1
|
Asatryan B, Murray B, Tadros R, Rieder M, Shah RA, Sharaf Dabbagh G, Landstrom AP, Dobner S, Munroe PB, Haggerty CM, Medeiros-Domingo A, Owens AT, Kullo IJ, Semsarian C, Reichlin T, Barth AS, Roden DM, James CA, Ware JS, Chahal CAA. Promise and Peril of a Genotype-First Approach to Mendelian Cardiovascular Disease. J Am Heart Assoc 2024; 13:e033557. [PMID: 39424414 DOI: 10.1161/jaha.123.033557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Precision medicine, which among other aspects includes an individual's genomic data in diagnosis and management, has become the standard-of-care for Mendelian cardiovascular disease (CVD). However, early identification and management of asymptomatic patients with potentially lethal and manageable Mendelian CVD through screening, which is the promise of precision health, remains an unsolved challenge. The reduced costs of genomic sequencing have enabled the creation of biobanks containing in-depth genetic and health information, which have facilitated the understanding of genetic variation, penetrance, and expressivity, moving us closer to the genotype-first screening of asymptomatic individuals for Mendelian CVD. This approach could transform health care by diagnostic refinement and facilitating prevention or therapeutic interventions. Yet, potential benefits must be weighed against the potential risks, which include evolving variant pathogenicity assertion or identification of variants with low disease penetrance; costly, stressful, and inappropriate diagnostic evaluations; negative psychological impact; disqualification for employment or of competitive sports; and denial of insurance. Furthermore, the natural history of Mendelian CVD is often unpredictable, making identification of those who will benefit from preventive measures a priority. Currently, there is insufficient evidence that population-based genetic screening for Mendelian CVD can reduce adverse outcomes at a reasonable cost to an extent that outweighs the harms of true-positive and false-positive results. Besides technical, clinical, and financial burdens, ethical and legal aspects pose unprecedented challenges. This review highlights key developments in the field of genotype-first approaches to Mendelian CVD and summarizes challenges with potential solutions that can pave the way for implementing this approach for clinical care.
Collapse
Affiliation(s)
- Babken Asatryan
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Cardiology Inselspital, Bern University Hospital, University of Bern Bern Switzerland
| | - Brittney Murray
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Rafik Tadros
- Cardiovascular Genetics Centre Montréal Heart Institute Montréal Québec Canada
| | - Marina Rieder
- Department of Cardiology Inselspital, Bern University Hospital, University of Bern Bern Switzerland
| | - Ravi A Shah
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust London United Kingdom
| | - Ghaith Sharaf Dabbagh
- Center for Inherited Cardiovascular Diseases WellSpan Health Lancaster PA USA
- Division of Cardiovascular Medicine University of Michigan Ann Arbor MI USA
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics, and Department of Cell Biology Duke University School of Medicine Durham NC USA
| | - Stephan Dobner
- Department of Cardiology Inselspital, Bern University Hospital, University of Bern Bern Switzerland
| | - Patricia B Munroe
- NIHR Barts Biomedical Research Centre William Harvey Research Institute, Queen Mary University of London London United Kingdom
| | - Christopher M Haggerty
- Department of Translational Data Science and Informatics Heart Institute, Geisinger Danville PA USA
| | | | - Anjali T Owens
- Center for Inherited Cardiovascular Disease, Cardiovascular Division University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN USA
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney Sydney New South Wales Australia
- Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Tobias Reichlin
- Department of Cardiology Inselspital, Bern University Hospital, University of Bern Bern Switzerland
| | - Andreas S Barth
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - Dan M Roden
- Department of Medicine, Pharmacology, and Biomedical Informatics Vanderbilt University Medical Center Nashville TN USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| | - James S Ware
- Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA
- National Heart and Lung Institute & MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London London United Kingdom
- Royal Brompton & Harefield Hospitals Guy's and St. Thomas' NHS Foundation Trust London United Kingdom
| | - C Anwar A Chahal
- Center for Inherited Cardiovascular Diseases WellSpan Health Lancaster PA USA
- NIHR Barts Biomedical Research Centre William Harvey Research Institute, Queen Mary University of London London United Kingdom
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN USA
- Barts Heart Centre St Bartholomew's Hospital, Barts Health NHS Trust London West Smithfield United Kingdom
| |
Collapse
|
2
|
Monaghan RM, Naylor RW, Flatman D, Kasher PR, Williams SG, Keavney BD. FLT4 causes developmental disorders of the cardiovascular and lymphovascular systems via pleiotropic molecular mechanisms. Cardiovasc Res 2024; 120:1164-1176. [PMID: 38713105 PMCID: PMC11368125 DOI: 10.1093/cvr/cvae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
AIMS Rare, deleterious genetic variants in FLT4 are associated with Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease. The distinct genetic variants in FLT4 are also an established cause of Milroy disease, the most prevalent form of primary hereditary lymphoedema. The phenotypic features of these two conditions are non-overlapping, implying pleiotropic cellular mechanisms during development. METHODS AND RESULTS In this study, we show that FLT4 variants identified in patients with TOF, when expressed in primary human endothelial cells, cause aggregation of FLT4 protein in the perinuclear endoplasmic reticulum, activating proteostatic and metabolic signalling, whereas lymphoedema-associated FLT4 variants and wild-type (WT) FLT4 do not. FLT4 TOF variants display characteristic gene expression profiles in key developmental signalling pathways, revealing a role for FLT4 in cardiogenesis distinct from its role in lymphatic development. Inhibition of proteostatic signalling abrogates these effects, identifying potential avenues for therapeutic intervention. Depletion of flt4 in zebrafish caused cardiac phenotypes of reduced heart size and altered heart looping. These phenotypes were rescued with coinjection of WT human FLT4 mRNA, but incompletely or not at all by mRNA harbouring FLT4 TOF variants. CONCLUSION Taken together, we identify a pathogenic mechanism for FLT4 variants predisposing to TOF that is distinct from the known dominant negative mechanism of Milroy-causative variants. FLT4 variants give rise to conditions of the two circulatory subdivisions of the vascular system via distinct developmental pleiotropic molecular mechanisms.
Collapse
Affiliation(s)
- Richard M Monaghan
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
| | - Richard W Naylor
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PN, UK
| | - Daisy Flatman
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Simon G Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Oxford Road, M13 9WL, UK
| |
Collapse
|
3
|
Lazareva TE, Barbitoff YA, Nasykhova YA, Glotov AS. Major Causes of Conflicting Interpretations of Variant Pathogenicity in Rare Disease: A Systematic Analysis. J Pers Med 2024; 14:864. [PMID: 39202055 PMCID: PMC11355203 DOI: 10.3390/jpm14080864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
The identification of the genetic causes of inherited disorders from next-generation sequencing (NGS) data remains a complicated process, in particular due to challenges in interpretation of the vast amount of generated data and hundreds of candidate variants identified. Inconsistencies in variant classification, where genetic centers classify the same variant differently, can hinder accurate diagnoses for rare diseases. Publicly available databases that collect data on human genetic variations and their association with diseases provide ample opportunities to discover conflicts in variant interpretation worldwide. In this study, we explored patterns of variant classification discrepancies using data from ClinVar, a public archive of variant interpretations. We found that 5.7% of variants have conflicting interpretations (COIs) reported, and the vast majority of interpretation conflicts arise for variants of uncertain significance (VUS). As many as 78% of clinically relevant genes harbor variants with COIs, and genes with high COI rates tended to have more exons and longer transcripts, with a greater proportion of genes linked to several distinct conditions. The enrichment analysis of COI-enriched genes revealed that the products of these genes are involved in cardiac disorders, muscle development, and function. To improve diagnoses, we believe that specific variant interpretation rules could be developed for such genes. Additionally, our findings underscore the need for the publication of variant pathogenicity evidence and the importance of considering every variant as VUS unless proven otherwise.
Collapse
Affiliation(s)
- Tatyana E. Lazareva
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
- Bioinformatics Institute, Kantemirovskaya St. 2A, 197342 St. Petersburg, Russia
| | - Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Aristizabal AM, Guzmán-Serrano CA, Lizcano MI, Mosquera W, Lores J, Pachajoa H, Cely C. FLNC Associated Restrictive Cardiomyopathy and Hypertrabeculation, a Rare Association. Arq Bras Cardiol 2024; 121:e20230790. [PMID: 38922273 PMCID: PMC11216340 DOI: 10.36660/abc.20230790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 02/15/2024] [Indexed: 06/27/2024] Open
Abstract
A six-year-old girl with restrictive cardiomyopathy and hypertrabeculation, due to the early onset of her disease, whole exome sequencing was conducted, revealing the presence of a novel heterozygous missense variant in the FLNC gene. The same gene variant was also identified in her father, who, at an adult age, displayed normal imaging results and was symptom-free. This variant has not been reported in population databases or current medical literature and is classified as likely pathogenic.
Collapse
Affiliation(s)
- Ana M. Aristizabal
- Universidad IcesiFacultad de Ciencias de la SaludCaliColômbiaFacultad de Ciencias de la Salud, Universidad Icesi, Cali – Colômbia
- Fundación Valle del LiliDepartamento de Cardiología PediátricaCaliColômbiaDepartamento de Cardiología Pediátrica - Fundación Valle del Lili, Cali – Colômbia
| | - Carlos Alberto Guzmán-Serrano
- Fundación Valle del LiliCentro de Investigaciones ClínicasCaliColômbiaCentro de Investigaciones Clínicas - Fundación Valle del Lili, Cali – Colômbia
| | - María Isabel Lizcano
- Hospital Universitario del ValleDepartamento de Cardiología PediátricaCaliColômbiaDepartamento de Cardiología Pediátrica - Hospital Universitario del Valle, Cali – Colômbia
| | - Walter Mosquera
- Fundación Valle del LiliDepartamento de Cardiología PediátricaCaliColômbiaDepartamento de Cardiología Pediátrica - Fundación Valle del Lili, Cali – Colômbia
| | - Juliana Lores
- Fundación Valle del LiliCentro de Investigaciones ClínicasCaliColômbiaCentro de Investigaciones Clínicas - Fundación Valle del Lili, Cali – Colômbia
- Universidad IcesiCentro de Investigaciones en Anomalías Congénitas y Enfermedades RarasCaliColômbiaCentro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER) - Universidad Icesi, Cali – Colômbia
- Pontificia Universidad Javeriana CaliFacultad de Ciencias de la SaludDepartamento de Ciencias BásicasCaliColômbiaDepartamento de Ciencias Básicas - Facultad de Ciencias de la Salud - Pontificia Universidad Javeriana Cali, Cali – Colômbia
| | - Harry Pachajoa
- Fundación Valle del LiliCentro de Investigaciones ClínicasCaliColômbiaCentro de Investigaciones Clínicas - Fundación Valle del Lili, Cali – Colômbia
- Universidad IcesiCentro de Investigaciones en Anomalías Congénitas y Enfermedades RarasCaliColômbiaCentro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER) - Universidad Icesi, Cali – Colômbia
- Fundación Valle del LiliCaliColômbiaServicio de Genética - Fundación Valle del Lili, Cali – Colômbia
| | - Cesar Cely
- Fundación Valle del LiliDepartamento de Cardiología PediátricaCaliColômbiaDepartamento de Cardiología Pediátrica - Fundación Valle del Lili, Cali – Colômbia
| |
Collapse
|
5
|
Paratz ED, Mundisugih J, Rowe SJ, Kizana E, Semsarian C. Gene Therapy in Cardiology: Is a Cure for Hypertrophic Cardiomyopathy on the Horizon? Can J Cardiol 2024; 40:777-788. [PMID: 38013066 DOI: 10.1016/j.cjca.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy worldwide, affecting approximately 1 in 500 individuals. Current therapeutic interventions include lifestyle optimisation, medications, septal reduction therapies, and, rarely, cardiac transplantation. Advances in our understanding of disease-causing genetic variants in HCM and their associated molecular mechanisms have led to the potential for targeted therapeutics and implementation of precision and personalised medicine. Results from preclinical research are promising and raise the question of whether cure of some subtypes of HCM may be possible in the future. This review provides an overview of current genetic therapy platforms, including 1) genome editing, 2) gene replacement, 3) allelic-specific silencing, and 4) signalling pathway modulation. The current applicability of each of these platforms within the paradigm of HCM is examined, with updates on current and emerging trials in each domain. Barriers and limitations within the current landscape are also highlighted. Despite recent advances, translation of genetic therapy for HCM to clinical practice is still in early development. In realising the promises of genetic HCM therapies, ethical and equitable access to safe gene therapy must be prioritised.
Collapse
Affiliation(s)
- Elizabeth D Paratz
- Baker Heart and Diabetes Institute, Prahran, Victoria, Australia; St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, Melbourne University, Parkville, Victoria, Australia.
| | - Juan Mundisugih
- Centre for Heart Research, Westmead Institute for Medical Research, Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephanie J Rowe
- Baker Heart and Diabetes Institute, Prahran, Victoria, Australia; St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, Melbourne University, Parkville, Victoria, Australia
| | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia
| | - Christopher Semsarian
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
6
|
Gutiérrez LK, Moreno-Manuel AI, Jalife J. Kir2.1-Na V1.5 channelosome and its role in arrhythmias in inheritable cardiac diseases. Heart Rhythm 2024; 21:630-646. [PMID: 38244712 DOI: 10.1016/j.hrthm.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Sudden cardiac death in children and young adults is a relatively rare but tragic event whose pathophysiology is unknown at the molecular level. Evidence indicates that the main cardiac sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) physically interact and form macromolecular complexes (channelosomes) with common partners, including adapter, scaffolding, and regulatory proteins that help them traffic together to their eventual membrane microdomains. Most important, dysfunction of either or both ion channels has direct links to hereditary human diseases. For example, certain mutations in the KCNJ2 gene encoding the Kir2.1 protein result in Andersen-Tawil syndrome type 1 and alter both inward rectifier potassium and sodium inward currents. Similarly, trafficking-deficient mutations in the gene encoding the NaV1.5 protein (SCN5A) result in Brugada syndrome and may also disturb both inward rectifier potassium and sodium inward currents. Moreover, gain-of-function mutations in KCNJ2 result in short QT syndrome type 3, which is extremely rare but highly arrhythmogenic, and can modify Kir2.1-NaV1.5 interactions in a mutation-specific way, further highlighting the relevance of channelosomes in ion channel diseases. By expressing mutant proteins that interrupt or modify Kir2.1 or NaV1.5 function in animal models and patient-specific pluripotent stem cell-derived cardiomyocytes, investigators are defining for the first time the mechanistic framework of how mutation-induced dysregulation of the Kir2.1-NaV1.5 channelosome affects cardiac excitability, resulting in arrhythmias and sudden death in different cardiac diseases.
Collapse
Affiliation(s)
- Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
7
|
Voinescu OR, Ionac A, Sosdean R, Ionac I, Ana LS, Kundnani NR, Morariu S, Puiu M, Chirita-Emandi A. Genotype-Phenotype Insights of Inherited Cardiomyopathies-A Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:543. [PMID: 38674189 PMCID: PMC11052121 DOI: 10.3390/medicina60040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
Background: Cardiomyopathies (CMs) represent a heterogeneous group of primary myocardial diseases characterized by structural and functional abnormalities. They represent one of the leading causes of cardiac transplantations and cardiac death in young individuals. Clinically they vary from asymptomatic to symptomatic heart failure, with a high risk of sudden cardiac death due to malignant arrhythmias. With the increasing availability of genetic testing, a significant number of affected people are found to have an underlying genetic etiology. However, the awareness of the benefits of incorporating genetic test results into the care of these patients is relatively low. Aim: The focus of this review is to summarize the current basis of genetic CMs, including the most encountered genes associated with the main types of cardiomyopathies: hypertrophic, dilated, restrictive arrhythmogenic, and non-compaction. Materials and Methods: For this narrative review, we performed a search of multiple electronic databases, to select and evaluate relevant manuscripts. Results: Advances in genetic diagnosis led to better diagnosis precision and prognosis prediction, especially with regard to the risk of developing arrhythmias in certain subtypes of cardiomyopathies. Conclusions: Implementing the genomic information to benefit future patient care, better risk stratification and management, promises a better future for genotype-based treatment.
Collapse
Affiliation(s)
- Oana Raluca Voinescu
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adina Ionac
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Institute for Cardiovascular Diseases, Gheorghe Adam Street 13A, 300310 Timisoara, Romania
| | - Raluca Sosdean
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Institute for Cardiovascular Diseases, Gheorghe Adam Street 13A, 300310 Timisoara, Romania
| | - Ioana Ionac
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Luca Silvia Ana
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Institute for Cardiovascular Diseases, Gheorghe Adam Street 13A, 300310 Timisoara, Romania
| | - Nilima Rajpal Kundnani
- Department of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stelian Morariu
- General Medicine Faculty, “Vasile Goldis” West University, 473223 Arad, Romania
| | - Maria Puiu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy, “Victor Babeș” Eftimie Murgu Sq., 300041 Timisoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| | - Adela Chirita-Emandi
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy, “Victor Babeș” Eftimie Murgu Sq., 300041 Timisoara, Romania
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| |
Collapse
|
8
|
Asatryan B, Murray B, Gasperetti A, McClellan R, Barth AS. Unraveling Complexities in Genetically Elusive Long QT Syndrome. Circ Arrhythm Electrophysiol 2024; 17:e012356. [PMID: 38264885 DOI: 10.1161/circep.123.012356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Genetic testing has become standard of care for patients with long QT syndrome (LQTS), providing diagnostic, prognostic, and therapeutic information for both probands and their family members. However, up to a quarter of patients with LQTS do not have identifiable Mendelian pathogenic variants in the currently known LQTS-associated genes. This absence of genetic confirmation, intriguingly, does not lessen the severity of LQTS, with the prognosis in these gene-elusive patients with unequivocal LQTS mirroring genotype-positive patients in the limited data available. Such a conundrum instigates an exploration into the causes of corrected QT interval (QTc) prolongation in these cases, unveiling a broad spectrum of potential scenarios and mechanisms. These include multiple environmental influences on QTc prolongation, exercise-induced repolarization abnormalities, and the profound implications of the constantly evolving nature of genetic testing and variant interpretation. In addition, the rapid advances in genetics have the potential to uncover new causal genes, and polygenic risk factors may aid in the diagnosis of high-risk patients. Navigating this multifaceted landscape requires a systematic approach and expert knowledge, integrating the dynamic nature of genetics and patient-specific influences for accurate diagnosis, management, and counseling of patients. The role of a subspecialized expert cardiogenetic clinic is paramount in evaluation to navigate this complexity. Amid these intricate aspects, this review outlines potential causes of gene-elusive LQTS. It also provides an outline for the evaluation of patients with negative and inconclusive genetic test results and underscores the need for ongoing adaptation and reassessment in our understanding of LQTS, as the complexities of gene-elusive LQTS are increasingly deciphered.
Collapse
Affiliation(s)
- Babken Asatryan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rebecca McClellan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andreas S Barth
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Semino F, Darche FF, Bruehl C, Koenen M, Skladny H, Katus HA, Frey N, Draguhn A, Schweizer PA. GPD1L-A306del modifies sodium current in a family carrying the dysfunctional SCN5A-G1661R mutation associated with Brugada syndrome. Pflugers Arch 2024; 476:229-242. [PMID: 38036776 DOI: 10.1007/s00424-023-02882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Loss-of-function variants of SCN5A, encoding the sodium channel alpha subunit Nav1.5 are associated with high phenotypic variability and multiple cardiac presentations, while underlying mechanisms are incompletely understood. Here we investigated a family with individuals affected by Brugada Syndrome (BrS) of different severity and aimed to unravel the underlying genetic and electrophysiological basis.Next-generation sequencing was used to identify the genetic variants carried by family members. The index patient, who was severely affected by arrhythmogenic BrS, carried previously uncharacterized variants of Nav1.5 (SCN5A-G1661R) and glycerol-3-phosphate dehydrogenase-1-like protein (GPD1L-A306del) in a double heterozygous conformation. Family members exclusively carrying SCN5A-G1661R showed asymptomatic Brugada ECG patterns, while another patient solely carrying GPD1L-A306del lacked any clinical phenotype.To assess functional mechanisms, Nav1.5 channels were transiently expressed in HEK-293 cells in the presence and absence of GPD1L. Whole-cell patch-clamp recordings revealed loss of sodium currents after homozygous expression of SCN5A-G1661R, and reduction of current amplitude to ~ 50% in cells transfected with equal amounts of wildtype and mutant Nav1.5. Co-expression of wildtype Nav1.5 and GPD1L showed a trend towards increased sodium current amplitudes and a hyperpolarizing shift in steady-state activation and -inactivation compared to sole SCN5A expression. Application of the GPD1L-A306del variant shifted steady-state activation to more hyperpolarized and inactivation to more depolarized potentials.In conclusion, SCN5A-G1661R produces dysfunctional channels and associates with BrS. SCN5A mediated currents are modulated by co-expression of GDP1L and this interaction is altered by mutations in both proteins. Thus, additive genetic burden may aggravate disease severity, explaining higher arrhythmogenicity in double mutation carriers.
Collapse
Affiliation(s)
- Francesca Semino
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Fabrice F Darche
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
| | - Claus Bruehl
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Michael Koenen
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Heyko Skladny
- SYNLAB MVZ Humangenetik Mannheim GmbH, Mannheim, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
10
|
Li L, Ding L, Zhou L, Wu L, Zheng L, Zhang Z, Xiong Y, Zhang Z, Yao Y. Outcomes of catheter ablation in high-risk patients with Brugada syndrome refusing an implantable cardioverter defibrillator implantation. Europace 2023; 26:euad318. [PMID: 37889958 PMCID: PMC10754161 DOI: 10.1093/europace/euad318] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
AIMS The aim of this study was to investigate the outcomes of catheter ablation (CA) in preventing arrhythmic events among patients with symptomatic Brugada syndrome (BrS) who declined implantable cardioverter defibrillator (ICD) implantation. METHODS AND RESULTS A total of 40 patients with symptomatic BrS were included in the study, of which 18 refused ICD implantation and underwent CA, while 22 patients received ICD implantation. The study employed substrate modification (including endocardial and epicardial approaches) and ventricular fibrillation (VF)-triggering pre-mature ventricular contraction (PVC) ablation strategies. The primary outcomes were a composite endpoint consisting of episodes of VF and sudden cardiac death during the follow-up period. The study population had a mean age of 43.8 ± 9.6 years, with 36 (90.0%) of them being male. All patients exhibited the typical Type 1 BrS electrocardiogram pattern, and 16 (40.0%) were carriers of an SCN5A mutation. The Shanghai risk scores were comparable between the CA and the ICD groups (7.05 ± 0.80 vs. 6.71 ± 0.86, P = 0.351). Ventricular fibrillation-triggering PVCs were ablated in 3 patients (16.7%), while VF substrates were ablated in 15 patients (83.3%). Epicardial ablation was performed in 12 patients (66.7%). During a median follow-up of 46.2 (17.5-73.7) months, the primary outcomes occurred more frequently in the ICD group than in the CA group (5.6 vs. 54.5%, Log-rank P = 0.012). CONCLUSION Catheter ablation is an effective alternative therapy for improving arrhythmic outcomes in patients with symptomatic BrS who decline ICD implantation. Our findings support the consideration of CA as an alternative treatment option in this population.
Collapse
Affiliation(s)
- Le Li
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beilishi Road 167#, Xicheng District, Beijing 100037, China
| | - Ligang Ding
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beilishi Road 167#, Xicheng District, Beijing 100037, China
| | - Likun Zhou
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beilishi Road 167#, Xicheng District, Beijing 100037, China
| | - Lingmin Wu
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beilishi Road 167#, Xicheng District, Beijing 100037, China
| | - Lihui Zheng
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beilishi Road 167#, Xicheng District, Beijing 100037, China
| | - Zhenhao Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beilishi Road 167#, Xicheng District, Beijing 100037, China
| | - Yulong Xiong
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beilishi Road 167#, Xicheng District, Beijing 100037, China
| | - Zhuxin Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beilishi Road 167#, Xicheng District, Beijing 100037, China
| | - Yan Yao
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beilishi Road 167#, Xicheng District, Beijing 100037, China
| |
Collapse
|
11
|
Tonelli L, Balla C, Farnè M, Margutti A, Maniscalchi ET, De Feo G, Di Domenico A, De Raffele M, Percesepe A, Uliana V, Barili V, Serra W, Sassone B, Virzì S, De Maria E, Parmeggiani G, Assenza GE, Biagini E, Parisi V, Biffi M, Carinci V, Perugini E, Imbrici P, Ferlini A, Bertini M, Selvatici R, Gualandi F. SCN5A mutation is associated with a higher Shanghai Score in patients with type 1 Brugada ECG pattern. J Cardiovasc Med (Hagerstown) 2023; 24:864-870. [PMID: 37942788 DOI: 10.2459/jcm.0000000000001560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
AIMS Brugada syndrome (BrS) is an inherited arrhythmic disease characterized by a coved ST-segment elevation in the right precordial electrocardiogram leads (type 1 ECG pattern) and is associated with a risk of malignant ventricular arrhythmias and sudden cardiac death. In order to assess the predictive value of the Shanghai Score System for the presence of a SCN5A mutation in clinical practice, we studied a cohort of 125 patients with spontaneous or fever/drug-induced BrS type 1 ECG pattern, variably associated with symptoms and a positive family history. METHODS The Shanghai Score System items were collected for each patient and PR and QRS complex intervals were measured. Patients were genotyped through a next-generation sequencing (NGS) custom panel for the presence of SCN5A mutations and the common SCN5A polymorphism (H558R). RESULTS The total Shanghai Score was higher in SCN5A+ patients than in SCN5A- patients. The 81% of SCN5A+ patients and the 100% of patients with a SCN5A truncating variant exhibit a spontaneous type 1 ECG pattern. A significant increase in PR (P = 0.006) and QRS (P = 0.02) was detected in the SCN5A+ group. The presence of the common H558R polymorphism did not significantly correlate with any of the items of the Shanghai Score, nor with the total score of the system. CONCLUSION Data from our study suggest the usefulness of Shanghai Score collection in clinical practice in order to maximize genetic test appropriateness. Our data further highlight SCN5A mutations as a cause of conduction impairment in BrS patients.
Collapse
Affiliation(s)
- Laura Tonelli
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara
| | - Cristina Balla
- Cardiology Department, University Hospital S. Anna Ferrara, Ferrara
| | - Marianna Farnè
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara
| | - Alice Margutti
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara
| | - Eugenia Tiziana Maniscalchi
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara
| | - Gaetano De Feo
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara
| | | | | | - Antonio Percesepe
- Unit of Medical Genetics, University Hospital of Parma, Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Vera Uliana
- Unit of Medical Genetics, University Hospital of Parma, Parma
| | - Valeria Barili
- Unit of Medical Genetics, University Hospital of Parma, Parma
| | - Walter Serra
- Unit of Cardiology, University Hospital of Parma, Parma
| | - Biagio Sassone
- Cardiology Division, SS.ma Annunziata Hospital, Department of Emergency, AUSL Ferrara, Cento (Ferrara)
| | - Santo Virzì
- Cardiology Division, SS.ma Annunziata Hospital, Department of Emergency, AUSL Ferrara, Cento (Ferrara)
| | | | - Giulia Parmeggiani
- Medical Genetics Unit, Department of Clinical Pathology, AUSL Romagna, Cesena
| | | | - Elena Biagini
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna
| | - Vanda Parisi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna
| | - Mauro Biffi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna
| | | | | | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara
| | - Matteo Bertini
- Cardiology Department, University Hospital S. Anna Ferrara, Ferrara
| | - Rita Selvatici
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences and Department of Mother and Child, University Hospital S. Anna Ferrara, Ferrara
| |
Collapse
|
12
|
Bassett AS, Reuter MS, Malecki S, Silversides C, Oechslin E. Clinically Relevant Genetic Considerations for Patients With Tetralogy of Fallot. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:426-439. [PMID: 38161665 PMCID: PMC10755827 DOI: 10.1016/j.cjcpc.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/05/2023] [Indexed: 01/03/2024]
Abstract
Genetic changes affect embryogenesis, cardiac and extracardiac phenotype, development, later onset conditions, and both short- and long-term outcomes and comorbidities in the increasing population of individuals with tetralogy of Fallot (TOF). In this review, we focus on current knowledge about clinically relevant genetics for patients with TOF across the lifespan. The latest findings for TOF genetics that are pertinent to day-to-day practice and lifelong management are highlighted: morbidity/mortality, cardiac/extracardiac features, including neurodevelopmental expression, and recent changes to prenatal screening and diagnostics. Genome-wide microarray is the first-line clinical genetic test for TOF across the lifespan, detecting relevant structural changes including the most common for TOF, the 22q11.2 microdeletion. Accumulating evidence illustrates opportunities for advances in understanding and care that may arise from genetic diagnosis at any age. We also glimpse into the near future when the multigenic nature of TOF will be more fully revealed, further enhancing possibilities for preventive care. Precision medicine is nigh.
Collapse
Affiliation(s)
- Anne S. Bassett
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Toronto Adult Congenital Heart Disease Program, Division of Cardiology, Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, and Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
| | - Miriam S. Reuter
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sarah Malecki
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Candice Silversides
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Toronto Adult Congenital Heart Disease Program, Division of Cardiology, Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erwin Oechslin
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Toronto Adult Congenital Heart Disease Program, Division of Cardiology, Peter Munk Cardiac Centre, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Ma JG, Vandenberg JI, Ng CA. Development of automated patch clamp assays to overcome the burden of variants of uncertain significance in inheritable arrhythmia syndromes. Front Physiol 2023; 14:1294741. [PMID: 38089476 PMCID: PMC10712320 DOI: 10.3389/fphys.2023.1294741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Advances in next-generation sequencing have been exceptionally valuable for identifying variants in medically actionable genes. However, for most missense variants there is insufficient evidence to permit definitive classification of variants as benign or pathogenic. To overcome the deluge of Variants of Uncertain Significance, there is an urgent need for high throughput functional assays to assist with the classification of variants. Advances in parallel planar patch clamp technologies has enabled the development of automated high throughput platforms capable of increasing throughput 10- to 100-fold compared to manual patch clamp methods. Automated patch clamp electrophysiology is poised to revolutionize the field of functional genomics for inheritable cardiac ion channelopathies. In this review, we outline i) the evolution of patch clamping, ii) the development of high-throughput automated patch clamp assays to assess cardiac ion channel variants, iii) clinical application of these assays and iv) where the field is heading.
Collapse
Affiliation(s)
- Joanne G. Ma
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Lazareva TE, Barbitoff YA, Nasykhova YA, Pavlova NS, Bogaychuk PM, Glotov AS. Statistical Dissection of the Genetic Determinants of Phenotypic Heterogeneity in Genes with Multiple Associated Rare Diseases. Genes (Basel) 2023; 14:2100. [PMID: 38003043 PMCID: PMC10671084 DOI: 10.3390/genes14112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Phenotypicheterogeneity is a phenomenon in which distinct phenotypes can develop in individuals bearing pathogenic variants in the same gene. Genetic factors, gene interactions, and environmental factors are usually considered the key mechanisms of this phenomenon. Phenotypic heterogeneity may impact the prognosis of the disease severity and symptoms. In our work, we used publicly available data on the association between genetic variants and Mendelian disease to investigate the genetic factors (such as the intragenic localization and type of a variant) driving the heterogeneity of gene-disease relationships. First, we showed that genes linked to multiple rare diseases (GMDs) are more constrained and tend to encode more transcripts with high levels of expression across tissues. Next, we assessed the role of variant localization and variant types in specifying the exact phenotype for GMD variants. We discovered that none of these factors is sufficient to explain the phenomenon of such heterogeneous gene-disease relationships. In total, we identified only 38 genes with a weak trend towards significant differences in variant localization and 30 genes with nominal significant differences in variant type for the two associated disorders. Remarkably, four of these genes showed significant differences in both tests. At the same time, our analysis suggests that variant localization and type are more important for genes linked to autosomal dominant disease. Taken together, our results emphasize the gene-level factors dissecting distinct Mendelian diseases linked to one common gene based on open-access genetic data and highlight the importance of exploring other factors that contributed to phenotypic heterogeneity.
Collapse
Affiliation(s)
- Tatyana E. Lazareva
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia; (T.E.L.); (Y.A.N.)
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia; (T.E.L.); (Y.A.N.)
- Bioinformatics Institute, Kantemirovskaya St. 2A, 197342 St. Petersburg, Russia; (N.S.P.); (P.M.B.)
| | - Yulia A. Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia; (T.E.L.); (Y.A.N.)
| | - Nadezhda S. Pavlova
- Bioinformatics Institute, Kantemirovskaya St. 2A, 197342 St. Petersburg, Russia; (N.S.P.); (P.M.B.)
| | - Polina M. Bogaychuk
- Bioinformatics Institute, Kantemirovskaya St. 2A, 197342 St. Petersburg, Russia; (N.S.P.); (P.M.B.)
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia; (T.E.L.); (Y.A.N.)
| |
Collapse
|
15
|
Theisen B, Holtz A, Rajagopalan V. Noncoding RNAs and Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Cardiac Arrhythmic Brugada Syndrome. Cells 2023; 12:2398. [PMID: 37830612 PMCID: PMC10571919 DOI: 10.3390/cells12192398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Hundreds of thousands of people die each year as a result of sudden cardiac death, and many are due to heart rhythm disorders. One of the major causes of these arrhythmic events is Brugada syndrome, a cardiac channelopathy that results in abnormal cardiac conduction, severe life-threatening arrhythmias, and, on many occasions, death. This disorder has been associated with mutations and dysfunction of about two dozen genes; however, the majority of the patients do not have a definite cause for the diagnosis of Brugada Syndrome. The protein-coding genes represent only a very small fraction of the mammalian genome, and the majority of the noncoding regions of the genome are actively transcribed. Studies have shown that most of the loci associated with electrophysiological traits are located in noncoding regulatory regions and are expected to affect gene expression dosage and cardiac ion channel function. Noncoding RNAs serve an expanding number of regulatory and other functional roles within the cells, including but not limited to transcriptional, post-transcriptional, and epigenetic regulation. The major noncoding RNAs found in Brugada Syndrome include microRNAs; however, others such as long noncoding RNAs are also identified. They contribute to pathogenesis by interacting with ion channels and/or are detectable as clinical biomarkers. Stem cells have received significant attention in the recent past, and can be differentiated into many different cell types including those in the heart. In addition to contractile and relaxational properties, BrS-relevant electrophysiological phenotypes are also demonstrated in cardiomyocytes differentiated from stem cells induced from adult human cells. In this review, we discuss the current understanding of noncoding regions of the genome and their RNA biology in Brugada Syndrome. We also delve into the role of stem cells, especially human induced pluripotent stem cell-derived cardiac differentiated cells, in the investigation of Brugada syndrome in preclinical and clinical studies.
Collapse
Affiliation(s)
- Benjamin Theisen
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Austin Holtz
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
| | - Viswanathan Rajagopalan
- Department of Biomedical and Anatomical Sciences, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR 72401, USA
- Arkansas Biosciences Institute, Jonesboro, AR 72401, USA
| |
Collapse
|
16
|
Kotta M, Torchio M, Bayliss P, Cohen MC, Quarrell O, Wheeldon N, Marton T, Gentilini D, Crotti L, Coombs RC, Schwartz PJ. Cardiac Genetic Investigation of Sudden Infant and Early Childhood Death: A Study From Victims to Families. J Am Heart Assoc 2023; 12:e029100. [PMID: 37589201 PMCID: PMC10547337 DOI: 10.1161/jaha.122.029100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/27/2023] [Indexed: 08/18/2023]
Abstract
Background Sudden infant death syndrome (SIDS) is the leading cause of death up to age 1. Sudden unexplained death in childhood (SUDC) is similar but affects mostly toddlers aged 1 to 4. SUDC is rarer than SIDS, and although cardiogenetic testing (molecular autopsy) identifies an underlying cause in a fraction of SIDS, less is known about SUDC. Methods and Results Seventy-seven SIDS and 16 SUDC cases underwent molecular autopsy with 25 definitive-evidence arrhythmia-associated genes. In 18 cases, another 76 genes with varying degrees of evidence were analyzed. Parents were offered cascade screening. Double-blind review of clinical-genetic data established genotype-phenotype correlations. The yield of likely pathogenic variants in the 25 genes was higher in SUDC than in SIDS (18.8% [3/16] versus 2.6% [2/77], respectively; P=0.03), whereas novel/ultra-rare variants of uncertain significance were comparably represented. Rare variants of uncertain significance and likely benign variants were found only in SIDS. In cases with expanded analyses, likely pathogenic/likely benign variants stemmed only from definitive-evidence genes, whereas all other genes contributed only variants of uncertain significance. Among 24 parents screened, variant status and phenotype largely agreed, and 3 cases positively correlated for cardiac channelopathies. Genotype-phenotype correlations significantly aided variant adjudication. Conclusions Genetic yield is higher in SUDC than in SIDS although, in both, it is contributed only by definitive-evidence genes. SIDS/SUDC cascade family screening facilitates establishment or dismissal of a diagnosis through definitive variant adjudication indicating that anonymity is no longer justifiable. Channelopathies may underlie a relevant fraction of SUDC. Binary classifications of genetic causality (pathogenic versus benign) could not always be adequate.
Collapse
Affiliation(s)
- Maria‐Christina Kotta
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular GeneticsIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Margherita Torchio
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular GeneticsIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Pauline Bayliss
- Department of Clinical GeneticsSheffield Children’s NHS Foundation TrustSheffieldUnited Kingdom
| | - Marta C. Cohen
- Department of HistopathologySheffield Children’s NHS Foundation TrustSheffieldUnited Kingdom
| | - Oliver Quarrell
- Sheffield Children’s Hospital NHS Foundation TrustSheffieldUnited Kingdom
- Department of NeurosciencesUniversity of SheffieldSheffieldUnited Kingdom
| | - Nigel Wheeldon
- Cardiothoracic CentreNorthern General Hospital, Sheffield Teaching Hospitals NHS TrustSheffieldUnited Kingdom
| | - Tamás Marton
- Cellular Pathology DepartmentBirmingham Women’s and Children’s HospitalBirminghamUnited Kingdom
| | - Davide Gentilini
- Bioinformatics and Statistical Genetics UnitIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular GeneticsIRCCS Istituto Auxologico ItalianoMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Robert C. Coombs
- Department of NeonatologySheffield Teaching Hospitals. NHS TrustSheffieldUnited Kingdom
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular GeneticsIRCCS Istituto Auxologico ItalianoMilanItaly
| |
Collapse
|
17
|
Hoeksema WF, Amin AS, Bezzina CR, Wilde AAM, Postema PG. Novelties in Brugada Syndrome: Complex Genetics, Risk Stratification, and Catheter Ablation. Card Electrophysiol Clin 2023; 15:273-283. [PMID: 37558298 DOI: 10.1016/j.ccep.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Brugada syndrome (BrS) is an inherited arrhythmia syndrome with distinctive electrocardiographic abnormalities in the right precordial leads and predisposes to ventricular arrhythmias and sudden cardiac death in otherwise healthy patients. Its complex genetic architecture and pathophysiological mechanism are not yet completely understood, and risk stratification remains challenging, particularly in patients at intermediate risk of arrhythmic events. Further understanding of its complex genetic architecture may help improving future risk stratification, and advances in management may contribute to alternatives to implantable cardioverter-defibrillators. Here, the authors review the latest insights and developments in BrS.
Collapse
Affiliation(s)
- Wiert F Hoeksema
- Department of Clinical Cardiology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ahmad S Amin
- Department of Clinical Cardiology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, Amsterdam, the Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, Amsterdam, the Netherlands
| | - Arthur A M Wilde
- Department of Clinical Cardiology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, Amsterdam, the Netherlands
| | - Pieter G Postema
- Department of Clinical Cardiology, Amsterdam UMC, Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Kukshal P, Joshi RO, Kumar A, Ahamad S, Murthy PR, Sathe Y, Manohar K, Guhathakurta S, Chellappan S. Case-control association study of congenital heart disease from a tertiary paediatric cardiac centre from North India. BMC Pediatr 2023; 23:290. [PMID: 37322441 PMCID: PMC10268439 DOI: 10.1186/s12887-023-04095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/27/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Congenital Heart diseases (CHDs) account for 1/3rd of all congenital birth defects. Etiopathogenesis of CHDs remain elusive despite extensive investigations globally. Phenotypic heterogeneity witnessed in this developmental disorder reiterate gene-environment interactions with periconceptional factors as risk conferring; and genetic analysis of both sporadic and familial forms of CHD suggest its multigenic basis. Significant association of de novo and inherited variants have been observed. Approximately 1/5th of CHDs are documented in the ethnically distinct Indian population but genetic insights have been very limited. This pilot case-control based association study was undertaken to investigate the status of Caucasian SNPs in a north Indian cohort. METHOD A total of 306 CHD cases sub-classified into n = 198 acyanotic and n = 108 cyanotic types were recruited from a dedicated tertiary paediatric cardiac centre in Palwal, Haryana. 23 SNPs primarily prioritized from Genome-wide association studies (GWAS) on Caucasians were genotyped using Agena MassARRAY Technology and test of association was performed with adequately numbered controls. RESULTS Fifty percent of the studied SNPs were substantially associated in either allelic, genotypic or sub-phenotype categories validating their strong correlation with disease manifestation. Of note, strongest allelic association was observed for rs73118372 in CRELD1 (p < 0.0001) on Chr3, rs28711516 in MYH6 (p = 0.00083) and rs735712 in MYH7 (p = 0.0009) both on Chr 14 and were also significantly associated with acyanotic, and cyanotic categories separately. rs28711516 (p = 0.003) and rs735712 (p = 0.002) also showed genotypic association. Strongest association was observed with rs735712(p = 0.003) in VSD and maximum association was observed for ASD sub-phenotypes. CONCLUSIONS Caucasian findings were partly replicated in the north Indian population. The findings suggest the contribution of genetic, environmental and sociodemographic factors, warranting continued investigations in this study population.
Collapse
Affiliation(s)
- Prachi Kukshal
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India.
| | - Radha O Joshi
- Present address Sri Sathya Sai Sanjeevani Research Foundation, Kharghar, Navi Mumbai- 410210, Maharashtra, India
| | - Ajay Kumar
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India
| | - Shadab Ahamad
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India
| | - Prabhatha Rashmi Murthy
- Sri Sathya Sai Sanjeevani Centre for Child Heart Care and Training in Paediatric Cardiac Skills, Navi Mumbai Maharashtra, India
| | - Yogesh Sathe
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, NH-2, Delhi-Mathura Highway, Baghola, District Palwal, Haryana, Pin 121102, India
| | - Krishna Manohar
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, NH-2, Delhi-Mathura Highway, Baghola, District Palwal, Haryana, Pin 121102, India
| | - Soma Guhathakurta
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India
| | - Subramanian Chellappan
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, NH-2, Delhi-Mathura Highway, Baghola, District Palwal, Haryana, Pin 121102, India.
| |
Collapse
|
20
|
Vincent A, Chu NT, Shah A, Avanthika C, Jhaveri S, Singh K, Limaye OM, Boddu H. Sudden Infant Death Syndrome: Risk Factors and Newer Risk Reduction Strategies. Cureus 2023; 15:e40572. [PMID: 37465778 PMCID: PMC10351748 DOI: 10.7759/cureus.40572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 07/20/2023] Open
Abstract
Sudden infant death syndrome (SIDS) continues to be one of the top causes of infant death in the U.S. Despite significant public health initiatives focused on high-risk populations to enhance sleep environments and techniques. The SIDS rate has remained stable in recent years. Risk factors and newer risk reduction strategies for SIDS are the focus of this review article. We conducted a comprehensive literature search on Medline, Cochrane, Embase, and Google Scholar until July 2022. The following search strings and Medical Subject Heading (MeSH) terms were used: "SIDS," "Sudden Infant Death" and "SUID". We explored the literature on SIDS for its epidemiology, pathophysiology, the role of various etiologies and their influence, associated complications leading to SIDS, and preventive and treatment modalities. Despite a more than 50% drop-in rates since the start of the "Back to Sleep" campaign in 1994, sudden infant death syndrome (SIDS) continues to be the top cause of post-neonatal mortality in the United States, despite continued educational initiatives that support safe sleep and other risk reduction strategies. The new American Academy of Pediatrics guidelines for lowering the risk of SIDS include a lot of emphasis on sleeping habits, bedding, and environment but also include elements that are frequently ignored (i.e., prenatal care, smoking, alcohol and drug use, and childhood vaccinations). This study highlights these less-frequently discussed aspects and identifies treatments that have produced beneficial behavioral shifts that benefit newborns as well as their mothers' health and wellbeing.
Collapse
Affiliation(s)
- Anita Vincent
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND
| | - Ngan Thy Chu
- Paediatrics, City Children's Hospital, Ho Chi Minh city, VNM
| | - Aashka Shah
- Paediatrics and Child Health, Pramukhswami Medical College, Karamsad, Anand, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York City, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND
| | - Sharan Jhaveri
- Medicine and Surgery, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College (NHLMMC), Ahmedabad, IND
| | - Kunika Singh
- Paediatrics, Xinjiang Medical University, Xinjiang, CHN
| | - Om M Limaye
- Paediatrics, Lokmanya Tilak Municipal Medical College and Sion Hospital, Mumbai, IND
| | - Himasaila Boddu
- Paediatrics, Dr. Pinnamaneni Siddartha Institute of Medical Sciences and Research Foundation, Krishna, IND
| |
Collapse
|
21
|
Hack JB, Horning K, Juroske Short DM, Schreiber JM, Watkins JC, Hammer MF. Distinguishing Loss-of-Function and Gain-of-Function SCN8A Variants Using a Random Forest Classification Model Trained on Clinical Features. Neurol Genet 2023; 9:e200060. [PMID: 37152443 PMCID: PMC10160958 DOI: 10.1212/nxg.0000000000200060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/12/2023] [Indexed: 05/09/2023]
Abstract
Background and Objectives Pathogenic variants at the voltage-gated sodium channel gene, SCN8A, are associated with a wide spectrum of clinical disease outcomes. A critical challenge for neurologists is to determine whether patients carry gain-of-function (GOF) or loss-of-function (LOF) variants to guide treatment decisions, yet in vitro studies to infer channel function are often not feasible in the clinic. In this study, we develop a predictive modeling approach to classify variants based on clinical features present at initial diagnosis. Methods We performed an exhaustive search for individuals deemed to carry SCN8A GOF and LOF variants by means of in vitro studies in heterologous cell systems, or because the variant was classified as truncating, and recorded clinical features. This resulted in a total of 69 LOF variants: 34 missense and 35 truncating variants, including 9 nonsense, 13 frameshift, 6 splice site, 6 indels, and 1 large deletion. We then assembled a truth set of variants with known functional effects, excluding individuals carrying variants at other loci associated with epilepsy. We then trained a predictive model based on random forest using this truth set of 45 LOF variants and 45 GOF variants randomly selected from a set of variants tested by in vitro methods. Results Phenotypic categories assigned to individuals correlated strongly with GOF or LOF variants. All patients with GOF variants experienced early-onset seizures (mean age at onset = 4.5 ± 3.1 months) while only 64.4% patients with LOF variants had seizures, most of which were late-onset absence seizures (mean age at onset = 40.0 ± 38.1 months). With high accuracy (95.4%), our model including 5 key clinical features classified individuals with GOF and LOF variants into 2 distinct cohorts differing in age at seizure onset, development of seizures, seizure type, intellectual disability, and developmental and epileptic encephalopathy. Discussion The results support the hypothesis that patients with SCN8A GOF and LOF variants represent distinct clinical phenotypes. The clinical model developed in this study has great utility because it provides a rapid and highly accurate platform for predicting the functional class of patient variants during SCN8A diagnosis, which can aid in initial treatment decisions and improve prognosis.
Collapse
Affiliation(s)
- Joshua B Hack
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| | - Kyle Horning
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| | - Denise M Juroske Short
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| | - John M Schreiber
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| | - Joseph C Watkins
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| | - Michael F Hammer
- BIO5 Institute (J.B.H., M.F.H.), University of Arizona, Tucson; CombinedBrain (K.H.), Brentwood; DenGen Consulting (D.M.J.S.), Rocky Top, TN; Children's National Medical Center (J.M.S.), Department of Neurology, Washington, DC; Department of Mathematics (J.C.W.), University of Arizona; and Neurology Department (M.F.H.), University of Arizona, Tucson
| |
Collapse
|
22
|
Miles C, Boukens BJ, Scrocco C, Wilde AA, Nademanee K, Haissaguerre M, Coronel R, Behr ER. Subepicardial Cardiomyopathy: A Disease Underlying J-Wave Syndromes and Idiopathic Ventricular Fibrillation. Circulation 2023; 147:1622-1633. [PMID: 37216437 PMCID: PMC11073566 DOI: 10.1161/circulationaha.122.061924] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/27/2023] [Indexed: 05/24/2023]
Abstract
Brugada syndrome (BrS), early repolarization syndrome (ERS), and idiopathic ventricular fibrillation (iVF) have long been considered primary electrical disorders associated with malignant ventricular arrhythmia and sudden cardiac death. However, recent studies have revealed the presence of subtle microstructural abnormalities of the extracellular matrix in some cases of BrS, ERS, and iVF, particularly within right ventricular subepicardial myocardium. Substrate-based ablation within this region has been shown to ameliorate the electrocardiographic phenotype and to reduce arrhythmia frequency in BrS. Patients with ERS and iVF may also exhibit low-voltage and fractionated electrograms in the ventricular subepicardial myocardium, which can be treated with ablation. A significant proportion of patients with BrS and ERS, as well as some iVF survivors, harbor pathogenic variants in the voltage-gated sodium channel gene, SCN5A, but the majority of genetic susceptibility of these disorders is likely to be polygenic. Here, we postulate that BrS, ERS, and iVF may form part of a spectrum of subtle subepicardial cardiomyopathy. We propose that impaired sodium current, along with genetic and environmental susceptibility, precipitates a reduction in epicardial conduction reserve, facilitating current-to-load mismatch at sites of structural discontinuity, giving rise to electrocardiographic changes and the arrhythmogenic substrate.
Collapse
Affiliation(s)
- Chris Miles
- Cardiovascular Clinical Academic Group, St. George’s University Hospitals’ NHS Foundation Trust and Molecular and Clinical Sciences Institute, St. George’s, University of London, UK (C.M., C.S., E.R.B.)
| | - Bastiaan J. Boukens
- Department of Medical Biology, University of Amsterdam, the Netherlands (B.J.B.)
- University of Maastricht, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, the Netherlands (B.J.B.)
| | - Chiara Scrocco
- Cardiovascular Clinical Academic Group, St. George’s University Hospitals’ NHS Foundation Trust and Molecular and Clinical Sciences Institute, St. George’s, University of London, UK (C.M., C.S., E.R.B.)
| | - Arthur A.M. Wilde
- Amsterdam UMC, University of Amsterdam, Department of Cardiology, the Netherlands (A.A.M.W.)
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, the Netherlands (A.A.M.W.)
- European Reference Network for rare, low-prevalence, and complex diseases of the heart: ERN GUARD-Heart (A.A.M.W., M.H.)
| | - Koonlawee Nademanee
- Center of Excellence in Arrhythmia Research Chulalongkorn University, Department of Medicine, Chulalongkorn University, Thailand (K.N.)
- Pacific Rim Electrophysiology Research Institute, Bumrungrad Hospital, Bangkok, Thailand (K.N.)
| | - Michel Haissaguerre
- European Reference Network for rare, low-prevalence, and complex diseases of the heart: ERN GUARD-Heart (A.A.M.W., M.H.)
- Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Pessac, France (M.H.)
- Department of Electrophysiology and Cardiac Stimulation, Centre Hospitalier Universitaire de Bordeaux, France (M.H.)
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam University Medical Centers, Cardiovascular Science, the Netherlands (R.C.)
| | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, St. George’s University Hospitals’ NHS Foundation Trust and Molecular and Clinical Sciences Institute, St. George’s, University of London, UK (C.M., C.S., E.R.B.)
- Mayo Clinic Healthcare, London, UK (E.R.B.)
| |
Collapse
|
23
|
Marchal GA, Remme CA. Subcellular diversity of Nav1.5 in cardiomyocytes: distinct functions, mechanisms and targets. J Physiol 2023; 601:941-960. [PMID: 36469003 DOI: 10.1113/jp283086] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
In cardiomyocytes, the rapid depolarisation of the membrane potential is mediated by the α-subunit of the cardiac voltage-gated Na+ channel (NaV 1.5), encoded by the gene SCN5A. This ion channel allows positively charged Na+ ions to enter the cardiomyocyte, resulting in the fast upstroke of the action potential and is therefore crucial for cardiac excitability and electrical propagation. This essential role is underscored by the fact that dysfunctional NaV 1.5 is associated with high risk for arrhythmias and sudden cardiac death. However, development of therapeutic interventions regulating NaV 1.5 has been limited due to the complexity of NaV 1.5 structure and function and its diverse roles within the cardiomyocyte. In particular, research from the last decade has provided us with increased knowledge on the subcellular distribution of NaV 1.5 as well as the proteins which it interacts with in distinct cardiomyocyte microdomains. We here review these insights, detailing the potential role of NaV 1.5 within subcellular domains as well as its dysfunction in the setting of arrhythmia disorders. We furthermore provide an overview of current knowledge on the pathways involved in (microdomain-specific) trafficking of NaV 1.5, and their potential as novel targets. Unravelling the complexity of NaV 1.5 (dys)function may ultimately facilitate the development of therapeutic strategies aimed at preventing lethal arrhythmias. This is not only of importance for pathophysiological conditions where sodium current is specifically decreased within certain subcellular regions, such as in arrhythmogenic cardiomyopathy and Duchenne muscular dystrophy, but also for other acquired and inherited disorders associated with NaV 1.5.
Collapse
Affiliation(s)
- Gerard A Marchal
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,National Institute of Optics, National Research Council (CNR-INO), Sesto Fiorentino, Florence, Italy
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Castelletti S, Orini M, Vischer AS, McKenna WJ, Lambiase PD, Pantazis A, Crotti L. Circadian and Seasonal Pattern of Arrhythmic Events in Arrhythmogenic Cardiomyopathy Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2872. [PMID: 36833593 PMCID: PMC9956986 DOI: 10.3390/ijerph20042872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 05/28/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disease associated with an increased risk of life-threatening arrhythmias. The aim of the present study was to evaluate the association of ventricular arrhythmias (VA) with circadian and seasonal variation in ARVC. One hundred two ARVC patients with an implantable cardioverter defibrillator (ICD) were enrolled in the study. Arrhythmic events included (a) any initial ventricular tachycardia (VT) or fibrillation (VF) prompting ICD implantation, (b) any VT or non-sustained VT (NSVT) recorded by the ICD, and (c) appropriate ICD shocks/therapy. Differences in the annual incidence of events across seasons (winter, spring, summer, autumn) and period of the day (night, morning, afternoon, evening) were assessed both for all cardiac events and major arrhythmic events. In total, 67 events prior to implantation and 263 ICD events were recorded. These included 135 major (58 ICD therapies, 57 self-terminating VT, 20 sustained VT) and 148 minor (NSVT) events. A significant increase in the frequency of events was observed in the afternoon versus in the nights and mornings (p = 0.016). The lowest number of events was registered in the summer, with a peak in the winter (p < 0.001). Results were also confirmed when excluding NSVT. Arrhythmic events in ARVC follow a seasonal variation and a circadian rhythm. They are more prevalent in the late afternoon, the most active period of the day, and in the winter, supporting the role of physical activity and inflammation as triggers of events.
Collapse
Affiliation(s)
- Silvia Castelletti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiology, Piazzale Brescia 20, 20149 Milan, Italy
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Annina S. Vischer
- Medical Outpatient Department, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - William J. McKenna
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Department of Cardiology, University of A Coruña, 15001 A Coruña, Spain
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- The Barts Heart Centre, Barts Health NHS Trust, London E1 1BB, UK
| | - Antonios Pantazis
- National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
- Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals, London SW3 6NP, UK
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiology, Piazzale Brescia 20, 20149 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
25
|
Kontorovich AR. Approaches to Genetic Screening in Cardiomyopathies: Practical Guidance for Clinicians. JACC. HEART FAILURE 2023; 11:133-142. [PMID: 36754525 DOI: 10.1016/j.jchf.2022.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 02/08/2023]
Abstract
Patients and families benefit when the genetic etiology of cardiomyopathy is elucidated through a multidisciplinary approach including genetic counseling and judicious use of genetic testing. The yield of genetic testing is optimized when performed on a proband with a clear phenotype, and interrogates genes that are validated in association with that specific form of cardiomyopathy. Variants of uncertain significance are frequently uncovered and should not be overinterpreted. Identifying an impactful genetic variant as the cause of a patient's cardiomyopathy can have important prognostic impact, and enable streamlined cascade testing to highlight at risk relatives. Certain genotypes are associated with unique potential cardiac and noncardiac risk factors and may dictate personalized approaches to treatment.
Collapse
Affiliation(s)
- Amy R Kontorovich
- Center for Inherited Cardiovascular Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
26
|
Genotype-Phenotype Correlations in Human Diseases Caused by Mutations of LINC Complex-Associated Genes: A Systematic Review and Meta-Summary. Cells 2022; 11:cells11244065. [PMID: 36552829 PMCID: PMC9777268 DOI: 10.3390/cells11244065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in genes encoding proteins associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex within the nuclear envelope cause different diseases with varying phenotypes including skeletal muscle, cardiac, metabolic, or nervous system pathologies. There is some understanding of the structure of LINC complex-associated proteins and how they interact, but it is unclear how mutations in genes encoding them can cause the same disease, and different diseases with different phenotypes. Here, published mutations in LINC complex-associated proteins were systematically reviewed and analyzed to ascertain whether patterns exist between the genetic sequence variants and clinical phenotypes. This revealed LMNA is the only LINC complex-associated gene in which mutations commonly cause distinct conditions, and there are no clear genotype-phenotype correlations. Clusters of LMNA variants causing striated muscle disease are located in exons 1 and 6, and metabolic disease-associated LMNA variants are frequently found in the tail of lamin A/C. Additionally, exon 6 of the emerin gene, EMD, may be a mutation "hot-spot", and diseases related to SYNE1, encoding nesprin-1, are most often caused by nonsense type mutations. These results provide insight into the diverse roles of LINC-complex proteins in human disease and provide direction for future gene-targeted therapy development.
Collapse
|
27
|
Novel Genes Involved in Hypertrophic Cardiomyopathy: Data of Transcriptome and Methylome Profiling. Int J Mol Sci 2022; 23:ijms232315280. [PMID: 36499607 PMCID: PMC9739701 DOI: 10.3390/ijms232315280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/08/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease; its pathogenesis is still being intensively studied to explain the reasons for the significant genetic and phenotypic heterogeneity of the disease. To search for new genes involved in HCM development, we analyzed gene expression profiles coupled with DNA methylation profiles in the hypertrophied myocardia of HCM patients. The transcriptome analysis identified significant differences in the levels of 193 genes, most of which were underexpressed in HCM. The methylome analysis revealed 1755 nominally significant differentially methylated positions (DMPs), mostly hypomethylated in HCM. Based on gene ontology enrichment analysis, the majority of biological processes, overrepresented by both differentially expressed genes (DEGs) and DMP-containing genes, are involved in the regulation of locomotion and muscle structure development. The intersection of 193 DEGs and 978 DMP-containing genes pinpointed eight common genes, the expressions of which correlated with the methylation levels of the neighboring DMPs. Half of these genes (AUTS2, BRSK2, PRRT1, and SLC17A7), regulated by the mechanism of DNA methylation, were underexpressed in HCM and were involved in neurogenesis and synapse functioning. Our data, suggesting the involvement of innervation-associated genes in HCM, provide additional insights into disease pathogenesis and expand the field of further research.
Collapse
|
28
|
Chumakova OS, Milovanova NV, Bychkov IO, Zakharova EY, Mershina EA, Sinitsin VE, Zateyshchikov DA. Overlapping Phenotype of Adult-Onset ALPK3-Cardiomyopathy in the Setting of Two Novel Variants. Cardiol Res 2022; 13:398-404. [PMID: 36660067 PMCID: PMC9822668 DOI: 10.14740/cr1449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Inherited cardiomyopathies (CMPs) are fairly common causes of morbidity and mortality, particularly, in young individuals. In substantial number of cases, only morphological diagnostic criteria cannot distinguish one CMP from another because of incomplete penetrance, advanced stage of the disease, or overlapping phenotypes. Genetic testing has become a mandatory tool for definite diagnosis that is required for family screening, individual prognosis, and personalized treatment strategy in routine practice. In parallel, accumulation of genotype-phenotype correlations, especially for rare genes, promotes the deciphering of underling molecular mechanisms and the development of targeting treatment of CMPs. Here we present an adult-onset case comprised morphological features of several CMPs: asymmetric left ventricle (LV) hypertrophy, severe systolic dysfunction, LV hypertrabeculation and restrictive physiology. Using next-generation sequencing, two novel variants (NM_020778.5:c.1958C>G:p.Ser653* and c.3491G>A:p.Arg1164Gln) in alpha-protein kinase 3 (ALPK3) gene were identified and confirmed with Sanger sequencing. The trans-position (location on different alleles) of identified ALPK3 variants was established by plasmid cloning method. The ALPK3 gene, encoding nuclear alpha-protein kinase 3, has only recently been associated with CMPs and there are still few clinical data on ALPK3 variant carriers. To date, only five affected individuals with adult-onset CMPs in the setting of biallelic variants of ALPK3 gene have been reported.
Collapse
Affiliation(s)
- Olga S. Chumakova
- Moscow Healthcare Department, City Clinical Hospital 17, 119620 Moscow, Russia
- E.I. Chazov National Medical Research Center for Cardiology, 121552 Moscow, Russia
| | | | | | | | - Elena A. Mershina
- Medical Research and Educational Center, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Valentin E. Sinitsin
- Medical Research and Educational Center, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | |
Collapse
|
29
|
Kucher AN, Valiakhmetov NR, Salakhov RR, Golubenko MV, Pavlyukova EN, Nazarenko MS. Phenotype variation of hypertrophic cardiomyopathy in carriers of the p.Arg870His pathogenic variant in the MYH7 gene. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-205-216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The review analyzes variability of clinical manifestations of p.Arg870His in the MYH7 gene, which is repeatedly registered in patients with hypertrophic cardiomyopathy (HCM). The analysis involves the data from scientific publications obtained as a search result in the PubMed, СlinVar, and eLibrary.ru databases, as well as authors’ own results. A wide range of phenotypic manifestations have been revealed in carriers of p.Arg870His, from the asymptomatic to severe course, rapid progression, and early death. The review considers possible factors that modify the effect of the pathogenic variant (i.e. dosage of the pathogenic variant, the presence of other unfavorable genetic variants, etc.). The importance of accumulating information on the clinical features of HCM in the carriers of specific gene variants is emphasized in order to clarify their pathogenicity and to identify factors modifying the clinical outcome, which is important for the choice of the treatment strategy for HCM.
Collapse
Affiliation(s)
- A. N. Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - N. R. Valiakhmetov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - R. R. Salakhov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; Siberian State Medical University
| | - M. V. Golubenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - E. N. Pavlyukova
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - M. S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences; Siberian State Medical University
| |
Collapse
|
30
|
Bidzimou MTK, Landstrom AP. From diagnostic testing to precision medicine: the evolving role of genomics in cardiac channelopathies and cardiomyopathies in children. Curr Opin Genet Dev 2022; 76:101978. [PMID: 36058060 PMCID: PMC9733798 DOI: 10.1016/j.gde.2022.101978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
Pediatric sudden cardiac death (SCD) is the sudden unexpected death of a child or adolescent due to a presumed cardiac etiology. Heritable causes of pediatric SCD are predominantly cardiomyopathies and cardiac ion channelopathies. This review illustrates recent advances in determining the genetic cause of established and emerging channelopathies and cardiomyopathies, and how broader genomic sequencing is uncovering complex interactions between genetic architecture and disease manifestation. We discuss innovative models and experimental platforms for resolving the variant of uncertain significance as both the variants and genes associated with disease continue to evolve. Finally, we highlight the growing problem of incidentally identified variants in cardiovascular disease-causing genes and review innovative methods to determining whether these variants may ultimately result in penetrant disease. Overall, we seek to illustrate both the promise and inherent challenges in bridging the traditional role for genetics in diagnosing cardiomyopathies and channelopathies to one of true risk-predictive precision medicine.
Collapse
Affiliation(s)
- Minu-Tshyeto K Bidzimou
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States. https://twitter.com/@MBidzimou
| | - Andrew P Landstrom
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States; Department of Pediatrics, Division of Pediatric Cardiology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
31
|
Pérez-Hernández M, van Opbergen CJM, Bagwan N, Vissing CR, Marrón-Liñares GM, Zhang M, Torres Vega E, Sorrentino A, Drici L, Sulek K, Zhai R, Hansen FB, Christensen AH, Boesgaard S, Gustafsson F, Rossing K, Small EM, Davies MJ, Rothenberg E, Sato PY, Cerrone M, Jensen THL, Qvortrup K, Bundgaard H, Delmar M, Lundby A. Loss of Nuclear Envelope Integrity and Increased Oxidant Production Cause DNA Damage in Adult Hearts Deficient in PKP2: A Molecular Substrate of ARVC. Circulation 2022; 146:851-867. [PMID: 35959657 PMCID: PMC9474627 DOI: 10.1161/circulationaha.122.060454] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by high propensity to life-threatening arrhythmias and progressive loss of heart muscle. More than 40% of reported genetic variants linked to ARVC reside in the PKP2 gene, which encodes the PKP2 protein (plakophilin-2). METHODS We describe a comprehensive characterization of the ARVC molecular landscape as determined by high-resolution mass spectrometry, RNA sequencing, and transmission electron microscopy of right ventricular biopsy samples obtained from patients with ARVC with PKP2 mutations and left ventricular ejection fraction >45%. Samples from healthy relatives served as controls. The observations led to experimental work using multiple imaging and biochemical techniques in mice with a cardiac-specific deletion of Pkp2 studied at a time of preserved left ventricular ejection fraction and in human induced pluripotent stem cell-derived PKP2-deficient myocytes. RESULTS Samples from patients with ARVC present a loss of nuclear envelope integrity, molecular signatures indicative of increased DNA damage, and a deficit in transcripts coding for proteins in the electron transport chain. Mice with a cardiac-specific deletion of Pkp2 also present a loss of nuclear envelope integrity, which leads to DNA damage and subsequent excess oxidant production (O2.- and H2O2), the latter increased further under mechanical stress (isoproterenol or exercise). Increased oxidant production and DNA damage is recapitulated in human induced pluripotent stem cell-derived PKP2-deficient myocytes. Furthermore, PKP2-deficient cells release H2O2 into the extracellular environment, causing DNA damage and increased oxidant production in neighboring myocytes in a paracrine manner. Treatment with honokiol increases SIRT3 (mitochondrial nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-3) activity, reduces oxidant levels and DNA damage in vitro and in vivo, reduces collagen abundance in the right ventricular free wall, and has a protective effect on right ventricular function. CONCLUSIONS Loss of nuclear envelope integrity and subsequent DNA damage is a key substrate in the molecular pathology of ARVC. We show transcriptional downregulation of proteins of the electron transcript chain as an early event in the molecular pathophysiology of the disease (before loss of left ventricular ejection fraction <45%), which associates with increased oxidant production (O2.- and H2O2). We propose therapies that limit oxidant formation as a possible intervention to restrict DNA damage in ARVC.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Chantal J M van Opbergen
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Navratan Bagwan
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Christoffer Rasmus Vissing
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
| | - Grecia M Marrón-Liñares
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Mingliang Zhang
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Estefania Torres Vega
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Lylia Drici
- The Novo Nordisk Foundation Center for Protein Research (L.D., K.S.), University of Copenhagen, Denmark
| | - Karolina Sulek
- The Novo Nordisk Foundation Center for Protein Research (L.D., K.S.), University of Copenhagen, Denmark
| | - Ruxu Zhai
- College of Medicine, Drexel University, Philadelphia, PA (R.Z., P.Y.S.)
| | - Finn B Hansen
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Alex H Christensen
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
- Department of Cardiology, Copenhagen University Hospital-Herlev-Gentofte Hospital, Denmark (A.H.C.)
| | - Søren Boesgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
- College of Medicine, Drexel University, Philadelphia, PA (R.Z., P.Y.S.)
| | - Finn Gustafsson
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
| | - Kasper Rossing
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, NY (E.M.S.)
| | - Michael J Davies
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Eli Rothenberg
- Division of Pharmacology, NYU School of Medicine, New York (E.R.)
| | - Priscila Y Sato
- College of Medicine, Drexel University, Philadelphia, PA (R.Z., P.Y.S.)
| | - Marina Cerrone
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Thomas Hartvig Lindkær Jensen
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
| | - Klaus Qvortrup
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Henning Bundgaard
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
| | - Mario Delmar
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Alicia Lundby
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| |
Collapse
|
32
|
Bajaj A, Senthivel V, Bhoyar R, Jain A, Imran M, Rophina M, Divakar MK, Jolly B, Verma A, Mishra A, Sharma D, Deepti S, Sharma G, Bansal R, Yadav R, Scaria V, Naik N, Sivasubbu S. 1029 genomes of self-declared healthy individuals from India reveal prevalent and clinically relevant cardiac ion channelopathy variants. Hum Genomics 2022; 16:30. [PMID: 35932045 PMCID: PMC9354277 DOI: 10.1186/s40246-022-00402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The prevalence and genetic spectrum of cardiac channelopathies exhibit population-specific differences. We aimed to understand the spectrum of cardiac channelopathy-associated variations in India, which is characterised by a genetically diverse population and is largely understudied in the context of these disorders. RESULTS We utilised the IndiGenomes dataset comprising 1029 whole genomes from self-declared healthy individuals as a template to filter variants in 36 genes known to cause cardiac channelopathies. Our analysis revealed 186,782 variants, of which we filtered 470 variants that were identified as possibly pathogenic (440 nonsynonymous, 30 high-confidence predicted loss of function ). About 26% (124 out of 470) of these variants were unique to the Indian population as they were not reported in the global population datasets and published literature. Classification of 470 variants by ACMG/AMP guidelines unveiled 13 pathogenic/likely pathogenic (P/LP) variants mapping to 19 out of the 1029 individuals. Further query of 53 probands in an independent cohort of cardiac channelopathy, using exome sequencing, revealed the presence of 3 out of the 13 P/LP variants. The identification of p.G179Sfs*62, p.R823W and c.420 + 2 T > C variants in KCNQ1, KCNH2 and CASQ2 genes, respectively, validate the significance of the P/LP variants in the context of clinical applicability as well as for large-scale population analysis. CONCLUSION A compendium of ACMG/AMP classified cardiac channelopathy variants in 1029 self-declared healthy Indian population was created. A conservative genotypic prevalence was estimated to be 0.9-1.8% which poses a huge public health burden for a country with large population size like India. In the majority of cases, these disorders are manageable and the risk of sudden cardiac death can be alleviated by appropriate lifestyle modifications as well as treatment regimens/clinical interventions. Clinical utility of the obtained variants was demonstrated using a cardiac channelopathy patient cohort. Our study emphasises the need for large-scale population screening to identify at-risk individuals and take preventive measures. However, we suggest cautious clinical interpretation to be exercised by taking other cardiac channelopathy risk factors into account.
Collapse
Affiliation(s)
- Anjali Bajaj
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vigneshwar Senthivel
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rahul Bhoyar
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India
| | - Abhinav Jain
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mohamed Imran
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mercy Rophina
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mohit Kumar Divakar
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Bani Jolly
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Ankit Verma
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India
| | - Anushree Mishra
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India
| | - Disha Sharma
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Siddharthan Deepti
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Gautam Sharma
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Raghav Bansal
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Rakesh Yadav
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Vinod Scaria
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Nitish Naik
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Sridhar Sivasubbu
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
33
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
34
|
Choudhury TZ, Garg V. Molecular genetic mechanisms of congenital heart disease. Curr Opin Genet Dev 2022; 75:101949. [PMID: 35816939 PMCID: PMC9673038 DOI: 10.1016/j.gde.2022.101949] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/28/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Congenital heart disease (CHD) affects ~1% of all live births, but a definitive etiology is identified in only ~50%. The causes include chromosomal aneuploidies and copy-number variations, pathogenic variation in single genes, and exposure to environmental factors. High-throughput sequencing of large CHD patient cohorts and continued expansion of the complex molecular regulation of cardiac morphogenesis has uncovered numerous disease-causing genes, but the previously held monogenic model for CHD etiology does not sufficiently explain the heterogeneity and incomplete penetrance of CHD phenotypes. Here, we provide a summary of well-known genetic contributors to CHD and discuss emerging concepts supporting complex genetic mechanisms that may provide explanations for cases that currently lack a molecular diagnosis.
Collapse
Affiliation(s)
- Talita Z Choudhury
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Heart Center, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
35
|
Exploring the Mutational Landscape of Isolated Congenital Heart Defects: An Exome Sequencing Study Using Cardiac DNA. Genes (Basel) 2022; 13:genes13071214. [PMID: 35885997 PMCID: PMC9320903 DOI: 10.3390/genes13071214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital heart defects (CHD) are the most common congenital anomalies in liveborn children. In contrast to syndromic CHD (SCHD), the genetic basis of isolated CHD (ICHD) is complex, and the underlying pathogenic mechanisms appear intricate and are incompletely understood. Next to rare Mendelian conditions, somatic mosaicism or a complex multifactorial genetic architecture are assumed for most ICHD. We performed exome sequencing (ES) in 73 parent–offspring ICHD trios using proband DNA extracted from cardiac tissue. We identified six germline de novo variants and 625 germline rare inherited variants with ‘damaging’ in silico predictions in cardiac-relevant genes expressed in the developing human heart. There were no CHD-relevant somatic variants. Transmission disequilibrium testing (TDT) and association testing (AT) yielded no statistically significant results, except for the AT of missense variants in cilia genes. Somatic mutations are not a common cause of ICHD. Rare de novo and inherited protein-damaging variants may contribute to ICHD, possibly as part of an oligogenic or polygenic disease model. TDT and AT failed to provide informative results, likely due to the lack of power, but provided a framework for future studies in larger cohorts. Overall, the diagnostic value of ES on cardiac tissue is limited in individual ICHD cases.
Collapse
|
36
|
Anderson CL, Munawar S, Reilly L, Kamp TJ, January CT, Delisle BP, Eckhardt LL. How Functional Genomics Can Keep Pace With VUS Identification. Front Cardiovasc Med 2022; 9:900431. [PMID: 35859585 PMCID: PMC9291992 DOI: 10.3389/fcvm.2022.900431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/09/2022] [Indexed: 01/03/2023] Open
Abstract
Over the last two decades, an exponentially expanding number of genetic variants have been identified associated with inherited cardiac conditions. These tremendous gains also present challenges in deciphering the clinical relevance of unclassified variants or variants of uncertain significance (VUS). This review provides an overview of the advancements (and challenges) in functional and computational approaches to characterize variants and help keep pace with VUS identification related to inherited heart diseases.
Collapse
Affiliation(s)
- Corey L. Anderson
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Saba Munawar
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Louise Reilly
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy J. Kamp
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Craig T. January
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lee L. Eckhardt
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
37
|
Hylind RJ, Pereira AC, Quiat D, Chandler SF, Roston TM, Pu WT, Bezzerides VJ, Seidman JG, Seidman CE, Abrams DJ. Population Prevalence of Premature Truncating Variants in Plakophilin-2 and Association With Arrhythmogenic Right Ventricular Cardiomyopathy: A UK Biobank Analysis. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003507. [PMID: 35536239 PMCID: PMC9400410 DOI: 10.1161/circgen.121.003507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Truncating variants in the desmosomal gene PKP2 (PKP2tv) cause arrhythmogenic right ventricular cardiomyopathy (ARVC) yet display varied penetrance and expressivity. METHODS We identified individuals with PKP2tv from the UK Biobank (UKB) and determined the prevalence of an ARVC phenotype and other cardiovascular traits based on clinical and procedural data. The PKP2tv minor allelic frequency in the UKB was compared with a second cohort of probands with a clinical diagnosis of ARVC (ARVC cohort), with a figure of 1:5000 assumed for disease prevalence. In silico predictors of variant pathogenicity (combined annotation-dependent depletion and Splice AI [Illumina, Inc.]) were assessed. RESULTS PKP2tv were identified in 193/200 643 (0.10%) UKB participants, with 47 unique PKP2tv. Features consistent with ARVC were present in 3 (1.6%), leaving 190 with PKP2tv without manifest disease (UKB cohort; minor allelic frequency 4.73×10-4). The ARVC cohort included 487 ARVC probands with 144 distinct PKP2tv, with 25 PKP2tv common to both cohorts. The odds ratio for ARVC for the 25 common PKP2tv was 0.047 (95% CI, 0.001-0.268; P=2.43×10-6), and only favored ARVC (odds ratio >1) for a single variant, p.Arg79*. In silico variant analysis did not differentiate PKP2tv between the 2 cohorts. Atrial fibrillation was over-represented in the UKB cohort in those with PKP2tv (7.9% versus 4.3%; odds ratio, 2.11; P=0.005). CONCLUSIONS PKP2tv are prevalent in the population and associated with ARVC in only a small minority, necessitating a more detailed understanding of how PKP2tv cause ARVC in combination with associated genetic and environmental risk factors.
Collapse
Affiliation(s)
- Robyn J Hylind
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| | - Alexandre C Pereira
- Department of Genetics (A.C.P., D.Q., J.G.S., C.E.S.), Harvard Medical School, Boston MA
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Brazil (A.C.P.)
| | - Daniel Quiat
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
- Department of Genetics (A.C.P., D.Q., J.G.S., C.E.S.), Harvard Medical School, Boston MA
| | - Stephanie F Chandler
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| | - Thomas M Roston
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| | - William T Pu
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| | - Vassilios J Bezzerides
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| | - Jonathan G Seidman
- Department of Genetics (A.C.P., D.Q., J.G.S., C.E.S.), Harvard Medical School, Boston MA
| | - Christine E Seidman
- Department of Genetics (A.C.P., D.Q., J.G.S., C.E.S.), Harvard Medical School, Boston MA
- Cardiovascular Division, Brigham and Women's Hospital (C.E.S.), Harvard Medical School, Boston MA
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Dominic J Abrams
- Inherited Cardiac Arrhythmia Program, Department of Cardiology, Boston Children's Hospital (R.J.H., D.Q., S.F.C., T.M.R., W.T.P., V.J.B., D.J.A.), Harvard Medical School, Boston MA
| |
Collapse
|
38
|
Lukas Laws J, Lancaster MC, Ben Shoemaker M, Stevenson WG, Hung RR, Wells Q, Marshall Brinkley D, Hughes S, Anderson K, Roden D, Stevenson LW. Arrhythmias as Presentation of Genetic Cardiomyopathy. Circ Res 2022; 130:1698-1722. [PMID: 35617362 PMCID: PMC9205615 DOI: 10.1161/circresaha.122.319835] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is increasing evidence regarding the prevalence of genetic cardiomyopathies, for which arrhythmias may be the first presentation. Ventricular and atrial arrhythmias presenting in the absence of known myocardial disease are often labelled as idiopathic, or lone. While ventricular arrhythmias are well-recognized as presentation for arrhythmogenic cardiomyopathy in the right ventricle, the scope of arrhythmogenic cardiomyopathy has broadened to include those with dominant left ventricular involvement, usually with a phenotype of dilated cardiomyopathy. In addition, careful evaluation for genetic cardiomyopathy is also warranted for patients presenting with frequent premature ventricular contractions, conduction system disease, and early onset atrial fibrillation, in which most detected genes are in the cardiomyopathy panels. Sudden death can occur early in the course of these genetic cardiomyopathies, for which risk is not adequately tracked by left ventricular ejection fraction. Only a few of the cardiomyopathy genotypes implicated in early sudden death are recognized in current indications for implantable cardioverter defibrillators which otherwise rely upon a left ventricular ejection fraction ≤0.35 in dilated cardiomyopathy. The genetic diagnoses impact other aspects of clinical management such as exercise prescription and pharmacological therapy of arrhythmias, and new therapies are coming into clinical investigation for specific genetic cardiomyopathies. The expansion of available genetic information and implications raises new challenges for genetic counseling, particularly with the family member who has no evidence of a cardiomyopathy phenotype and may face a potentially negative impact of a genetic diagnosis. Discussions of risk for both probands and relatives need to be tailored to their numeric literacy during shared decision-making. For patients presenting with arrhythmias or cardiomyopathy, extension of genetic testing and its implications will enable cascade screening, intervention to change the trajectory for specific genotype-phenotype profiles, and enable further development and evaluation of emerging targeted therapies.
Collapse
Affiliation(s)
- J Lukas Laws
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Megan C Lancaster
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - M Ben Shoemaker
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - William G Stevenson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Rebecca R Hung
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - D Marshall Brinkley
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Sean Hughes
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Katherine Anderson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Dan Roden
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Lynne W Stevenson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
39
|
Abstract
Brugada syndrome is a heritable channelopathy characterized by a peculiar electrocardiogram (ECG) pattern and increased risk of cardiac arrhythmias and sudden death. The arrhythmias originate because of an imbalance between the repolarizing and depolarizing currents that modulate the cardiac action potential. Even if an overt structural cardiomyopathy is not typical of Brugada syndrome, fibrosis and structural changes in the right ventricle contribute to a conduction slowing, which ultimately facilitates ventricular arrhythmias. Currently, Mendelian autosomal dominant transmission is detected in less than 25% of all clinical confirmed cases. Although 23 genes have been associated with the condition, only SCN5A, encoding the cardiac sodium channel, is considered clinically actionable and disease causing. The limited monogenic inheritance has pointed toward new perspectives on the possible complex genetic architecture of the disease, involving polygenic inheritance and a polygenic risk score that can influence penetrance and risk stratification. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| | - Sarah Costa
- Department of Internal Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| |
Collapse
|
40
|
Machine learning approaches to explore digenic inheritance. Trends Genet 2022; 38:1013-1018. [DOI: 10.1016/j.tig.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
|
41
|
Martínez-Campelo L, Cruz R, Blanco-Verea A, Moscoso I, Ramos-Luis E, Lage R, Álvarez-Barredo M, Sabater-Molina M, Peñafiel-Verdú P, Jiménez-Jáimez J, Rodríguez-Mañero M, Brion M. Searching for genetic modulators of the phenotypic heterogeneity in Brugada syndrome. PLoS One 2022; 17:e0263469. [PMID: 35231055 PMCID: PMC8887717 DOI: 10.1371/journal.pone.0263469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
In Brugada syndrome, even within the same family where all affected individuals share the same mutation, phenotypic variation is prominent, with variable penetrance and expressivity, presenting different degrees of involvement. It is difficult to establish a direct correlation between genotype and phenotype to predict prognosis in complications and risk of sudden death. The factors that modulate this inter- and intra-familial phenotypic variability remain to be determined. With the intention of testing whether other genetic factors, in addition to the causal mutation in SCN5A, may have a modulating effect on the Brugada phenotype and the risk of sudden death, we have studied 8 families with a causal variant in SCN5A with at least two affected individuals, one of whom has suffered cardiac arrest or sudden death. Whole exome sequencing was performed looking for additional variants that modify the phenotype and allow us to predict a better or worse prognosis for the evolution of the disease. The results did not show any clear genetic modifier; nevertheless, highlight the possible implication of the cholesterol and fibrosis pathways, as well as the circadian rhythm, as possible modulators of Brugada syndrome phenotype.
Collapse
Affiliation(s)
- Laura Martínez-Campelo
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- CIBER of Rare Diseases, Carlos III Health Institute, Madrid, Spain
| | - Alejandro Blanco-Verea
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Moscoso
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Ramos-Luis
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ricardo Lage
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Álvarez-Barredo
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
| | - María Sabater-Molina
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiogenetics Laboratory, Murcian Institute for Biosanitary Research, Cardiology Service, Virgen de la Arrixaca University Clinical Hospital, Murcia, Spain
| | - Pablo Peñafiel-Verdú
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiogenetics Laboratory, Murcian Institute for Biosanitary Research, Cardiology Service, Virgen de la Arrixaca University Clinical Hospital, Murcia, Spain
| | - Juan Jiménez-Jáimez
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Arrhythmia Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Moisés Rodríguez-Mañero
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiology Service, Santiago de Compostela University Hospital, Santiago de Compostela, Spain
| | - María Brion
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Family Heart Disease Unit, Cardiology Service, Santiago de Compostela University Hospital, Santiago de Compostela, Spain
| |
Collapse
|
42
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
43
|
Ben-Haim Y, Behr ER. Genetics of sudden cardiac death. Curr Opin Cardiol 2022; 37:212-218. [DOI: 10.1097/hco.0000000000000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Gu Q, Xu F, Orgil BO, Khuchua Z, Munkhsaikhan U, Johnson JN, Alberson NR, Pierre JF, Black DD, Dong D, Brennan JA, Cathey BM, Efimov IR, Towbin JA, Purevjav E, Lu L. Systems genetics analysis defines importance of TMEM43/ LUMA for cardiac- and metabolic-related pathways. Physiol Genomics 2022; 54:22-35. [PMID: 34766515 PMCID: PMC8721901 DOI: 10.1152/physiolgenomics.00066.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
Broad cellular functions and diseases including muscular dystrophy, arrhythmogenic right ventricular cardiomyopathy (ARVC5) and cancer are associated with transmembrane protein43 (TMEM43/LUMA). The study aimed to investigate biological roles of TMEM43 through genetic regulation, gene pathways and gene networks, candidate interacting genes, and up- or downstream regulators. Cardiac transcriptomes from 40 strains of recombinant inbred BXD mice and two parental strains representing murine genetic reference population (GRP) were applied for genetic correlation, functional enrichment, and coexpression network analysis using systems genetics approach. The results were validated in a newly created knock-in Tmem43-S358L mutation mouse model (Tmem43S358L) that displayed signs of cardiac dysfunction, resembling ARVC5 phenotype seen in humans. We found high Tmem43 levels among BXDs with broad variability in expression. Expression of Tmem43 highly negatively correlated with heart mass and heart rate among BXDs, whereas levels of Tmem43 highly positively correlated with plasma high-density lipoproteins (HDL). Through finding differentially expressed genes (DEGs) between Tmem43S358L mutant and wild-type (Tmem43WT) lines, 18 pathways (out of 42 found in BXDs GRP) that are involved in ARVC, hypertrophic cardiomyopathy, dilated cardiomyopathy, nonalcoholic fatty liver disease, Alzheimer's disease, Parkinson's disease, and Huntington's disease were verified. We further constructed Tmem43-mediated gene network, in which Ctnna1, Adcy6, Gnas, Ndufs6, and Uqcrc2 were significantly altered in Tmem43S358L mice versus Tmem43WT controls. Our study defined the importance of Tmem43 for cardiac- and metabolism-related pathways, suggesting that cardiovascular disease-relevant risk factors may also increase risk of metabolic and neurodegenerative diseases via TMEM43-mediated pathways.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Cardiology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Buyan-Ochir Orgil
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Zaza Khuchua
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Jason N Johnson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Neely R Alberson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Dennis D Black
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Deli Dong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jaclyn A Brennan
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Brianna M Cathey
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Jeffrey A Towbin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
- Department of Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
45
|
Sudden Infant Death Syndrome: the search for genetic predisposition. Heart Rhythm 2021; 19:674-675. [PMID: 34922005 DOI: 10.1016/j.hrthm.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022]
|
46
|
Montañés-Agudo P, Casini S, Aufiero S, Ernault AC, van der Made I, Pinto YM, Remme CA, Creemers EE. Inhibition of minor intron splicing reduces Na+ and Ca2+ channel expression and function in cardiomyocytes. J Cell Sci 2021; 135:273616. [PMID: 34859816 PMCID: PMC8767276 DOI: 10.1242/jcs.259191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic genomes contain a tiny subset of ‘minor class’ introns with unique sequence elements that require their own splicing machinery. These minor introns are present in certain gene families with specific functions, such as voltage-gated Na+ and voltage-gated Ca2+ channels. Removal of minor introns by the minor spliceosome has been proposed as a post-transcriptional regulatory layer, which remains unexplored in the heart. Here, we investigate whether the minor spliceosome regulates electrophysiological properties of cardiomyocytes by knocking down the essential minor spliceosome small nuclear snRNA component U6atac in neonatal rat ventricular myocytes. Loss of U6atac led to robust minor intron retention within Scn5a and Cacna1c, resulting in reduced protein levels of Nav1.5 and Cav1.2 channels. Functional consequences were studied through patch-clamp analysis, and revealed reduced Na+ and L-type Ca2+ currents after loss of U6atac. In conclusion, minor intron splicing modulates voltage-dependent ion channel expression and function in cardiomyocytes. This may be of particular relevance in situations in which minor splicing activity changes, such as in genetic diseases affecting minor spliceosome components, or in acquired diseases in which minor spliceosome components are dysregulated, such as heart failure. Summary: Knockdown of minor spliceosome component U6atac in cardiomyocytes reveals that expression of the Na+ channel Scn5a and the L-type Ca2+ channel Cacna1c critically depend on minor intron splicing.
Collapse
Affiliation(s)
- Pablo Montañés-Agudo
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simona Casini
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simona Aufiero
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.,Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Auriane C Ernault
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Yigal M Pinto
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Esther E Creemers
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Balla C, Mele D, Vitali F, Andreoli C, Tonet E, Sanchini M, Ferlini A, Rapezzi C, Gualandi F, Bertini M. Novel SCN5A Variant Shows Multiple Phenotypic Expression in the Same Family. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003481. [PMID: 34749512 PMCID: PMC8694256 DOI: 10.1161/circgen.121.003481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cristina Balla
- Cardiological Center, S. Anna University Hospital, Ferrara. (C.B., D.M., F.V., E.T., C.R., M.B.)
| | - Daniela Mele
- Cardiological Center, S. Anna University Hospital, Ferrara. (C.B., D.M., F.V., E.T., C.R., M.B.)
| | - Francesco Vitali
- Cardiological Center, S. Anna University Hospital, Ferrara. (C.B., D.M., F.V., E.T., C.R., M.B.)
| | - Chiara Andreoli
- Cardiology Unit, San Giovanni Battista Hospital Foligno (C.A.)
| | - Elisabetta Tonet
- Cardiological Center, S. Anna University Hospital, Ferrara. (C.B., D.M., F.V., E.T., C.R., M.B.)
| | | | - Alessandra Ferlini
- Medical Genetic Logistic Unit, S. Anna University Hospital, Ferrara. (M.S., A.F., F.G.)
| | - Claudio Rapezzi
- Cardiological Center, S. Anna University Hospital, Ferrara. (C.B., D.M., F.V., E.T., C.R., M.B.).,Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy (C.R.)
| | - Francesca Gualandi
- Medical Genetic Logistic Unit, S. Anna University Hospital, Ferrara. (M.S., A.F., F.G.)
| | - Matteo Bertini
- Cardiological Center, S. Anna University Hospital, Ferrara. (C.B., D.M., F.V., E.T., C.R., M.B.)
| |
Collapse
|
48
|
Pearman CM, Walia J, Alqarawi W, Larsen JM, Leach E, Krahn AD, Laksman Z. The clinical utility of procainamide-induced late potentials on the signal averaged ECG. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:2046-2053. [PMID: 34648655 DOI: 10.1111/pace.14379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Late potentials (LPs) identified on the signal averaged electrocardiogram (SAECG) are a marker for an increased risk of arrhythmias in Brugada syndrome (BrS). Procainamide is a sodium channel blocker used to diagnose BrS. The effects of Procainamide on the SAECG in those with BrS and the significance of Procainamide-induced LPs are unknown. METHODS Procainamide provocation was performed for suspected BrS with 12-lead and SAECG pre- and post-infusion. Filtered QRS duration (fQRSd), duration of low amplitude signals <40 μV (LAS40) and root-mean-square voltage in the terminal 40 ms (RMS40) were determined. RESULTS Data from 150 patients were included in the analysis (mean age 44.5 years, 109 males). Procainamide increased fQRSd (Pre 118.8 ± 10.5 ms, post 121.2 ± 10.2 ms, p < 0.001) and LAS40 (Pre 38.7 ± 9.8 ms, post 40.2 ± 10.5 ms, p = 0.005) and decreased RMS40 (Pre 24.6 ± 12 ms, post 22.8 ± 12 ms, p = 0.002). LPs were present in 68/150 (45%) at baseline. Fifteen patients with negative baseline SAECGs had LPs unmasked by Procainamide, but six patients had LPs at baseline that were no longer present following Procainamide. Comparing those with normal hearts (n = 48) to those with a final diagnosis of BrS (n = 38), Procainamide prolonged fQRSd to a greater extent in those with BrS. Comparing those with Procainamide-induced LPs to those with no LPs at any time did not highlight any aspect of phenotype and did not correlate with a history of ventricular arrhythmias. CONCLUSIONS Procainamide influences the SAECG, provoking LPs in a small proportion of patients. However, there is no evidence that Procainamide-induced LPs provide additional diagnostic information or aid risk stratification.
Collapse
Affiliation(s)
- Charles Michael Pearman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada.,Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jagdeep Walia
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Wael Alqarawi
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada.,Department of Cardiac Sciences, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,University of Ottawa Heart Institute, Ottawa, Canada
| | - Jacob Moesgaard Larsen
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada.,Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Emma Leach
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
49
|
Marsman EMJ, Postema PG, Remme CA. Brugada syndrome: update and future perspectives. Heart 2021; 108:668-675. [PMID: 34649929 DOI: 10.1136/heartjnl-2020-318258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited cardiac disorder, characterised by a typical ECG pattern and an increased risk of arrhythmias and sudden cardiac death (SCD). BrS is a challenging entity, in regard to diagnosis as well as arrhythmia risk prediction and management. Nowadays, asymptomatic patients represent the majority of newly diagnosed patients with BrS, and its incidence is expected to rise due to (genetic) family screening. Progress in our understanding of the genetic and molecular pathophysiology is limited by the absence of a true gold standard, with consensus on its clinical definition changing over time. Nevertheless, novel insights continue to arise from detailed and in-depth studies, including the complex genetic and molecular basis. This includes the increasingly recognised relevance of an underlying structural substrate. Risk stratification in patients with BrS remains challenging, particularly in those who are asymptomatic, but recent studies have demonstrated the potential usefulness of risk scores to identify patients at high risk of arrhythmia and SCD. Development and validation of a model that incorporates clinical and genetic factors, comorbidities, age and gender, and environmental aspects may facilitate improved prediction of disease expressivity and arrhythmia/SCD risk, and potentially guide patient management and therapy. This review provides an update of the diagnosis, pathophysiology and management of BrS, and discusses its future perspectives.
Collapse
Affiliation(s)
- E Madelief J Marsman
- Departments of Experimental and Clinical Cardiology, Heart Center, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Pieter G Postema
- Departments of Experimental and Clinical Cardiology, Heart Center, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Departments of Experimental and Clinical Cardiology, Heart Center, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Pillai A, Koneru JN, Ellenbogen KA, Padala SK. Autonomic Modulation for Treatment of Repolarization Alternans and Refractory Ventricular Electrical Storm. JACC Case Rep 2021; 3:1438-1443. [PMID: 34557688 PMCID: PMC8446025 DOI: 10.1016/j.jaccas.2021.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Macroscopic T-wave alternans (TWA) is a rare finding on surface electrocardiogram and has been associated with an increased risk of impending sudden cardiac death. We highlight a case of macroscopic TWA in a patient with markedly prolonged QTc interval preceding ventricular electrical storm, which was refractory to medical management. Autonomic modulation of the stellate ganglion resulted in improvement in both TWA and QTc interval. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Ajay Pillai
- Address for correspondence: Dr Ajay Pillai, Division of Cardiac Electrophysiology, Virginia Commonwealth University, Gateway Building, 3rd Floor, 3-216, 1200 East Marshall Street, Richmond, Virginia 23298, USA. @AjayPMD
| | | | | | | |
Collapse
|