score were better (P < 0.05) in calves fed on Cr supplemented diet whereas, no treatment effect was observed on average daily gain (ADG). During the study period, no calves died, and no calves were found to have pneumonia, navel or joint disease. CONCLUSION Feeding a Cr-supplemented diet improved insulin sensitivity and reduced the risk of diarrhoea in milk-fed young calves, but had no or minimal effects on lactose intolerance, antioxidant status, immune response, and growth performance.
Collapse
Affiliation(s)
- Muneendra Kumar
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| | - Vinod Kumar
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Yajuvendra Singh
- Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Ashish Srivastava
- Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Raju Kushwaha
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Shalini Vaswani
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Avinash Kumar
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Shivam Khare
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Rajkumar Yadav
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Rajneesh Sirohi
- Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Pankaj Kumar Shukla
- Department of Poultry Science, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu-Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| |
Collapse
|
6
|
Meng Z, Liang B, Wu Y, Liu C, Wang H, Du Y, Gan L, Gao E, Lau WB, Christopher TA, Lopez BL, Koch WJ, Ma X, Zhao F, Wang Y, Zhao J. Hypoadiponectinemia-induced upregulation of microRNA449b downregulating Nrf-1 aggravates cardiac ischemia-reperfusion injury in diabetic mice. J Mol Cell Cardiol 2023; 182:1-14. [PMID: 37437402 PMCID: PMC10566306 DOI: 10.1016/j.yjmcc.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
Diabetes enhances myocardial ischemic/reperfusion (MI/R) injury via an incompletely understood mechanism. Adiponectin (APN) is a cardioprotective adipokine suppressed by diabetes. However, how hypoadiponectinemia exacerbates cardiac injury remains incompletely understood. Dysregulation of miRNAs plays a significant role in disease development. However, whether hypoadiponectinemia alters cardiac miRNA profile, contributing to diabetic heart injury, remains unclear. Methods and Results: Wild-type (WT) and APN knockout (APN-KO) mice were subjected to MI/R. A cardiac microRNA profile was determined. Among 23 miRNAs increased in APN-KO mice following MI/R, miR-449b was most significantly upregulated (3.98-fold over WT mice). Administrating miR-449b mimic increased apoptosis, enlarged infarct size, and impaired cardiac function in WT mice. In contrast, anti-miR-449b decreased apoptosis, reduced infarct size, and improved cardiac function in APN-KO mice. Bioinformatic analysis predicted 73 miR-449b targeting genes, and GO analysis revealed oxidative stress as the top pathway regulated by these genes. Venn analysis followed by luciferase assay identified Nrf-1 and Ucp3 as the two most important miR-449b targets. In vivo administration of anti-miR-449b in APN-KO mice attenuated MI/R-stimulated superoxide overproduction. In vitro experiments demonstrated that high glucose/high lipid and simulated ischemia/reperfusion upregulated miR-449b and inhibited Nrf-1 and Ucp3 expression. These pathological effects were attenuated by anti-miR-449b or Nrf-1 overexpression. In a final attempt to validate our finding in a clinically relevant model, high-fat diet (HFD)-induced diabetic mice were subjected to MI/R and treated with anti-miR-449b or APN. Diabetes significantly increased miR-449b expression and downregulated Nrf-1 and Ucp3 expression. Administration of anti-miR-449b or APN preserved cardiac Nrf-1 expression, reduced cardiac oxidative stress, decreased apoptosis and infarct size, and improved cardiac function. Conclusion: We demonstrated for the first time that hypoadiponectinemia upregulates miR-449b and suppresses Nrf-1/Ucp3 expression, promoting oxidative stress and exacerbating MI/R injury in this population. Dysregulated APN/miR-449b/oxidative stress pathway is a potential therapeutic target against diabetic MI/R injury.
Collapse
Affiliation(s)
- Zhijun Meng
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Bin Liang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Yalin Wu
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, United States of America
| | - Caihong Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Han Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Yunhui Du
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Erhe Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, United States of America
| | - Wayne B Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Theodore A Christopher
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Bernard L Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Walter J Koch
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, United States of America
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Fujie Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, United States of America
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America; Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, United States of America.
| | - Jianli Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, United States of America.
| |
Collapse
|
7
|
Xu L, Su Y, Yang X, Bai X, Wang Y, Zhuo C, Meng Z. Gramine protects against pressure overload-induced pathological cardiac hypertrophy through Runx1-TGFBR1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154779. [PMID: 37023527 DOI: 10.1016/j.phymed.2023.154779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Gramine, also named 3-(N,N-dimethylaminomethyl) indole, is a indole alkaloid. It is mainly extracted from various natural raw plants. Despite being the simplest 3-aminomethylindole, Gramine has broad pharmaceutical and therapeutic effects, such as vasodilatation, antioxidation, mitochondrial bioenergetics-related effects, and angiogenesis via modulation of TGFβ signaling. However, there is little information available about Gramine's role in heart disease, especially pathological cardiac hypertrophy. PURPOSE To investigate Gramine's effect on pathological cardiac hypertrophy and clarify the mechanisms behind its action. METHODS In the in vitro experiment, Gramine (25 μM or 50 μM) was used to investigate its role in Angiotensin II-induced primary neonatal rat cardiomyocytes (NRCMs) hypertrophy. In the in vivo experiment, Gramine (50 mg/kg or 100 mg/kg) was administrated to investigate its role in transverse aortic constriction (TAC) surgery mice. Additionally, we explored the mechanisms underlying these roles through Western blot, Real-time PCR, genome-wide transcriptomic analysis, chromatin immunoprecipitation and molecular docking studies. RESULTS The in vitro data demonstrated that Gramine treatment obviously improved primary cardiomyocyte hypertrophy induced by Angiotensin II, but had few effects on the activation of fibroblasts. The in vivo experiments indicated that Gramine significantly mitigated TAC-induced myocardial hypertrophy, interstitial fibrosis and cardiac dysfunction. Mechanistically, RNA sequencing and further bioinformatics analysis demonstrated that transforming growth factor β (TGFβ)-related signaling pathway was enriched significantly and preferentially in Gramine-treated mice as opposed to vehicle-treated mice during pathological cardiac hypertrophy. Moreover, this cardio-protection of Gramine was found to mainly involved in TGFβ receptor 1 (TGFBR1)- TGFβ activated kinase 1 (TAK1)-p38 MAPK signal cascade. Further exploration showed that Gramine restrained the up-regulation of TGFBR1 by binding to Runt-related transcription factor 1 (Runx1), thereby alleviating pathological cardiac hypertrophy. CONCLUSION Our findings provided a substantial body of evidence that Gramine possessed a potential druggability in pathological cardiac hypertrophy via suppressing the TGFBR1-TAK1-p38 MAPK signaling axis through interaction with transcription factor Runx1.
Collapse
Affiliation(s)
- Longwei Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Su
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xueyang Bai
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chengui Zhuo
- Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.
| | - Zhe Meng
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Peng J, Chen Q, Wu C. The role of adiponectin in cardiovascular disease. Cardiovasc Pathol 2023; 64:107514. [PMID: 36634790 DOI: 10.1016/j.carpath.2022.107514] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a common disease that seriously threatens the health of human beings, especially middle-aged and elderly people over 50 years old. It has the characteristics of high prevalence, high disability rate and high mortality rate. Previous studies have shown that adiponectin has therapeutic effects on a variety of CVDs. As a key adipokine, adiponectin, is an abundant peptide-regulated hormone that is mainly released by adipocytes and cardiomyocytes, as well as endothelial and skeletal cells. Adiponectin can protect against CVD by improving lipid metabolism, protecting vascular endothelial cells and inhibiting foam cell formation and vascular smooth muscle cell proliferation. Further investigation of the molecular and cellular mechanisms underlying the adiponectin system may provide new ideas for the treatment of CVD. Herein, this review aims to describe the structure and function of adiponectin and adiponectin receptors, introduce the function of adiponectin in the protection of cardiovascular disease and analyze the potential use and clinical significance of this hormone in the protection and treatment of cardiovascular disease, which shows that adiponectin can be expected to become a new therapeutic target and biomarker for the diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- Jin Peng
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chuncao Wu
- Insititution of Chinese Materia Medica Preparation, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| |
Collapse
|
9
|
Meng Z, Zhang Z, Zhao J, Liu C, Yao P, Zhang L, Xie D, Lau WB, Tsukuda J, Christopher TA, Lopez B, Zhu D, Liu D, Zhang JR, Gao E, Ischiropoulos H, Koch W, Ma X, Wang Y. Nitrative Modification of Caveolin-3: A Novel Mechanism of Cardiac Insulin Resistance and a Potential Therapeutic Target Against Ischemic Heart Failure in Prediabetic Animals. Circulation 2023; 147:1162-1179. [PMID: 36883479 PMCID: PMC10085855 DOI: 10.1161/circulationaha.122.063073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Myocardial insulin resistance is a hallmark of diabetic cardiac injury. However, the underlying molecular mechanisms remain unclear. Recent studies demonstrate that the diabetic heart is resistant to other cardioprotective interventions, including adiponectin and preconditioning. The "universal" resistance to multiple therapeutic interventions suggests impairment of the requisite molecule(s) involved in broad prosurvival signaling cascades. Cav (Caveolin) is a scaffolding protein coordinating transmembrane signaling transduction. However, the role of Cav3 in diabetic impairment of cardiac protective signaling and diabetic ischemic heart failure is unknown. METHODS Wild-type and gene-manipulated mice were fed a normal diet or high-fat diet for 2 to 12 weeks and subjected to myocardial ischemia and reperfusion. Insulin cardioprotection was determined. RESULTS Compared with the normal diet group, the cardioprotective effect of insulin was significantly blunted as early as 4 weeks of high-fat diet feeding (prediabetes), a time point where expression levels of insulin-signaling molecules remained unchanged. However, Cav3/insulin receptor-β complex formation was significantly reduced. Among multiple posttranslational modifications altering protein/protein interaction, Cav3 (not insulin receptor-β) tyrosine nitration is prominent in the prediabetic heart. Treatment of cardiomyocytes with 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride reduced the signalsome complex and blocked insulin transmembrane signaling. Mass spectrometry identified Tyr73 as the Cav3 nitration site. Phenylalanine substitution of Tyr73 (Cav3Y73F) abolished 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride-induced Cav3 nitration, restored Cav3/insulin receptor-β complex, and rescued insulin transmembrane signaling. It is most important that adeno-associated virus 9-mediated cardiomyocyte-specific Cav3Y73F reexpression blocked high-fat diet-induced Cav3 nitration, preserved Cav3 signalsome integrity, restored transmembrane signaling, and rescued insulin-protective action against ischemic heart failure. Last, diabetic nitrative modification of Cav3 at Tyr73 also reduced Cav3/AdipoR1 complex formation and blocked adiponectin cardioprotective signaling. CONCLUSIONS Nitration of Cav3 at Tyr73 and resultant signal complex dissociation results in cardiac insulin/adiponectin resistance in the prediabetic heart, contributing to ischemic heart failure progression. Early interventions preserving Cav3-centered signalsome integrity is an effective novel strategy against diabetic exacerbation of ischemic heart failure.
Collapse
Affiliation(s)
- Zhijun Meng
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhen Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jianli Zhao
- Department of Biomedical Engineering, the University of Alabama at Birmingham, AL 35005
| | - Caihong Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ling Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jumpei Tsukuda
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Bernard Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Di Zhu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - John Ry Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Harry Ischiropoulos
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Walter Koch
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Biomedical Engineering, the University of Alabama at Birmingham, AL 35005
| |
Collapse
|
10
|
Gao P, Cao M, Jiang X, Wang X, Zhang G, Tang X, Yang C, Komuro I, Ge J, Li L, Zou Y. Cannabinoid Receptor 2-Centric Molecular Feedback Loop Drives Necroptosis in Diabetic Heart Injuries. Circulation 2023; 147:158-174. [PMID: 36448459 DOI: 10.1161/circulationaha.122.059304] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND Diabetic heart dysfunction is a common complication of diabetes. Cell death is a core event that leads to diabetic heart dysfunction. However, the time sequence of cell death pathways and the precise time to intervene of particular cell death type remain largely unknown in the diabetic heart. This study aims to identify the particular cell death type that is responsible for diabetic heart dysfunction and to propose a promising therapeutic strategy by intervening in the cell death pathway. METHODS Type 2 diabetes models were established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. The type 1 diabetes model was established in streptozotocin-induced mice. Apoptosis and programmed cell necrosis (necroptosis) were detected in diabetic mouse hearts at different ages. G protein-coupled receptor-targeted drug library was searched to identify potential receptors regulating the key cell death pathway. Pharmacological and genetic approaches that modulate the expression of targets were used. Stable cell lines and a homemade phosphorylation antibody were prepared to conduct mechanistic studies. RESULTS Necroptosis was activated after apoptosis at later stages of diabetes and was functionally responsible for cardiac dysfunction. Cannabinoid receptor 2 (CB2R) was a key regulator of necroptosis. Mechanically, during normal glucose levels, CB2R inhibited S6 kinase-mediated phosphorylation of BACH2 at serine 520, thereby leading to BACH2 translocation to the nucleus, where BACH2 transcriptionally repressed the necroptosis genes Rip1, Rip3, and Mlkl. Under hyperglycemic conditions, high glucose induced CB2R internalization in a β-arrestin 2-dependent manner; thereafter, MLKL (mixed lineage kinase domain-like), but not receptor-interacting protein kinase 1 or 3, phosphorylated CB2R at serine 352 and promoted CB2R degradation by ubiquitin modification. Cardiac re-expression of CB2R rescued diabetes-induced cardiomyocyte necroptosis and heart dysfunction, whereas cardiac knockout of Bach2 diminished CB2R-mediated beneficial effects. In human diabetic hearts, both CB2R and BACH2 were negatively associated with diabetes-induced myocardial injuries. CONCLUSIONS CB2R transcriptionally repressed necroptosis through interaction with BACH2; in turn, MLKL formed a negative feedback to phosphorylate CB2R. Our study provides the integrative view of a novel molecular mechanism loop for regulation of necroptosis centered by CB2R, which represents a promising alternative strategy for controlling diabetic heart dysfunction.
Collapse
Affiliation(s)
- Pan Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Mengying Cao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Xueli Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Xiaolin Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Xinru Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China (X.T., L.L.)
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Issei Komuro
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Japan (I.K.)
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China (X.T., L.L.)
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, China (P.G., M.C., X.J., X.W., G.Z., C.Y., J.G., Y.Z.)
| |
Collapse
|
11
|
Flores K, Siques P, Brito J, Arribas SM. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms23116205. [PMID: 35682884 PMCID: PMC9181235 DOI: 10.3390/ijms23116205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic targets for cardiovascular pathophysiology has extended in many directions. However, studies focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK activation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH development. This review describes the main findings related to AMPK participation in HPH and its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the less-studied HAPH context.
Collapse
Affiliation(s)
- Karen Flores
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
- Correspondence: ; Tel.: +56-572526392
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Silvia M. Arribas
- Department of Physiology, University Autonoma of Madrid, 28049 Madrid, Spain;
| |
Collapse
|
12
|
Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, Wang Q, Tan Y, Keller BB, Tong Q, Zheng Y, Cai L. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B 2022; 12:708-722. [PMID: 35256941 PMCID: PMC8897044 DOI: 10.1016/j.apsb.2021.10.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/21/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023] Open
Abstract
Herein, we define the role of ferroptosis in the pathogenesis of diabetic cardiomyopathy (DCM) by examining the expression of key regulators of ferroptosis in mice with DCM and a new ex vivo DCM model. Advanced glycation end-products (AGEs), an important pathogenic factor of DCM, were found to induce ferroptosis in engineered cardiac tissues (ECTs), as reflected through increased levels of Ptgs2 and lipid peroxides and decreased ferritin and SLC7A11 levels. Typical morphological changes of ferroptosis in cardiomyocytes were observed using transmission electron microscopy. Inhibition of ferroptosis with ferrostatin-1 and deferoxamine prevented AGE-induced ECT remodeling and dysfunction. Ferroptosis was also evidenced in the heart of type 2 diabetic mice with DCM. Inhibition of ferroptosis by liproxstatin-1 prevented the development of diastolic dysfunction at 3 months after the onset of diabetes. Nuclear factor erythroid 2-related factor 2 (NRF2) activated by sulforaphane inhibited cardiac cell ferroptosis in both AGE-treated ECTs and hearts of DCM mice by upregulating ferritin and SLC7A11 levels. The protective effect of sulforaphane on ferroptosis was AMP-activated protein kinase (AMPK)-dependent. These findings suggest that ferroptosis plays an essential role in the pathogenesis of DCM; sulforaphane prevents ferroptosis and associated pathogenesis via AMPK-mediated NRF2 activation. This suggests a feasible therapeutic approach with sulforaphane to clinically prevent ferroptosis and DCM.
Collapse
Affiliation(s)
- Xiang Wang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA,Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Xinxin Chen
- Department of Burn Surgery, First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Wenqian Zhou
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA,Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Hongbo Men
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA,Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Terigen Bao
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA,Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Yike Sun
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA,Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Quanwei Wang
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradley B. Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA,Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA,Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY 40202, USA
| | - Qian Tong
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China,Corresponding authors. Tel.: +86 0431 88782417 (Qian Tong), +86 0431 88782217 (Yang Zheng), +1 502 8522214 (Lu Cai).
| | - Yang Zheng
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China,Corresponding authors. Tel.: +86 0431 88782417 (Qian Tong), +86 0431 88782217 (Yang Zheng), +1 502 8522214 (Lu Cai).
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA,Corresponding authors. Tel.: +86 0431 88782417 (Qian Tong), +86 0431 88782217 (Yang Zheng), +1 502 8522214 (Lu Cai).
| |
Collapse
|
13
|
Zhang XJ, Liu X, Hu M, Zhao GJ, Sun D, Cheng X, Xiang H, Huang YP, Tian RF, Shen LJ, Ma JP, Wang HP, Tian S, Gan S, Xu H, Liao R, Zou T, Ji YX, Zhang P, Cai J, Wang ZV, Meng G, Xu Q, Wang Y, Ma XL, Liu PP, Huang Z, Zhu L, She ZG, Zhang X, Bai L, Yang H, Lu Z, Li H. Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species. Cell Metab 2021; 33:2059-2075.e10. [PMID: 34536344 DOI: 10.1016/j.cmet.2021.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/01/2020] [Accepted: 08/25/2021] [Indexed: 12/18/2022]
Abstract
Myocardial ischemia-reperfusion (MIR) injury is a major cause of adverse outcomes of revascularization after myocardial infarction. To identify the fundamental regulator of reperfusion injury, we performed metabolomics profiling in plasma of individuals before and after revascularization and identified a marked accumulation of arachidonate 12-lipoxygenase (ALOX12)-dependent 12-HETE following revascularization. The potent induction of 12-HETE proceeded by reperfusion was conserved in post-MIR in mice, pigs, and monkeys. While genetic inhibition of Alox12 protected mouse hearts from reperfusion injury and remodeling, Alox12 overexpression exacerbated MIR injury. Remarkably, pharmacological inhibition of ALOX12 significantly reduced cardiac injury in mice, pigs, and monkeys. Unexpectedly, ALOX12 promotes cardiomyocyte injury beyond its enzymatic activity and production of 12-HETE but also by its suppression of AMPK activity via a direct interaction with its upstream kinase TAK1. Taken together, our study demonstrates that ALOX12 is a novel AMPK upstream regulator in the post-MIR heart and that it represents a conserved therapeutic target for the treatment of myocardial reperfusion injury.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xiaolan Liu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Manli Hu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guo-Jun Zhao
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Dating Sun
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Hui Xiang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yong-Ping Huang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rui-Feng Tian
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Li-Jun Shen
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jun-Peng Ma
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Hai-Ping Wang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Shanyu Gan
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Toujun Zou
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yan-Xiao Ji
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jingjing Cai
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guannan Meng
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
| | - Qingbo Xu
- Centre for Clinic Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19004, USA
| | - Peter P Liu
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lihua Zhu
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xin Zhang
- Gannan Institute of Translational Medicine, Ganzhou 341000, China
| | - Lan Bai
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Hailong Yang
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430060, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, School of Basic Medical Science, Wuhan University, Wuhan 430071, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
14
|
Karamian M, Moossavi M, Hemmati M. From diabetes to renal aging: the therapeutic potential of adiponectin. J Physiol Biochem 2021; 77:205-214. [PMID: 33555532 DOI: 10.1007/s13105-021-00790-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, the complications related to diabetes, such as nephropathy, cardiovascular problems, and aging, are highly being considered. Renal cell aging is affected by various mechanisms of inflammation, oxidative stress, and basement membrane thickening, which are significant causes of renal dysfunction in diabetes. Due to recent studies, adiponectin plays a key role in diabetes-related kidney diseases as a fat-derived hormone. In diabetes, reduced adiponectin levels are associated to renal cell aging. Oxidative stress and related signaling pathways are the main routes in which adiponectin may be effective to decline diabetes-associated aging. Therefore, adiponectin signaling in target tissues becomes one of the research areas of interest in metabolism and clinical medicine. Studies on adiponectin signaling will increase our understanding of adiponectin role in diabetes-linked diseases as well as shortening life span conditions which may guide the design of antidiabetic and anti-aging drugs.
Collapse
Affiliation(s)
- Mehdi Karamian
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Moossavi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mina Hemmati
- Department of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
15
|
Ding R, Wu W, Sun Z, Li Z. AMP-activated protein kinase: An attractive therapeutic target for ischemia-reperfusion injury. Eur J Pharmacol 2020; 888:173484. [DOI: 10.1016/j.ejphar.2020.173484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/26/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
16
|
Wu LN, Hu R, Yu JM. Morphine and myocardial ischaemia-reperfusion. Eur J Pharmacol 2020; 891:173683. [PMID: 33121952 DOI: 10.1016/j.ejphar.2020.173683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Coronary heart disease (CHD) is a cardiovascular disease with high mortality and disability worldwide. The main pathological manifestation of CHD is myocardial injury due to ischaemia-reperfusion, resulting in the death of cardiomyocytes (apoptosis and necrosis) and the occurrence of cardiac failure. Morphine is a nonselective opioid receptor agonist that has been commonly used for analgesia and to treat ischaemic heart disease. The present review focused on morphine-induced protection in an animal model of myocardial ischaemia-reperfusion and chronic heart failure and the effects of morphine on ST segment elevation myocardial infarction (STEMI) patients who underwent pre-primary percutaneous coronary intervention (pre-PPCI) or PPCI. The signalling pathways involved are also briefly described.
Collapse
Affiliation(s)
- Li-Ning Wu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Rui Hu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Jun-Ma Yu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China.
| |
Collapse
|
17
|
Gao C, Wang R, Li B, Guo Y, Yin T, Xia Y, Zhang F, Lian K, Liu Y, Wang H, Zhang L, Gao E, Yan W, Tao L. TXNIP/Redd1 signalling and excessive autophagy: a novel mechanism of myocardial ischaemia/reperfusion injury in mice. Cardiovasc Res 2020; 116:645-657. [PMID: 31241142 DOI: 10.1093/cvr/cvz152] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/14/2019] [Accepted: 06/22/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Either insufficient or excessive autophagy causes cellular death and contributes to myocardial ischaemia/reperfusion (I/R) injury. However, mechanisms controlling the 'right-level' of autophagy in the heart remains unidentified. Thioredoxin-interacting protein (TXNIP) is a pro-oxidative molecule knowing to contribute to I/R injury. However, whether and how TXNIP may further inhibit suppressed autophagy or promote excessive cardiac autophagy in I/R heart has not been previously investigated. METHODS AND RESULTS Wild type or gene-manipulated adult male mice were subjected to myocardial I/R. TXNIP was increased in myocardium during I/R. Cardiac-specific TXNIP overexpression increased cardiomyocytes apoptosis and cardiac dysfunction, whereas cardiac-specific TXNIP knock-out significantly mitigated I/R-induced apoptosis and improved cardiac function. Importantly, TXNIP overexpression significantly promoted cardiac autophagy and TXNIP knock-out significantly inhibited cardiac autophagy. In vitro studies demonstrated that TXNIP increased autophagosome formation but inhibited autophagosome clearance during myocardial reperfusion. Atg5 siRNA significantly decreased hypoxia/reoxygenation induced apoptosis in cardiomyocytes with TXNIP overexpression. Mechanistically, TXNIP suppressed autophagosome clearance via increasing reactive oxygen species (ROS) level. However, TXNIP-increased autophagosome formation was not mediated by ROS as a ROS scavenger failed to block increased autophagosome formation in TXNIP overexpression heart. Finally, TXNIP directly interacted and stabilized Redd1 (an autophagy regulator), resulting in mTOR inhibition and autophagy activation. Redd1 knock-down significantly reduced autophagy formation and ameliorated I/R injury in TXNIP overexpression hearts. CONCLUSIONS Our results demonstrated that increased TXNIP-Redd1 expression is a novel signalling pathway that contributes to I/R injury by exaggerating excessive autophagy during reperfusion. These observations advance our understanding of the mechanisms of myocardial I/R injury.
Collapse
Affiliation(s)
- Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Rutao Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Tao Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Han Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Rd, Xi'an 710032, China
| |
Collapse
|
18
|
The Long Noncoding RNA Hotair Regulates Oxidative Stress and Cardiac Myocyte Apoptosis during Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1645249. [PMID: 32256945 PMCID: PMC7091551 DOI: 10.1155/2020/1645249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
Oxidative stress and subsequent cardiac myocyte apoptosis play central roles in the initiation and progression of myocardial ischemia-reperfusion (I/R) injury. Homeobox transcript antisense intergenic RNA (Hotair) was previously implicated in various heart diseases, yet its role in myocardial I/R injury has not been clearly demonstrated. Mice with cardiac-restricted knockdown or overexpression of Hotair were exposed to I/R surgery. H9c2 cells were cultured and subjected to hypoxia/reoxygenation (H/R) stimulation to further verify the role and underlying mechanisms of Hotair in vitro. Histological examination, molecular detection, and functional parameters were determined in vivo and in vitro. In response to I/R or H/R treatment, Hotair expression was increased in a bromodomain-containing protein 4-dependent manner. Cardiac-restricted knockdown of Hotair exacerbated, whereas Hotair overexpression prevented I/R-induced oxidative stress, cardiac myocyte apoptosis, and cardiac dysfunction. Mechanistically, we observed that Hotair exerted its beneficial effects via activating AMP-activated protein kinase alpha (AMPKα). Further detection revealed that Hotair activated AMPKα through regulating the enhancer of zeste homolog 2/microRNA-451/calcium-binding protein 39 (EZH2/miR-451/Cab39) axis. We provide the evidence that endogenous lncRNA Hotair is an essential negative regulator for oxidative stress and cardiac myocyte apoptosis in myocardial I/R injury, which is dependent on AMPKα activation via the EZH2/miR-451/Cab39 axis.
Collapse
|
19
|
Mitochondrial Dysfunction and Apoptosis Are Attenuated on κ-Opioid Receptor Activation Through AMPK/GSK-3β Pathway After Myocardial Ischemia and Reperfusion. J Cardiovasc Pharmacol 2020; 73:70-81. [PMID: 30422891 DOI: 10.1097/fjc.0000000000000635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that κ-opioid receptor activation possesses cardioprotection against myocardial ischemia and reperfusion (MI/R) injury. The current study was designed to investigate whether mitochondrial dysfunction after MI/R is regulated by the κ-opioid receptor and to further explore the underlying mechanisms involved. MI/R rat model was established in vivo, and a hypoxia and reoxygenation cardiomyocytes model was used in vitro. Mitochondrial morphology and function as well as myocardial apoptosis were determined. Our data indicated that treatment with U50,488H (a selective κ-opioid receptor agonist) not only reduced apoptosis but also significantly improved mitochondrial morphology and function. These effects were blocked by nor-binaltorphimine (nor-BNI, a selective κ-opioid receptor antagonist), Compound C (an AMPK inhibitor), and AR-A014418 (a GSK3β inhibitor). Moreover, in cardiomyocytes, treatment with U50,488H significantly increased the expression in phosphorylation of AMPK and the phosphorylation of GSK3β. Treatment of cardiomyocytes with AMPKα siRNA decreased the phosphorylation of AMPK and GSK3β. Moreover, AMPK activation resulted in the phosphorylation of GSK3β. Our findings suggested that U50,488H exerted cardioprotective effects by improving mitochondrial morphology and function against MI/R injury through activation of the κ-opioid receptor-mediated AMPK/GSK3β pathway.
Collapse
|
20
|
Sevoflurane Pre-conditioning Ameliorates Diabetic Myocardial Ischemia/Reperfusion Injury Via Differential Regulation of p38 and ERK. Sci Rep 2020; 10:23. [PMID: 31913350 PMCID: PMC6949279 DOI: 10.1038/s41598-019-56897-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
Diabetes mellitus (DM) significantly increases myocardial ischemia/reperfusion (MI/R) injury. During DM, cardioprotection induced by conventional pre-conditioning (PreCon) is decreased due to impaired AMP-activated protein kinase (AMPK) signaling. The current study investigated whether PreCon with inhaled anesthetic sevoflurane (SF-PreCon) remains cardioprotective during DM, and identified the involved mechanisms. Normal diet (ND) and high-fat diet (HFD)-induced DM mice were randomized into control and SF-PreCon (3 cycles of 15-minute period exposures to 2% sevoflurane) groups before MI/R. SF-PreCon markedly reduced MI/R injury in DM mice, as evidenced by improved cardiac function (increased LVEF and ±Dp/dt), decreased infarct size, and decreased apoptosis. To determine the relevant role of AMPK, the effect of SF-PreCon was determined in cardiac-specific AMPKα2 dominant negative expressing mice (AMPK-DN). SF-PreCon decreased MI/R injury in AMPK-DN mice. To explore the molecular mechanisms responsible for SF-PreCon mediated cardioprotection in DM mice, cell survival molecules were screened. Interestingly, in ND mice, SF-PreCon significantly reduced MI/R-induced activation of p38, a pro-death MAPK, without altering ERK and JNK. In DM and AMPK-DN mice, the inhibitory effect of SF-PreCon upon p38 activation was significantly blunted. However, SF-PreCon significantly increased phosphorylation of ERK1/2, a pro-survival MAPK in DM and AMPK-DN mice. We demonstrate that SF-PreCon protects the heart via AMPK-dependent inhibition of pro-death MAPK in ND mice. However, SF-PreCon exerts cardioprotective action via AMPK-independent activation of a pro-survival MAPK member in DM mice. SF-PreCon may be beneficial compared to conventional PreCon in diabetes or clinical scenarios in which AMPK signaling is impaired.
Collapse
|
21
|
CD47 Deficiency Attenuates Isoproterenol-Induced Cardiac Remodeling in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7121763. [PMID: 31827695 PMCID: PMC6885801 DOI: 10.1155/2019/7121763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
In this study, we investigated whether CD47 deficiency attenuates isoproterenol- (ISO-) induced cardiac remodeling in mice. Cardiac remodeling was induced by intraperitoneal (i.p.) injection of ISO (60 mg·kg−1·d−1 in 100 μl of sterile normal saline) daily for 14 days and was confirmed by increased levels of lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB), increased heart weight to body weight (HW/BW) ratios, and visible cardiac fibrosis. Apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were found to be significantly higher in the ISO group than in the control group, while superoxide dismutase (SOD) levels were suppressed in the ISO group. However, CD47 knockout significantly limited ISO-induced increases in LDH, CK-MB, and HW/BW ratios, cardiac fibrosis, oxidative stress, and apoptosis in the heart. In addition, CD47 deficiency also increased p-AMPK and LAMP2 expression and decreased HDAC3, cleaved Caspase-3, cleaved Caspase-9, LC3II, and p62 expression in cardiac tissues. In conclusion, CD47 deficiency reduced i.p. ISO-induced cardiac remodeling probably by inhibiting the HDAC3 pathway, improving AMPK signaling and autophagy flux, and rescuing autophagic clearance.
Collapse
|
22
|
Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 2019; 136:27-41. [DOI: 10.1016/j.yjmcc.2019.09.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
|
23
|
Xu L, Su Y, Zhao Y, Sheng X, Tong R, Ying X, Gao L, Ji Q, Gao Y, Yan Y, Yuan A, Wu F, Lan F, Pu J. Melatonin differentially regulates pathological and physiological cardiac hypertrophy: Crucial role of circadian nuclear receptor RORα signaling. J Pineal Res 2019; 67:e12579. [PMID: 30958896 DOI: 10.1111/jpi.12579] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Exercise-induced physiological hypertrophy provides protection against cardiovascular disease, whereas disease-induced pathological hypertrophy leads to heart failure. Emerging evidence suggests pleiotropic roles of melatonin in cardiac disease; however, the effects of melatonin on physiological vs pathological cardiac hypertrophy remain unknown. Using swimming-induced physiological hypertrophy and pressure overload-induced pathological hypertrophy models, we found that melatonin treatment significantly improved pathological hypertrophic responses accompanied by alleviated oxidative stress in myocardium but did not affect physiological cardiac hypertrophy and oxidative stress levels. As an important mediator of melatonin, the retinoid-related orphan nuclear receptor-α (RORα) was significantly decreased in human and murine pathological hypertrophic cardiomyocytes, but not in swimming-induced physiological hypertrophic murine hearts. In vivo and in vitro loss-of-function experiments indicated that RORα deficiency significantly aggravated pathological cardiac hypertrophy, and notably weakened the anti-hypertrophic effects of melatonin. Mechanistically, RORα mediated the cardioprotection of melatonin in pathological hypertrophy mainly by transactivation of manganese-dependent superoxide dismutase (MnSOD) via binding to the RORα response element located in the promoter region of the MnSOD gene. Furthermore, MnSOD overexpression reversed the pro-hypertrophic effects of RORα deficiency, while MnSOD silencing abolished the anti-hypertrophic effects of RORα overexpression in pathological cardiac hypertrophy. Collectively, our findings provide the first evidence that melatonin exerts an anti-hypertrophic effect on pathological but not physiological cardiac hypertrophy via alleviating oxidative stress through transactivation of the antioxidant enzyme MnSOD in a RORα-dependent manner.
Collapse
Affiliation(s)
- Longwei Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Su
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Zhao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xincheng Sheng
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Renyang Tong
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoying Ying
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lingchen Gao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqi Ji
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Gao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ancai Yuan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Fujian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Guo R, Gan L, Lau WB, Yan Z, Xie D, Gao E, Christopher TA, Lopez BL, Ma X, Wang Y. Withaferin A Prevents Myocardial Ischemia/Reperfusion Injury by Upregulating AMP-Activated Protein Kinase-Dependent B-Cell Lymphoma2 Signaling. Circ J 2019; 83:1726-1736. [PMID: 31217391 DOI: 10.1253/circj.cj-18-1391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Withaferin A (WFA), an anticancer constituent of the plant Withania somnifera, inhibits tumor growth in association with apoptosis induction. However, the potential role of WFA in the cardiovascular system is little-studied and controversial.Methods and Results:Two different doses of WFA were tested to determine their cardioprotective effects in myocardial ischemia/reperfusion (MI/R) injury through evaluation of cardiofunction in wild-type and AMP-activated protein kinase domain negative (AMPK-DN) gentransgenic mice. Surprisingly, cardioprotective effects (improved cardiac function and reduced infarct size) were observed with low-dose WFA (1 mg/kg) delivery but not high-dose (5 mg/kg). Mechanistically, low-dose WFA attenuated myocardial apoptosis. It decreased MI/R-induced activation of caspase 9, the indicator of the intrinsic mitochondrial pathway, but not caspase 8. It also upregulated the level of AMP-activated protein kinase (AMPK) phosphorylation and increased the MI/R inhibited ratio of Bcl2/Bax. In AMPK-deficient mice, WFA did not ameliorate MI/R-induced cardiac dysfunction, attenuate infarct size, or restore the Bcl2/Bax (B-cell lymphoma2/Mcl-2-like protein 4) ratio. CONCLUSIONS These results demonstrated for the first time that low-dose WFA is cardioprotective via upregulation of the anti-apoptotic mitochondrial pathway in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Rui Guo
- Department of Physiology, Shanxi Medical University.,Department of Emergency Medicine, Thomas Jefferson University
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University
| | - Zheyi Yan
- Department of Physiology, Shanxi Medical University.,Department of Emergency Medicine, Thomas Jefferson University
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University
| | - Erhe Gao
- Center for Translational Medicine, Temple University
| | | | - Bernard L Lopez
- Department of Emergency Medicine, Thomas Jefferson University
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University
| | - Yajing Wang
- Department of Physiology, Shanxi Medical University.,Department of Emergency Medicine, Thomas Jefferson University
| |
Collapse
|
25
|
Zhang Y, Xu N, Ding Y, Doycheva DM, Zhang Y, Li Q, Flores J, Haghighiabyaneh M, Tang J, Zhang JH. Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic-ischemic encephalopathy. Cell Death Dis 2019; 10:97. [PMID: 30718467 PMCID: PMC6362229 DOI: 10.1038/s41419-019-1374-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a devastating neurological event that contributes to the prolonged neurodevelopmental consequences in infants. Therapeutic strategies focused on attenuating neuronal apoptosis in the penumbra appears to be promising. Given the increasingly recognized neuroprotective roles of adipokines in HIE, we investigated the potential anti-apoptotic roles of a novel member of adipokines, Chemerin, in an experimental model of HIE. In the present study, 10-day-old rat pups underwent right common carotid artery ligation followed by 2.5 h hypoxia. At 1 h post hypoxia, pups were intranasally administered with human recombinant chemerin (rh-chemerin). Here, we showed that rh-chemerin prevented the neuronal apoptosis and degeneration as evidenced by the decreased expression of the pro-apoptotic markers, cleaved caspase 3 and Bax, as well as the numbers of Fluoro-Jade C and TUNEL-positive neurons. Furthermore, rh-Chemerin reversed neurological and morphological impairments induced by hypoxia-ischemia in neonatal rats at 24 h and 4 weeks after HIE. In addition, chemerin-mediated neuronal survival correlated with the elevation of chemerin receptor 23 (chemR23), phosphorylated calmodulin-dependent protein kinase kinase 2 (CAMKK2), as well as phosphorylated adenosine monophosphate-activated protein kinase (AMPK). Specific inhibition of chemR23, CAMKK2, and AMPK abolished the anti-apoptotic effects of rh-chemerin at 24 h after HIE, demonstrating that rh-chemerin ameliorated neuronal apoptosis partially via activating chemR23/CAMKK2/AMPK signaling pathway. Neuronal apoptosis is a well-established contributing factor of pathological changes and the neurological impairment after HIE. These results revealed mechanisms of neuroprotection by rh-chemerin, and indicated that activation of chemR23 might be harnessed to protect from neuronal apoptosis in HIE.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yiting Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Qian Li
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Mina Haghighiabyaneh
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
26
|
Potenza MA, Sgarra L, Nacci C, Leo V, De Salvia MA, Montagnani M. Activation of AMPK/SIRT1 axis is required for adiponectin-mediated preconditioning on myocardial ischemia-reperfusion (I/R) injury in rats. PLoS One 2019; 14:e0210654. [PMID: 30653603 PMCID: PMC6336234 DOI: 10.1371/journal.pone.0210654] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
Background Adiponectin (AD) cardioprotective activities are mediated by AMPK, a fuel-sensing molecule sharing common targets and cellular activities with SIRT-1. Whether AD preconditioning may involve SIRT-1 activity is not known; however, the protective role of SIRT-1 during ischemia and the potential interplay between AMPK and SIRT-1 suggest this possibility. Methods Isolated hearts from male Sprague-Dawley rats (n = 85) underwent ischemia/reperfusion (I/R, 30/180 min). Preconditioning with resveratrol (RSV, SIRT-1 activator) was compared to preconditioning with AD alone, or in combination with compound C (CC, AMPK inhibitor) or sirtinol (STN, SIRT-1 inhibitor). For each heart, left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (dLVP), coronary flow (CF) and left ventricular infarct mass (IM) were measured, together with the phosphorylation/activation status of AMPK, LKB1, eNOS and SIRT-1, at the beginning (15 min) and at the end (180 min) of reperfusion. Results and conclusions When compared to I/R, both RSV and AD improved cardiac function and reduced IM (p < 0.01, p < 0.05, respectively). Cardioprotective effects of AD were completely reversed in the AD+CC group, and significantly attenuated in the AD+STN group. Both RSV and AD increased eNOS, AMPK and LKB1 phosphorylation (for each parameter: p < 0.05 vs. I/R, in both RSV and AD treatment groups) at 15 min of reperfusion, and SIRT-1 activity at the end of reperfusion (p < 0.01, p < 0.05 vs. I/R, respectively). Interestingly, AD-mediated phosphorylation of AMPK and LKB1, and SIRT-1 deacetylation activity was markedly reduced in both the AD+CC and AD+STN groups (p < 0.05 vs. AD). Thus, AD-mediated cardioprotection requires both AMPK and SIRT-1 signaling pathways, that act as a component of a cycle and regulate each other’s activities.
Collapse
Affiliation(s)
- Maria Assunta Potenza
- Department of Biomedical Sciences and Human Oncology-Pharmacology Section, Medical School-University of Bari "Aldo Moro", Bari, Italy
| | - Luca Sgarra
- Department of Emergency and Organ Transplantation-Section of Cardiovascular Diseases, Medical School-University of Bari "Aldo Moro", Bari, Italy
| | - Carmela Nacci
- Department of Biomedical Sciences and Human Oncology-Pharmacology Section, Medical School-University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Leo
- Department of Biomedical Sciences and Human Oncology-Pharmacology Section, Medical School-University of Bari "Aldo Moro", Bari, Italy
| | - Maria Antonietta De Salvia
- Department of Biomedical Sciences and Human Oncology-Pharmacology Section, Medical School-University of Bari "Aldo Moro", Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology-Pharmacology Section, Medical School-University of Bari "Aldo Moro", Bari, Italy
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
29
|
Polydatin Protects Diabetic Heart against Ischemia-Reperfusion Injury via Notch1/Hes1-Mediated Activation of Pten/Akt Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2750695. [PMID: 29636838 PMCID: PMC5831600 DOI: 10.1155/2018/2750695] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
Diabetes exacerbates oxidative/nitrative stress during myocardial ischemia-reperfusion (MI/R) injury. Recent studies highlighted the cardioprotective actions of polydatin. However, its effect on diabetic MI/R injury and the underlying mechanisms remain unknown. This work was undertaken to evaluate the effect of polydatin on diabetic MI/R injury with a focus on Notch1/Hes1 signaling and myocardial oxidative/nitrative stress. Streptozotocin- (STZ-) induced diabetic rats were administered with polydatin (20 mg/kg/d) in the absence or presence of DAPT (a γ-secretase inhibitor) or LY294002 (a PI3K/Akt inhibitor) and then subjected to MI/R injury. Polydatin administration preserved cardiac function and reduced myocardial infarct size. Moreover, polydatin ameliorated myocardial oxidative/nitrative stress damage as evidenced by decreased myocardial superoxide generation, malondialdehyde, gp91phox expression, iNOS expression, NO metabolite level, and nitrotyrosine content and increased eNOS phosphorylation. However, these effects were blocked by DAPT administration. DAPT also inhibited the stimulatory effect of polydatin on the Notch1/Hes1-Pten/Akt signaling pathway in a diabetic myocardium. Additionally, LY294002 not only abolished polydatin's antiapoptotic effect but also reversed its inhibitory effect on myocardial oxidative/nitrative stress. Polydatin effectively reduced MI/R injury and improved left ventricular functional recovery under diabetic condition by ameliorating oxidative/nitrative stress damage. Importantly, Notch1/Hes1-mediated activation of Pten/Akt signaling played a crucial role in this process.
Collapse
|
30
|
Jungi S, Fu X, Segiser A, Busch M, Most P, Fiedler M, Carrel T, Tevaearai Stahel H, Longnus SL, Most H. Enhanced Cardiac S100A1 Expression Improves Recovery from Global Ischemia-Reperfusion Injury. J Cardiovasc Transl Res 2018; 11:236-245. [PMID: 29392537 DOI: 10.1007/s12265-018-9788-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Gene-targeted therapy with the inotropic Ca2 + -sensor protein S100A1 rescues contractile function in post-ischemic heart failure and is being developed towards clinical trials. Its proven beneficial effect on cardiac metabolism and mitochondrial function suggests a cardioprotective effect of S100A1 in myocardial ischemia-reperfusion injury (IRI). Fivefold cardiomyocyte-specific S100A1 overexpressing, isolated rat hearts perfused in working mode were subjected to 28 min ischemia (37 °C) followed by 60 min reperfusion. S100A1 overexpressing hearts showed superior hemodynamic recover: Left ventricular pressure recovered to 57 ± 7.3% of baseline compared to 51 ± 4.6% in control (p = 0.025), this effect mirrored in LV work and dP/dt(max). Troponin T and lactate dehydrogenase was decreased in the S100A1 group, as well as FoxO pro-apoptotic transcription factor, indicating less tissue necrosis, whereas phosphocreatine content was higher after reperfusion. This is the first report of a cardioprotective effect of S100A1 overexpression in a global IRI model.
Collapse
Affiliation(s)
- S Jungi
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - X Fu
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - A Segiser
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - M Busch
- Section for Molecular and Translational Cardiology, Department of Cardiology, Pneumology and Angiology, Karl-Ruprechts University of Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - P Most
- Section for Molecular and Translational Cardiology, Department of Cardiology, Pneumology and Angiology, Karl-Ruprechts University of Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - M Fiedler
- Center for Laboratory Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - T Carrel
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - H Tevaearai Stahel
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - S L Longnus
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Henriette Most
- Department of Cardiovascular Surgery, Inselspital University Hospital, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
31
|
Feng R, Liu J, Wang Z, Zhang J, Cates C, Rousselle T, Meng Q, Li J. The structure-activity relationship of ginsenosides on hypoxia-reoxygenation induced apoptosis of cardiomyocytes. Biochem Biophys Res Commun 2017; 494:556-568. [PMID: 29032181 PMCID: PMC5765766 DOI: 10.1016/j.bbrc.2017.10.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 02/08/2023]
Abstract
Ginsenosides have been studied extensively in recent years due to their therapeutic effects in cardiovascular diseases. While most studies examined the different ginsenosides individually, few studies compare the therapeutic effects among the different types. This study examined how effective protopanaxadiol, protopanaxatriol ginsenosides Rh2, Rg3, Rh1, and Rg2 of the ginsenoside family are in protecting H9c2 cardiomyocytes from damage caused by hypoxia/reoxygenation. In the current study, a model of myocardial ischemia and reperfusion was induced in H9c2 cardiomyocytes by oxygen deprivation via a hypoxia chamber followed by reoxygenation. Our data show that structures similar to that of protopanaxadiol, which lacked the hydroxide group at C6, were more effective in lowering apoptosis than structures similar to protopanaxatriol with a hydroxide group at C6. As the compounds increased in size and complexity, the cardioprotective effects diminished. In addition, the S enantiomer proved to be more effective in cardioprotection than the R enantiomer. Furthermore, the immunoblotting analysis demonstrated that ginsenosides activate AMPK but suppress JNK signaling pathways during hypoxia/reoxygenation. Thus, ginsenosides treatment attenuated hypoxia/reoxygenation-induced apoptosis via modulating cardioprotective AMPK and inflammation-related JNK signaling pathways.
Collapse
Affiliation(s)
- Ruiqi Feng
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jia Liu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Zhenhua Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jingwen Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Courtney Cates
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Ji Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
32
|
Wang Y, Liang B, Lau WB, Du Y, Guo R, Yan Z, Gan L, Yan W, Zhao J, Gao E, Koch W, Ma XL. Restoring diabetes-induced autophagic flux arrest in ischemic/reperfused heart by ADIPOR (adiponectin receptor) activation involves both AMPK-dependent and AMPK-independent signaling. Autophagy 2017; 13:1855-1869. [PMID: 28825851 DOI: 10.1080/15548627.2017.1358848] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy/autophagy is increasingly recognized as an important regulator of myocardial ischemia-reperfusion (MI-R) injury. However, whether and how diabetes may alter autophagy in response to MI-R remains unknown. Deficiency of ADIPOQ, a cardioprotective molecule, markedly increases MI-R injury. However, the role of diabetic hypoadiponectinemia in cardiac autophagy alteration after MI-R is unclear. Utilizing normal control (NC), high-fat-diet-induced diabetes, and Adipoq knockout (adipoq-/-) mice, we demonstrated that autophagosome formation was modestly inhibited and autophagosome clearance was markedly impaired in the diabetic heart subjected to MI-R. adipoq-/- largely reproduced the phenotypic alterations observed in the ischemic-reperfused diabetic heart. Treatment of diabetic and adipoq-/- mice with AdipoRon, a novel ADIPOR (adiponectin receptor) agonist, stimulated autophagosome formation, markedly increased autophagosome clearance, reduced infarct size, and improved cardiac function (P < 0.01 vs vehicle). Mechanistically, AdipoRon caused significant phosphorylation of AMPK-BECN1 (Ser93/Thr119)-class III PtdIns3K (Ser164) and enhanced lysosome protein LAMP2 expression both in vivo and in isolated adult cardiomyocytes. Pharmacological AMPK inhibition or genetic Prkaa2 mutation abolished AdipoRon-induced BECN1 (Ser93/Thr119)-PtdIns3K (Ser164) phosphorylation and AdipoRon-stimulated autophagosome formation. However, AdipoRon-induced LAMP2 expression, AdipoRon-stimulated autophagosome clearance, and AdipoRon-suppressed superoxide generation were not affected by AMPK inhibition. Treatment with MnTMPyP (a superoxide scavenger) increased LAMP2 expression and stimulated autophagosome clearance in simulated ischemic-reperfused cardiomyocytes. However, no additive effect between AdipoRon and MnTMPyP was observed. Collectively, these results demonstrate that hypoadiponectinemia impairs autophagic flux, contributing to enhanced MI-R injury in the diabetic state. ADIPOR activation restores AMPK-mediated autophagosome formation and antioxidant-mediated autophagosome clearance, representing a novel intervention effective against MI-R injury in diabetic conditions.
Collapse
Affiliation(s)
- Yajing Wang
- a Department of Emergency Medicine , Thomas Jefferson University , Philadelphia , PA , USA.,b Center for Translational Medicine, Department of Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Bin Liang
- a Department of Emergency Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Wayne Bond Lau
- a Department of Emergency Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Yunhui Du
- a Department of Emergency Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Rui Guo
- a Department of Emergency Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Zheyi Yan
- a Department of Emergency Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Lu Gan
- a Department of Emergency Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Wenjun Yan
- a Department of Emergency Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Jianli Zhao
- a Department of Emergency Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| | - Erhe Gao
- c Center for Translational Medicine , Temple University , Philadelphia , PA , USA
| | - Walter Koch
- c Center for Translational Medicine , Temple University , Philadelphia , PA , USA
| | - Xin-Liang Ma
- a Department of Emergency Medicine , Thomas Jefferson University , Philadelphia , PA , USA.,b Center for Translational Medicine, Department of Medicine , Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
33
|
Jia L, Zhang W, Ma Y, Chen B, Liu Y, Piao C, Wang Y, Yang M, Liu T, Zhang J, Li T, Nie S, Du J. Haplodeficiency of Ataxia Telangiectasia Mutated Accelerates Heart Failure After Myocardial Infarction. J Am Heart Assoc 2017; 6:JAHA.117.006349. [PMID: 28724653 PMCID: PMC5586323 DOI: 10.1161/jaha.117.006349] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Cell senescence is involved in the process of organ damage and repair; however, the underlying molecular mechanism needs to be further explored. Methods and Results Senescence‐related genes (ie, p21, p53, and ataxia telangiectasia mutated [ATM]) were shown to be elevated after myocardial infarction (MI) in both mouse and human hearts. Ten‐ to 12‐week‐old male wild‐type littermates (ATM+/+) and ATM heterozygous mice (ATM+/−) were subjected to MI. Cardiac echography showed that ATM haplodeficiency did not affect the survival rate but aggravated heart failure at day 28 post MI. Histologic analysis showed increased fibrosis in the noninfarct area of ATM+/− mice compared with that in ATM+/+ mice. Senescence‐associated β‐galactosidase staining showed that the number of senescent fibroblasts was decreased when ATM was haplodeficient both in vivo and in vitro. Costaining of α‐smooth muscle actin with p53 or p19 showed fewer senescent myofibroblasts in ATM+/− mouse hearts. Moreover, angiogenesis was also examined using the endothelial markers CD31 both at early (day 7) and late stages (day 28) after MI, and ATM haplodeficiency reduced angiogenesis after MI. Finally, cardiac fibroblasts were isolated from infarcted mouse heart and the medium were tested for its capacity of endothelial tubing formation, revealing that ATM haplodeficiency led to lower vascular endothelial growth factor production from cardiac fibroblast and reduced capacity of endothelial tube formation in vitro. Conclusions The present study shows that ATM haplodeficiency decreases fibroblast senescence and vascular endothelial growth factor production and impaired angiogenesis in response to MI, leading to accelerated heart failure.
Collapse
Affiliation(s)
- Lixin Jia
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenmei Zhang
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Youcai Ma
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Boya Chen
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Chunmei Piao
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Min Yang
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Tingting Liu
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Junmeng Zhang
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Taotao Li
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shaoping Nie
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China .,The Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University Ministry of Education Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
34
|
Abstract
Cardiovascular disease (CVD) is the greatest cause of death, accounting for nearly one-third of all deaths worldwide. The increase in obesity rates over 3 decades is widespread and threatens the public health in both developed and developing countries. Obesity, the excessive accumulation of visceral fat, causes the clustering of metabolic disorders, such as type 2 diabetes, dyslipidemia, and hypertension, culminating in the development of CVD. Adipose tissue is not only an energy storage organ, but an active endocrine tissue producing various biologically active proteins known as adipokines. Since leptin, a central regulator of food intake and energy expenditure, was demonstrated to be an adipose-specific adipokine, attention has focused on the identification and characterization of unknown adipokines to clarify the mechanisms underlying obesity-related disorders. Numerous adipokines have been identified in the past 2 decades; most adipokines are upregulated in the obese state. Adipokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and resistin are pro-inflammatory, and exacerbate various metabolic and cardiovascular diseases. However, a small number of adipokines, including adiponectin, are decreased by obesity, and generally exhibit antiinflammatory properties and protective functions against obesity-related diseases. Collectively, an imbalance in the production of pro- and antiinflammatory adipokines in the obese condition results in multiple complications. In this review, we focus on the pathophysiologic roles of adipokines with cardiovascular protective properties.
Collapse
Affiliation(s)
- Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University
| | - Koji Ohashi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University
| | - Hayato Ogawa
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University
| | - Noriyuki Ouchi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine
| |
Collapse
|
35
|
Mitsuhashi T, Uemoto R, Ishikawa K, Yoshida S, Ikeda Y, Yagi S, Matsumoto T, Akaike M, Aihara KI. Endothelial Nitric Oxide Synthase-Independent Pleiotropic Effects of Pitavastatin Against Atherogenesis and Limb Ischemia in Mice. J Atheroscler Thromb 2017; 25:65-80. [PMID: 28592707 PMCID: PMC5770225 DOI: 10.5551/jat.37747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Statins have a protective impact against cardiovascular diseases through not only lipid-lowering effects but also pleiotropic effects, including activation of the endothelial nitric oxide synthase (eNOS) system. We aimed to clarify the protective effects of a statin against atherogenesis and ischemia in eNOS−/− mice. Methods: Study 1. eNOS−/−Apolipoprotein E (ApoE)−/− mice were treated with a vehicle or pitavastatin (0.3 mg/kg/day) for 4 weeks. Study 2. eNOS−/− mice were also treated with a vehicle or the same dose of pitavastatin for 2 weeks prior to hind-limb ischemia. Results: In Study 1, pitavastatin attenuated plaque formation and medial fibrosis of the aortic root with decreased macrophage infiltration in eNOS−/−ApoE−/− mice. PCR array analysis showed reductions in aortic gene expression of proatherogenic factors, including Ccl2 and Ccr2 in pitavastatin-treated double mutant mice. In addition, pitavastatin activated not only atherogenic p38MAPK and JNK but also anti-atherogenic ERK1/2 and ERK5 in the aorta of the double mutant mice. In Study 2, pitavastatin prolonged hind-limb survival after the surgery with increased BCL2-to-BAX protein ratio and inactivated JNK. Enhanced expression of anti-apoptotic genes, including Vegf, Api5, Atf5, Prdx2, and Dad1, was observed in the ischemic limb of pitavastatin-treated eNOS−/− mice. Furthermore, pitavastatin activated both aortic and skeletal muscle AMPK in the eNOS-deficient vascular injury models. Conclusion: Pitavastatin exerts eNOS-independent protective effects against atherogenesis and hindlimb ischemia in mice, which may occur via modifications on key molecules such as AMPK and diverse molecules.
Collapse
Affiliation(s)
| | - Ryoko Uemoto
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University
| | | | - Sumiko Yoshida
- Department of Hematology, Endocrinology & Metabolism, Tokushima University
| | | | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University
| | | | - Ken-Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University
| |
Collapse
|
36
|
Insights for Oxidative Stress and mTOR Signaling in Myocardial Ischemia/Reperfusion Injury under Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6437467. [PMID: 28298952 PMCID: PMC5337354 DOI: 10.1155/2017/6437467] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus (DM) displays a high morbidity. The diabetic heart is susceptible to myocardial ischemia/reperfusion (MI/R) injury. Impaired activation of prosurvival pathways, endoplasmic reticulum (ER) stress, increased basal oxidative state, and decreased antioxidant defense and autophagy may render diabetic hearts more vulnerable to MI/R injury. Oxidative stress and mTOR signaling crucially regulate cardiometabolism, affecting MI/R injury under diabetes. Producing reactive oxygen species (ROS) and reactive nitrogen species (RNS), uncoupling nitric oxide synthase (NOS), and disturbing the mitochondrial quality control may be three major mechanisms of oxidative stress. mTOR signaling presents both cardioprotective and cardiotoxic effects on the diabetic heart, which interplays with oxidative stress directly or indirectly. Antihyperglycemic agent metformin and newly found free radicals scavengers, Sirt1 and CTRP9, may serve as promising pharmacological therapeutic targets. In this review, we will focus on the role of oxidative stress and mTOR signaling in the pathophysiology of MI/R injury in diabetes and discuss potential mechanisms and their interactions in an effort to provide some evidence for cardiometabolic targeted therapies for ischemic heart disease (IHD).
Collapse
|
37
|
Zhao YC, Xu LW, Ding S, Ji QQ, Lin N, He Q, Gao LC, Su YY, Pu J, He B. Nuclear receptor retinoid-related orphan receptor α deficiency exacerbates high-fat diet-induced cardiac dysfunction despite improving metabolic abnormality. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1991-2000. [PMID: 27825849 DOI: 10.1016/j.bbadis.2016.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/08/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Retinoid-related orphan receptor α (RORα), a member of the metabolic nuclear receptor superfamily, plays a vital regulatory role in circadian rhythm and metabolism. Here, we investigated the role of RORα in high-fat diet (HFD)-induced cardiac impairments and the underlying mechanisms involved. RORα-deficient stagger mice (sg/sg) and wild type (WT) littermates were fed with either standard diet or HFD. At 20weeks after HFD treatment, RORα deficiency resulted in significantly decreased body weight gain, improved dyslipidemia and ameliorated insulin resistance (evaluated by blood biochemical and glucose/insulin tolerance tests) compared with WT control. However, compared with HFD-treated WT mice, HFD-treated sg/sg mice exhibited significantly augmented myocardial hypertrophy, cardiac fibrosis (wheat germ agglutinin, masson trichrome and sirius red staining) and cardiac dysfunction (echocardiography and hemodynamics). Mechanistically, RORα deficiency impaired mitochondrial biogenesis and function. Additionally, RORα deficiency resulted in inhibition of the AMPK-PGC1α signaling pathway. In contrast, cardiomyocyte-specific RORα overexpression ameliorated myocardial hypertrophy, fibrosis and dysfunction by restoring AMPK-PGC1α signaling, and subsequently normalizing mitochondrial biogenesis. These findings demonstrated for the first time that nuclear receptor RORα deficiency aggravated HFD-induced myocardial dysfunction at least in part by impairing mitochondrial biogenesis in association with disrupting AMPK-PGC1α signaling. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren and Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Yi-Chao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Long-Wei Xu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Qing-Qi Ji
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Nan Lin
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Qing He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Ling-Chen Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Yuan-Yuan Su
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China.
| | - Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai 200127, China.
| |
Collapse
|
38
|
Jiang S, Liu Y, Wang J, Zhang Y, Rui Y, Zhang Y, Li T. Cardioprotective effects of monocyte locomotion inhibitory factor on myocardial ischemic injury by targeting vimentin. Life Sci 2016; 167:85-91. [PMID: 27773717 DOI: 10.1016/j.lfs.2016.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide produced by Entamoeba histolytica, has anti-inflammatory function and protective effect on ischemic stroke. In this study, we evaluated the effect of MLIF on myocardial ischemia. Mice were subjected to ischemia/reperfusion by occlusion of the left anterior descending artery (LAD). After sacrifice, the serum concentrations of cardiac troponin I (cTnI), creatine kinase (CK), lactate dehydrogenase (LDH) as well as the heart infarct size were measured. HE and TUNEL staining were used to observe the pathological damage and the apoptotic cells. For in vitro study, the oxygen-glucose deprivation(OGD) model was established in H9c2 cells. MTT assay and flow cytometry assay were performed to evaluate cell viability and apoptosis. The expression of JNK and caspase 3 was assessed by western blot analysis. Pull-down assay was used to detect the specific binding protein of MLIF in myocardial cells. MLIF significantly reduced the infarct size, and the cTnI, CK and LDH levels, amelioratived pathological damage and reduced the apopotosis compared with the myocardial I/R model group. MLIF improved cell survival and inhibited apoptosis and necrosis by inhibiting the p-JNK and cleaved caspase3 expression. Furthermore, the binding protein of MLIF in myocardial cells was vimentin. Inhibition of vimentin expression by withaferin A or vimentin siRNA repressed the protective effects of MLIF in OGD-provoked H9c2 cells. Taken together, our results demonstrate that the cardioprotective effects of MLIF on myocardial ischemia injury are related to reductions in the inflammatory response and apoptosis by targeting vimentin.
Collapse
Affiliation(s)
- Shu Jiang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, PR China; Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, PR China
| | - Yulan Liu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, PR China
| | - Jing Wang
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Yue Zhang
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Yaocheng Rui
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, PR China
| | - Yuefan Zhang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, PR China.
| | - Tiejun Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, PR China; Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai, PR China.
| |
Collapse
|
39
|
Sun Y, Zhao D, Yang Y, Gao C, Zhang X, Ma Z, Jiang S, Zhao L, Chen W, Ren K, Yi W, Gao F. Adiponectin exerts cardioprotection against ischemia/reperfusion injury partially via calreticulin mediated anti-apoptotic and anti-oxidative actions. Apoptosis 2016; 22:108-117. [DOI: 10.1007/s10495-016-1304-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Lu YM, Jiao B, Lee J, Zhang L, Yu ZB. Simulated microgravity increases myocardial susceptibility to ischemia-reperfusion injury via a deficiency of AMP-activated protein kinase. Can J Physiol Pharmacol 2016; 95:59-71. [PMID: 27831744 DOI: 10.1139/cjpp-2015-0456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gravitation is an important factor in maintaining cardiac contractility. Our study investigated whether simulated microgravity increases myocardial susceptibility to ischemia-reperfusion (IR) injury. Using the Langendorff-perfused heart model with 300 beats/min pacing, 4-week tail suspension (SUS) and control (CON) male Sprague-Dawley rats (n = 10 rats/group) were subjected to 60 min of left anterior descending coronary artery (LAD) occlusion followed by 120 min of reperfusion. Left ventricular end-systolic pressure (LVESP), left ventricular end-diastolic pressure (LVEDP), creatine kinase (CK) and lactate dehydrogenase (LDH) activity, and infarct size were assessed. Data demonstrated that there were significantly increased LVEDP, CK, LDH, and infarct size in SUS compared with CON (P < 0.05), accompanied by decreased LVESP (P < 0.05). Furthermore, TUNEL-positive cardiomyocytes were higher in SUS than that in CON (P < 0.01), and AMP-activated protein kinase (AMPK) phosphorylation and Bcl-2/Bax in SUS were less compared with CON (P < 0.05). Similarly, isolated hearts pre-treated with A-769662 exhibited better recovery of cardiac function, increased AMPK phosphorylation, and reduced necrosis and apoptosis. Furthermore, AMPKα protein showed a significant suppression in 4-week hindlimb unweighting rats. These results suggest that AMPK deficiency increases myocardial susceptibility to IR injury in rats subjected to simulated microgravity.
Collapse
Affiliation(s)
- Yuan-Ming Lu
- a Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an, 710032, China
| | - Bo Jiao
- a Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an, 710032, China
| | - Jun Lee
- b Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Lin Zhang
- a Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an, 710032, China
| | - Zhi-Bin Yu
- a Department of Aerospace Physiology, Fourth Military Medical University, Key Laboratory of Aerospace Medicine, Ministry of China, Xi'an, 710032, China
| |
Collapse
|
41
|
Zhao L, Fan C, Zhang Y, Yang Y, Wang D, Deng C, Hu W, Ma Z, Jiang S, Di S, Qin Z, Lv J, Sun Y, Yi W. Adiponectin enhances bone marrow mesenchymal stem cell resistance to flow shear stress through AMP-activated protein kinase signaling. Sci Rep 2016; 6:28752. [PMID: 27418435 PMCID: PMC4945870 DOI: 10.1038/srep28752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Adiponectin has been demonstrated to protect the cardiovascular system and bone marrow mesenchymal stem cells (BMSCs). However, it is unclear whether adiponectin can protect BMSCs against flow shear stress (FSS). In this study, our aim was to explore the effects of adiponectin on BMSCs and to explore the role of AMP-activated protein kinase (AMPK) signaling in this process. Shear stress significantly inhibits the survival and increases the apoptosis of BMSCs in an intensity-dependent manner. The expression levels of TGF-β, bFGF, VEGF, PDGF, and Bcl2 are simultaneously reduced, and the phosphorylation levels of AMPK and ACC, as well as the expression level of Bax, are increased. Supplementation with adiponectin promotes the survival of BMSCs; reverses the changes in the expression levels of TGF-β, bFGF, VEGF, PDGF, Bcl2, and Bax; and further amplifies the phosphorylation of AMPK and ACC. Furthermore, the protective effects of adiponectin can be partially neutralized by AMPK siRNA. In summary, we have demonstrated for the first time that adiponectin can effectively protect BMSCs from FSS and that this effect depends, at least in part, on the activation of AMPK signaling.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.,Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yu Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Shouyi Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhigang Qin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Jianjun Lv
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
42
|
Thapalia BA, Zhou Z, Lin X. Sauchinone augments cardiomyocyte viability by enhancing autophagy proteins -PI3K, ERK(1/2), AMPK and Beclin-1 during early ischemia-reperfusion injury in vitro. Am J Transl Res 2016; 8:3251-3265. [PMID: 27508047 PMCID: PMC4969463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
Background. Sauchinone has proved its anti-oxidant and anti-inflammatory properties in various animal tissues. This study sought to illustrate its regulatory nature on autophagy associated proteins (PI3K, ERK1/2, AMPK, and Beclin-1) during early cardiomyocyte ischemia and subsequent reperfusion. Methods. Cultured cardiomyocytes were subjected to simulated Ischemia/reperfusion with and without Sauchinone pretreatment and also in the presence of autophagy inhibitor (3-MA). Colorimetric analysis of CCK-8, LDH antibody assay as well as Western blot analysis were performed to observe the expressions of LC3B (II) and Beclin-1 protein (markers of autophagy), autophagy proteins (PI3K, ERK1/2 and AMPK) and apoptotic proteins (Bax and Bcl-2) and the results were quantified into their grey values and subjected to statistical analysis. Results. Sauchinone demonstrated cell survival enhancing properties with increase in CCK-8 (SD = 0.553±0.012) and decrease in LDH (SD = 0.183±0.054) expressions, both of which were best observed at test dose of 20 µmol/L. At this dose, there was increment in cellular autophagy as demonstrated by peaking of autophagy markers LC3B-II (p<0.05) and Beclin-1 (p<0.05) with strong correlations (r = 0.99). Similarly, the autophagy proteins, compared to control and I/R model, also showed a significant increased level with PI3K (p<0.0001), total p-ERK1/2 (p<0.0001) and p-AMPKα (p<0.0001). Simultaneously, a decrease in expressions of pro-apoptotic molecules Bax (r = 0.989, p<0.0001) with increment of in the anti-apoptotic protein Bcl-2 (r = 0.996, p<0.0001) was observed. The observed effects on cell density, viability and autophagy was abrogated in presence of 3-MA. Conclusions. Sauchinone enhances cell survival by promoting autophagy and inhibiting apoptosis in cardiomyocytes during early stages of Ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Bisharad Anil Thapalia
- Department of Cardiology, The First Affiliated Hospital of The Anhui Medical University, Anhui Medical University 81 Meishan Road, Sushan District, Hefei 230032, Anhui, China
| | - Zhen Zhou
- Department of Cardiology, The First Affiliated Hospital of The Anhui Medical University, Anhui Medical University 81 Meishan Road, Sushan District, Hefei 230032, Anhui, China
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of The Anhui Medical University, Anhui Medical University 81 Meishan Road, Sushan District, Hefei 230032, Anhui, China
| |
Collapse
|
43
|
Ning Y, Li Z, Qiu Z. FOXO1 silence aggravates oxidative stress-promoted apoptosis in cardiomyocytes by reducing autophagy. J Toxicol Sci 2016; 40:637-45. [PMID: 26354380 DOI: 10.2131/jts.40.637] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mechanisms underlining oxidative stress-induced injury to cardiomyocytes during myocardial infarction (MI) or acute ischemia/reperfusion (I/R) are not well recognized. Forkhead box O (FOXO) transcription factors have been defined as critical mediators of oxidative stress resistance in multiple cell types, but their cardioprotective functions have not been reported previously. In the present study, we investigated the promotion to FOXO1 by the treatment with hydrogen peroxide (H2O2) during the H2O2-induced apoptosis in cardiomyocyte H9c2 cells. We then silenced FOXO1 with FOXO1-specific siRNA, and re-evaluated the H2O2-induced apoptosis. In addition, we also examined the H2O2-induced autophagy and the autophagy induction post FOXO1 silence. Results demonstrated that H2O2 induced a significantly high level of apoptosis in H9c2 cells. Interestingly, the FOXO1 in both mRNA and protein levels were not significantly regulated, however, the phosphorylated form of FOXO1 was significantly promoted in the H2O2-treated H9c2 cells. On the other hand, post the significant knockout of FOXO1 with the transfection with FOXO1-specific siRNA, the apoptosis induction was more significant in H9c2 cells subjected to H2O2. In addition, we found a significantly higher level of autophagy induction in the H2O2-treated H9c2 cells. However, the autophagy was markedly reduced by the knockout of FOXO1. In summary, these data support the critical role for FOXO1 in promoting cardiomyocytes against oxidative stress probably through inducing autophagy.
Collapse
Affiliation(s)
- Yuzhen Ning
- Vasculocardiology Deparment, Zhujiang Hospital, Southern Medical University, China
| | | | | |
Collapse
|
44
|
Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol 2016; 8:93-100. [PMID: 26993047 DOI: 10.1093/jmcb/mjw011] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/25/2015] [Indexed: 12/22/2022] Open
Abstract
Adiponectin is an adipocyte-specific factor, first described in 1995. Over the past two decades, numerous studies have elucidated the physiological functions of adiponectin in obesity, diabetes, inflammation, atherosclerosis, and cardiovascular disease. Adiponectin, elicited through cognate receptors, suppresses glucose production in the liver and enhances fatty acid oxidation in skeletal muscle, which together contribute to a beneficial metabolic action in whole body energy homeostasis. Beyond its role in metabolism, adiponectin also protects cells from apoptosis and reduces inflammation in various cell types via receptor-dependent mechanisms. Adiponectin, as a fat-derived hormone, therefore fulfills a critical role as an important messenger to communicate between adipose tissue and other organs. A better understanding of adiponectin actions, including the pros and cons, will advance our insights into basic mechanisms of metabolism and inflammation, and potentially pave the way toward novel means of pharmacological intervention to address pathophysiological changes associated with diabetes, atherosclerosis, and cardiometabolic disease.
Collapse
Affiliation(s)
- Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
45
|
Chen M, Cai H, Yu C, Wu P, Fu Y, Xu X, Fan R, Xu C, Chen Y, Wang L, Huang X. Salidroside exerts protective effects against chronic hypoxia-induced pulmonary arterial hypertension via AMPKα1-dependent pathways. Am J Transl Res 2016; 8:12-27. [PMID: 27069536 PMCID: PMC4759412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Salidroside, an active ingredient isolated from Rhodiola rosea, has shown to exert protective effects against chronic hypoxia-induced pulmonary arterial hypertension (PAH). However, the underlying mechanisms were not well known. Based on our recent reports, we predicted the involvement of adenosine monophosphate-activated protein kinase (AMPK) mediated effects in salidroside regulation of PAH. Firstly, to prove the hypothesis, rats were exposed to chronic hypoxia and treated with increasing concentrations of salidroside or a selective AMPK activator-5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) for 4 weeks. After salidroside or AICAR treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary artery remodeling were attenuated. Then the effects of salidroside or AICAR on hypoxia-induced excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs), which contributed to pulmonary arterial remodeling, were investigated. Our results suggested salidroside, as well as AICAR, reversed hypoxia-induced PASMCs proliferation and apoptosis resistance while AMPK inhibitor Compound C enhanced the effects of hypoxia. To reveal the potential cellular mechanisms, activation of AMPKα1 and expression of the genes related to proliferation and apoptosis were analyzed in PASMCs after salidroside treatment under hypoxia conditions. The results demonstrated salidroside as well as AICAR might inhibit chronic hypoxia-induced PASMCs proliferation via AMPKα1-P53-P27/P21 pathway and reverse apoptosis resistance via AMPKα1-P53-Bax/Bcl-2-caspase 9-caspase 3 pathway.
Collapse
Affiliation(s)
- Mayun Chen
- Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and LungWenzhou, Zhejiang 325000, China
| | - Hui Cai
- Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and LungWenzhou, Zhejiang 325000, China
| | - Chang Yu
- Department of Radiology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang 325000, China
| | - Peiliang Wu
- Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and LungWenzhou, Zhejiang 325000, China
| | - Yangyang Fu
- Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and LungWenzhou, Zhejiang 325000, China
| | - Xiaomei Xu
- Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and LungWenzhou, Zhejiang 325000, China
| | - Rong Fan
- Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and LungWenzhou, Zhejiang 325000, China
| | - Cunlai Xu
- Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and LungWenzhou, Zhejiang 325000, China
| | - Yanfan Chen
- Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and LungWenzhou, Zhejiang 325000, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and LungWenzhou, Zhejiang 325000, China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and LungWenzhou, Zhejiang 325000, China
| |
Collapse
|
46
|
AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation. J Mol Cell Cardiol 2016; 91:188-200. [PMID: 26772531 DOI: 10.1016/j.yjmcc.2016.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
Fibrosis is a general term encompassing a plethora of pathologies that span all systems and is marked by increased deposition of collagen. Injury of variable etiology gives rise to complex cascades involving several cell-types and molecular signals, leading to the excessive accumulation of extracellular matrix that promotes fibrosis and eventually leads to organ failure. Cardiac fibrosis is a dynamic process associated notably with ischemia, hypertrophy, volume- and pressure-overload, aging and diabetes mellitus. It has profoundly deleterious consequences on the normal architecture and functioning of the myocardium and is associated with considerable mortality and morbidity. The AMP-activated protein kinase (AMPK) is a ubiquitously expressed cellular energy sensor and an essential component of the adaptive response to cardiomyocyte stress that occurs during ischemia. Nevertheless, its actions extend well beyond its energy-regulating role and it appears to possess an essential role in regulating fibrosis of the myocardium. In this review paper, we will summarize the main elements and crucial players of cardiac fibrosis. In addition, we will provide an overview of the diverse roles of AMPK in the heart and discuss in detail its implication in cardiac fibrosis. Lastly, we will highlight the recently published literature concerning AMPK-targeting current therapy and novel strategies aiming to attenuate fibrosis.
Collapse
|
47
|
Daskalopoulos EP, Dufeys C, Beauloye C, Bertrand L, Horman S. AMPK in Cardiovascular Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:179-201. [PMID: 27812981 DOI: 10.1007/978-3-319-43589-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter summarizes the implication of AMP-activated protein kinase (AMPK) in the regulation of various physiological and pathological cellular events of great importance for the maintenance of cardiac function. These include the control of both metabolic and non-metabolic elements targeting the different cellular components of the cardiac tissue, i.e., cardiomyocytes, fibroblasts, and vascular cells. The description of the multifaceted action of the two AMPK catalytic isoforms, α1 and α2, emphasizes the general protective action of this protein kinase against the development of critical pathologies like myocardial ischemia, cardiac hypertrophy, diabetic cardiomyopathy, and heart failure.
Collapse
Affiliation(s)
- Evangelos P Daskalopoulos
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Cardiovascular Research (Care) Institute, Athens, Ioannina, Greece
| | - Cécile Dufeys
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| |
Collapse
|
48
|
Liu GZ, Liang B, Lau WB, Wang Y, Zhao J, Li R, Wang X, Yuan Y, Lopez BL, Christopher TA, Xiao C, Ma XL, Wang Y. High glucose/High Lipids impair vascular adiponectin function via inhibition of caveolin-1/AdipoR1 signalsome formation. Free Radic Biol Med 2015; 89:473-85. [PMID: 26453924 PMCID: PMC4684768 DOI: 10.1016/j.freeradbiomed.2015.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
Reduced levels of adiponectin (APN) contribute to cardiovascular injury in the diabetic population. Recent studies demonstrate elevated circulating APN levels are associated with endothelial dysfunction during pre-diabetes, suggesting the development of APN resistance. However, mechanisms leading to, and the role of, vascular APN resistance in endothelial dysfunction remain unidentified. The current study determined whether diabetes cause endothelial APN resistance, and by what mechanisms. Under high glucose/high lipids (HG/HL), APN-stimulated nitric oxide production by HUVEC was decreased, phosphorylation of eNOS, AMPK, and Akt was attenuated (P<0.01), and APN's anti-TNFα effect was blunted (P<0.01). APN receptor expression remained normal, whereas Cav1 expression was reduced in HG/HL cells (P<0.01). The AdipoR1/Cav1 signaling complex was dissociated in HG/HL cells. Knock-down of Cav1 inhibited APN's anti-oxidative and anti-inflammatory actions. Conversely, preventing HG/HL-induced Cav1 downregulation by Cav1 overexpression preserved APN signaling in HG/HL cells. Knock-in of a wild type Cav1 in Cav1 knock-down cells restored caveolae structure and rescued APN signaling. In contrast, knock-in of a mutated Cav1 scaffolding domain restored caveolae structure, but failed to rescue APN signaling in Cav1 knock-down cells. Finally, AdipoR1/Cav1 interaction was significantly reduced in diabetic vascular tissue, and the vasorelaxative response to APN was impaired in diabetic animals. The current study demonstrates for the first time the interaction between AdipoR1 and Cav1 is critical for adiponectin-mediated vascular signaling. The AdipoR1/Cav1 interaction is adversely affected by HG/HL, due largely to reduced Cav1 expression, supporting a potential mechanism for the development of APN resistance, contributing to diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Gai-Zhen Liu
- Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001
| | - Bin Liang
- Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Yang Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jianli Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001
| | - Rui Li
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001
| | - Yuexing Yuan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Bernard L Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Chuanshi Xiao
- Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107.
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107; Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001.
| |
Collapse
|
49
|
Wang D, Zhang R, Zhou X, Ma S, Qin X, Wang J, Gao H, Wang Q, Li C, Chen Y, Xiong L, Cao F. Electroacupuncture pre-treatment ameliorates myocardial ischaemia/reperfusion injury through regulation of cannabinoid receptor type 2. Eur Heart J Suppl 2015. [DOI: 10.1093/eurheartj/suv050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Qi D, Young LH. AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 2015; 26:422-9. [PMID: 26160707 PMCID: PMC4697457 DOI: 10.1016/j.tem.2015.05.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/12/2023]
Abstract
AMP-activated protein kinase (AMPK) is a critical regulator of cellular metabolism and plays an important role in diabetes, cancer, and vascular disease. In the heart, AMPK activation is an essential component of the adaptive response to cardiomyocyte stress that occurs during myocardial ischemia. During ischemia-reperfusion, AMPK activation modulates glucose and fatty acid metabolism, mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. Pharmacological activation of AMPK prevents myocardial necrosis and contractile dysfunction during ischemia-reperfusion and potentially represents a cardioprotective strategy for the treatment of myocardial infarction. This review discusses novel mechanisms of AMPK activation in the ischemic heart, the role of endogenous AMPK activation during ischemia, and the potential therapeutic applications for AMPK-directed therapy.
Collapse
Affiliation(s)
- Dake Qi
- The Sections of Cardiovascular Medicine, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA
| | - Lawrence H Young
- The Sections of Cardiovascular Medicine, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA; Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA.
| |
Collapse
|