1
|
Chang CH, Liou HH, Wu CK. Moderate-severe aortic arch calcification and high serum alkaline phosphatase co-modify the risk of cardiovascular events and mortality among chronic hemodialysis patients. Ren Fail 2025; 47:2449572. [PMID: 39801127 PMCID: PMC11731357 DOI: 10.1080/0886022x.2024.2449572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/02/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Patients with end-stage kidney disease undergoing chronic hemodialysis (HD) have an unparalleled risk of vascular calcification (VC) and high alkaline phosphatase (Alk-P) levels. However, whether VC contributed to the cardiovascular risk modified by serum Alk-P levels was not addressed in the population. METHODS A retrospective cohort study was conducted on chronic HD patients, between October 1 and December 31, 2018, with aortic arch calcification (AoAC) scores and serum Alk-P levels. Patients were categorized into four groups: non-to-mild AoAC/low Alk-P, non-to-mild AoAC/high Alk-P, moderate-to-severe AoAC/low Alk-P, and moderate-to-severe AoAC/high Alk-P. The Cox proportional hazard model and Kaplan-Meier analysis were used to evaluate the risks of major adverse cardiovascular effects (MACEs) and cardiovascular and all-cause mortality after multivariate adjustment. RESULTS Among 376 chronic HD patients recruited, 125 (33%) had non-to-mild AoAC/low Alk-P, 76 (20%) had non-to-mild AoAC/high Alk-P, 89 (24%) had moderate-to-severe AoAC/low Alk-P, and 86 (23%) had moderate-to-severe AoAC/high Alk-P. After 3 years of follow-up, patients with coexisting moderate-to-severe AoAC and high Alk-P had a higher risk of MACEs (aHR 1.76; 95% CI 1.06-2.92), and cardiovascular (aHR 2.49; 95% CI 1.21-5.11) and all-cause mortality (aHR 2.67; 95% CI 1.39-5.13) compared to those with non-to-mild AoAC/low Alk-P even after adjustments for significant clinical variables. CONCLUSIONS In chronic HD patients, moderate to severe AoAC co-existed with high Alk-P levels and enhanced the risk of MACEs and cardiovascular and all-cause mortality. Interventions to attenuate these risk factors simultaneously should be emphasized in this population.
Collapse
Affiliation(s)
- Cheng-Hao Chang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Medicine, Hsin-Jen Hospital, New Taipei County, Taiwan
| | - Chung-Kuan Wu
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
2
|
Pan Y, Zhang Y, Lin J, Liu Z, Li Z, Luo Z, Xu N. Simulating Arterial Stress for Rapid Evaluation of Antivascular Calcification Therapies from Herbal Extracts. ACS Biomater Sci Eng 2025; 11:1212-1221. [PMID: 39853277 DOI: 10.1021/acsbiomaterials.4c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Vascular calcification severely disrupts cardiovascular hemodynamics, leading to high rates of morbidity and mortality. Despite their clinical impact, the development of effective treatments remains limited, underscoring an urgent need for efficient and reliable drug screening methods. Vascular smooth muscle cells (VSMCs) are known to play a central role in driving the calcification process, undergoing an osteogenic transition in response to pathological conditions. To mimic this process, we developed a cyclic stretching device that replicates the physiological mechanical stresses experienced by VSMCs during arterial pulsation. This device dramatically accelerates the osteogenic transition of VSMCs, reducing phenotypic switching from 13 days under static conditions to just 4 h. Using this device, we screened 20 herbal extracts for anticalcification properties and identifiedSalvia miltiorrhizaas a candidate with therapeutic potential that inhibits VSMC osteogenic transdifferentiation in vitro. The anticalcification efficacy ofSalvia miltiorrhizawas further validated in a vitamin D-induced rat model of cardiovascular calcification, highlighting its translational potential. This screening platform provides a rapid and physiologically relevant method for evaluating potential antivascular calcification therapies, significantly improving the efficiency of drug discovery for clinical translation.
Collapse
Affiliation(s)
- Yu Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Yuhang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Junsheng Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Nan Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
3
|
Rezaie-Kalamtari K, Norouzi Z, Salmanipour A, Mehrali H. Updates on CAD risk assessment: using the coronary artery calcium score in combination with traditional risk factors. Egypt Heart J 2025; 77:14. [PMID: 39847250 PMCID: PMC11757844 DOI: 10.1186/s43044-025-00608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is the third leading cause of death worldwide, so prevention and early diagnosis play important roles to reduce mortality and morbidity. Traditional risk-score assessments were used to find the at-risk patients in order to prevent or early treatment of CAD. Adding imaging data to traditional risk-score systems will able us to find these patients more confidently and reduce the probable mismanagements. MAIN TEXT Measuring the vascular calcification by coronary artery calcium (CAC) score can prepare valuable data for this purpose. Using CAC became more popular in recent years. The most applicable method to evaluate CAC is Agatston scoring using computed tomography (CT) scanning. Patients are classified into several subgroups: no evidence of CAD (score 0), mild CAD (score 1-10), minimal CAD (score 11-100), moderate CAD (score 101-400), and severe CAD (score > 400) and higher than1000 as the extreme risk of CVD events. CONCLUSIONS CAC assessment was recommended in the patients older than 40 years old with CAD risk factors, the ones with stable angina, borderline-to-intermediate-risk group, etc. According to the results of the CAC the patients may be candidate for further evaluation for needing revascularization, medical treatment, or routine follow-up. Adding artificial intelligence (AI) to CAC will prepare more data and can increase the reliability of our approach to the patients promising a bright future to improve this technology.
Collapse
Affiliation(s)
- Kiara Rezaie-Kalamtari
- Rajaie Cardiovascular, Medical and Research Institute, Valiasr Ave, Hashemi Rafsanjani (Niayesh) Intersection, Tehran, Iran
| | - Zeinab Norouzi
- Rajaie Cardiovascular, Medical and Research Institute, Valiasr Ave, Hashemi Rafsanjani (Niayesh) Intersection, Tehran, Iran.
| | - Alireza Salmanipour
- Rajaie Cardiovascular, Medical and Research Institute, Valiasr Ave, Hashemi Rafsanjani (Niayesh) Intersection, Tehran, Iran
| | - Hossein Mehrali
- Rajaie Cardiovascular, Medical and Research Institute, Valiasr Ave, Hashemi Rafsanjani (Niayesh) Intersection, Tehran, Iran
- Rajaie Cardiovascular, Medical & Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Bnaya A, Kafka IZ, Barhoum H, Shavit L. Vascular calcification in kidney stone formers: the impact of age and stone composition. Urolithiasis 2024; 52:97. [PMID: 38904673 DOI: 10.1007/s00240-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
An increased prevalence of vascular calcification (VC) has been reported in kidney stone formers (KSFs), along with an elevated cardiovascular risk. The aim of the current study is to assess whether VC in these patients develops at a younger age and is influenced by stone composition. This single-center, matched case-control study included KSFs with uric acid or calcium oxalate stones (diagnosed based on stone analysis) and age- and sex-matched controls without a history of nephrolithiasis. The prevalence and severity of abdominal aortic calcification (AAC) and bone mineral density (BMD) were compared between KSFs and non-KSFs. In total, 335 patients were investigated: 134 with calcium oxalate stones, 67 with uric acid stones, and 134 controls. Overall, the prevalence of AAC was significantly higher among calcium stone formers than among the controls (67.9% vs. 47%, p = 0.002). In patients under 60 years of age, those with calcium oxalate stones exhibited both a significantly elevated AAC prevalence (61.9% vs. 31.3%, p = 0.016) and severity (94.8 ± 15.4 vs. 30.3 ± 15.95, p = 0.001) compared to the controls. Within the age group of 40-49, osteoporosis was identified only in the KSFs. Multivariate analysis identified age, smoking, and the presence of calcium stones as independent predictors of AAC. This study highlights that VC and osteoporosis occur in KSFs at a younger age than in non-stone-formers, suggesting potential premature VC. Its pathogenesis is intriguing and needs to be elucidated. Early evaluation and intervention may be crucial for mitigating the cardiovascular risk in this population.
Collapse
Affiliation(s)
- Alon Bnaya
- Institute of Nephrology, Shaare Zedek Medical Center, Affiliated with the Hebrew University, P.O Box 3235, Jerusalem, 91031, Israel.
| | - Ilan Z Kafka
- Department of Urology, Shaare Zedek Medical Center, Affiliated with the Hebrew University, Jerusalem, Israel
| | - Hezi Barhoum
- Internal medicine department, Shaare Zedek Medical Center, Affiliated with the Hebrew University, Jerusalem, Israel
| | - Linda Shavit
- Institute of Nephrology, Shaare Zedek Medical Center, Affiliated with the Hebrew University, P.O Box 3235, Jerusalem, 91031, Israel
| |
Collapse
|
5
|
Cockerill SJ, Arnay-de-la-Rosa M, González-Reimers E. An atlas of anatomical variants of the human calcaneus. J Morphol 2024; 285:e21706. [PMID: 38704702 DOI: 10.1002/jmor.21706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
The usefulness of anatomical variation is determined by the knowledge of why nonmetric traits appear. Clear descriptions of the traits are a necessary task, due to the risk of confusing anatomical variants and evidence of trauma. Numerous interpretations of the appearance of calcaneal anatomical variants add to the need of an anatomical atlas of calcaneal nonmetric traits. We have analyzed a total of 886 calcanei; 559 belong to different modern and pre-Hispanic samples, and 327 bones were studied from a reference collection from Athens. In this study, we present the anatomical variations that exist on the calcaneus bone, some of which have rarely been mentioned in previous research. The standardization of methods proposed may be useful to experts working in human anatomy, physical anthropology as well as comparative morphology, due to usefulness of this information during surgery, and bioanthropology to observe and study the lifestyle of past populations.
Collapse
Affiliation(s)
- Samuel James Cockerill
- Departamento Geografía e Historia, Facultad de Humanidades, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Matilde Arnay-de-la-Rosa
- Departamento Geografía e Historia, Facultad de Humanidades, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Emilio González-Reimers
- Dpto. de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
6
|
Siracusa C, Carino A, Carabetta N, Manica M, Sabatino J, Cianflone E, Leo I, Strangio A, Torella D, De Rosa S. Mechanisms of Cardiovascular Calcification and Experimental Models: Impact of Vitamin K Antagonists. J Clin Med 2024; 13:1405. [PMID: 38592207 PMCID: PMC10932386 DOI: 10.3390/jcm13051405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Cardiovascular calcification is a multifactorial and complex process involving an array of molecular mechanisms eventually leading to calcium deposition within the arterial walls. This process increases arterial stiffness, decreases elasticity, influences shear stress events and is related to an increased risk of morbidity and mortality associated with cardiovascular disease. In numerous in vivo and in vitro models, warfarin therapy has been shown to cause vascular calcification in the arterial wall. However, the exact mechanisms of calcification formation with warfarin remain largely unknown, although several molecular pathways have been identified. Circulating miRNA have been evaluated as biomarkers for a wide range of cardiovascular diseases, but their exact role in cardiovascular calcification is limited. This review aims to describe the current state-of-the-art research on the impact of warfarin treatment on the development of vascular calcification and to highlight potential molecular targets, including microRNA, within the implicated pathways.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Annarita Carino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Marzia Manica
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (J.S.); (I.L.); (A.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.S.); (A.C.); (N.C.); (M.M.); (E.C.)
| |
Collapse
|
7
|
Lu X, Liu X, Liang E, Yang R, Liu Y, Liu X, Yan F, Xing Y. Panax quinquefolius saponin inhibits vascular smooth muscle cell calcification via activation of nuclear factor-erythroid 2-related factor 2. BMC Complement Med Ther 2023; 23:129. [PMID: 37085826 PMCID: PMC10120105 DOI: 10.1186/s12906-023-03961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Panax quinquefolius saponin (PQS) is the main active component of Panax quinquefolius. Emerging evidence suggests that PQS exerts beneficial effects against cardiovascular diseases. However, the role and mechanism of PQS in vascular calcification are not unclear. The present study investigated the effects of PQS on the calcification of vascular smooth muscle cell (VSMCs). METHODS The present study used calcification medium containing 3 mM inorganic phosphate (Pi) to induce rat VSMCs calcification. We investigated the effects of PQS on VSMCs calcification using alizarin red staining and alkaline phosphatase (ALP) activity assays. The intracellular reactive oxygen species (ROS) levels and the transcriptional activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) were determined. The mRNA and protein expression levels of Nrf2, the antioxidant gene heme oxygenase-1 (HO-1), osteogenic markers, including runt-related transcription factor 2 (Runx2) and bone morphogenetic protein 2 (BMP2), and Kelch-like ECH-associated protein 1 (Keap1) were also measured. RESULTS Treatment with Pi significantly increased intracellular calcium deposition and ALP activity, which were suppressed by PQS in a concentration-dependent manner. During VSMCs calcification, PQS inhibited the mRNA and protein expression of Runx2 and BMP2. PQS treatment reduced intracellular ROS production and significantly upregulated Nrf2 transcriptional activity and the expression of Nrf2 and its target antioxidant gene HO-1. PQS suppressed the Pi-induced protein expression of Keap1, which is an endogenous inhibitor of Nrf2. Keap1 siRNA treatment induced Nrf2 expression and downregulated Runx2 expression in the presence of Pi and PQS. CONCLUSION Taken together, these findings suggest that PQS could effectively inhibit VSMCs calcification by ameliorating oxidative stress and regulating osteogenic genes via the promotion of Nrf2 expression.
Collapse
Affiliation(s)
- Xiaoting Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Ershun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Ruixue Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Yan Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Xiaoqiong Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, Jinan, China
| | - Fangfang Yan
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yifan Xing
- Department of Medical Insurance, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Li X, Du H, Li J, Li X, Gao Q, Chen X. Cerebral Arterial Stiffness as Measured Based on the Pulse Wave Velocity is Associated With Intracranial Artery Calcification in Patients With Acute Stroke. J Clin Neurol 2023:19.e24. [PMID: 36929059 DOI: 10.3988/jcn.2022.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND AND PURPOSE By measuring a newly defined parameter, the carotid-cerebral pulse wave velocity (ccPWV), this study aimed to determine the association of intracranial artery calcification (IAC) with arterial stiffness as reflected by the pulse wave velocity between the carotid and middle cerebral arteries using transcranial Doppler sonography in patients with acute stroke. METHODS We recruited 146 patients with ischemic stroke from our stroke center. Computed tomography of the head was used to assess the presence and severity of IAC. Arterial stiffness was evaluated using ccPWV. Data are presented as quartiles of ccPWV. A multivariable logistic regression model was used to assess the independent relationship between ccPWV and IAC. RESULTS The IAC prevalence increased with the ccPWV quartile, being 54%, 76%, 83%, and 89% for quartiles 1, 2, 3, and 4, respectively (p<0.001) as did IAC scores, with median [interquartile range] values of 0 [0-2], 3 [2-4], 4 [2-5], and 5 [4-6], respectively (p<0.001). After additionally adjusting for age and hypertension, a significant correlation was only found between quartiles 3 and 4 of ccPWV and IAC scores. The odds ratio (95% confidence interval) for the IAC scores was 1.78 (1.28-2.50) (p=0.001) in quartile 4 of ccPWV and 1.45 (1.07-1.95) (p=0.015) in quartile 3 compared with quartile 1. CONCLUSIONS We found that in patients with acute ischemic stroke, ccPWV was positively related to the degree of IAC. Future longitudinal cohort studies may help to identify the potential role of IAC in the progression of cerebral arterial stiffness.
Collapse
Affiliation(s)
- Xuelong Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Heng Du
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jia Li
- Department of Neurology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianliang Li
- Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingchun Gao
- Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiangyan Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
9
|
Kanbay M, Copur S, Tanriover C, Yavuz F, Galassi A, Ciceri P, Cozzolino M. The pathophysiology and management of vascular calcification in chronic kidney disease patients. Expert Rev Cardiovasc Ther 2023; 21:75-85. [PMID: 36716079 DOI: 10.1080/14779072.2023.2174525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Vascular calcification (VC) which is the pathological mineral deposition in the vascular system, predominantly at the intimal and medial layer of the vessel wall, is an important comorbidity in patients with chronic kidney disease (CKD) leading to significant morbidity and mortality while necessitating appropriate treatment. Our review aims to provide an in-depth analysis of the current understanding of VC. AREAS COVERED In this review, we first discuss the pathophysiology of VC in CKD patients, then we explain the methods to predict and assess VC. Afterwards, we provide the currently available as well as the potential therapeutic approaches of VC. We finally discuss our understanding regarding the current situation surrounding VC in our expert opinion section. EXPERT OPINION Predicting, assessing and treating VC is crucial and the future advances in the field of research surrounding VC will potentially occur in one or more of these three areas of clinical management. There is a current lack of evidence and consensus regarding specific therapeutic options for alleviating VC and this situation may not necessitate VC to be determined, detected, and documented before the available options are implemented. Regardless, the prediction and assessment of VC is still important and requires further improvement together with the developments in therapeutic alternatives. The future has the potential to bring better research which would guide and improve the management of this patient group. A more specialized approach consisting of targeted therapies and more tailored management plans for patients with CKD and VC is on the horizon.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey.,Department of Health Sciences, Renal Division, University of Milan, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Andrea Galassi
- Department of Health Sciences, Renal Division, University of Milan, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| |
Collapse
|
10
|
PCAF Accelerates Vascular Senescence via the Hippo Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1200602. [PMID: 36246398 PMCID: PMC9560818 DOI: 10.1155/2022/1200602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
P300/CBP-Associated Factor (PCAF), one of the histone acetyltransferases (HATs), is known to be involved in cell growth and/or differentiation. PCAF is reported to be involved in atherosclerotic plaques and neointimal formation. However, its role in cellular senescence remains undefined. We investigated the potential mechanism for PCAF-mediated cellular senescence. Immunohistochemical (IHC) analysis showed PCAF was distinctly increased in the endothelia of aorta in aged mice. Palmitate acid (PA) or X radiation significantly induced the expression of senescence-associated markers and PCAF in human umbilical vein endothelial cells (HUVECs). PCAF silence in PA-treated HUVECs significantly rescued senescence-associated phenotypes, while PCAF overexpression accelerated it. Additionally, our results showed that Yes1 Associated Transcriptional Regulator (YAP) that acts as end effector of the Hippo signaling pathway is crucial in PCAF-mediated endothelial senescence. YAP activity declining was observed in aged vascular endothelia. Overexpression of YAP partially ameliorated PCAF-induced endothelial senescence. In vivo, endothelial-(EC-) specific PCAF downregulation in aged mice using adeno-associated virus revealed less vascular senescence-associated phenotypes. These results suggested that PCAF mediated endothelial senescence through the Hippo signaling pathway, implying that PCAF may become a potential target for the prevention and treatment of vascular aging.
Collapse
|
11
|
Lee JE, Jeong WG, Lee HJ, Kim YH, Chae KJ, Jeong YJ. Relationship between Incidental Abnormalities on Screening Thoracic Computed Tomography and Mortality: A Long-Term Follow-Up Analysis. Korean J Radiol 2022; 23:998-1008. [PMID: 36175001 PMCID: PMC9523229 DOI: 10.3348/kjr.2022.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The present study aimed to assess the relationship between incidental abnormalities on thoracic computed tomography (CT) and mortality in a general screening population using a long-term follow-up analysis. MATERIALS AND METHODS We retrospectively collected the medical records and CT images of 840 participants (mean age ± standard deviation [SD], 58.5 ± 6.7 years; 564 male) who underwent thoracic CT at a single health promotion center between 2007 and 2010. Two thoracic radiologists independently reviewed all CT images and evaluated any incidental abnormalities (interstitial lung abnormality [ILA], emphysema, coronary artery calcification [CAC], aortic valve [AV] calcification, and pulmonary nodules). Kaplan-Meier analysis with log-rank and z-tests was performed to assess the relationship between incidental CT abnormalities and all-cause mortality in the subsequent follow-up. Cox proportional hazards regression was performed to further identify risk factors of all-cause mortality among the incidental CT abnormalities and clinical factors. RESULTS Among the 840 participants, 55 (6%), 171 (20%), 288 (34%), 396 (47%), and 97 (11%) had findings of ILA, emphysema, CAC, pulmonary nodule, and AV calcification, respectively, on initial CT. The participants were followed up for a mean period ± SD of 10.9 ± 1.4 years. All incidental CT abnormalities were associated with all-cause mortality in univariable analysis (p < 0.05). However, multivariable analysis further revealed fibrotic ILA as an independent risk factor for all-cause mortality (hazard ratio, 2.52 [95% confidence interval, 1.02-6.22], p = 0.046). ILA were also identified as an independent risk factor for lung cancer or respiratory disease-related deaths. CONCLUSION Incidental abnormalities on screening thoracic CT were associated with increased mortality during the long-term follow-up. Among incidental CT abnormalities, fibrotic ILA were independently associated with increased mortality. Appropriate management and surveillance may be required for patients with fibrotic ILA on thoracic CT obtained for general screening purposes.
Collapse
Affiliation(s)
- Jong Eun Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Won Gi Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, Korea.
| | - Hyo-Jae Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Yun-Hyeon Kim
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Kum Ju Chae
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Yeon Joo Jeong
- Department of Radiology and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
12
|
Effect of C1q/TNF-Related Protein 9 on Coronary Artery Calcification: An Observational Study. J Cardiovasc Dev Dis 2022; 9:jcdd9100313. [PMID: 36286265 PMCID: PMC9604104 DOI: 10.3390/jcdd9100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Coronary artery calcification (CAC) increases the risk of acute coronary syndrome. This study examined the correlation between C1q/TNF-related protein 9 (CTRP9) and CAC and explored CTRP9 as a biomarker for prognosis. We divided 275 patients with coronary heart disease into four groups. In order to balance the baseline confounding factors, propensity score matching (PSM) was performed to match CAC patients with non-CAC patients in a 1:1 ratio. Optical coherence tomography (OCT) calcification scoring was performed in 126 patients with CAC. Moreover, 140 patients who underwent OCT were followed-up for 9 months for analysis of the correlation between CTRP9 levels and clinical prognosis. Based on OCT calcification scores, 126 patients with CAC were divided into the 0–2 and 3–4 groups. Plasma CTRP9 levels were significantly lower in the type 2 diabetes mellitus (T2DM), CAC and CAC with T2DM groups than in the control group. CTRP9 played roles as a protective factor and potential predictor in CAC severity. The AUC of the OCT calcification score 3–4 group predicted by the plasma CTRP9 level was 0.766. During the follow-up period, the cumulative event-free survival rate was significantly lower in the low-level CTRP9 (L-CTRP9) group than in the high-level (H-CTRP9) group, and the incidence of major endpoint events was significantly higher in the L-CTRP9 group than in the H-CTRP9 group. CTRP9 can be a valuable biomarker for CAC occurrence and severity and can predict patients’ clinical prognosis.
Collapse
|
13
|
Patel NR, Setya K, Pradhan S, Lu M, Demer LL, Tintut Y. Microarchitectural Changes of Cardiovascular Calcification in Response to In Vivo Interventions Using Deep-Learning Segmentation and Computed Tomography Radiomics. Arterioscler Thromb Vasc Biol 2022; 42:e228-e241. [PMID: 35708025 PMCID: PMC9339530 DOI: 10.1161/atvbaha.122.317761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Coronary calcification associates closely with cardiovascular risk, but its progress is accelerated in response to some interventions widely used to reduce risk. This paradox suggests that qualitative, not just quantitative, changes in calcification may affect plaque stability. To determine if the microarchitecture of calcification varies with aging, Western diet, statin therapy, and high intensity, progressive exercise, we assessed changes in a priori selected computed tomography radiomic features (intensity, size, shape, and texture). METHODS Longitudinal computed tomography scans of mice (Apoe-/-) exposed to each of these conditions were autosegmented by deep learning segmentation, and radiomic features of the largest deposits were analyzed. RESULTS Over 20 weeks of aging, intensity and most size parameters increased, but surface-area-to-volume ratio (a measure of porosity) decreased, suggesting stabilization. However, texture features (coarseness, cluster tendency, and nonuniformity) increased, suggesting heterogeneity and likely destabilization. Shape parameters showed no significant changes, except sphericity, which showed a decrease. The Western diet had significant effects on radiomic features related to size and texture, but not intensity or shape. In mice undergoing either pravastatin treatment or exercise, the selected radiomic features of their computed tomography scans were not significantly different from those of their respective controls. Interestingly, the total number of calcific deposits increased significantly less in the 2 intervention groups compared with the respective controls, suggesting more coalescence and/or fewer de novo deposits. CONCLUSIONS Thus, aging and standard interventions alter the microarchitectural features of vascular calcium deposits in ways that may alter plaque biomechanical stability.
Collapse
Affiliation(s)
- Nikhil Rajesh Patel
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Kulveer Setya
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Stuti Pradhan
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Mimi Lu
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.)
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.).,Department of Bioengineering, University of California, Los Angeles. (L.L.D.).,Department of Physiology, University of California, Los Angeles. (L.L.D., Y.T.).,VA Greater Los Angeles Healthcare System, CA (L.L.D., Y.T.)
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles. (N.R.P., K.S., S.P., M.L., L.L.D., Y.T.).,Department of Physiology, University of California, Los Angeles. (L.L.D., Y.T.).,Department of Orthopaedic Surgery, University of California, Los Angeles. (Y.T.).,VA Greater Los Angeles Healthcare System, CA (L.L.D., Y.T.)
| |
Collapse
|
14
|
Mas-Bargues C, Borrás C, Alique M. The Contribution of Extracellular Vesicles From Senescent Endothelial and Vascular Smooth Muscle Cells to Vascular Calcification. Front Cardiovasc Med 2022; 9:854726. [PMID: 35498012 PMCID: PMC9051028 DOI: 10.3389/fcvm.2022.854726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is an irreversible pathological process associated with a loss of vascular wall function. This process occurs as a result of aging and age-related diseases, such as cardiovascular and chronic kidney diseases, and leads to comorbidities. During these age-related diseases, the endothelium accumulates senescent cells, which stimulate calcification in vascular smooth muscle cells. Currently, vascular calcification is a silent pathology, and there are no early diagnostic tools. Therefore, by the time vascular calcification is diagnosed, it is usually untreatable. Some mediators, such as oxidative stress, inflammation, and extracellular vesicles, are inducers and promoters of vascular calcification. They play a crucial role during vascular generation and the progression of vascular calcification. Extracellular vesicles, mainly derived from injured endothelial cells that have acquired a senescent phenotype, contribute to calcification in a manner mostly dependent on two factors: (1) the number of extracellular vesicles released, and (2) their cargo. In this review, we present state-of-the-art knowledge on the composition and functions of extracellular vesicles involved in the generation and progression of vascular calcification.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
| | - Consuelo Borrás
- Grupo de Investigación Freshage, Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto Sanitario de Investigación INCLIVA, Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), Madrid, Spain
- *Correspondence: Consuelo Borrás,
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Matilde Alique,
| |
Collapse
|
15
|
Lima TSM, Souza W, Geaquinto LRO, Sanches PL, Stepień EL, Meneses J, Fernández-de Gortari E, Meisner-Kober N, Himly M, Granjeiro JM, Ribeiro AR. Nanomaterial Exposure, Extracellular Vesicle Biogenesis and Adverse Cellular Outcomes: A Scoping Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1231. [PMID: 35407349 PMCID: PMC9000848 DOI: 10.3390/nano12071231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
The progressively increasing use of nanomaterials (NMs) has awakened issues related to nanosafety and its potential toxic effects on human health. Emerging studies suggest that NMs alter cell communication by reshaping and altering the secretion of extracellular vesicles (EVs), leading to dysfunction in recipient cells. However, there is limited understanding of how the physicochemical characteristics of NMs alter the EV content and their consequent physiological functions. Therefore, this review explored the relevance of EVs in the nanotoxicology field. The current state of the art on how EVs are modulated by NM exposure and the possible regulation and modulation of signaling pathways and physiological responses were assessed in detail. This review followed the manual for reviewers produced by The Joanna Brigs Institute for Scoping Reviews and the PRISMA extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. The research question, "Do NMs modulate cellular responses mediated by EVs?" was analyzed following the PECO model (P (Population) = EVs, E (Exposure) = NMs, C (Comparator) = EVs without exposure to NMs, O (Outcome) = Cellular responses/change in EVs) to help methodologically assess the association between exposure and outcome. For each theme in the PECO acronym, keywords were defined, organized, and researched in PubMed, Science Direct, Scopus, Web of Science, EMBASE, and Cochrane databases, up to 30 September 2021. In vitro, in vivo, ex vivo, and clinical studies that analyzed the effect of NMs on EV biogenesis, cargo, and cellular responses were included in the analysis. The methodological quality assessment was conducted using the ToxRTool, ARRIVE guideline, Newcastle Ottawa and the EV-TRACK platform. The search in the referred databases identified 2944 articles. After applying the eligibility criteria and two-step screening, 18 articles were included in the final review. We observed that depending on the concentration and physicochemical characteristics, specific NMs promote a significant increase in EV secretion as well as changes in their cargo, especially regarding the expression of proteins and miRNAs, which, in turn, were involved in biological processes that included cell communication, angiogenesis, and activation of the immune response, etc. Although further studies are necessary, this work suggests that molecular investigations on EVs induced by NM exposure may become a potential tool for toxicological studies since they are widely accessible biomarkers that may form a bridge between NM exposure and the cellular response and pathological outcome.
Collapse
Affiliation(s)
- Thais S. M. Lima
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Wanderson Souza
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Luths R. O. Geaquinto
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Priscila L. Sanches
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias 25071-202, Brazil
| | - Ewa. L. Stepień
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland;
| | - João Meneses
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| | - Eli Fernández-de Gortari
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| | - Nicole Meisner-Kober
- Department of Biosciences & Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (N.M.-K.); (M.H.)
| | - Martin Himly
- Department of Biosciences & Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (N.M.-K.); (M.H.)
| | - José M. Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias 25071-202, Brazil
- Dental School, Fluminense Federal University, Niterói 24020-140, Brazil
| | - Ana R. Ribeiro
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| |
Collapse
|
16
|
Kim JS, Hwang HS. Vascular Calcification in Chronic Kidney Disease: Distinct Features of Pathogenesis and Clinical Implication. Korean Circ J 2021; 51:961-982. [PMID: 34854578 PMCID: PMC8636761 DOI: 10.4070/kcj.2021.0995] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with a higher prevalence of vascular calcification (VC) and cardiovascular disease. VC in CKD patients showed different pathophysiological features from those of the general population. The pathogenesis of VC in CKD is a highly organized process, and prior studies have suggested that patients with CKD have their own specific contributors to the phenotypic change of vascular smooth muscle cells (VSMCs), including uremic toxins, CKD-mineral and bone disease (CKD-MBD), inflammation, and oxidative stress. For the diagnosis and monitoring of VC in CKD, several imaging modalities, including plain radiography, ultrasound, and computed tomography have been utilized. VC in CKD patients has distinct clinical features and implications. CKD patients revealed a more intense and more prevalent calcification on the intimal and medial layers, whereas intimal calcification is predominantly observed in the general population. While a higher VC score is clearly associated with a higher risk of all-cause mortality and cardiovascular events, a greater VC score in CKD patients does not fully reflect the burden of atherosclerosis, because they have more calcification at equal volumes of atheromatous plaques. The primary goal of VC treatment in CKD is the prevention of VC progression, and the main management is to control the biochemical components of CKD-MBD. Cinacalcet and non-calcium-containing phosphate binders are the mainstay of VC prevention in CKD-MBD management. VC in patients with CKD is an ongoing area of research and is expected to advance soon.
Collapse
Affiliation(s)
- Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
17
|
Shen J, Zhao M, Zhang C, Sun X. IL-1β in atherosclerotic vascular calcification: From bench to bedside. Int J Biol Sci 2021; 17:4353-4364. [PMID: 34803503 PMCID: PMC8579452 DOI: 10.7150/ijbs.66537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023] Open
Abstract
Atherosclerotic vascular calcification contributes to increased risk of death in patients with cardiovascular diseases. Assessing the type and severity of inflammation is crucial in the treatment of numerous cardiovascular conditions. IL-1β, a potent proinflammatory cytokine, plays diverse roles in the pathogenesis of atherosclerotic vascular calcification. Several large-scale, population cohort trials have shown that the incidence of cardiovascular events is clinically reduced by the administration of anti-IL-1β therapy. Anti-IL-1β therapy might reduce the incidence of cardiovascular events by affecting atherosclerotic vascular calcification, but the mechanism underlying this effect remains unclear. In this review, we summarize current knowledge on the role of IL-1β in atherosclerotic vascular calcification, and describe the latest results reported in clinical trials evaluating anti-IL-1β therapies for the treatment of cardiovascular diseases. This review will aid in improving current understanding of the pathophysiological roles of IL-1β and mechanisms underlying its activity.
Collapse
Affiliation(s)
- Jialing Shen
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ming Zhao
- Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Laboratory of Nucleic Acids in Medicine for National high-level talents, Southwest Medical University, Luzhou 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xiaolei Sun
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Nucleic Acids in Medicine for National high-level talents, Southwest Medical University, Luzhou 646000, China.,School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom.,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
18
|
Thomas DC, Thomas P, Sivan A, Unnam P, Ajayakumar A, Kumar SS, Pitchumani PK, Fatahzadeh M, Mahmud NEH. Monckeberg's Medial Sclerosis as a Cause for Headache and Facial Pain. Curr Pain Headache Rep 2021; 25:50. [PMID: 34086132 DOI: 10.1007/s11916-021-00965-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Mönckeberg's medial sclerosis (MMS) is a chronic, non-inflammatory degenerative condition affecting primarily the tunica media of muscular arteries resulting in their calcification. The purpose of this comprehensive review is to describe MMS as it appears in the literature, in the context of headache and facial pain. Understanding the etiopathology, the associated conditions, and the differential diagnoses is important in managing MMS. RECENT FINDINGS Management of MMS primarily depends upon identification of its associated conditions and their treatment. Due to the rare incidence and inadequate literature on MMS presenting with headaches, the diagnosis of the pain and the entity itself is challenging. MMS is characterized by associated systemic conditions and absence of inflammatory markers. It can mimic giant cell arteritis (GCA) and other pain entities. An interdisciplinary approach involving appropriate specialties is recommended.
Collapse
Affiliation(s)
- Davis C Thomas
- Center for TMD and Orofacial Pain, Rutgers School of Dental Medicine, Newark, NJ, USA.
| | - Prisly Thomas
- Believers Church Medical College Hospital, Kerala, India
| | | | - Priyanka Unnam
- Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ, USA
| | | | | | | | - Mahnaz Fatahzadeh
- Division of Oral Medicine, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Nida-E-Haque Mahmud
- Professional Program for International Dentists, University of California Los A ngeles School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
19
|
Shimada BK, Pomozi V, Zoll J, Kuo S, Martin L, Le Saux O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int J Mol Sci 2021; 22:ijms22094555. [PMID: 33925341 PMCID: PMC8123679 DOI: 10.3390/ijms22094555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the “PXE gene” and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds.
Collapse
Affiliation(s)
- Briana K Shimada
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Viola Pomozi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| | - Sheree Kuo
- Department of Pediatrics, Kapi'olani Medical Center for Women and Children, University of Hawaii, Honolulu, HI 96826, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Reference Center for Rare Skin Diseases, Angers University Hospital, 49100 Angers, France
- BNMI, CNRS 6214/INSERM 1083, University Bretagne-Loire, 49100 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96817, USA
| |
Collapse
|
20
|
Bilalic A, Ticinovic Kurir T, Kumric M, Borovac JA, Matetic A, Supe-Domic D, Bozic J. Circulating Levels of Dephosphorylated-Uncarboxylated Matrix Gla Protein in Patients with Acute Coronary Syndrome. Molecules 2021; 26:1108. [PMID: 33669806 PMCID: PMC7922740 DOI: 10.3390/molecules26041108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular calcification contributes to the pathogenesis of coronary artery disease while matrix Gla protein (MGP) was recently identified as a potent inhibitor of vascular calcification. MGP fractions, such as dephosphorylated-uncarboxylated MGP (dp-ucMGP), lack post-translational modifications and are less efficient in vascular calcification inhibition. We sought to compare dp-ucMGP levels between patients with acute coronary syndrome (ACS), stratified by ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI) status. Physical examination and clinical data, along with plasma dp-ucMGP levels, were obtained from 90 consecutive ACS patients. We observed that levels of dp-ucMGP were significantly higher in patients with NSTEMI compared to STEMI patients (1063.4 ± 518.6 vs. 742.7 ± 166.6 pmol/L, p < 0.001). NSTEMI status and positive family history of cardiovascular diseases were only independent predictors of the highest tertile of dp-ucMGP levels. Among those with NSTEMI, patients at a high risk of in-hospital mortality (adjudicated by GRACE score) had significantly higher levels of dp-ucMGP compared to non-high-risk patients (1417.8 ± 956.8 vs. 984.6 ± 335.0 pmol/L, p = 0.030). Altogether, our findings suggest that higher dp-ucMGP levels likely reflect higher calcification burden in ACS patients and might aid in the identification of NSTEMI patients at increased risk of in-hospital mortality. Furthermore, observed dp-ucMGP levels might reflect differences in atherosclerotic plaque pathobiology between patients with STEMI and NSTEMI.
Collapse
Affiliation(s)
- Admira Bilalic
- Department of Cardiology, University Hospital of Split, Split 21000, Croatia; (A.B.); (A.M.)
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (T.T.K.); (M.K.); (J.A.B.)
- Endocrinology Clinic, University Hospital of Split, 21000 Split, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (T.T.K.); (M.K.); (J.A.B.)
| | - Josip A. Borovac
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (T.T.K.); (M.K.); (J.A.B.)
- Institute of Emergency Medicine of Split-Dalmatia County (ZHM SDZ), 21000 Split, Croatia
| | - Andrija Matetic
- Department of Cardiology, University Hospital of Split, Split 21000, Croatia; (A.B.); (A.M.)
| | - Daniela Supe-Domic
- Department of Medical Laboratory Diagnostics, University Hospital of Split, 21000 Split, Croatia;
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (T.T.K.); (M.K.); (J.A.B.)
| |
Collapse
|
21
|
Ding Q, Shao C, Rose P, Zhu YZ. Epigenetics and Vascular Senescence-Potential New Therapeutic Targets? Front Pharmacol 2020; 11:535395. [PMID: 33101015 PMCID: PMC7556287 DOI: 10.3389/fphar.2020.535395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Epigenetics is defined as the heritable alterations of gene expression without changes to the coding sequence of DNA. These alterations are mediated by processes including DNA methylation, histone modifications, and non-coding RNAs mechanisms. Vascular aging consists of both structural and functional changes in the vasculature including pathological processes that drive progression such as vascular cell senescence, inflammation, oxidation stress, and calcification. As humans age, these pathological conditions gradually accumulate, driven by epigenetic alterations, and are linked to various aging-related diseases. The development of drugs targeting a spectrum of epigenetic processes therefore offers novel treatment strategies for the targeting of age-related diseases. In our previous studies, we identified HDAC4, JMJD3, Fra-1, and GATA4 as potential pharmacological targets for regulating vascular inflammation, injury, and senescence.
Collapse
Affiliation(s)
- Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.,School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chunhong Shao
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
22
|
Vascular Calcifications are Associated with Increased Mortality in Patients with Acute Mesenteric Ischemia. Ann Vasc Surg 2020; 72:88-97. [PMID: 32866577 DOI: 10.1016/j.avsg.2020.08.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Vascular calcifications have been identified as predictors of mortality in several cardiovascular diseases but have not been investigated in context of acute mesenteric ischemia. The aim of this study was to investigate the impact of vascular calcifications in patients with acute mesenteric ischemia. METHODS Patients admitted for an acute mesenteric ischemia were retrospectively included. The presence of calcifications in the visceral aorta, the celiac trunk, the superior mesenteric artery, and the renal arteries was assessed on computed tomography scan images at the arterial phase. The calcification volumes were measured using the software Aquarius iNtuition Edition®. RESULTS The all-cause mortality was 55 out of 86 patients (63.9%) for a median follow-up of 3.5 days (1-243). The survival rate of patients with calcification in the superior mesenteric artery was significantly lower than that of those without calcification (22% vs. 55.6%, P = 0.019). Patients who died had significantly a higher frequency of calcifications in the superior mesenteric artery, the visceral aorta, the celiac trunk, and the renal arteries. CONCLUSIONS The presence of vascular calcifications in the superior mesenteric artery is associated with increased mortality in patients diagnosed with acute mesenteric ischemia. Further studies are required to identify the mechanisms underlying this association.
Collapse
|
23
|
Balogh E, Tóth A, Méhes G, Trencsényi G, Paragh G, Jeney V. Hypoxia Triggers Osteochondrogenic Differentiation of Vascular Smooth Muscle Cells in an HIF-1 (Hypoxia-Inducible Factor 1)-Dependent and Reactive Oxygen Species-Dependent Manner. Arterioscler Thromb Vasc Biol 2020; 39:1088-1099. [PMID: 31070451 DOI: 10.1161/atvbaha.119.312509] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective- Vascular calcification is associated with high risk of cardiovascular events and mortality. Osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) is the major cellular mechanism underlying vascular calcification. Because tissue hypoxia is a common denominator in vascular calcification, we investigated whether hypoxia per se triggers osteochondrogenic differentiation of VSMCs. Approach and Results- We studied osteochondrogenic differentiation of human aorta VSMCs cultured under normoxic (21% O2) and hypoxic (5% O2) conditions. Hypoxia increased protein expression of HIF (hypoxia-inducible factor)-1α and its target genes GLUT1 (glucose transporter 1) and VEGFA (vascular endothelial growth factor A) and induced mRNA and protein expressions of osteochondrogenic markers, that is, RUNX2 (runt-related transcription factor 2), SOX9 (Sry-related HMG box-9), OCN (osteocalcin) and ALP (alkaline phosphatase), and induced a time-dependent calcification of the extracellular matrix of VSMCs. HIF-1 inhibition by chetomin abrogated the effect of hypoxia on osteochondrogenic markers and abolished extracellular matrix calcification. Hypoxia triggered the production of reactive oxygen species, which was inhibited by chetomin. Scavenging reactive oxygen species by N-acetyl cysteine attenuated hypoxia-mediated upregulation of HIF-1α, RUNX2, and OCN protein expressions and inhibited extracellular matrix calcification, which effect was mimicked by a specific hydrogen peroxide scavenger sodium pyruvate and a mitochondrial reactive oxygen species inhibitor rotenone. Ex vivo culture of mice aorta under hypoxic conditions triggered calcification which was inhibited by chetomin and N-acetyl cysteine. In vivo hypoxia exposure (10% O2) increased RUNX2 mRNA levels in mice lung and the aorta. Conclusions- Hypoxia contributes to vascular calcification through the induction of osteochondrogenic differentiation of VSMCs in an HIF-1-dependent and mitochondria-derived reactive oxygen species-dependent manner.
Collapse
Affiliation(s)
- Enikő Balogh
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| | - Andrea Tóth
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology (G.M.), Faculty of Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Department of Nuclear Medicine (G.T.), Faculty of Medicine, University of Debrecen, Hungary
| | - György Paragh
- Department of Internal Medicine (G.P.), Faculty of Medicine, University of Debrecen, Hungary
| | - Viktória Jeney
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
24
|
Singh AP, Sosa MX, Fang J, Shanmukhappa SK, Hubaud A, Fawcett CH, Molind GJ, Tsai T, Capodieci P, Wetzel K, Sanchez E, Wang G, Coble M, Tang W, Cadena SM, Fishman MC, Glass DJ. αKlotho Regulates Age-Associated Vascular Calcification and Lifespan in Zebrafish. Cell Rep 2019; 28:2767-2776.e5. [DOI: 10.1016/j.celrep.2019.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/02/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022] Open
|
25
|
Bartoli-Leonard F, Wilkinson FL, Langford-Smith AWW, Alexander MY, Weston R. The Interplay of SIRT1 and Wnt Signaling in Vascular Calcification. Front Cardiovasc Med 2018; 5:183. [PMID: 30619890 PMCID: PMC6305318 DOI: 10.3389/fcvm.2018.00183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Vascular calcification is a major health risk and is highly correlated with atherosclerosis, diabetes, and chronic kidney disease. The development of vascular calcification is an active and complex process linked with a multitude of signaling pathways, which regulate promoters and inhibitors of osteogenesis, the balance of which become deregulated in disease conditions. SIRT1, a protein deacetylase, known to be protective in inhibiting oxidative stress and inflammation within the vessel wall, has been shown as a possible key player in modulating the cell-fate determining canonical Wnt signaling pathways. Suppression of SIRT1 has been reported in patients suffering with cardiovascular pathologies, suggesting that the sustained acetylation of osteogenic factors could contribute to their activation and in turn, lead to the progression of calcification. There is clear evidence of the synergy between β-Catenin and elevated Runx2, and with Wnt signaling being β-Catenin dependent, further understanding is needed as to how these molecular pathways converge and interact, in order to provide novel insight into the mechanism by which smooth muscle cells switch to an osteogenic differentiation programme. Therefore, this review will describe the current concepts of pathological soft tissue mineralization, with a focus on the contribution of SIRT1 as a regulator of Wnt signaling and its targets, discussing SIRT1 as a potential target for manipulation and therapy.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Fiona L Wilkinson
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alex W W Langford-Smith
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - M Y Alexander
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ria Weston
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
26
|
Tsai CH, Lin C, Ho YH, Lo MT, Liu LYD, Lin CT, Huang JW, Peng CK, Lin YH. The association between heart rhythm complexity and the severity of abdominal aorta calcification in peritoneal dialysis patients. Sci Rep 2018; 8:15627. [PMID: 30353094 PMCID: PMC6199249 DOI: 10.1038/s41598-018-33789-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
Abdominal aorta calcification (AAC) has been associated with clinical outcomes in peritoneal dialysis (PD) patients. Heart rhythm complexity analysis has been shown to be a promising tool to predict outcomes in patients with cardiovascular disease. In this study, we aimed to analyze the association between heart rhythm complexity and AAC in PD patients. We prospectively analyzed 133 PD patients. Heart rhythm complexity including detrended fluctuation analysis and multiscale entropy was performed. In linear analysis, the patients in the higher AAC group (AAC ≥15%) had a significantly lower standard deviation of normal RR intervals, very low frequency, low frequency, high frequency and low/high frequency ratio. In non-linear analysis, DFAα1, slope 1–5, scale 5 and area 6–20 were significantly lower in the patients with higher AAC. Receiver operating characteristic curve analysis showed that DFAα1 had the greatest discriminatory power to differentiate these two groups. Multivariate logistic regression analysis showed that DFAα1 and HbA1c were significantly associated with higher AAC ratio. Adding DFAα1 significantly improved the discriminatory power of the linear parameters in both net reclassification improvement and integrated discrimination improvement models. In conclusion, DFAα1 is highly associated with AAC and a potential cardiovascular marker in PD patients.
Collapse
Affiliation(s)
- Cheng-Hsuan Tsai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen Lin
- Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, Taiwan
| | - Yi-Heng Ho
- Biomedical Engineering, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Men-Tzung Lo
- Department of Electrical Engineering, National Central University, Chungli, Taiwan
| | - Li-Yu Daisy Liu
- Department of Agronomy, Biometry Division, National Taiwan University, Taipei, Taiwan
| | - Chih-Ting Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Jenq-Wen Huang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chung-Kang Peng
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
27
|
The aging heart. Clin Sci (Lond) 2018; 132:1367-1382. [PMID: 29986877 DOI: 10.1042/cs20171156] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
As the elderly segment of the world population increases, it is critical to understand the changes in cardiac structure and function during the normal aging process. In this review, we outline the key molecular pathways and cellular processes that underlie the phenotypic changes in the heart and vasculature that accompany aging. Reduced autophagy, increased mitochondrial oxidative stress, telomere attrition, altered signaling in insulin-like growth factor, growth differentiation factor 11, and 5'- AMP-activated protein kinase pathways are among the key molecular mechanisms underlying cardiac aging. Aging promotes structural and functional changes in the atria, ventricles, valves, myocardium, pericardium, the cardiac conduction system, and the vasculature. We highlight the factors known to accelerate and attenuate the intrinsic aging of the heart and vessels in addition to potential preventive and therapeutic avenues. A greater understanding of the processes involved in cardiac aging may facilitate our ability to mitigate the escalating burden of CVD in older individuals and promote healthy cardiac aging.
Collapse
|
28
|
Del Campo L, Hamczyk MR, Andrés V, Martínez-González J, Rodríguez C. Mechanisms of vascular aging: What can we learn from Hutchinson-Gilford progeria syndrome? CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 30:120-132. [PMID: 29602596 DOI: 10.1016/j.arteri.2017.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 01/07/2023]
Abstract
Aging is the main risk factor for cardiovascular disease (CVD). The increased prevalence of CVD is partly due to the global increase in life expectancy. In this context, it is essential to identify the mechanisms by which aging induces CVD, with the ultimate aim of reducing its incidence. Both atherosclerosis and heart failure significantly contribute to age-associated CVD morbidity and mortality. Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by the synthesis of progerin, which is noted for accelerated aging and CVD. This mutant form of prelamin A induces generalised atherosclerosis, vascular calcification, and cardiac electrophysiological abnormalities, leading to premature aging and death, mainly due to myocardial infarction and stroke. This review discusses the main vascular structural and functional abnormalities during physiological and premature aging, as well as the mechanisms involved in the exacerbated CVD and accelerated aging induced by the accumulation of progerin and prelamin A. Both proteins are expressed in non-HGPS individuals, and physiological aging shares many features of progeria. Research into HGPS could therefore shed light on novel mechanisms involved in the physiological aging of the cardiovascular system.
Collapse
Affiliation(s)
- Lara Del Campo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Magda R Hamczyk
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España.
| | - José Martínez-González
- CIBER de Enfermedades Cardiovasculares (CIBERCV), España; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), IIB-Sant Pau, Barcelona, España
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), España; Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, IIB-Sant Pau, Barcelona, España.
| | | |
Collapse
|
29
|
Hamczyk MR, del Campo L, Andrés V. Aging in the Cardiovascular System: Lessons from Hutchinson-Gilford Progeria Syndrome. Annu Rev Physiol 2017; 80:27-48. [PMID: 28934587 DOI: 10.1146/annurev-physiol-021317-121454] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging, the main risk factor for cardiovascular disease (CVD), is becoming progressively more prevalent in our societies. A better understanding of how aging promotes CVD is therefore urgently needed to develop new strategies to reduce disease burden. Atherosclerosis and heart failure contribute significantly to age-associated CVD-related morbimortality. CVD and aging are both accelerated in patients suffering from Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder caused by the prelamin A mutant progerin. Progerin causes extensive atherosclerosis and cardiac electrophysiological alterations that invariably lead to premature aging and death. This review summarizes the main structural and functional alterations to the cardiovascular system during physiological and premature aging and discusses the mechanisms underlying exaggerated CVD and aging induced by prelamin A and progerin. Because both proteins are expressed in normally aging non-HGPS individuals, and most hallmarks of normal aging occur in progeria, research on HGPS can identify mechanisms underlying physiological aging.
Collapse
Affiliation(s)
- Magda R Hamczyk
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; .,CIBER de Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
| | - Lara del Campo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; .,CIBER de Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; .,CIBER de Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
| |
Collapse
|
30
|
Atchison L, Zhang H, Cao K, Truskey GA. A Tissue Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome Using Human iPSC-derived Smooth Muscle Cells. Sci Rep 2017; 7:8168. [PMID: 28811655 PMCID: PMC5557922 DOI: 10.1038/s41598-017-08632-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/12/2017] [Indexed: 01/30/2023] Open
Abstract
Hutchison-Gilford Progeria Syndrome (HGPS) is a rare, accelerated aging disorder caused by nuclear accumulation of progerin, an altered form of the Lamin A gene. The primary cause of death is cardiovascular disease at about 14 years. Loss and dysfunction of smooth muscle cells (SMCs) in the vasculature may cause defects associated with HGPS. Due to limitations of 2D cell culture and mouse models, there is a need to develop improved models to discover novel therapeutics. To address this need, we produced a functional three-dimensional model of HGPS that replicates an arteriole-scale tissue engineered blood vessel (TEBV) using induced pluripotent stem cell (iPSC)-derived SMCs from an HGPS patient. To isolate the effect of the HGPS iSMCs, the endothelial layer consisted of human cord blood-derived endothelial progenitor cells (hCB-EPCs) from a separate, healthy donor. TEBVs fabricated from HGPS iSMCs and hCB-EPCs show reduced vasoactivity, increased medial wall thickness, increased calcification and apoptosis relative to TEBVs fabricated from normal iSMCs or primary MSCs. Additionally, treatment of HGPS TEBVs with the proposed therapeutic Everolimus, increases HGPS TEBV vasoactivity and increases iSMC differentiation in the TEBVs. These results show the ability of this iPSC-derived TEBV to reproduce key features of HGPS and respond to drugs.
Collapse
Affiliation(s)
- Leigh Atchison
- Department of Biomedical Engineering at Duke University, Durham, NC, 27708, United States
| | - Haoyue Zhang
- Department of Cell Biology and Molecular Genetics at University of Maryland, College Park, MD, 20742, United States
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics at University of Maryland, College Park, MD, 20742, United States
| | - George A Truskey
- Department of Biomedical Engineering at Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
31
|
Activation of CD137 signaling accelerates vascular calcification in vivo and vitro. Int J Cardiol 2017; 230:198-203. [DOI: 10.1016/j.ijcard.2016.12.174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/18/2016] [Accepted: 12/25/2016] [Indexed: 01/08/2023]
|
32
|
Zoccali C, London G. Con: vascular calcification is a surrogate marker, but not the cause of ongoing vascular disease, and it is not a treatment target in chronic kidney disease. Nephrol Dial Transplant 2016; 30:352-7. [PMID: 25712936 DOI: 10.1093/ndt/gfv021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this narrative review, we discuss the dynamics and pathobiology of calcium accumulation in the arterial system and then appraise the validity of vascular calcification as a surrogate end point in cardiovascular (CV) diseases and in chronic kidney disease (CKD) in particular. Calcification follows inflammation in human atherosclerosis and therefore most likely represents a secondary phenomenon. This phenomenon is proportional to the severity of antecedent inflammation and is perhaps a healing process. As such, vascular calcification is a disease marker and a prognostic factor but not a relevant aetiological factor in arterial disease in CKD patients. Therefore, targeting vascular calcifications per se is unlikely to improve clinical outcomes. To maximize health benefits, the approach to vascular disease in CKD patients should focus on the prevention of arterial lesions by correcting the several, traditional and non-traditional, pro-atherogenic risk factors responsible for arterial injury, hyperphoshataemia and CKD-mineral and bone disorder disorders included. Interventions aiming at modifying late arterial lesions like calcifications are unlikely to produce tangible health benefits in these patients.
Collapse
Affiliation(s)
- Carmine Zoccali
- CNR-IFC (National Research Council of Italy and Pisa Institute of Clinical Physiology, Reggio Cal Unit), Reggio Calabria, Italy
| | - Gerard London
- Department of Pharmacology, Georges Pompidou European Hospital, National Institute of Health and Medical Research U970, Paris, France
| |
Collapse
|
33
|
Zhang H, Wang LJ, Si DL, Wang C, Yang JC, Jiang P, Du C, Wang JJ. Correlation between osteocalcin-positive endothelial progenitor cells and spotty calcification in patients with coronary artery disease. Clin Exp Pharmacol Physiol 2016; 42:734-9. [PMID: 25644945 DOI: 10.1111/1440-1681.12366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/12/2022]
Abstract
Immature endothelial progenitor cells (EPC) carrying osteocalcin (OCN) might mediate vascUlar calcification in coronary artery disease (CAD). Spotty calcification within atherosclerotic plaque is associated with cardiovascular events. The aim of the present study was to assess the correlation between immature EPC levels and spotty calcification in CAD patients. In the 224 CAD patients studied, 76 had acute myocardial infarction (AMI), 102 had unstable angina pectoris (UAP), and 46 had stable angina pectoris (SAP). The levels of OCN-positive (OCN+) EPC were analysed by flow cytometry. The status of spotty calcification was determined by cardiac computed tomography angiography. OCN+ EPC and calcium deposits were significantly increased in acute coronary artery syndrome (ACS) when compared with those in SAP patients. Positive correlation was also revealed between the number of OCN+ EPC and the frequency of spotty calcification and levels of serum high-sensitivity C-reactive protein (hs-CRP) and serum alkaline phosphatase in AMI and UAP patients. In summary, the number of OCN+ EPC is positively related to the frequency of spotty calcification in ACS patients. Serum hs-CRP and serum alkaline levels are thought to contribute to the elevation of OCN+ EPC.
Collapse
Affiliation(s)
- He Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Li-jun Wang
- Department of Cardiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Dong-lei Si
- Department of CT and MR, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Jing-ci Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ping Jiang
- Department of Cardiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Chao Du
- Department of Cardiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Jian-jun Wang
- Department of Cardiology, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| |
Collapse
|
34
|
Huveneers S, Daemen MJAP, Hordijk PL. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ Res 2015; 116:895-908. [PMID: 25722443 DOI: 10.1161/circresaha.116.305720] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular stiffness is a mechanical property of the vessel wall that affects blood pressure, permeability, and inflammation. As a result, vascular stiffness is a key driver of (chronic) human disorders, including pulmonary arterial hypertension, kidney disease, and atherosclerosis. Responses of the endothelium to stiffening involve integration of mechanical cues from various sources, including the extracellular matrix, smooth muscle cells, and the forces that derive from shear stress of blood. This response in turn affects endothelial cell contractility, which is an important property that regulates endothelial stiffness, permeability, and leukocyte-vessel wall interactions. Moreover, endothelial stiffening reduces nitric oxide production, which promotes smooth muscle cell contraction and vasoconstriction. In fact, vessel wall stiffening, and microcirculatory endothelial dysfunction, precedes hypertension and thus underlies the development of vascular disease. Here, we review the cross talk among vessel wall stiffening, endothelial contractility, and vascular disease, which is controlled by Rho-driven actomyosin contractility and cellular mechanotransduction. In addition to discussing the various inputs and relevant molecular events in the endothelium, we address which actomyosin-regulated changes at cell adhesion complexes are genetically associated with human cardiovascular disease. Finally, we discuss recent findings that broaden therapeutic options for targeting this important mechanical signaling pathway in vascular pathogenesis.
Collapse
Affiliation(s)
- Stephan Huveneers
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Mat J A P Daemen
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter L Hordijk
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Vascular biology of ageing-Implications in hypertension. J Mol Cell Cardiol 2015; 83:112-21. [PMID: 25896391 PMCID: PMC4534766 DOI: 10.1016/j.yjmcc.2015.04.011] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 01/11/2023]
Abstract
Ageing is associated with functional, structural and mechanical changes in arteries that closely resemble the vascular alterations in hypertension. Characteristic features of large and small arteries that occur with ageing and during the development of hypertension include endothelial dysfunction, vascular remodelling, inflammation, calcification and increased stiffness. Arterial changes in young hypertensive patients mimic those in old normotensive individuals. Hypertension accelerates and augments age-related vascular remodelling and dysfunction, and ageing may impact on the severity of vascular damage in hypertension, indicating close interactions between biological ageing and blood pressure elevation. Molecular and cellular mechanisms underlying vascular alterations in ageing and hypertension are common and include aberrant signal transduction, oxidative stress and activation of pro-inflammatory and pro-fibrotic transcription factors. Strategies to suppress age-associated vascular changes could ameliorate vascular damage associated with hypertension. An overview on the vascular biology of ageing and hypertension is presented and novel molecular mechanisms contributing to these processes are discussed. The complex interaction between biological ageing and blood pressure elevation on the vasculature is highlighted. This article is part of a Special Issue entitled: CV Ageing.
Collapse
|
36
|
Wang M, Monticone RE, Lakatta EG. Proinflammation of aging central arteries: a mini-review. Gerontology 2014; 60:519-29. [PMID: 25171100 DOI: 10.1159/000362548] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/31/2014] [Indexed: 12/16/2022] Open
Abstract
Arterial aging is a cornerstone of organismal aging. The central arterial wall structurally and functionally remodels under chronic proinflammatory stress over a lifetime. The low-grade proinflammation that accompanies advancing age causes arterial wall thickening and stiffening. These structural and functional alterations are consequences of adverse molecular and cellular events, e.g. an increase in local angiotensin II signaling that induces an inflammatory phenotypic shift of endothelial and smooth muscle cells. Thus, interventions to restrict proinflammatory signaling are a rational approach to delay or prevent age-associated adverse arterial remodeling.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, Md., USA
| | | | | |
Collapse
|
37
|
Paloian NJ, Giachelli CM. A current understanding of vascular calcification in CKD. Am J Physiol Renal Physiol 2014; 307:F891-900. [PMID: 25143458 DOI: 10.1152/ajprenal.00163.2014] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) have significant cardiovascular morbidity and mortality that is in part due to the development of vascular calcification. Vascular calcification is an active, highly regulated process that shares many similarities with normal bone formation. New discoveries related to extracellular vesicles, microRNAs, and calciprotein particles continue to reveal the mechanisms that are involved in the initiation and progression of vascular calcification in CKD. Further innovations in these fields are critical for the development of biomarkers and therapeutic options for patients with CKD and ESRD.
Collapse
Affiliation(s)
- Neil J Paloian
- Division of Nephrology, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; and
| | | |
Collapse
|
38
|
Erbel R, Lehmann N, Churzidse S, Rauwolf M, Mahabadi AA, Möhlenkamp S, Moebus S, Bauer M, Kälsch H, Budde T, Montag M, Schmermund A, Stang A, Führer-Sakel D, Weimar C, Roggenbuck U, Dragano N, Jöckel KH. Progression of coronary artery calcification seems to be inevitable, but predictable - results of the Heinz Nixdorf Recall (HNR) study. Eur Heart J 2014; 35:2960-71. [PMID: 25062951 PMCID: PMC4223611 DOI: 10.1093/eurheartj/ehu288] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim Coronary artery calcification (CAC), as a sign of atherosclerosis, can be detected and progression quantified using computed tomography (CT). We develop a tool for predicting CAC progression. Methods and results In 3481 participants (45–74 years, 53.1% women) CAC percentiles at baseline (CACb) and after five years (CAC5y) were evaluated, demonstrating progression along gender-specific percentiles, which showed exponentially shaped age-dependence. Using quantile regression on the log-scale (log(CACb+1)) we developed a tool to individually predict CAC5y, and compared to observed CAC5y. The difference between observed and predicted CAC5y (log-scale, mean±SD) was 0.08±1.11 and 0.06±1.29 in men and women. Agreement reached a kappa-value of 0.746 (95% confidence interval: 0.732–0.760) and concordance correlation (log-scale) of 0.886 (0.879–0.893). Explained variance of observed by predicted log(CAC5y+1) was 80.1% and 72.0% in men and women, and 81.0 and 73.6% including baseline risk factors. Evaluating the tool in 1940 individuals with CACb>0 and CACb<400 at baseline, of whom 242 (12.5%) developed CAC5y>400, yielded a sensitivity of 59.5%, specificity 96.1%, (+) and (−) predictive values of 68.3% and 94.3%. A pre-defined acceptance range around predicted CAC5y contained 68.1% of observed CAC5y; only 20% were expected by chance. Age, blood pressure, lipid-lowering medication, diabetes, and smoking contributed to progression above the acceptance range in men and, excepting age, in women. Conclusion CAC nearly inevitably progresses with limited influence of cardiovascular risk factors. This allowed the development of a mathematical tool for prediction of individual CAC progression, enabling anticipation of the age when CAC thresholds of high risk are reached.
Collapse
Affiliation(s)
- Raimund Erbel
- University Clinic of Cardiology, West-German Heart Center Essen and
| | - Nils Lehmann
- Institute for Medical Informatics, Biometry and Epidemiology, University Duisburg-Essen, Hufelandstrasse 55, Essen D-45122, Germany
| | - Sofia Churzidse
- University Clinic of Cardiology, West-German Heart Center Essen and
| | - Michael Rauwolf
- University Clinic of Cardiology, West-German Heart Center Essen and
| | - Amir A Mahabadi
- University Clinic of Cardiology, West-German Heart Center Essen and
| | - Stefan Möhlenkamp
- University Clinic of Cardiology, West-German Heart Center Essen and Medical Clinic II, Bethanien Hospital, Moers, Germany
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University Duisburg-Essen, Hufelandstrasse 55, Essen D-45122, Germany
| | - Marcus Bauer
- University Clinic of Cardiology, West-German Heart Center Essen and
| | - Hagen Kälsch
- University Clinic of Cardiology, West-German Heart Center Essen and
| | | | | | - Axel Schmermund
- Cardioangiological Center Bethanien, Frankfurt am Main, Germany
| | - Andreas Stang
- Institute of Clinical Epidemiology, Medical Faculty University Halle-Wittenberg, Wittenberg, Germany Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Dagmar Führer-Sakel
- Institute of Clinical Chemistry and Laboratory Medicine, University Duisburg-Essen, Essen, Germany
| | - Christian Weimar
- University Clinic of Neurology, University Duisburg-Essen, Essen, Germany
| | - Ulla Roggenbuck
- Institute for Medical Informatics, Biometry and Epidemiology, University Duisburg-Essen, Hufelandstrasse 55, Essen D-45122, Germany
| | - Nico Dragano
- Institute of Medical Sociology Medical Faculty University of Düsseldorf, Düsseldorf, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Duisburg-Essen, Hufelandstrasse 55, Essen D-45122, Germany
| | | |
Collapse
|
39
|
Relationship between circulating serum osteoprotegerin and total receptor activator of nuclear κ-B ligand levels, triglycerides, and coronary calcification in postmenopausal women. Menopause 2014; 21:702-10. [DOI: 10.1097/gme.0000000000000127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T, St Hilaire C, Shanahan C. Medial vascular calcification revisited: review and perspectives. Eur Heart J 2014; 35:1515-25. [PMID: 24740885 PMCID: PMC4072893 DOI: 10.1093/eurheartj/ehu163] [Citation(s) in RCA: 533] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 03/06/2014] [Accepted: 03/21/2014] [Indexed: 12/17/2022] Open
Abstract
Vascular calcifications (VCs) are actively regulated biological processes associated with crystallization of hydroxyapatite in the extracellular matrix and in cells of the media (VCm) or intima (VCi) of the arterial wall. Both patterns of VC often coincide and occur in patients with type II diabetes, chronic kidney disease, and other less frequent disorders; VCs are also typical in senile degeneration. In this article, we review the current state of knowledge about the pathology, molecular biology, and nosology of VCm, expand on potential mechanisms responsible for poor prognosis, and expose some of the directions for future research in this area.
Collapse
Affiliation(s)
- Peter Lanzer
- Division of Cardiovascular Disease, Department of Internal Medicine, Health Care Center Bitterfeld, Bitterfeld-Wolfen gGmbH, Friedrich-Ludwig-Jahn-Straße 2, D-06749 Bitterfeld-Wolfen, Germany
| | - Manfred Boehm
- Center for Molecular Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Victor Sorribas
- Laboratory of Molecular Toxicology, University of Zaragoza, Zaragoza, Spain
| | - Marc Thiriet
- National Institute for Research in Computer Science and Control, Paris, France
| | | | - Thomas Zeller
- University Heart Center Freiburg, Bad Krozingen, Germany
| | - Cynthia St Hilaire
- Center for Molecular Medicine, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
41
|
Chowdhary VR, Crowson CS, Bhagra AS, Warrington KJ, Vrtiska TJ. CT angiographic imaging characteristics of thoracic idiopathic aortitis. J Cardiovasc Comput Tomogr 2013; 7:297-302. [PMID: 24268116 DOI: 10.1016/j.jcct.2013.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/29/2013] [Accepted: 08/16/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Idiopathic aortitis (IA) is characterized by giant cell or lymphoplasmacytic inflammation of aorta without a secondary cause. OBJECTIVE We undertook a retrospective case-control study to identify characteristic CT angiographic findings in these patients and to correlate them with known atherosclerotic risk factors. METHODS IA cases and controls with noninflammatory aneurysm (control group I) and patients with secondary aortitis (control group II) were identified with a pathology database. Preoperative CT angiographic images of thoracic aorta were reviewed. Diameter of thoracic aorta, wall thickness, and calcification were measured at various sites. Traditional atherosclerotic risk factors were identified from case records and included hypertension, hyperlipidemia, diabetes mellitus, and smoking. RESULTS Twenty-two idiopathic aortitis cases were compared with 18 patients in control group I and 16 patients in control group II. No differences were found in prevalence of hypertension and diabetes, but hyperlipidemia was more prevalent in the control group I than in cases (72% vs 36%; P = .03). Current smoking was more prevalent in cases (24%) than for patients in control group I (6%) and group II (19%) but not statistically significant (P = .18 and .69, respectively). Thoracic aortic diameters at various points were significantly larger in cases than for patients in control group I. Calcification was more frequent in cases than for patients in control group II. No differences in wall thickness were found. No meaningful correlation was observed between atherosclerotic risk factors and aortic diameter and calcification scores. CONCLUSIONS Patients with IA have significantly larger and more diffuse dilatation of the thoracic aorta than patients with noninflammatory aneurysms.
Collapse
Affiliation(s)
- Vaidehi R Chowdhary
- Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | |
Collapse
|