1
|
Tenopoulou M. Fibrinogen post-translational modifications are biochemical determinants of fibrin clot properties and interactions. FEBS J 2024. [PMID: 39180244 DOI: 10.1111/febs.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The structure of fibrinogen and resulting fibrin formed during the coagulation process have important biological functions in human physiology and pathology. Fibrinogen post-translational modifications (PTMs) increase the complexity of the protein structure and many studies have emphasized the potential associations of post-translationally altered fibrinogen with the formation of a fibrin clot with a prothrombotic phenotype. However, the mechanisms by which PTMs exert their action on fibrinogen, and their causal association with disease pathogenesis are relatively unexplored. Moreover, the significance of fibrinogen PTMs in health has yet to be appreciated. In this review, the impact of fibrinogen PTMs on fibrinogen functionality is discussed from a biochemical perspective, emphasizing the potential mechanisms by which PTMs mediate the acquisition of altered fibrinogen properties. A brief discussion on dysfibrinogenemias of genetic origin, attributed to single point variations of the fibrinogen molecule is also provided, highlighting the influence that amino acid properties have on fibrinogen structure, properties, and molecular interactions that arise during thrombus formation.
Collapse
Affiliation(s)
- Margarita Tenopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Greece
| |
Collapse
|
2
|
Zhao Y, Xu Q, He N, Jiang M, Chen Y, Ren Z, Tang Z, Wu C, Liu L. Non-oxidative Modified Low-density Lipoproteins: The Underappreciated Risk Factors for Atherosclerosis. Curr Med Chem 2024; 31:5598-5611. [PMID: 37550912 DOI: 10.2174/0929867331666230807154019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 08/09/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular diseases, is a main risk factor causing about 20 million deaths each year worldwide. Oxidized low-density lipoprotein is recognized as the most important and independent risk factor in initiating and promoting atherosclerosis. Numerous antioxidants are extensively used in clinical practice, but they have no significant effect on reducing the morbidity and mortality of cardiovascular diseases. This finding suggests that researchers should pay more attention to the important role of non-oxidative modified low-density lipoprotein in atherosclerosis with a focus on oxidized low-density lipoprotein. This review briefly summarizes several important non-oxidative modified low-density lipoproteins associated with atherosclerosis, introduces the pathways through which these non-oxidative modified low-density lipoproteins induce the development of atherosclerosis in vivo, and discusses the mechanism of atherogenesis induced by these non-oxidative modified low-density lipoproteins. New therapeutic strategies and potential drug targets are provided for the prevention and treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Yimeng Zhao
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Qian Xu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Naiqi He
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Mulin Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Yingzhuo Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zhong Ren
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zhihan Tang
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Chunyan Wu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Lushan Liu
- Key Laboratory for Arteriosclerology of Hunan Province, Department of Cardiovascular Medicine, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, The Third Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Fröhlich-Nowoisky J, Bothen N, Backes AT, Weller MG, Pöschl U. Oligomerization and tyrosine nitration enhance the allergenic potential of the birch and grass pollen allergens Bet v 1 and Phl p 5. FRONTIERS IN ALLERGY 2023; 4:1303943. [PMID: 38125293 PMCID: PMC10732249 DOI: 10.3389/falgy.2023.1303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Protein modifications such as oligomerization and tyrosine nitration alter the immune response to allergens and may contribute to the increasing prevalence of allergic diseases. In this mini-review, we summarize and discuss relevant findings for the major birch and grass pollen allergens Bet v 1 and Phl p 5 modified with tetranitromethane (laboratory studies), peroxynitrite (physiological processes), and ozone and nitrogen dioxide (environmental conditions). We focus on tyrosine nitration and the formation of protein dimers and higher oligomers via dityrosine cross-linking and the immunological effects studied.
Collapse
Affiliation(s)
| | - Nadine Bothen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Anna T. Backes
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael G. Weller
- Division 1.5 - Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| |
Collapse
|
4
|
Clemen R, Minkus L, Singer D, Schulan P, von Woedtke T, Wende K, Bekeschus S. Multi-Oxidant Environment as a Suicidal Inhibitor of Myeloperoxidase. Antioxidants (Basel) 2023; 12:1936. [PMID: 38001789 PMCID: PMC10668958 DOI: 10.3390/antiox12111936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Tissue inflammation drives the infiltration of innate immune cells that generate reactive species to kill bacteria and recruit adaptive immune cells. Neutrophil activation fosters the release of myeloperoxidase (MPO) enzyme, a heme-containing protein generating hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride ions. MPO-dependent oxidant formation initiates bioactive oxidation and chlorination products and induces oxidative post-translational modifications (oxPTMs) on proteins and lipid oxidation. Besides HOCl and H2O2, further reactive species such as singlet oxygen and nitric oxide are generated in inflammation, leading to modified proteins, potentially resulting in their altered bioactivity. So far, knowledge about multiple free radical-induced modifications of MPO and its effects on HOCl generation is lacking. To mimic this multi-oxidant microenvironment, human MPO was exposed to several reactive species produced simultaneously via argon plasma operated at body temperature. Several molecular gas admixes were used to modify the reactive species type profiles generated. MPO was investigated by studying its oxPTMs, changes in protein structure, and enzymatic activity. MPO activity was significantly reduced after treatment with all five tested plasma gas conditions. Dynamic light scattering and CD-spectroscopy revealed altered MPO protein morphology indicative of oligomerization. Using mass spectrometry, various oxPTMs, such as +1O, +2O, and +3O, were determined on methionine and cysteine (Cys), and -1H-1N+1O was detected in asparagine (Asp). The modification types identified differed between argon-oxygen and argon-nitrogen plasmas. However, all plasma gas conditions led to the deamidation of Asp and oxidation of Cys residues, suggesting an inactivation of MPO due to oxPTM-mediated conformational changes.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lara Minkus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Paul Schulan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
5
|
Yuan D, Chen J, Zhao Z, Qin H. Metabolomics analysis of visceral leishmaniasis based on urine of golden hamsters. Parasit Vectors 2023; 16:304. [PMID: 37649093 PMCID: PMC10469881 DOI: 10.1186/s13071-023-05881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Leishmaniasis is one of the most neglected tropical diseases and is spread mainly in impoverished regions of the world. Although many studies have focused on the host's response to Leishmania invasion, relatively less is known about the complex processes at the metabolic level, especially the metabolic alterations in the infected hosts. METHODS In this study, we conducted metabolomics analysis on the urine of golden hamsters in the presence or absence of visceral leishmaniasis (VL) using the ultra-performance liquid chromatography (UPLC) system tandem high-resolution mass spectrometer (HRMS). The metabolic characteristics of urine samples, along with the histopathological change and the parasite burden of liver and spleen tissues, were detected at 4 and 12 weeks post infection (WPI), respectively. RESULTS Amino acid metabolism was extensively affected at both stages of VL progression. Meanwhile, there were also distinct metabolic features at different stages. At 4 WPI, the significantly affected metabolic pathways involved alanine, aspartate and glutamate metabolism, the pentose phosphate pathway (PPP), histidine metabolism, tryptophan metabolism and tyrosine metabolism. At 12 WPI, the markedly enriched metabolic pathways were almost concentrated on amino acid metabolism, including tyrosine metabolism, taurine and hypotaurine metabolism and tryptophan metabolism. The dysregulated metabolites and metabolic pathways at 12 WPI were obviously less than those at 4 WPI. In addition, seven metabolites that were dysregulated at both stages through partial least squares-discriminant analysis (PLS-DA) and receiver-operating characteristic (ROC) tests were screened to be of diagnostic potential. The combination of these metabolites as a potential biomarker panel showed satisfactory performance in distinguishing infection groups from control groups as well as among different stages of infection. CONCLUSION Our findings could provide valuable information for further understanding of the host response to Leishmania infection from the aspect of the urine metabolome. The proposed urine biomarker panel could help in the development of a novel approach for the diagnosis and prognosis of VL.
Collapse
Affiliation(s)
- Dongmei Yuan
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhiwei Zhao
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Hanxiao Qin
- Clinical Trial Center, Chengdu Second People's Hospital, Chengdu, 610021, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Griswold-Prenner I, Kashyap AK, Mazhar S, Hall ZW, Fazelinia H, Ischiropoulos H. Unveiling the human nitroproteome: Protein tyrosine nitration in cell signaling and cancer. J Biol Chem 2023; 299:105038. [PMID: 37442231 PMCID: PMC10413360 DOI: 10.1016/j.jbc.2023.105038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Covalent amino acid modification significantly expands protein functional capability in regulating biological processes. Tyrosine residues can undergo phosphorylation, sulfation, adenylation, halogenation, and nitration. These posttranslational modifications (PTMs) result from the actions of specific enzymes: tyrosine kinases, tyrosyl-protein sulfotransferase(s), adenylate transferase(s), oxidoreductases, peroxidases, and metal-heme containing proteins. Whereas phosphorylation, sulfation, and adenylation modify the hydroxyl group of tyrosine, tyrosine halogenation and nitration target the adjacent carbon residues. Because aberrant tyrosine nitration has been associated with human disorders and with animal models of disease, we have created an updated and curated database of 908 human nitrated proteins. We have also analyzed this new resource to provide insight into the role of tyrosine nitration in cancer biology, an area that has not previously been considered in detail. Unexpectedly, we have found that 879 of the 1971 known sites of tyrosine nitration are also sites of phosphorylation suggesting an extensive role for nitration in cell signaling. Overall, the review offers several forward-looking opportunities for future research and new perspectives for understanding the role of tyrosine nitration in cancer biology.
Collapse
Affiliation(s)
| | | | | | - Zach W Hall
- Nitrase Therapeutics, Brisbane, California, USA
| | - Hossein Fazelinia
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Musetti B, Bahnson EM, Thomson L. Cannabinoids in inflammation and atherosclerosis. MEDICINAL USAGE OF CANNABIS AND CANNABINOIDS 2023:159-169. [DOI: 10.1016/b978-0-323-90036-2.00016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Characterization of a novel affinity binding ligand for tyrosine nitrated peptides from a phage-displayed peptide library. Talanta 2022; 241:123225. [DOI: 10.1016/j.talanta.2022.123225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023]
|
9
|
Tan M, Ma J, Yang X, You Q, Guo X, Li Y, Wang R, Han G, Chen Y, Qiu X, Wang X, Zhang L. Quantitative proteomics reveals differential immunoglobulin-associated proteome (IgAP) in patients of acute myocardial infarction and chronic coronary syndromes. J Proteomics 2022; 252:104449. [PMID: 34890869 DOI: 10.1016/j.jprot.2021.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022]
Abstract
B cells and immunoglobulins are implicated in the pathogenesis of chronic diseases, including coronary artery disease (CAD). However, it remains elusive how the humoral immunity is incriminated in the disease progression of CAD. Using serum samples of chronic coronary syndrome (CCS) and acute myocardial infarction (AMI), we conducted a quantitative profiling of the proteomic landscape recognized by immunoglobulins, which we term immunoglobulin-associated proteome (IgAP). Intriguingly, CCS and AMI patients displayed distinctive IgAP profiles that enriched proteins in the pathways of blood coagulation regulation and lipoprotein transport, suggesting that CCS-AMI transition involves changes of these pathways that are associated with immunoglobulins. Furthermore, we identified immunoglobulin-bound coagulation factor X (F10) as a potential biomarker and validated it with an independent cohort of CCS, AMI and healthy individuals. Our study indicates that IgAP proteins may serve as novel diagnostic biomarkers for CCS and AMI. SIGNIFICANCE: Our work it demonstrates a clear implication of immunoglobulin-associated proteome (IgAP), the proteomic landscape recognized by immunoglobulins, in the pathogenesis of CAD. In addition, it reports for the first time that immunoglobulin-bound F10 is implicated in CAD.
Collapse
Affiliation(s)
- Miaomiao Tan
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Jing Ma
- Department of Cardiology First Medical Center of Chinese PLA General Hospital, Beijing 18 100853, China
| | - Xi Yang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Qi You
- Department of Cardiology First Medical Center of Chinese PLA General Hospital, Beijing 18 100853, China
| | - Xiaoxin Guo
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yiuhei Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Rui Wang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Guiyuan Han
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yundai Chen
- Department of Cardiology First Medical Center of Chinese PLA General Hospital, Beijing 18 100853, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Xin Wang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Decreased proteasomal cleavage at nitrotyrosine sites in proteins and peptides. Redox Biol 2021; 46:102106. [PMID: 34455147 PMCID: PMC8403764 DOI: 10.1016/j.redox.2021.102106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022] Open
Abstract
Removal of moderately oxidized proteins is mainly carried out by the proteasome, while highly modified proteins are no longer degradable. However, in the case of proteins modified by nitration of tyrosine residues to 3-nitrotyrosine (NO2Y), the role of the proteasome remains to be established. For this purpose, degradation assays and mass spectrometry analyses were performed using isolated proteasome and purified fractions of native cytochrome c (Cyt c) and tyrosine nitrated proteoforms (NO2Y74-Cyt c and NO2Y97-Cyt c). While Cyt c treated under mild conditions with hydrogen peroxide was preferentially degraded by the proteasome, NO2Y74- and NO2Y97-Cyt c species did not show an increased degradation rate with respect to native Cyt c. Peptide mapping analysis confirmed a decreased chymotrypsin-like cleavage at C-terminal of NO2Y sites within the protein, with respect to unmodified Y residues. Additionally, studies with the proteasome substrate suc-LLVY-AMC (Y-AMC) and its NO2Y-containing analog, suc-LLVNO2Y-AMC (NO2Y-AMC) were performed, both using isolated 20S-proteasome and astrocytoma cell lysates as the proteasomal source. Comparisons of both substrates showed a significantly decreased proteasome activity towards NO2Y-AMC. Moreover, NO2Y-AMC, but not Y-AMC degradation rates, were largely diminished by increasing the reaction pH, suggesting an inhibitory influence of the additional negative charge contained in NO2Y-AMC secondary to nitration. The mechanism of slowing of proteasome activity in NO2Y-contaning peptides was further substantiated in studies using the phenylalanine and nitro-phenylalanine peptide analog substrates. Finally, degradation rates of Y-AMC and NO2Y-AMC with proteinase K were the same, demonstrating the selective inability of the proteasome to readily cleave at nitrotyrosine sites. Altogether, data indicate that the proteasome has a decreased capability to cleave at C-terminal of NO2Y residues in proteins with respect to the unmodified residues, making this a possible factor that decreases the turnover of oxidized proteins, if they are not unfolded, and facilitating the accumulation of nitrated proteins.
Collapse
|
12
|
Daiber A, Hahad O, Andreadou I, Steven S, Daub S, Münzel T. Redox-related biomarkers in human cardiovascular disease - classical footprints and beyond. Redox Biol 2021; 42:101875. [PMID: 33541847 PMCID: PMC8113038 DOI: 10.1016/j.redox.2021.101875] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Global epidemiological studies show that chronic non-communicable diseases such as atherosclerosis and metabolic disorders represent the leading cause of premature mortality and morbidity. Cardiovascular disease such as ischemic heart disease is a major contributor to the global burden of disease and the socioeconomic health costs. Clinical and epidemiological data show an association of typical oxidative stress markers such as lipid peroxidation products, 3-nitrotyrosine or oxidized DNA/RNA bases with all major cardiovascular diseases. This supports the concept that the formation of reactive oxygen and nitrogen species by various sources (NADPH oxidases, xanthine oxidase and mitochondrial respiratory chain) represents a hallmark of the leading cardiovascular comorbidities such as hyperlipidemia, hypertension and diabetes. These reactive oxygen and nitrogen species can lead to oxidative damage but also adverse redox signaling at the level of kinases, calcium handling, inflammation, epigenetic control, circadian clock and proteasomal system. The in vivo footprints of these adverse processes (redox biomarkers) are discussed in the present review with focus on their clinical relevance, whereas the details of their mechanisms of formation and technical aspects of their detection are only briefly mentioned. The major categories of redox biomarkers are summarized and explained on the basis of suitable examples. Also the potential prognostic value of redox biomarkers is critically discussed to understand what kind of information they can provide but also what they cannot achieve.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Omar Hahad
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
13
|
Menzel A, Samouda H, Dohet F, Loap S, Ellulu MS, Bohn T. Common and Novel Markers for Measuring Inflammation and Oxidative Stress Ex Vivo in Research and Clinical Practice-Which to Use Regarding Disease Outcomes? Antioxidants (Basel) 2021; 10:antiox10030414. [PMID: 33803155 PMCID: PMC8001241 DOI: 10.3390/antiox10030414] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Many chronic conditions such as cancer, chronic obstructive pulmonary disease, type-2 diabetes, obesity, peripheral/coronary artery disease and auto-immune diseases are associated with low-grade inflammation. Closely related to inflammation is oxidative stress (OS), which can be either causal or secondary to inflammation. While a low level of OS is physiological, chronically increased OS is deleterious. Therefore, valid biomarkers of these signalling pathways may enable detection and following progression of OS/inflammation as well as to evaluate treatment efficacy. Such biomarkers should be stable and obtainable through non-invasive methods and their determination should be affordable and easy. The most frequently used inflammatory markers include acute-phase proteins, essentially CRP, serum amyloid A, fibrinogen and procalcitonin, and cytokines, predominantly TNFα, interleukins 1β, 6, 8, 10 and 12 and their receptors and IFNγ. Some cytokines appear to be disease-specific. Conversely, OS-being ubiquitous-and its biomarkers appear less disease or tissue-specific. These include lipid peroxidation products, e.g., F2-isoprostanes and malondialdehyde, DNA breakdown products (e.g., 8-OH-dG), protein adducts (e.g., carbonylated proteins), or antioxidant status. More novel markers include also -omics related ones, as well as non-invasive, questionnaire-based measures, such as the dietary inflammatory-index (DII), but their link to biological responses may be variable. Nevertheless, many of these markers have been clearly related to a number of diseases. However, their use in clinical practice is often limited, due to lacking analytical or clinical validation, or technical challenges. In this review, we strive to highlight frequently employed and useful markers of inflammation-related OS, including novel promising markers.
Collapse
Affiliation(s)
- Alain Menzel
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg; (A.M.); (F.D.)
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg;
| | - Francois Dohet
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg; (A.M.); (F.D.)
| | - Suva Loap
- Clinic Cryo Esthetic, 11 Rue Éblé, 75007 Paris, France;
| | - Mohammed S. Ellulu
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Al-Azhar University of Gaza (AUG), Gaza City 00970, Palestine;
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg;
- Correspondence:
| |
Collapse
|
14
|
3-Nitrotyrosine and related derivatives in proteins: precursors, radical intermediates and impact in function. Essays Biochem 2020; 64:111-133. [PMID: 32016371 DOI: 10.1042/ebc20190052] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022]
Abstract
Oxidative post-translational modification of proteins by molecular oxygen (O2)- and nitric oxide (•NO)-derived reactive species is a usual process that occurs in mammalian tissues under both physiological and pathological conditions and can exert either regulatory or cytotoxic effects. Although the side chain of several amino acids is prone to experience oxidative modifications, tyrosine residues are one of the preferred targets of one-electron oxidants, given the ability of their phenolic side chain to undergo reversible one-electron oxidation to the relatively stable tyrosyl radical. Naturally occurring as reversible catalytic intermediates at the active site of a variety of enzymes, tyrosyl radicals can also lead to the formation of several stable oxidative products through radical-radical reactions, as is the case of 3-nitrotyrosine (NO2Tyr). The formation of NO2Tyr mainly occurs through the fast reaction between the tyrosyl radical and nitrogen dioxide (•NO2). One of the key endogenous nitrating agents is peroxynitrite (ONOO-), the product of the reaction of superoxide radical (O2•-) with •NO, but ONOO--independent mechanisms of nitration have been also disclosed. This chemical modification notably affects the physicochemical properties of tyrosine residues and because of this, it can have a remarkable impact on protein structure and function, both in vitro and in vivo. Although low amounts of NO2Tyr are detected under basal conditions, significantly increased levels are found at pathological states related with an overproduction of reactive species, such as cardiovascular and neurodegenerative diseases, inflammation and aging. While NO2Tyr is a well-established stable oxidative stress biomarker and a good predictor of disease progression, its role as a pathogenic mediator has been laboriously defined for just a small number of nitrated proteins and awaits further studies.
Collapse
|
15
|
Ziegler K, Kunert AT, Reinmuth-Selzle K, Leifke AL, Widera D, Weller MG, Schuppan D, Fröhlich-Nowoisky J, Lucas K, Pöschl U. Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress. Redox Biol 2020; 37:101581. [PMID: 32739154 PMCID: PMC7767743 DOI: 10.1016/j.redox.2020.101581] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/05/2023] Open
Abstract
Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. Pollutants and oxidative stress can cause protein nitration and oligomerization. Peroxynitrite amplifies inflammatory potential of disease-related proteins in vitro. Chemical modification of damage-associated molecular patterns (DAMPs). Positive feedback of modified DAMPs via pattern recognition receptor (TLR4). Air pollution may promote inflammatory disorders in the Anthropocene.
Collapse
Affiliation(s)
- Kira Ziegler
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | - Anna T Kunert
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | | | - Anna Lena Leifke
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, RG6 6AP, Reading, UK
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, 02215, USA
| | | | - Kurt Lucas
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany.
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany.
| |
Collapse
|
16
|
Magalhães RDM, Mattos EC, Rozanski A, Galante PAF, Palmisano G, Cruz AK, Colli W, Camargo AA, Alves MJM. Global changes in nitration levels and DNA binding profile of Trypanosoma cruzi histones induced by incubation with host extracellular matrix. PLoS Negl Trop Dis 2020; 14:e0008262. [PMID: 32469928 PMCID: PMC7286532 DOI: 10.1371/journal.pntd.0008262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/10/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Adhesion of T. cruzi trypomastigotes to components of the extracellular matrix (ECM) is an important step in mammalian host cell invasion. We have recently described a significant increase in the tyrosine nitration levels of histones H2A and H4 when trypomastigotes are incubated with components of the ECM. In this work, we used chromatin immunoprecipitation (ChIP) with an anti-nitrotyrosine antibody followed by mass spectrometry to identify nitrated DNA binding proteins in T. cruzi and to detect alterations in nitration levels induced upon parasite incubation with the ECM. Histone H1, H2B, H2A and H3 were detected among the 9 most abundant nitrated DNA binding proteins using this proteomic approach. One nitrated tyrosine residue (Y29) was identified in Histone H2B in the MS/MS spectrum. In addition, we observed a significant increase in the nitration levels of histones H1, H2B, H2A and H4 upon parasite incubation with ECM. Finally, we used ChIP-Seq to map global changes in the DNA binding profile of nitrated proteins. We observed a significant change in the binding pattern of nitrated proteins to DNA after parasite incubation with ECM. This work provides the first global profile of nitrated DNA binding proteins in T. cruzi and additional evidence for modification in the nitration profile of histones upon parasite incubation with ECM. Our data also indicate that the parasite interaction with the ECM induces alterations in chromatin structure, possibly affecting nuclear functions.
Collapse
Affiliation(s)
- Rubens Daniel Miserani Magalhães
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Centro de Oncologia Molecular, Hospital Sírio Libanês, São Paulo, Brazil
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliciane Cevolani Mattos
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Andrei Rozanski
- Centro de Oncologia Molecular, Hospital Sírio Libanês, São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Angela Kaysel Cruz
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Walter Colli
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Anamaria Aranha Camargo
- Centro de Oncologia Molecular, Hospital Sírio Libanês, São Paulo, Brazil
- * E-mail: (AAC), (MJMA)
| | - Maria Júlia Manso Alves
- Departamento de Bioquímica Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (AAC), (MJMA)
| |
Collapse
|
17
|
Vujacic-Mirski K, Bruns K, Kalinovic S, Oelze M, Kröller-Schön S, Steven S, Mojovic M, Korac B, Münzel T, Daiber A. Development of an Analytical Assay for Electrochemical Detection and Quantification of Protein-Bound 3-Nitrotyrosine in Biological Samples and Comparison with Classical, Antibody-Based Methods. Antioxidants (Basel) 2020; 9:E388. [PMID: 32384768 PMCID: PMC7278855 DOI: 10.3390/antiox9050388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS) cause oxidative damage, which is associated with endothelial dysfunction and cardiovascular disease, but may also contribute to redox signaling. Therefore, their precise detection is important for the evaluation of disease mechanisms. Here, we compared three different methods for the detection of 3-nitrotyrosine (3-NT), a marker of nitro-oxidative stress, in biological samples. Nitrated proteins were generated by incubation with peroxynitrite or 3-morpholino sydnonimine (Sin-1) and subjected to total hydrolysis using pronase, a mixture of different proteases. The 3-NT was then separated by high performance liquid chromatography (HPLC) and quantified by electrochemical detection (ECD, CoulArray) and compared to classical methods, namely enzyme-linked immunosorbent assay (ELISA) and dot blot analysis using specific 3-NT antibodies. Calibration curves for authentic 3-NT (detection limit 10 nM) and a concentration-response pattern for 3-NT obtained from digested nitrated bovine serum albumin (BSA) were highly linear over a wide 3-NT concentration range. Also, ex vivo nitration of protein from heart, isolated mitochondria, and serum/plasma could be quantified using the HPLC/ECD method and was confirmed by LC-MS/MS. Of note, nitro-oxidative damage of mitochondria results in increased superoxide (O2•-) formation rates (measured by dihydroethidium-based HPLC assay), pointing to a self-amplification mechanism of oxidative stress. Based on our ex vivo data, the CoulArray quantification method for 3-NT seems to have some advantages regarding sensitivity and selectivity. Establishing a reliable automated HPLC assay for the routine quantification of 3-NT in biological samples of cell culture, of animal and human origin seems to be more sophisticated than expected.
Collapse
Affiliation(s)
- Ksenija Vujacic-Mirski
- Center for Cardiology, Department of Cardiology 1–Molecular Cardiology, University Medical Center, 55131 Mainz, Germany; (K.V.-M.); (S.K.); (M.O.); (S.K.-S.); (S.S.); (T.M.)
| | - Kai Bruns
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Sanela Kalinovic
- Center for Cardiology, Department of Cardiology 1–Molecular Cardiology, University Medical Center, 55131 Mainz, Germany; (K.V.-M.); (S.K.); (M.O.); (S.K.-S.); (S.S.); (T.M.)
| | - Matthias Oelze
- Center for Cardiology, Department of Cardiology 1–Molecular Cardiology, University Medical Center, 55131 Mainz, Germany; (K.V.-M.); (S.K.); (M.O.); (S.K.-S.); (S.S.); (T.M.)
| | - Swenja Kröller-Schön
- Center for Cardiology, Department of Cardiology 1–Molecular Cardiology, University Medical Center, 55131 Mainz, Germany; (K.V.-M.); (S.K.); (M.O.); (S.K.-S.); (S.S.); (T.M.)
| | - Sebastian Steven
- Center for Cardiology, Department of Cardiology 1–Molecular Cardiology, University Medical Center, 55131 Mainz, Germany; (K.V.-M.); (S.K.); (M.O.); (S.K.-S.); (S.S.); (T.M.)
| | - Milos Mojovic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology 1–Molecular Cardiology, University Medical Center, 55131 Mainz, Germany; (K.V.-M.); (S.K.); (M.O.); (S.K.-S.); (S.S.); (T.M.)
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology, Department of Cardiology 1–Molecular Cardiology, University Medical Center, 55131 Mainz, Germany; (K.V.-M.); (S.K.); (M.O.); (S.K.-S.); (S.S.); (T.M.)
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
18
|
Malik HI, Mir AR, Abidi M, Habib S, Khan FH, Moinuddin. Preferential recognition of epitopes on peroxynitrite-modified alpha-2-macroglobulin by circulating autoantibodies in rheumatoid arthritis patients. J Biomol Struct Dyn 2020; 38:1984-1994. [PMID: 31179888 DOI: 10.1080/07391102.2019.1623073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Autoimmune responses against post-translationally modified antigens are a hallmark of several autoimmune diseases. In this work, we have studied the changes in alpha-2-macroglobulin (α2M) upon modification by peroxynitrite. Furthermore, we have evaluated the immunogenicity of modified α2M in experimental rabbits and rheumatoid arthritis (RA) patients. Peroxynitrite-modified α2M showed disturbed microenvironment and altered aromatic residues under UV and fluorescence studies. Aggregation, reduction in β-sheet content, production of nitrotyrosine and shift in amide I and II bands were observed in the modified α2M by polyacrylamide gel electrophoresis besides CD and FTIR spectroscopic analysis. The exposure of hydrophobic clusters and changes in contact positions were observed in ANS and ThT binding assays. Immunological studies using ELISA showed peroxynitrite-modified α2M as highly immunogenic producing high titre of specific antibodies in immunized rabbits. Cross-reactivity studies revealed the polyspecificity of the elicited antibodies. Direct binding ELISA and competitive inhibition studies confirmed the presence of circulating antibodies in the sera of RA patients having high specificity towards the peroxynitrite-modified α2M as compared to the native α2M. Sera from healthy (normal) human subjects showed lower binding with the native and modified protein. This study confirms that peroxynitrite induces structural modifications in α2M and makes it immunogenic. The presence of neo-antigenic determinants on modified α2M with enhanced binding for circulating autoantibodies in RA patients could offer new possibilities for diagnosis and etiopathology of the disease. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Heena Imtiaz Malik
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Abdul Rouf Mir
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Minhal Abidi
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | - Fahim Halim Khan
- bDepartment of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
19
|
Möller MN, Rios N, Trujillo M, Radi R, Denicola A, Alvarez B. Detection and quantification of nitric oxide-derived oxidants in biological systems. J Biol Chem 2019; 294:14776-14802. [PMID: 31409645 PMCID: PMC6779446 DOI: 10.1074/jbc.rev119.006136] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The free radical nitric oxide (NO•) exerts biological effects through the direct and reversible interaction with specific targets (e.g. soluble guanylate cyclase) or through the generation of secondary species, many of which can oxidize, nitrosate or nitrate biomolecules. The NO•-derived reactive species are typically short-lived, and their preferential fates depend on kinetic and compartmentalization aspects. Their detection and quantification are technically challenging. In general, the strategies employed are based either on the detection of relatively stable end products or on the use of synthetic probes, and they are not always selective for a particular species. In this study, we describe the biologically relevant characteristics of the reactive species formed downstream from NO•, and we discuss the approaches currently available for the analysis of NO•, nitrogen dioxide (NO2•), dinitrogen trioxide (N2O3), nitroxyl (HNO), and peroxynitrite (ONOO-/ONOOH), as well as peroxynitrite-derived hydroxyl (HO•) and carbonate anion (CO3•-) radicals. We also discuss the biological origins of and analytical tools for detecting nitrite (NO2-), nitrate (NO3-), nitrosyl-metal complexes, S-nitrosothiols, and 3-nitrotyrosine. Moreover, we highlight state-of-the-art methods, alert readers to caveats of widely used techniques, and encourage retirement of approaches that have been supplanted by more reliable and selective tools for detecting and measuring NO•-derived oxidants. We emphasize that the use of appropriate analytical methods needs to be strongly grounded in a chemical and biochemical understanding of the species and mechanistic pathways involved.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
20
|
Urmey AR, Zondlo NJ. Design of a Protein Motif Responsive to Tyrosine Nitration and an Encoded Turn-Off Sensor of Tyrosine Nitration. Biochemistry 2019; 58:2822-2833. [PMID: 31140788 PMCID: PMC6688601 DOI: 10.1021/acs.biochem.9b00334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosine nitration is a protein post-translational modification that is predominantly non-enzymatic and is observed to be increased under conditions of nitrosative stress and in numerous disease states. A small protein motif (14-18 amino acids) responsive to tyrosine nitration has been developed. In this design, nitrotyrosine replaced the conserved Glu12 of an EF-hand metal-binding motif. Thus, the non-nitrated peptide bound terbium weakly. In contrast, tyrosine nitration resulted in a 45-fold increase in terbium affinity. Nuclear magnetic resonance spectroscopy indicated direct binding of nitrotyrosine to the metal and EF-hand-like metal contacts in this designed peptide. Nitrotyrosine is an efficient quencher of fluorescence. To develop a sensor of tyrosine nitration, the initial design was modified to incorporate Glu residues at EF-hand positions 9 and 16 as additional metal-binding residues, to increase the terbium affinity of the peptide with unmodified tyrosine. This peptide with a tyrosine at residue 12 bound terbium and effectively sensitized terbium luminescence. Tyrosine nitration resulted in a 180-fold increase in terbium affinity ( Kd = 1.6 μM) and quenching of terbium luminescence. This sequence was incorporated as an encoded protein tag and applied as a turn-off fluorescent protein sensor of tyrosine nitration. The sensor was responsive to nitration by peroxynitrite, with fluorescence quenched upon nitration. The greater terbium affinity upon tyrosine nitration resulted in a large dynamic range and sensitivity to substoichiometric nitration. An improved approach for the synthesis of peptides containing nitrotyrosine was also developed, via the in situ silyl protection of nitrotyrosine. This work represents the first designed, encodable protein motif that is responsive to tyrosine nitration.
Collapse
Affiliation(s)
- Andrew R. Urmey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7092151. [PMID: 31341533 PMCID: PMC6612399 DOI: 10.1155/2019/7092151] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life, proven by the latest data of the Global Burden of Disease Study, and is only gaining in prevalence worldwide. Clinical trials have identified chronic inflammatory disorders as cardiovascular risks, and recent research has revealed a contribution by various inflammatory cells to vascular oxidative stress. Atherosclerosis and cardiovascular disease are closely associated with inflammation, probably due to the close interaction of inflammation with oxidative stress. Classical therapies for inflammatory disorders have demonstrated protective effects in various models of cardiovascular disease; especially established drugs with pleiotropic immunomodulatory properties have proven beneficial cardiovascular effects; normalization of oxidative stress seems to be a common feature of these therapies. The close link between inflammation and redox balance was also supported by reports on aggravated inflammatory phenotype in the absence of antioxidant defense proteins (e.g., superoxide dismutases, heme oxygenase-1, and glutathione peroxidases) or overexpression of reactive oxygen species producing enzymes (e.g., NADPH oxidases). The value of immunomodulation for the treatment of cardiovascular disease was recently supported by large-scale clinical trials demonstrating reduced cardiovascular mortality in patients with established atherosclerotic disease when treated by highly specific anti-inflammatory therapies (e.g., using monoclonal antibodies against cytokines). Modern antidiabetic cardiovascular drugs (e.g., SGLT2 inhibitors, DPP-4 inhibitors, and GLP-1 analogs) seem to share these immunomodulatory properties and display potent antioxidant effects, all of which may explain their successful lowering of cardiovascular risk.
Collapse
|
22
|
Cataldo N, Musetti B, Celano L, Carabio C, Cassina A, Cerecetto H, González M, Thomson L. Inhibition of LDL oxidation and inflammasome assembly by nitroaliphatic derivatives. Potential use as anti-inflammatory and anti-atherogenic agents. Eur J Med Chem 2018; 159:178-186. [PMID: 30292895 DOI: 10.1016/j.ejmech.2018.09.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
We have previously shown the antioxidant and anti-inflammatory properties of several para-substituted arylnitroalkenes. Since oxidative stress and inflammation are key processes that drive the initiation and progression of atherosclerosis, in the present work the antioxidant, anti-inflammatory and anti-atherogenic properties of an extended library of aryl-nitroaliphatic derivatives, including several newly designed nitroalkanes, was explored. The antioxidant capacity of the nitroaliphatic compounds, measured using the oxygen radical absorbance capacity assay (ORAC) showed that the p-methylthiophenyl-derivatives were about three times more effective than Trolox to prevent fluorescein oxidation, independently of the presence or the absence of the double bond next to the nitro group. The peroxyl radical scavenger capacity of the p-dimethylaminophenyl-derivatives was even higher, being the reduced form of these compounds even more active. In fact, while the antioxidant capacity of 1-dimethylamino-4-(2-nitro-1Z-ethenyl)benzene and 1-dimethylamino-4-(2-nitro-1Z-propenyl)benzene was 4.2 ± 0.1 and 5.4 ± 0.1 Trolox Eq/mol, respectively; ORAC values obtained with the ethyl and the propyl derivatives were 10 ± 1 and 13 ± 2 Trolox Eq/mol, respectively. The p-dimethylamino-derivatives, especially the nitroalkanes, were also able to prevent LDL oxidation mediated by peroxyl radicals. Oxygen consumption due to the oxidation of fatty acids was delayed in the presence of the dimethylamino substituted compounds, only the alkanes interrupted the chain of lipid oxidations decreasing the rate of oxygen consumption. Although the formation of foam cells in the presence of oxidized-LDL (oxLDL) remained unaffected, the molecules containing the dimethylamino moiety were able to decrease the expression of IL-1β in LPS/INF-γ challenged macrophages.
Collapse
Affiliation(s)
- Nicolás Cataldo
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Bruno Musetti
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Laura Celano
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Claudio Carabio
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Adriana Cassina
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, 11800, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, 11800, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Mercedes González
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, 11800, Uruguay.
| |
Collapse
|
23
|
Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R, López MG, Oliva B, Pajares M, Rojo AI, Robledinos-Antón N, Valverde AM, Guney E, Schmidt HHHW. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol Rev 2018; 70:348-383. [DOI: 10.1124/pr.117.014753] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
24
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
25
|
Degendorfer G, Chuang CY, Mariotti M, Hammer A, Hoefler G, Hägglund P, Malle E, Wise SG, Davies MJ. Exposure of tropoelastin to peroxynitrous acid gives high yields of nitrated tyrosine residues, di-tyrosine cross-links and altered protein structure and function. Free Radic Biol Med 2018; 115:219-231. [PMID: 29191462 DOI: 10.1016/j.freeradbiomed.2017.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Elastin is an abundant extracellular matrix protein in elastic tissues, including the lungs, skin and arteries, and comprises 30-57% of the aorta by dry mass. The monomeric precursor, tropoelastin (TE), undergoes complex processing during elastogenesis to form mature elastic fibres. Peroxynitrous acid (ONOOH), a potent oxidising and nitrating agent, is formed in vivo from superoxide and nitric oxide radicals. Considerable evidence supports ONOOH formation in the inflamed artery wall, and a role for this species in the development of human atherosclerotic lesions, with ONOOH-damaged extracellular matrix implicated in lesion rupture. We demonstrate that TE is highly sensitive to ONOOH, with this resulting in extensive dimerization, fragmentation and nitration of Tyr residues to give 3-nitrotyrosine (3-nitroTyr). This occurs with equimolar or greater levels of oxidant and increases in a dose-dependent manner. Quantification of Tyr loss and 3-nitroTyr formation indicates extensive Tyr modification with up to two modified Tyr per protein molecule, and up to 8% conversion of initial ONOOH to 3-nitroTyr. These effects were modulated by bicarbonate, an alternative target for ONOOH. Inter- and intra-protein di-tyrosine cross-links have been characterized by mass spectrometry. Examination of human atherosclerotic lesions shows colocalization of 3-nitroTyr with elastin epitopes, consistent with TE or elastin modification in vivo, and also an association of 3-nitroTyr containing proteins and elastin with lipid deposits. These data suggest that exposure of TE to ONOOH gives marked chemical and structural changes to TE and altered matrix assembly, and that such damage accumulates in human arterial tissue during the development of atherosclerosis.
Collapse
Affiliation(s)
| | - Christine Y Chuang
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Per Hägglund
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Steven G Wise
- The Heart Research Institute, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Michael J Davies
- The Heart Research Institute, Sydney, Australia; Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Faculty of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|
26
|
Zhao Y, Zhang Y, Sun H, Maroto R, Brasier AR. Selective Affinity Enrichment of Nitrotyrosine-Containing Peptides for Quantitative Analysis in Complex Samples. J Proteome Res 2017; 16:2983-2992. [PMID: 28714690 DOI: 10.1021/acs.jproteome.7b00275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein tyrosine nitration by oxidative and nitrate stress is important in the pathogenesis of many inflammatory or aging-related diseases. Mass spectrometry analysis of protein nitrotyrosine is very challenging because the non-nitrated peptides suppress the signals of the low-abundance nitrotyrosine (NT) peptides. No validated methods for enrichment of NT-peptides are currently available. Here we report an immunoaffinity enrichment of NT-peptides for proteomics analysis. The effectiveness of this approach was evaluated using nitrated protein standards and whole-cell lysates in vitro. A total of 1881 NT sites were identified from a nitrated whole-cell extract, indicating that this immunoaffinity-MS method is a valid approach for the enrichment of NT-peptides, and provides a significant advance for characterizing the nitrotyrosine proteome. We noted that this method had higher affinity to peptides with N-terminal nitrotyrosine relative to peptides with other nitrotyrosine locations, which raises the need for future study to develop a pan-specific nitrotyrosine antibody for unbiased, proteome-wide analysis of tyrosine nitration. We applied this method to quantify the changes in protein tyrosine nitration in mouse lungs after intranasal poly(I:C) treatment and quantified 237 NT sites. This result indicates that the immunoaffinity-MS method can be used for quantitative analysis of protein nitrotyrosines in complex samples.
Collapse
Affiliation(s)
- Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States.,Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Rosario Maroto
- Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States.,Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| |
Collapse
|
27
|
Abstract
Enzyme replacement therapy in Fabry disease was initiated in 2001. In a significant proportion of patients, the apparent removal of stored glycosphingolipid from the endothelial cells does not prevent progression of vascular disease. Shu et al. show a link between accumulation of globotriaosylceramide in the endothelial cells and 3-nitrotyrosine formation, indicating endothelial nitric oxide synthase uncoupling. 3-Nitrotyrosine will be useful to better understand Fabry vasculopathy, and to evaluate additional therapeutic interventions targeting oxidative stress.
Collapse
|
28
|
Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res 2015; 49:347-73. [DOI: 10.3109/10715762.2015.1007968] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
3-nitrotyrosine modified proteins in atherosclerosis. DISEASE MARKERS 2015; 2015:708282. [PMID: 25814781 PMCID: PMC4359869 DOI: 10.1155/2015/708282] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the leading cause of premature death worldwide, and atherosclerosis is the main contributor. Lipid-laden macrophages, known as foam cells, accumulate in the subendothelial space of the lesion area and contribute to consolidate a chronic inflammatory environment where oxygen and nitrogen derived oxidants are released. Oxidatively modified lipids and proteins are present both in plasma as well as atherosclerotic lesions. A relevant oxidative posttranslational protein modification is the addition of a nitro group to the hydroxyphenyl ring of tyrosine residues, mediated by nitric oxide derived oxidants. Nitrotyrosine modified proteins were found in the lesion and also in plasma from atherosclerotic patients. Despite the fact of the low yield of nitration, immunogenic, proatherogenic, and prothrombotic properties acquired by 3-nitrotyrosine modified proteins are in agreement with epidemiological studies showing a significant correlation between the level of nitration found in plasma proteins and the prevalence of cardiovascular disease, supporting the usefulness of this biomarker to predict the outcome and to take appropriate therapeutic decisions in atherosclerotic disease.
Collapse
|
30
|
Jones LH, Narayanan A, Hett EC. Understanding and applying tyrosine biochemical diversity. MOLECULAR BIOSYSTEMS 2014; 10:952-69. [PMID: 24623162 DOI: 10.1039/c4mb00018h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights some of the recent advances made in our understanding of the diversity of tyrosine biochemistry and shows how this has inspired novel applications in numerous areas of molecular design and synthesis, including chemical biology and bioconjugation. The pathophysiological implications of tyrosine biochemistry will be presented from a molecular perspective and the opportunities for therapeutic intervention explored.
Collapse
Affiliation(s)
- Lyn H Jones
- Pfizer R&D, Chemical Biology Group, BioTherapeutics Chemistry, WorldWide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | |
Collapse
|
31
|
Yu Q, Liu B, Ruan D, Niu C, Shen J, Ni M, Cong W, Lu X, Jin L. A novel targeted proteomics method for identification and relative quantitation of difference in nitration degree of OGDH between healthy and diabetic mouse. Proteomics 2014; 14:2417-26. [PMID: 25251478 DOI: 10.1002/pmic.201400274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/09/2014] [Accepted: 09/19/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Qing Yu
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals; Wenzhou Medical University; Wenzhou Zhejiang P. R. China
| | - Bin Liu
- The Sixth Affiliated Hospital of Wenzhou Medical University; Lishui Zhejiang P. R. China
| | - Dandan Ruan
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals; Wenzhou Medical University; Wenzhou Zhejiang P. R. China
| | - Chao Niu
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals; Wenzhou Medical University; Wenzhou Zhejiang P. R. China
| | - Jiayi Shen
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals; Wenzhou Medical University; Wenzhou Zhejiang P. R. China
| | - Maowei Ni
- Zhejiang Cancer Hospital; Hangzhou P. R. China
| | - Weitao Cong
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals; Wenzhou Medical University; Wenzhou Zhejiang P. R. China
- Wenzhou Undersun Biotechnology Co., Ltd; Wenzhou Zhejiang P. R. China
| | - Xianghong Lu
- The Sixth Affiliated Hospital of Wenzhou Medical University; Lishui Zhejiang P. R. China
| | - Litai Jin
- Zhejiang Provincial Key Laboratory of Biopharmaceuticals; Wenzhou Medical University; Wenzhou Zhejiang P. R. China
- Wenzhou Undersun Biotechnology Co., Ltd; Wenzhou Zhejiang P. R. China
| |
Collapse
|
32
|
Bhat S, Mary S, Banarjee R, Giri AP, Kulkarni MJ. Immune response to chemically modified proteome. Proteomics Clin Appl 2014; 8:19-34. [PMID: 24375944 DOI: 10.1002/prca.201300068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022]
Abstract
Both enzymatic and nonenzymatic PTMs of proteins involve chemical modifications. Some of these modifications are prerequisite for the normal functioning of cell, while other chemical modifications render the proteins as "neo-self" antigens, which are recognized as "non-self" leading to aberrant cellular and humoral immune responses. However, these modifications could be a secondary effect of autoimmune diseases, as in the case of type I diabetes, hyperglycemia leads to protein glycation. The enigma of chemical modifications and immune response is akin to the "chick-and-egg" paradox. Nevertheless, chemical modifications regulate immune response. In some of the well-known autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, chemically modified proteins act as autoantigens forming immune complexes. In some instances, chemical modifications are also involved in regulating immune response during pathogen infection. Further, the usefulness of proteomic analysis of immune complexes is briefly discussed.
Collapse
Affiliation(s)
- Shweta Bhat
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | | | | | | | | |
Collapse
|
33
|
Jayakumari NR, Reghuvaran AC, Rajendran RS, Pillai VV, Karunakaran J, Sreelatha HV, Gopala S. Are nitric oxide-mediated protein modifications of functional significance in diabetic heart? ye'S, -NO', wh'Y-NO't? Nitric Oxide 2014; 43:35-44. [PMID: 25153035 DOI: 10.1016/j.niox.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
Protein modifications effected by nitric oxide (NO) primarily in conjunction with reactive oxygen species (ROS) include tyrosine nitration, cysteine S-nitrosylation, and glutathionylation. The physiological and pathological relevance of these three modifications is determined by the amino acids on which these modifications occur -cysteine and tyrosine, for instance, ranging from altering structural integrity/catalytic activity of proteins or by altering propensity towards protein degradation. Even though tyrosine nitration is a well-established nitroxidative stress marker, instilled as a footprint of oxygen- and nitrogen-derived oxidants, newer data suggest its wider role in embryonic heart development and substantiate the need to focus on elucidating the underlying mechanisms of reversibility and specificity of tyrosine nitration. S-nitrosylation is a covalent modification in specific cysteine residues of proteins and is suggested as one of the ways in which NO contributes to its ubiquitous signalling. Several sensitive and specific techniques including biotin switch assay and mass spectrometry based analysis make it possible to identify a large number of these modified proteins, and provide a great deal of potential S-nitrosylation sites. The number of studies that have documented nitrated proteins in diabetic heart is relatively much less compared to what has been published in the normal physiology and other cardiac pathologies. Nevertheless, elucidation of nitrated proteome of diabetic heart has revealed the presence of many mitochondrial and cytosolic proteins of functional importance. But, the existence of different models of diabetes and analyses at diverse stages of this disease have impeded scientists from gaining insights that would be essential to understand the cardiac complications during diabetes. This review summarizes NO mediated protein modifications documented in normal and abnormal heart physiology including diabetes.
Collapse
Affiliation(s)
- Nandini Ravikumar Jayakumari
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, India
| | - Anand Chellappan Reghuvaran
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, India
| | - Raji Sasikala Rajendran
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, India
| | - Vivek Velayudhan Pillai
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, India
| | - Jayakumar Karunakaran
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, India
| | - Harikrishnan Vijayakumar Sreelatha
- Division of Laboratory Animal Sciences, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, India.
| |
Collapse
|
34
|
Bamm VV, Harauz G. "Back to the future" or iron in the MS brain - commentary on "perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis". Neurosci Lett 2014; 582:130-2. [PMID: 24942652 DOI: 10.1016/j.neulet.2014.05.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
35
|
Affiliation(s)
- Dian J Cao
- From the Departments of Internal Medicine (Cardiology) (D.J.C., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph A Hill
- From the Departments of Internal Medicine (Cardiology) (D.J.C., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
36
|
Celano L, Carabio C, Frache R, Cataldo N, Cerecetto H, González M, Thomson L. Arylnitroalkenes as scavengers of macrophage-generated oxidants. Eur J Med Chem 2014; 74:31-40. [DOI: 10.1016/j.ejmech.2013.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 11/17/2022]
|
37
|
Kypreos KE, Zafirovic S, Petropoulou PI, Bjelogrlic P, Resanovic I, Traish A, Isenovic ER. Regulation of endothelial nitric oxide synthase and high-density lipoprotein quality by estradiol in cardiovascular pathology. J Cardiovasc Pharmacol Ther 2014; 19:256-68. [PMID: 24414281 DOI: 10.1177/1074248413513499] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Estrogens have been recognized, in the last 3 decades, as important hormones in direct and indirect modulation of vascular health. In addition to their direct benefit on cardiovascular health, the presence of esterified estrogen in the lipid core of high-density lipoprotein (HDL) particles indirectly contributes to atheroprotection by significantly improving HDL quality and functionality. Estrogens modulate their physiological activity via genomic and nongenomic mechanisms. Genomic mechanisms are thought to be mediated directly by interaction of the hormone receptor complex with the hormone response elements that regulate gene expression. Nongenomic mechanisms are thought to occur via interaction of the estrogen with membrane-bound receptors, which rapidly activate intracellular signaling without binding of the hormone receptor complex to its hormone response elements. Estradiol in particular mediates early and late endothelial nitric oxide synthase (eNOS) activation via interaction with estrogen receptors through both nongenomic and genomic mechanisms. In the vascular system, the primary endogenous source of nitric oxide (NO) generation is eNOS. Nitric oxide primarily influences blood vessel relaxation, the heart rate, and myocyte contractility. The abnormalities in expression and/or functions of eNOS lead to the development of cardiovascular diseases, both in animals and in humans. Although considerable research efforts have been dedicated to understanding the mechanisms of action of estradiol in regulating cardiac eNOS, more research is needed to fully understand the details of such mechanisms. This review focuses on recent findings from animal and human studies on the regulation of eNOS and HDL quality by estradiol in cardiovascular pathology.
Collapse
Affiliation(s)
- Kyriakos E Kypreos
- 1Department of Medicine, University of Patras Medical School, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | | | | | | | | | | | | |
Collapse
|
38
|
Inflammatory biomarkers for predicting cardiovascular disease. Clin Biochem 2013; 46:1353-71. [PMID: 23756129 DOI: 10.1016/j.clinbiochem.2013.05.070] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 02/07/2023]
Abstract
The pathology of cardiovascular disease (CVD) is complex; multiple biological pathways have been implicated, including, but not limited to, inflammation and oxidative stress. Biomarkers of inflammation and oxidative stress may serve to help identify patients at risk for CVD, to monitor the efficacy of treatments, and to develop new pharmacological tools. However, due to the complexities of CVD pathogenesis there is no single biomarker available to estimate absolute risk of future cardiovascular events. Furthermore, not all biomarkers are equal; the functions of many biomarkers overlap, some offer better prognostic information than others, and some are better suited to identify/predict the pathogenesis of particular cardiovascular events. The identification of the most appropriate set of biomarkers can provide a detailed picture of the specific nature of the cardiovascular event. The following review provides an overview of existing and emerging inflammatory biomarkers, pro-inflammatory cytokines, anti-inflammatory cytokines, chemokines, oxidative stress biomarkers, and antioxidant biomarkers. The functions of each biomarker are discussed, and prognostic data are provided where available.
Collapse
|
39
|
Salvatore SR, Vitturi DA, Baker PRS, Bonacci G, Koenitzer JR, Woodcock SR, Freeman BA, Schopfer FJ. Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine. J Lipid Res 2013; 54:1998-2009. [PMID: 23620137 DOI: 10.1194/jlr.m037804] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oxidation and nitration of unsaturated fatty acids transforms cell membrane and lipoprotein constituents into mediators that regulate signal transduction. The formation of 9-NO2-octadeca-9,11-dienoic acid and 12-NO2-octadeca-9,11-dienoic acid stems from peroxynitrite- and myeloperoxidase-derived nitrogen dioxide reactions as well as secondary to nitrite disproportionation under the acidic conditions of digestion. Broad anti-inflammatory and tissue-protective responses are mediated by nitro-fatty acids. It is now shown that electrophilic fatty acid nitroalkenes are present in the urine of healthy human volunteers (9.9 ± 4.0 pmol/mg creatinine); along with electrophilic 16- and 14-carbon nitroalkenyl β-oxidation metabolites. High resolution mass determinations and coelution with isotopically-labeled metabolites support renal excretion of cysteine-nitroalkene conjugates. These products of Michael addition are in equilibrium with the free nitroalkene pool in urine and are displaced by thiol reaction with mercury chloride. This reaction increases the level of free nitroalkene fraction >10-fold and displays a K(D) of 7.5 × 10(-6) M. In aggregate, the data indicates that formation of Michael adducts by electrophilic fatty acids is favored under biological conditions and that reversal of these addition reactions is critical for detecting both parent nitroalkenes and their metabolites. The measurement of this class of mediators can constitute a sensitive noninvasive index of metabolic and inflammatory status.
Collapse
Affiliation(s)
- Sonia R Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|