1
|
Li P, Liu D, Gao P, Yuan M, Zhao Z, Zhang Y, Zhou Z, Zhang Q, Yuan M, Liu X, Tse G, Li G, Bao Q, Liu T. Mitigating ibrutinib-induced ventricular arrhythmia and cardiac dysfunction with metformin. CANCER INNOVATION 2025; 4:e151. [PMID: 39544722 PMCID: PMC11560382 DOI: 10.1002/cai2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 11/17/2024]
Abstract
Background Ibrutinib is a first-line drug that targets Bruton's tyrosine kinase for the treatment of B cell cancer. However, cardiotoxicity induced by ibrutinib is a major side effect that limits its clinical use. This study aimed to investigate the mechanism of ibrutinib-induced cardiotoxicity and evaluate the protective role of metformin. Methods The study utilized male C57BL/6 J mice, which were administered ibrutinib at a dosage of 30 mg/kg/day via oral gavage for 4 weeks to induce cardiotoxicity. Metformin was administered orally at 200 mg/kg/day for 5 weeks, starting 1 week before ibrutinib treatment. Cardiac function was assessed using echocardiography and electrophysiological studies, including surface electrocardiography and epicardial electrical mapping. Blood pressure was measured using a tail-cuff system. Western blot analysis was conducted to evaluate the activity of the PI3K-AKT and AMPK pathways, along with apoptosis markers. Results C57BL/6 J mice were treated with ibrutinib for 4 weeks to assess its effect on cardiac function. We observed that ibrutinib induced ventricular arrhythmia and abnormal conduction while reducing the left ventricular ejection fraction. Furthermore, pretreatment with metformin reversed ibrutinib-induced cardiotoxicity. Mechanistically, ibrutinib decreased PI3K-AKT activity, resulting in apoptosis of cardiomyocytes. Administration of metformin upregulated AMPK and PI3K-AKT activity, which contributed to the improvement of cardiac function. Conclusion The study concludes that metformin effectively mitigates ibrutinib-induced cardiotoxicity, including ventricular arrhythmia and cardiac dysfunction, by enhancing AMPK and PI3K-AKT pathway activity. These findings suggest that metformin holds potential as a therapeutic strategy to protect against the adverse cardiac effects associated with ibrutinib treatment, offering a promising approach for improving the cardiovascular safety of patients undergoing therapy for B cell cancers.
Collapse
Affiliation(s)
- Pengsha Li
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Daiqi Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Pan Gao
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Ming Yuan
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhiqiang Zhao
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Zandong Zhou
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Qingling Zhang
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Xing Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Gary Tse
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- Kent and Medway Medical SchoolCanterburyUK
| | - Guangping Li
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
2
|
Cerrato G, Liu P, Zhao L, Petrazzuolo A, Humeau J, Schmid ST, Abdellatif M, Sauvat A, Kroemer G. AI-based classification of anticancer drugs reveals nucleolar condensation as a predictor of immunogenicity. Mol Cancer 2024; 23:275. [PMID: 39702289 DOI: 10.1186/s12943-024-02189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) inducers are often identified in phenotypic screening campaigns by the release or surface exposure of various danger-associated molecular patterns (DAMPs) from malignant cells. This study aimed to streamline the identification of ICD inducers by leveraging cellular morphological correlates of ICD, specifically the condensation of nucleoli (CON). METHODS We applied artificial intelligence (AI)-based imaging analyses to Cell Paint-stained cells exposed to drug libraries, identifying CON as a marker for ICD. CON was characterized using SYTO 14 fluorescent staining and holotomographic microscopy, and visualized by AI-deconvoluted transmitted light microscopy. A neural network-based quantitative structure-activity relationship (QSAR) model was trained to link molecular descriptors of compounds to the CON phenotype, and the classifier was validated using an independent dataset from the NCI-curated mechanistic collection of anticancer agents. RESULTS CON strongly correlated with the inhibition of DNA-to-RNA transcription. Cytotoxic drugs that inhibit RNA synthesis without causing DNA damage were as effective as conventional cytotoxicants in inducing ICD, as demonstrated by DAMPs release/exposure and vaccination efficacy in mice. The QSAR classifier successfully predicted drugs with a high likelihood of inducing CON. CONCLUSIONS We developed AI-based algorithms for predicting CON-inducing drugs based on molecular descriptors and their validation using automated micrographs analysis, offering a new approach for screening ICD inducers with minimized adverse effects in cancer therapy.
Collapse
Affiliation(s)
- Giulia Cerrato
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Adriana Petrazzuolo
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- International Centre for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Juliette Humeau
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), Equipe Oncopharmacologie, Faculté Rockfeller, Lyon, France
| | - Sophie Theresa Schmid
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.
- Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
- Centre de Recherche des Cordeliers, 15 Rue de l'École de Médecine, Paris, 75006, France.
| |
Collapse
|
3
|
Rajakumar A, Nguyen S, Ford N, Ogundipe G, Lopez-Nowak E, Kondrachuk O, Gupta MK. Acetylation-Mediated Post-Translational Modification of Pyruvate Dehydrogenase Plays a Critical Role in the Regulation of the Cellular Acetylome During Metabolic Stress. Metabolites 2024; 14:701. [PMID: 39728482 DOI: 10.3390/metabo14120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Cardiac diseases remain one of the leading causes of death globally, often linked to ischemic conditions that can affect cellular homeostasis and metabolism, which can lead to the development of cardiovascular dysfunction. Considering the effect of ischemic cardiomyopathy on the global population, it is vital to understand the impact of ischemia on cardiac cells and how ischemic conditions change different cellular functions through post-translational modification of cellular proteins. Methods: To understand the cellular function and fine-tuning during stress, we established an ischemia model using neonatal rat ventricular cardiomyocytes. Further, the level of cellular acetylation was determined by Western blotting and affinity chromatography coupled with liquid chromatography-mass spectroscopy. Results: Our study found that the level of cellular acetylation significantly reduced during ischemic conditions compared to normoxic conditions. Further, in mass spectroscopy data, 179 acetylation sites were identified in the proteins in ischemic cardiomyocytes. Among them, acetylation at 121 proteins was downregulated, and 26 proteins were upregulated compared to the control groups. Differentially, acetylated proteins are mainly involved in cellular metabolism, sarcomere structure, and motor activity. Additionally, a protein enrichment study identified that the ischemic condition impacted two major biological pathways: the acetyl-CoA biosynthesis process from pyruvate and the tricarboxylic acid cycle by deacetylation of the associated proteins. Moreover, most differential acetylation was found in the protein pyruvate dehydrogenase complex. Conclusions: Understanding the differential acetylation of cellular protein during ischemia may help to protect against the harmful effect of ischemia on cellular metabolism and cytoskeleton organization. Additionally, our study can help to understand the fine-tuning of proteins at different sites during ischemia.
Collapse
Affiliation(s)
- Aishwarya Rajakumar
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sarah Nguyen
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Nicole Ford
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Gbenga Ogundipe
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Ethan Lopez-Nowak
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Olena Kondrachuk
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Manish K Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
4
|
Lv J, Chen Q, Wang J, Guo N, Fang Y, Guo Q, Li J, Ma X, Zhan H, Chen W, Wang L, Yan Q, Tong J, Wang Z. Downregulation of MLF1 safeguards cardiomyocytes against senescence-associated chromatin opening. Nucleic Acids Res 2024:gkae1176. [PMID: 39657728 DOI: 10.1093/nar/gkae1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Aging-associated cardiac hypertrophy (AACH) increases susceptibility to heart failure in the elderly. Chromatin remodeling contributes to the gene reprogramming in AACH; however, the intrinsic regulations remain elusive. We performed a transcriptome analysis for AACH in comparison with pressure-overload-induced pathological cardiac hypertrophy in mice and identified myeloid leukemia factor 1 (MLF1) as an aging-sensitive factor whose expression was reduced during aging but could be reversed by anti-aging administrations. In human AC16 cardiomyocytes, silencing MLF1 suppressed H2O2-induced cell senescence while the phenotype was exacerbated by MLF1 overexpression. RNA-seq analysis revealed that MLF1 functioned as a transcription activator, regulating genomic-clustered genes that mainly involved in inflammation and development. ATAC-seq analysis showed a prominent reduction in chromatin accessibility at the promoter regions of senescence effectors, like IL1B and p21, after MLF1 knockdown. Despite a potential interaction of MLF1 with the histone methyltransferase PRC2, its inhibition failed to reverse the impact of MLF1 knockdown. Instead, MLF1-mediated regulation was blunted by inhibiting the acetyltransferase EP300. CUT&Tag analysis showed that MLF1 bound to target promoters and recruited EP300 to promote H3K27ac deposition. Collectively, we identify MLF1 as a pro-aging epigenetic orchestrator that recruits EP300 to facilitate opening of the condensed chromatin encompassing senescence effectors.
Collapse
Affiliation(s)
- Jian Lv
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Chen
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Junmei Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Ningning Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Fang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qiuxiao Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Jiajie Li
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Xiao Ma
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hongchao Zhan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Weihao Chen
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qingqing Yan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhihua Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
5
|
Zhu Q, Lu X, Chen M, Zhang T, Shi M, Yao W, Zhang H, Gao R, Li X, Zhou Y, Liao S. IGFBP5 affects cardiomyocyte survival and functional recovery in mice following myocardial ischemia. Commun Biol 2024; 7:1594. [PMID: 39613849 DOI: 10.1038/s42003-024-07304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Insulin-like growth factor-binding protein 5 (IGFBP5) has been shown to be useful for the diagnosis and treatment of multiple tumors and cerebrovascular diseases. However, it is unknown whether IGFBP5 is involved in myocardial repair following myocardial infarction (MI). Here we show high expression of IGFBP5 in multiple models of ischemic and hypoxic injury. IGFBP5 affected the proliferation of neonatal rat cardiomyocytes (NRCMs) and the cardiomyocyte apoptosis induced by oxygen-glucose deprivation (OGD). Subsequently, heart-specific IGFBP5 knockdown inhibited myocardial apoptosis and increased cardiomyocyte proliferation in mice with MI. During the chronic remodeling stage, heart-specific regulation of IGFBP5 ameliorated pathological cardiac remodeling and dysfunction. Mechanistically, IGFBP5 regulated cardiomyocyte survival through the insulin-like growth factor 1 (IGF1) receptor (IGF1R)/protein kinase B (PKB/AKT) pathway. In summary, our results provide mechanistic insights into the effect of IGFBP5 on cardiomyocyte during cardiac repair. IGFBP5 may represent a therapeutic target for myocardial ischemic injury.
Collapse
Affiliation(s)
- Qingqing Zhu
- Division of Cardiac Surgery Intensive Care Unit, Department of Cardiac Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xinyi Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Mengli Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ting Zhang
- Department of Cardiovascular Medicine, The Air Force Hospital from Eastern Theater, Nanjing, China
| | - Mengsha Shi
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenming Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Haifeng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Rongrong Gao
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xinli Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yanli Zhou
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| | - Shengen Liao
- National Key Laboratory for Innovation and Transformation of Luobing Theory. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
6
|
Ding C, Guo Z, Liao Q, Zuo R, He J, Ye Z, Chen W. Network Pharmacology and Machine Learning Reveal Salidroside's Mechanisms in Idiopathic Pulmonary Fibrosis Treatment. J Inflamm Res 2024; 17:9453-9467. [PMID: 39600682 PMCID: PMC11590657 DOI: 10.2147/jir.s493171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Idiopathic pulmonary fibrosis (IPF) is an irreversible respiratory disease. In this study, we evaluated the efficacy of salidroside (SAL), the main component of Rhodiola rosea, in treating IPF. Methods The pharmacological effects of SAL against epithelial-mesenchymal transition (EMT) and IPF were assessed through in vivo and in vitro experiments. Targets for SAL in treating IPF were identified from various databases and a PPI network was constructed. Functional analyses of target genes were performed using GO, KEGG, DO, and GSEA. Core target genes were identified using LASSO logistic regression and support vector machine (SVM) analysis, followed by molecular docking simulations. Predicted targets and pathways were validated through Western blotting, qRT-PCR, and IHC. Results Our results demonstrated that SAL ameliorated alveolar epithelial cells (AECs) EMT and mitigated bleomycin -induced pulmonary fibrosis. Through network pharmacology, we identified 74 targets for SAL in the treatment of IPF (PFDR<0.05) and analyzed their biological functions. Based on these findings, we further applied machine learning techniques to narrow down 9 core targets (PFDR<0.05). Integrating the results from molecular docking, KEGG, and GSEA analyses, we selected three key targets-IGF1, hypoxia-inducible factor 1-alpha (HIF-1α), and MAPK (PFDR<0.05)-for further investigation. Our study revealed that SAL inhibits the IGF1 signaling pathway, thereby improving AECs senescence and cell cycle arrest. By inhibiting the HIF-1α pathway, SAL alleviates endoplasmic reticulum stress and reduces intracellular ROS accumulation. Moreover, SAL suppresses the activation of the MAPK signaling pathway, leading to a decrease in inflammation markers in AECs and lung tissue. Conclusion Experimental results suggest that SAL effectively ameliorates BLM-induced EMT and IPF, likely through the inhibition of IGF1, HIF-1α, and MAPK signaling pathways. This study holds potential translational prospects and may provide new perspectives and insights for the use of traditional Chinese medicine in the treatment of IPF.
Collapse
Affiliation(s)
- Chenchun Ding
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Quan Liao
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Renjie Zuo
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Junjie He
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Ziwei Ye
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| | - Weibin Chen
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
| |
Collapse
|
7
|
Packer M, Ferreira JP, Butler J, Filippatos G, Januzzi JL, González Maldonado S, Panova-Noeva M, Pocock SJ, Prochaska JH, Saadati M, Sattar N, Sumin M, Anker SD, Zannad F. Reaffirmation of Mechanistic Proteomic Signatures Accompanying SGLT2 Inhibition in Patients With Heart Failure: A Validation Cohort of the EMPEROR Program. J Am Coll Cardiol 2024; 84:1979-1994. [PMID: 39217550 DOI: 10.1016/j.jacc.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors exert a distinctive pattern of direct biological effects on the heart and kidney under experimental conditions, but the meaningfulness of these signatures for patients with heart failure has not been fully defined. OBJECTIVES We performed the first mechanistic validation study of large-scale proteomics in a double-blind randomized trial of any treatment in patients with heart failure. METHODS In a discovery cohort from the EMPEROR (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure and Reduced Ejection Fraction) program, we studied the effect of randomized treatment with placebo or empagliflozin on 1,283 circulating proteins in 1,134 patients with heart failure with a reduced or preserved ejection fraction. In a validation cohort, we expanded the number to 2,155 assessed proteins, which were measured in 1,120 EMPEROR participants who had not been studied previously. RESULTS In the validation cohort, 25 proteins were the most differentially enriched by empagliflozin (ie, ≥15% between-group difference and false discovery rate <1% at 12 weeks with known effects on the heart or kidney): 1) 13 proteins promote autophagy and other cellular quality-control functions (IGFBP1, OTUB1, DNAJB1, DNAJC9, RBP2, IST1, HSPA8, H-FABP, FABP6, ATPIFI, TfR1, EPO, IGBP1); 2) 12 proteins enhance mitochondrial health and ATP production (UMtCK, TBCA, L-FABP, H-FABP, FABP5, FABP6, RBP2, IST1, HSPA8, ATPIFI, TfR1, EPO); 3) 7 proteins augment cellular iron mobilization or erythropoiesis (TfR1, EPO, IGBP1, ERMAP, UROD, ATPIF1, SNCA); 4) 3 proteins influence renal tubular sodium handling; and 5) 9 proteins have restorative effects in the heart or kidneys, with many proteins exerting effects in >1 domain. These biological signatures replicated those observed in our discovery cohort. When the threshold for a meaningful between-group difference was lowered to ≥10%, there were 58 additional differentially enriched proteins with actions on the heart and kidney, but the biological signatures remained the same. CONCLUSIONS The replication of mechanistic signatures across discovery and validation cohorts closely aligns with the experimental effects of SGLT2 inhibitors. Thus, the actions of SGLT2 inhibitors-to promote autophagy, restore mitochondrial health and production of ATP, promote iron mobilization and erythropoiesis, influence renal tubular ion reabsorption, and normalize cardiac and renal structure and function-are likely to be relevant to patients with heart failure. (EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction [EMPEROR-Preserved], NCT03057951; EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction [EMPEROR-Reduced], NCT03057977).
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, USA; Imperial College London, London, United Kingdom.
| | - João Pedro Ferreira
- UnIC@RISE, Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA; University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece
| | - James L Januzzi
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece; Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | | | - Marina Panova-Noeva
- Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim, Germany; Center for Thrombosis and Haemostasis, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stuart J Pocock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jürgen H Prochaska
- Boehringer Ingelheim International GmbH, Ingelheim, Germany; Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maral Saadati
- Elderbrook Solutions GmbH, on behalf of Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité, Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France; F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| |
Collapse
|
8
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Heart Failure: A Deficiency of Energy-A Path Yet to Discover and Walk. Biomedicines 2024; 12:2589. [PMID: 39595155 PMCID: PMC11592498 DOI: 10.3390/biomedicines12112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure is a complex syndrome and our understanding and therapeutic approach relies mostly on its phenotypic presentation. Notably, the heart is characterized as the most energy-consuming organ, being both a producer and consumer, in order to satisfy multiple cardiac functions: ion exchange, electromechanical coordination, excitation-contraction coupling, etc. By obtaining further knowledge of the cardiac energy field, we can probably better characterize the basic pathophysiological events occurring in heart disease patients and understand the metabolic substance changes, the relationship between the alteration of energy production/consumption, and hence energetic deficiency not only in the heart as a whole but in every single cardiac territory, which will hopefully provide us with the opportunity to uncover the beginning of the heart failure process. In this respect, using (a) newer imaging techniques, (b) biomedicine, (c) nanotechnology, and (d) artificial intelligence, we can gain a deeper understanding of this complex syndrome. This, in turn, can lead to earlier and more effective therapeutic approaches, ultimately improving human health. To date, the scientific community has not given sufficient attention to the energetic starvation model. In our view, this review aims to encourage scientists and the medical community to conduct studies for a better understanding and treatment of this syndrome.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
| | - Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistiran University of Athens, 124 62 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| |
Collapse
|
9
|
Madreiter-Sokolowski CT, Hiden U, Krstic J, Panzitt K, Wagner M, Enzinger C, Khalil M, Abdellatif M, Malle E, Madl T, Osto E, Schosserer M, Binder CJ, Olschewski A. Targeting organ-specific mitochondrial dysfunction to improve biological aging. Pharmacol Ther 2024; 262:108710. [PMID: 39179117 DOI: 10.1016/j.pharmthera.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
In an aging society, unveiling new anti-aging strategies to prevent and combat aging-related diseases is of utmost importance. Mitochondria are the primary ATP production sites and key regulators of programmed cell death. Consequently, these highly dynamic organelles play a central role in maintaining tissue function, and mitochondrial dysfunction is a pivotal factor in the progressive age-related decline in cellular homeostasis and organ function. The current review examines recent advances in understanding the interplay between mitochondrial dysfunction and organ-specific aging. Thereby, we dissect molecular mechanisms underlying mitochondrial impairment associated with the deterioration of organ function, exploring the role of mitochondrial DNA, reactive oxygen species homeostasis, metabolic activity, damage-associated molecular patterns, biogenesis, turnover, and dynamics. We also highlight emerging therapeutic strategies in preclinical and clinical tests that are supposed to rejuvenate mitochondrial function, such as antioxidants, mitochondrial biogenesis stimulators, and modulators of mitochondrial turnover and dynamics. Furthermore, we discuss potential benefits and challenges associated with the use of these interventions, emphasizing the need for organ-specific approaches given the unique mitochondrial characteristics of different tissues. In conclusion, this review highlights the therapeutic potential of addressing mitochondrial dysfunction to mitigate organ-specific aging, focusing on the skin, liver, lung, brain, skeletal muscle, and lung, as well as on the reproductive, immune, and cardiovascular systems. Based on a comprehensive understanding of the multifaceted roles of mitochondria, innovative therapeutic strategies may be developed and optimized to combat biological aging and promote healthy aging across diverse organ systems.
Collapse
Affiliation(s)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Research Unit of Early Life Determinants, Medical University of Graz, Austria
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, BioTechMed-Graz, Austria
| | - Katrin Panzitt
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Martin Wagner
- Division of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Medical University of Graz, BioTechMed-Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Medical University of Graz, BioTechMed-Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Medical University of Graz, BioTechMed-Graz, Austria
| | - Elena Osto
- Division of Physiology and Pathophysiology, Medical University of Graz
| | - Markus Schosserer
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Andrea Olschewski
- Department of Anesthesiology and Intensive Care Medicine, LBI for Lung Vascular Research, Medical University of Graz, Austria.
| |
Collapse
|
10
|
Schuetz T, Dolejsi T, Beck E, Fugger F, Bild A, Duin MT, Gavranovic-Novakovic J, Hilbold E, Hoffmann T, Zuber J, Bauer A, Ruschitzka F, Bär C, Penninger JM, Haubner BJ. Murine neonatal cardiac regeneration depends on Insulin-like growth factor 1 receptor signaling. Sci Rep 2024; 14:22661. [PMID: 39349545 PMCID: PMC11443045 DOI: 10.1038/s41598-024-72783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Unlike adult mammals, the hearts of neonatal mice possess the ability to completely regenerate from myocardial infarction (MI). This observation has sparked vast interest in deciphering the potentially lifesaving and morbidity-reducing mechanisms involved in neonatal cardiac regeneration. In mice, the regenerative potential is lost within the first week of life and coincides with a reduction of Insulin-like growth factor 1 receptor (Igf1r) expression in the heart. Igf1r is a well-known regulator of cardiomyocyte maturation and proliferation in neonatal mice. To test the role of Igf1r as a pivotal factor in cardiac regeneration, we knocked down (KD) Igf1r specifically in cardiomyocytes using recombinant adeno-associated virus (rAAV) delivery and troponin T promotor driven shRNAmirs. Cardiomyocyte specific Igf1r KD versus control mice were subjected to experimental MI by permanent ligation of the left anterior descending artery (LAD). Cardiac functional and morphological data were analyzed over a 21-day period. Neonatal Igf1r KD mice showed reduced systolic cardiac function and increased fibrotic cardiac remodeling 21 days post injury. This cardiac phenotype was associated with reduced cardiomyocyte nuclei mitosis and decreased AKT and ERK phosphorylation in Igf1r KD, compared to control neonatal mouse hearts. Our in vivo murine data show that Igf1r KD shifts neonatal cardiac regeneration to a more adult-like scarring phenotype, identifying cardiomyocyte-specific Igf1r signaling as a crucial component of neonatal cardiac regeneration.
Collapse
Affiliation(s)
- Thomas Schuetz
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Theresa Dolejsi
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eva Beck
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Fabio Fugger
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Alexander Bild
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Marie-Theres Duin
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Jasmina Gavranovic-Novakovic
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Erika Hilbold
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | | | - Axel Bauer
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Josef Martin Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Bernhard Johannes Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria.
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Xiang Y, Tanwar V, Singh P, La Follette L, Kapahi P. Early menarche and childbirth accelerate aging-related outcomes and age-related diseases: Evidence for antagonistic pleiotropy in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24314197. [PMID: 39398990 PMCID: PMC11469407 DOI: 10.1101/2024.09.23.24314197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Aging can be understood as a consequence of the declining force of natural selection with age. Consistent with this the antagonistic pleiotropic theory of aging suggests that aging results from the trade-offs that promote early growth and reproduction. However, evidence for antagonistic pleiotropy in humans is largely lacking. Using Mendelian Randomization (MR), we demonstrated that later ages of menarche or first childbirth were genetically associated with longer parental lifespan, decreased frailty index, slower epigenetic aging, later menopause, and reduced facial aging. Moreover, later menarche or first childbirth were also genetically associated with a lower risk of several age-related diseases, including late-onset Alzheimer's disease (LOAD), type 2 diabetes, heart disease, essential hypertension, and chronic obstructive pulmonary disease (COPD). We validated the associations between the age of menarche, childbirth, and the number of childbirths with several age-related outcomes in the UK Biobank by conducting regression analysis of nearly 200,000 subjects. Our results demonstrated that menarche before the age 11 and childbirth before 21 significantly accelerated the risk of several diseases, and almost doubled the risk for diabetes, heart failure, and quadrupled the risk of obesity, supporting the antagonistic pleiotropy theory. We identified 128 significant single nucleotide polymorphisms (SNPs) that influenced age-related outcomes, some of which were involved in known longevity pathways, including IGF1, growth hormone, AMPK, and mTOR signaling. Our study also identified higher BMI as a mediating factor in causing the increased risk of certain diseases, such as type 2 diabetes and heart failure, in women with early menarche or early pregnancy, emphasizing the importance of the thrifty gene hypothesis in explaining in part the mechanisms behind antagonistic pleiotropy. Our study highlights the complex relationship between genetic legacies and modern diseases, emphasizing the need for gender-sensitive healthcare strategies that consider the unique connections between female reproductive health and aging.
Collapse
Affiliation(s)
- Yifan Xiang
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Vineeta Tanwar
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Parminder Singh
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | | | - Pankaj Kapahi
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| |
Collapse
|
12
|
Petersen TB, Suthahar N, Asselbergs FW, de Bakker M, Akkerhuis KM, Constantinescu AA, van Ramshorst J, Katsikis PD, van der Spek PJ, Umans VA, de Boer RA, Boersma E, Rizopoulos D, Kardys I. Proteomic biomarkers related to obesity in heart failure with reduced ejection fraction and their associations with outcome. Obesity (Silver Spring) 2024; 32:1658-1669. [PMID: 39039788 DOI: 10.1002/oby.24094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Heart failure (HF) pathophysiology in patients with obesity may be distinct. To study these features, we identified obesity-related biomarkers from 4210 circulating proteins in patients with HF with reduced ejection fraction (HFrEF) and examined associations of these proteins with HF prognosis and biological mechanisms. METHODS In 373 patients with trimonthly blood sampling during a median follow-up of 2.1 (25th-75th percentile: 1.1-2.6) years, we applied an aptamer-based multiplex approach measuring 4210 proteins in baseline samples and the last two samples before study end. Associations between obesity (BMI > 30 kg/m2) and baseline protein levels were analyzed. Subsequently, associations of serially measured obesity-related proteins with biological mechanisms and the primary endpoint (PEP; composite of cardiovascular mortality, HF hospitalization, left ventricular assist device implantation, and heart transplantation) were examined. RESULTS Obesity was identified in 26% (96/373) of patients. A total of 30% (112/373) experienced a PEP (with obesity: 26% [25/96] vs. without obesity: 31% [87/277]). A total of 141/4210 proteins were linked to obesity, reflecting mechanisms of neuron projection development, cell adhesion, and muscle cell migration. A total of 50/141 proteins were associated with the PEP, of which 12 proteins related to atherosclerosis or hypertrophy provided prognostic information beyond clinical characteristics, N-terminal pro-B-type natriuretic peptide, and high-sensitivity troponin T. CONCLUSIONS Patients with HFrEF and obesity show distinct proteomic profiles compared to patients with HFrEF without obesity. Obesity-related proteins are independently associated with HF outcome. These proteins carry potential to improve management of obesity-related HF and could be leads for future research.
Collapse
Affiliation(s)
- Teun B Petersen
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Navin Suthahar
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marie de Bakker
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Alina A Constantinescu
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Jan van Ramshorst
- Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Peter J van der Spek
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Victor A Umans
- Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Center Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Bai K, Jiang L, Wang T. Supplementation with dimethylglycine sodium salt improves lipid metabolism disorder in intrauterine growth-retarded pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:191-202. [PMID: 39281051 PMCID: PMC11393594 DOI: 10.1016/j.aninu.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 09/18/2024]
Abstract
This study aims to elucidate the mechanism of lipid metabolism disorder in intrauterine growth retardation (IUGR) pigs and the potential alleviating effects of dimethylglycine sodium salt (DMG-Na). A total of 60 male newborn piglets were selected for this study. Within each litter, one normal birth weight (NBW) male piglet (1.53 ± 0.04 kg) and two IUGR male piglets (0.76 ± 0.06 kg) were chosen based on their birth weight. The piglets were divided into three groups for the study: NBW pigs received a PBS gavage and a common basal diet (NBW-C group), IUGR pigs received the same PBS gavage and common basal diet (IUGR-C group), and IUGR pigs received a 70-mg DMG-Na gavage along with a common basal diet supplemented with 0.1% DMG-Na (IUGR-D group). At 150 d of age, all piglets underwent euthanasia by exsanguination following electrical stunning, after which plasma, liver, and longissimus dorsi (LM) samples were promptly collected. The IUGR-D group demonstrated improvements in plasma parameters (P < 0.05), with lower triglyceride and free fatty acid (FFA) values, and hormone levels (P < 0.05), with lower growth hormone, insulin, and homeostasis model assessment of insulin resistance values. Restoration of lipid metabolism was observed (P < 0.05), with lower triglyceride and FFA, and higher hepatic lipase and total lipase values in the liver, and lower triglyceride and FFA values in the LM. Mitochondrial ETC complexes showed increased levels (P < 0.05), including higher complex III values in the liver, and higher complex I, complex III, and complex V values in the LM. Enhanced levels of energy metabolites were noted (P < 0.05), with higher NAD+, NAD+/NADH, adenosine triphosphate, and mtDNA values, and lower NADH values in the liver and LM. Additionally, meat quality parameters showed improvement (P < 0.05), with higher pH 24 h and a∗ values, and lower drip loss 48 h, L∗, and b∗ values. The expressions of lipid metabolism and mitochondrial function-related genes and proteins were upregulated (P < 0.05) compared to the IUGR-C group. In conclusion, it was indicated that IUGR pigs experienced lipid metabolism disorders and diminished performance. However, supplementation with DMG-Na showed promise in mitigating these adverse physiological effects by safeguarding body tissues and modulating energy metabolism.
Collapse
Affiliation(s)
- Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyi Jiang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310023, China
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310023, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Hofer SJ, Daskalaki I, Bergmann M, Friščić J, Zimmermann A, Mueller MI, Abdellatif M, Nicastro R, Masser S, Durand S, Nartey A, Waltenstorfer M, Enzenhofer S, Faimann I, Gschiel V, Bajaj T, Niemeyer C, Gkikas I, Pein L, Cerrato G, Pan H, Liang Y, Tadic J, Jerkovic A, Aprahamian F, Robbins CE, Nirmalathasan N, Habisch H, Annerer E, Dethloff F, Stumpe M, Grundler F, Wilhelmi de Toledo F, Heinz DE, Koppold DA, Rajput Khokhar A, Michalsen A, Tripolt NJ, Sourij H, Pieber TR, de Cabo R, McCormick MA, Magnes C, Kepp O, Dengjel J, Sigrist SJ, Gassen NC, Sedej S, Madl T, De Virgilio C, Stelzl U, Hoffmann MH, Eisenberg T, Tavernarakis N, Kroemer G, Madeo F. Spermidine is essential for fasting-mediated autophagy and longevity. Nat Cell Biol 2024; 26:1571-1584. [PMID: 39117797 PMCID: PMC11392816 DOI: 10.1038/s41556-024-01468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Ioanna Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jasna Friščić
- Department of Dermatology, Allergy and Venerology, University of Lübeck, Lübeck, Germany
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Melanie I Mueller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sarah Masser
- BioTechMed Graz, Graz, Austria
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Alexander Nartey
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Mara Waltenstorfer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sarah Enzenhofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Isabella Faimann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Verena Gschiel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Thomas Bajaj
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christine Niemeyer
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Lukas Pein
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giulia Cerrato
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Hui Pan
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - YongTian Liang
- Institute for Biology and Genetics, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrea Jerkovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Christine E Robbins
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Nitharsshini Nirmalathasan
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Hansjörg Habisch
- Research Unit Integrative Structural Biology, Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Elisabeth Annerer
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | | | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Daniel E Heinz
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Daniela A Koppold
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Pediatrics, Division of Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Internal Medicine and Nature-based Therapies, Immanuel Hospital Berlin, Berlin, Germany
| | - Anika Rajput Khokhar
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, corporate member of Freie Universität Berlin and Humboldt-Universität, Charité-Universitätsmedizin, Berlin, Germany
- Department of Internal Medicine and Nature-based Therapies, Immanuel Hospital Berlin, Berlin, Germany
| | - Norbert J Tripolt
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Thomas R Pieber
- BioTechMed Graz, Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft, Graz, Austria
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Christoph Magnes
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft, Graz, Austria
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stephan J Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Tobias Madl
- BioTechMed Graz, Graz, Austria
- Research Unit Integrative Structural Biology, Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | | | - Ulrich Stelzl
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Markus H Hoffmann
- Department of Dermatology, Allergy and Venerology, University of Lübeck, Lübeck, Germany
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.
- Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
15
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
16
|
Lee WS, Abel ED, Kim J. New Insights into IGF-1 Signaling in the Heart. Physiology (Bethesda) 2024; 39:0. [PMID: 38713091 DOI: 10.1152/physiol.00003.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Insulin-like growth factor-1 (IGF-1) signaling has multiple physiological roles in cellular growth, metabolism, and aging. Myocardial hypertrophy, cell death, senescence, fibrosis, and electrical remodeling are hallmarks of various heart diseases and contribute to the progression of heart failure. This review highlights the critical role of IGF-1 and its cognate receptor in cardiac hypertrophy, aging, and remodeling.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Wang Z, Dou Y, Chen L, Feng W, Zou Y, Xiao J, Wang J, Zou Z. Mendelian randomization identifies causal effects of major depressive disorder on accelerated aging. J Affect Disord 2024; 358:422-431. [PMID: 38750800 DOI: 10.1016/j.jad.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Evidence links major depressive disorder (MDD) with aging, but it's unclear if MDD accelerates aging and what factors mediate this transition. METHODS Two-sample Mendelian randomization (MR) analyses were applied to estimate the causal association between MDD and frailty index (FI), telomere length (TL), and appendicular lean mass (ALM) from available genome-wide association studies in populations of European ancestry. Furthermore, we conducted mediation MR analyses to assess the mediating effects of 31 lifestyle factors or diseases on the causal relationship between MDD and aging. RESULTS MDD was significantly causally associated with increased FI (βIVW = 0.23, 95 % CI = 0.18 to 0.28, p = 1.20 × 10-17), shorter TL (βIVW = -0.04, 95 % CI = -0.07 to -0.01, p = 0.01), and decreased ALM (βIVW = -0.07, 95 % CI = -0.11 to -0.03, p = 3.54 × 10-4). The mediation analysis through two-step MR revealed smoking initiation (9.09 %), hypertension (6.67 %) and heart failure (5.36 %) mediated the causal effect of MDD on FI. Additionally, alcohol use disorders and alcohol dependence on the causal relationship between MDD and TL were found to be 17.52 % and 17.13 % respectively. LIMITATIONS Confounding, statistical power, and Euro-centric focus limit generalization. CONCLUSION Overall, individuals with MDD may be at a higher risk of experiencing premature aging, and this risk is partially influenced by the pathways involving smoking, alcohol use, and cardiovascular health. It underscores the importance of early intervention and comprehensive health management in individuals with MDD to promote healthy aging and overall well-being.
Collapse
Affiliation(s)
- Zuxing Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Yikai Dou
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Wenqian Feng
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Yazhu Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Jun Xiao
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Jinyu Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| |
Collapse
|
18
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
19
|
Cui H, Hu D, Xu J, Zhao S, Song Y, Qin G, Liu Y. Identification of hub genes associated with diabetic cardiomyopathy using integrated bioinformatics analysis. Sci Rep 2024; 14:15324. [PMID: 38961143 PMCID: PMC11222523 DOI: 10.1038/s41598-024-65773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetes, which may threaten the quality of life and shorten life expectancy in the diabetic population. However, the molecular mechanisms underlying the diabetes cardiomyopathy are not fully elucidated. We analyzed two datasets from Gene Expression Omnibus (GEO). Differentially expressed and weighted gene correlation network analysis (WGCNA) was used to screen key genes and molecules. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were constructed to identify hub genes. The diagnostic value of the hub gene was evaluated using the receiver operating characteristic (ROC). Quantitative real-time PCR (RT-qPCR) was used to validate the hub genes. A total of 13 differentially co-expressed modules were selected by WGCNA and differential expression analysis. KEGG and GO analysis showed these DEGs were mainly enriched in lipid metabolism and myocardial hypertrophy pathway, cytomembrane, and mitochondrion. As a result, six genes were identified as hub genes. Finally, five genes (Pdk4, Lipe, Serpine1, Igf1r, and Bcl2l1) were found significantly changed in both the validation dataset and experimental mice with DCM. In conclusion, the present study identified five genes that may help provide novel targets for diagnosing and treating DCM.
Collapse
Affiliation(s)
- Hailong Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Die Hu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Xu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuiying Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanling Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
20
|
Falcão-Pires I, Ferreira AF, Trindade F, Bertrand L, Ciccarelli M, Visco V, Dawson D, Hamdani N, Van Laake LW, Lezoualc'h F, Linke WA, Lunde IG, Rainer PP, Abdellatif M, Van der Velden J, Cosentino N, Paldino A, Pompilio G, Zacchigna S, Heymans S, Thum T, Tocchetti CG. Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on Myocardial Function. Eur J Heart Fail 2024; 26:1454-1479. [PMID: 38837573 DOI: 10.1002/ejhf.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbimortality in Europe and worldwide. CVD imposes a heterogeneous spectrum of cardiac remodelling, depending on the insult nature, that is, pressure or volume overload, ischaemia, arrhythmias, infection, pathogenic gene variant, or cardiotoxicity. Moreover, the progression of CVD-induced remodelling is influenced by sex, age, genetic background and comorbidities, impacting patients' outcomes and prognosis. Cardiac reverse remodelling (RR) is defined as any normative improvement in cardiac geometry and function, driven by therapeutic interventions and rarely occurring spontaneously. While RR is the outcome desired for most CVD treatments, they often only slow/halt its progression or modify risk factors, calling for novel and more timely RR approaches. Interventions triggering RR depend on the myocardial insult and include drugs (renin-angiotensin-aldosterone system inhibitors, beta-blockers, diuretics and sodium-glucose cotransporter 2 inhibitors), devices (cardiac resynchronization therapy, ventricular assist devices), surgeries (valve replacement, coronary artery bypass graft), or physiological responses (deconditioning, postpartum). Subsequently, cardiac RR is inferred from the degree of normalization of left ventricular mass, ejection fraction and end-diastolic/end-systolic volumes, whose extent often correlates with patients' prognosis. However, strategies aimed at achieving sustained cardiac improvement, predictive models assessing the extent of RR, or even clinical endpoints that allow for distinguishing complete from incomplete RR or adverse remodelling objectively, remain limited and controversial. This scientific statement aims to define RR, clarify its underlying (patho)physiologic mechanisms and address (non)pharmacological options and promising strategies to promote RR, focusing on the left heart. We highlight the predictors of the extent of RR and review the prognostic significance/impact of incomplete RR/adverse remodelling. Lastly, we present an overview of RR animal models and potential future strategies under pre-clinical evaluation.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ana Filipa Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Fábio Trindade
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Luc Bertrand
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, Brussels, Belgium
- WELBIO, Department, WEL Research Institute, Wavre, Belgium
| | - Michele Ciccarelli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | | | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessia Paldino
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| |
Collapse
|
21
|
Vedunova M, Borysova O, Kozlov G, Zharova AM, Morgunov I, Moskalev A. Candidate molecular targets uncovered in mouse lifespan extension studies. Expert Opin Ther Targets 2024; 28:513-528. [PMID: 38656034 DOI: 10.1080/14728222.2024.2346597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Multiple interventions have demonstrated an increase in mouse lifespan. However, non-standardized controls, sex or strain-specific factors, and insufficient focus on targets, hinder the translation of these findings into clinical applications. AREAS COVERED We examined the effects of genetic and drug-based interventions on mice from databases DrugAge, GenAge, the Mouse Phenome Database, and publications from PubMed that led to a lifespan extension of more than 10%, identifying specific molecular targets that were manipulated to achieve the maximum lifespan in mice. Subsequently, we characterized 10 molecular targets influenced by these interventions, with particular attention given to clinical trials and potential indications for each. EXPERT OPINION To increase the translational potential of mice life-extension studies to clinical research several factors are crucial: standardization of mice lifespan research approaches, the development of clear criteria for control and experimental groups, the establishment of criteria for potential geroprotectors, and focusing on targets and their clinical application. Pinpointing the targets affected by geroprotectors helps in understanding species-specific differences and identifying potential side effects, ensuring the safety and effectiveness of clinical trials. Additionally, target review facilitates the optimization of treatment protocols and the evaluation of the clinical feasibility of translating research findings into practical therapies for humans.
Collapse
Affiliation(s)
- Maria Vedunova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Grigory Kozlov
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | - Anna-Maria Zharova
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
| | | | - Alexey Moskalev
- Institute of Biomedicine, Institute of Biogerontology, National Research Lobachevsky State University of Nizhni Novgorod (Lobachevsky University), Nizhny Novgorod, Russia
- Longaevus Technologies LTD, London, United Kingdom
- Russian Gerontology Research and Clinical Centre, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
22
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
23
|
Wei Y, Jiang H, Li F, Chai C, Xu Y, Xing M, Deng W, Wang H, Zhu Y, Yang S, Yu Y, Wang W, Wei Y, Guo Y, Tian J, Du J, Guo Z, Wang Y, Zhao Q. Extravascular administration of IGF1R antagonists protects against aortic aneurysm in rodent and porcine models. Sci Transl Med 2024; 16:eadh1763. [PMID: 38691618 DOI: 10.1126/scitranslmed.adh1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. We identified plasma insulin-like growth factor 1 (IGF1) as an independent risk factor in patients with AAA by correlating plasma IGF1 with risk. Smooth muscle cell- or fibroblast-specific knockout of Igf1r, the gene encoding the IGF1 receptor (IGF1R), attenuated AAA formation in two mouse models of AAA induced by angiotensin II infusion or CaCl2 treatment. IGF1R was activated in aortic aneurysm samples from human patients and mice with AAA. Systemic administration of IGF1C, a peptide fragment of IGF1, 2 weeks after disease development inhibited AAA progression in mice. Decreased AAA formation was linked to competitive inhibition of IGF1 binding to its receptor by IGF1C and modulation of downstream alpha serine/threonine protein kinase (AKT)/mammalian target of rapamycin signaling. Localized application of an IGF1C-loaded hydrogel was developed to reduce the side effects observed after systemic administration of IGF1C or IGF1R antagonists in the CaCl2-induced AAA mouse model. The inhibitory effect of the IGF1C-loaded hydrogel administered at disease onset on AAA formation was further evaluated in a guinea pig-to-rat xenograft model and in a sheep-to-minipig xenograft model of AAA formation. The therapeutic efficacy of IGF1C for treating AAA was tested through extravascular delivery in the sheep-to-minipig model with AAA established for 2 weeks. Percutaneous injection of the IGF1C-loaded hydrogel around the AAA resulted in improved vessel flow dynamics in the minipig aorta. These findings suggest that extravascular administration of IGF1R antagonists may have translational potential for treating AAA.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing 100191, China
| | - Huan Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fengjuan Li
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Chao Chai
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Yaping Xu
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Mengmeng Xing
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiliang Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuexin Zhu
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Sen Yang
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yongquan Yu
- Department of Radiology, Weihai Central Hospital, Weihai 264400, China
| | - Wenming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinwei Tian
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing 100191, China
| |
Collapse
|
24
|
Goyal P, Maurer MS, Roh J. Aging in Heart Failure: Embracing Biology Over Chronology: JACC Family Series. JACC. HEART FAILURE 2024; 12:795-809. [PMID: 38597865 PMCID: PMC11331491 DOI: 10.1016/j.jchf.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Age is among the most potent risk factors for developing heart failure and is strongly associated with adverse outcomes. As the global population continues to age and the prevalence of heart failure rises, understanding the role of aging in the development and progression of this chronic disease is essential. Although chronologic age is on a fixed course, biological aging is more variable and potentially modifiable in patients with heart failure. This review describes the current knowledge on mechanisms of biological aging that contribute to the pathogenesis of heart failure. The discussion focuses on 3 hallmarks of aging-impaired proteostasis, mitochondrial dysfunction, and deregulated nutrient sensing-that are currently being targeted in therapeutic development for older adults with heart failure. In assessing existing and emerging therapeutic strategies, the review also enumerates the importance of incorporating geriatric conditions into the management of older adults with heart failure and in ongoing clinical trials.
Collapse
Affiliation(s)
- Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Mathew S Maurer
- Department of Medicine, Columbia University Medical Center, New York, New York, USA.
| | - Jason Roh
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Mone P, Agyapong ED, Morciano G, Jankauskas SS, De Luca A, Varzideh F, Pinton P, Santulli G. Dysfunctional mitochondria elicit bioenergetic decline in the aged heart. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:13. [PMID: 39015481 PMCID: PMC11250775 DOI: 10.20517/jca.2023.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Aging represents a complex biological progression affecting the entire body, marked by a gradual decline in tissue function, rendering organs more susceptible to stress and diseases. The human heart holds significant importance in this context, as its aging process poses life-threatening risks. It entails macroscopic morphological shifts and biochemical changes that collectively contribute to diminished cardiac function. Among the numerous pivotal factors in aging, mitochondria play a critical role, intersecting with various molecular pathways and housing several aging-related agents. In this comprehensive review, we provide an updated overview of the functional role of mitochondria in cardiac aging.
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy
| | - Esther Densu Agyapong
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola 48033, Italy
| | - Stanislovas S. Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Vanvitelli University, Naples 80100, Italy
| | - Fahimeh Varzideh
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola 48033, Italy
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy
- Department of Advanced Biomedical Sciences, “Federico II” University, International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples 80131, Italy
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
26
|
Tadros HJ, Turaga D, Zhao Y, Chang-Ru T, Adachi IA, Li X, Martin JF. Activated fibroblasts drive cellular interactions in end-stage pediatric hypertrophic cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577226. [PMID: 38352607 PMCID: PMC10862753 DOI: 10.1101/2024.01.25.577226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is a relatively rare but debilitating diagnosis in the pediatric population and patients with end-stage HCM require heart transplantation. In this study, we performed single-nucleus RNA sequencing on pediatric HCM and control myocardium. We identified distinct underling cellular processes in pediatric, end-stage HCM in cardiomyocytes, fibroblasts, endothelial cells, and myeloid cells, compared to controls. Pediatric HCM was enriched in cardiomyocytes exhibiting "stressed" myocardium gene signatures and underlying pathways associated with cardiac hypertrophy. Cardiac fibroblasts exhibited clear activation signatures and heightened downstream processes associated with fibrosis, more so than adult counterparts. There was notable depletion of tissue-resident macrophages, and increased vascular remodeling in endothelial cells. Our analysis provides the first single nuclei analysis focused on end-stage pediatric HCM.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Diwakar Turaga
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Division of Critical Care Medicine, Texas Children's Hospital, Houston TX, USA
| | - Yi Zhao
- The Texas Heart Institute, Houston, TX, USA
| | - Tsai Chang-Ru
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Iki A Adachi
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Xiao Li
- The Texas Heart Institute, Houston, TX, USA
| | - James F Martin
- The Texas Heart Institute, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
27
|
Deng X, Yang Z, Li T, Wang Y, Yang Q, An R, Xu J. Identification of 4 autophagy-related genes in heart failure by bioinformatics analysis and machine learning. Front Cardiovasc Med 2024; 11:1247079. [PMID: 38347953 PMCID: PMC10859477 DOI: 10.3389/fcvm.2024.1247079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Autophagy refers to the process of breaking down and recycling damaged or unnecessary components within a cell to maintain cellular homeostasis. Heart failure (HF) is a severe medical condition that poses a serious threat to the patient's life. Autophagy is known to play a pivotal role in the pathogenesis of HF. However, our understanding of the specific mechanisms involved remains incomplete. Here, we identify autophagy-related genes (ARGs) associated with HF, which we believe will contribute to further comprehending the pathogenesis of HF. Methods By searching the GEO (Gene Expression Omnibus) database, we found the GSE57338 dataset, which was related to HF. ARGs were obtained from the HADb and HAMdb databases. Annotation of GO and enrichment analysis of KEGG pathway were carried out on the differentially expressed ARGs (AR-DEGs). We employed machine learning algorithms to conduct a thorough screening of significant genes and validated these genes by analyzing external dataset GSE76701 and conducting mouse models experimentation. At last, immune infiltration analysis was conducted, target drugs were screened and a TF regulatory network was constructed. Results Through processing the dataset with R language, we obtained a total of 442 DEGs. Additionally, we retrieved 803 ARGs from the database. The intersection of these two sets resulted in 15 AR-DEGs. Upon performing functional enrichment analysis, it was discovered that these genes exhibited significant enrichment in domains related to "regulation of cell growth", "icosatetraenoic acid binding", and "IL-17 signaling pathway". After screening and verification, we ultimately identified 4 key genes. Finally, an analysis of immune infiltration illustrated significant discrepancies in 16 distinct types of immune cells between the HF and control group and up to 194 potential drugs and 16 TFs were identified based on the key genes. Discussion In this study, TPCN1, MAP2K1, S100A9, and CD38 were considered as key autophagy-related genes in HF. With these relevant data, further exploration of the molecular mechanisms of autophagy in HF can be carried out.
Collapse
Affiliation(s)
- Xiwei Deng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Ziqi Yang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tongzheng Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yang Wang
- Department of Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Qinchuan Yang
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Rui An
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jian Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
28
|
Cho YE, Chen S, Crouch K, Yun J, Klingelhutz A. Impact of Aging and a High-Fat Diet on Adipose-Tissue-Derived Extracellular Vesicle miRNA Profiles in Mice. Biomedicines 2024; 12:100. [PMID: 38255206 PMCID: PMC10813715 DOI: 10.3390/biomedicines12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Middle-aged adults have the highest obesity rates, leading to significant health complications in later years. Obesity triggers the release of altered molecules, including extracellular vesicles (EVs) from excess adipose tissue (AT), contributing to various health complications. In this study, we assessed the effects of age and a high-fat diet on AT-derived EV miRNA profiles to understand their potential roles in aging and obesity. METHOD C57BL/6 male mice were subjected to a normal chow diet (NCD) or a high-fat diet (HFD) for either 10-12 weeks (young mice, n = 10) or 50-61 weeks (middle-aged mice, n = 12). After evaluating metabolic characteristics, peri-gonadal white AT was isolated and cultured to obtain EVs. AT-derived EV miRNAs were profiled using a NanoString miRNA panel (n = 599). RESULTS Middle-aged mice exhibited obesity regardless of diet. Young mice fed an HFD showed similar metabolic traits to middle-aged mice. In the NCD group, 131 differentially expressed miRNAs (DE-miRNAs) emerged in middle-aged mice compared to young mice, including miR-21, miR-148a, and miR-29a, associated with cancer, neuro/psychological disorders, and reproductive diseases. In the HFD group, 55 DE-miRNAs were revealed in middle-aged mice compared to young mice. These miRNAs were associated with significantly suppressed IGF1R activity. CONCLUSION This study demonstrates the potential significant impact of miRNAs of AT EVs on aging- and obesity-related diseases.
Collapse
Affiliation(s)
- Young-Eun Cho
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Shaoshuai Chen
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Keith Crouch
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Joseph Yun
- Predictiv Care, Inc., 800 West El Camino Real, Mountain View, CA 94040, USA
| | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, College of Medicine, The University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Ferreira JP, Packer M, Butler J, Filippatos G, Pocock SJ, Januzzi JL, Sattar N, Maldonado SG, Panova-Noeva M, Sumin M, Masson S, Anker SD, Zannad F. Growth differentiation factor-15 and the effect of empagliflozin in heart failure: Findings from the EMPEROR program. Eur J Heart Fail 2024; 26:155-164. [PMID: 37964408 DOI: 10.1002/ejhf.3078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
AIMS Growth differentiation factor-15 (GDF-15) is upregulated in part in response to cardiomyocyte stretch and stress, and it exerts a protective role that is mediated by its action to suppress signalling through insulin-like growth factor (IGF) and enhance signalling through adenosine monophosphate-activated protein kinase (AMPK). Sodium-glucose cotransporter 2 (SGLT2) inhibitors improve outcomes in heart failure, which has been experimentally linked to AMPK. This study aimed at evaluating the associations of GDF-15 with baseline characteristics, the prognostic significance of GDF-15, and the effect of empagliflozin on GDF-15 in patients with heart failure with a reduced and preserved ejection fraction. METHODS AND RESULTS Growth differentiation factor-15 was determined in serum samples from the EMPEROR-Reduced and EMPEROR-Preserved trials. Cox regression and mixed models for repeated measures were used to study the association with outcomes and the effect of empagliflozin on GDF-15, respectively. We studied 1124 patients (560 placebo and 564 empagliflozin) with median GDF-15 levels at baseline of 2442 (interquartile range 1603-3780) pg/ml. Patients with higher GDF-15 levels were typically older men with more severe symptoms, higher N-terminal pro-B-type natriuretic peptide levels, worse kidney function and who were prescribed metformin. Baseline levels of GDF-15 were well correlated with levels of IGF-binding protein 7 (rho = 0.64). Higher levels of GDF-15 were independently associated with an increased risk of cardiovascular death, heart failure hospitalizations, and worse kidney outcomes. When considered as a continuous variable, for each doubling in GDF-15, the adjusted hazard ratio for cardiovascular death or heart failure hospitalization was 1.40 (95% confidence interval 1.15-1.71; p < 0.001). The relative effect of empagliflozin on cardiovascular death and hospitalization for heart failure was most pronounced in patients with higher baseline levels of GDF-15 (interaction p-trend = 0.031). At week 52, when compared with placebo, empagliflozin increased GDF-15 by an additional 8% (p = 0.020), an effect that was primarily seen in patients not receiving metformin, a known AMPK activator. CONCLUSIONS Growth differentiation factor-15 is a marker of worse heart failure severity, is an independent predictor of major heart failure outcomes and may be associated with more pronounced benefits of empagliflozin. GDF-15 is increased among metformin users, and empagliflozin was associated with an increase in GDF-15 levels, primarily in patients not receiving metformin.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Centre d'Investigations Cliniques Plurithématique 1433, and INSERM U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, INSERM, Nancy, France
- UnIC@RISE, Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Heart Failure Clinic, Internal Medicine Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Milton Packer
- Imperial College, London, UK
- Baylor Heart and Vascular Institute, Dallas, TX, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- University of Mississippi, Jackson, MS, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | | | | | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Serge Masson
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | - Stefan D Anker
- Department of Cardiology (CVK) and Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Heart Diseases, Wrocław Medical University, Wrocław, Poland
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique 1433, and INSERM U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, INSERM, Nancy, France
- UnIC@RISE, Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Heart Failure Clinic, Internal Medicine Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| |
Collapse
|
30
|
Akhmetshina A, Bianco V, Bradić I, Korbelius M, Pirchheim A, Kuentzel KB, Eichmann TO, Hinteregger H, Kolb D, Habisch H, Liesinger L, Madl T, Sattler W, Radović B, Sedej S, Birner-Gruenberger R, Vujić N, Kratky D. Loss of lysosomal acid lipase results in mitochondrial dysfunction and fiber switch in skeletal muscles of mice. Mol Metab 2024; 79:101869. [PMID: 38160938 PMCID: PMC7615526 DOI: 10.1016/j.molmet.2023.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Lysosomal acid lipase (LAL) is the only enzyme known to hydrolyze cholesteryl esters (CE) and triacylglycerols in lysosomes at an acidic pH. Despite the importance of lysosomal hydrolysis in skeletal muscle (SM), research in this area is limited. We hypothesized that LAL may play an important role in SM development, function, and metabolism as a result of lipid and/or carbohydrate metabolism disruptions. RESULTS Mice with systemic LAL deficiency (Lal-/-) had markedly lower SM mass, cross-sectional area, and Feret diameter despite unchanged proteolysis or protein synthesis markers in all SM examined. In addition, Lal-/- SM showed increased total cholesterol and CE concentrations, especially during fasting and maturation. Regardless of increased glucose uptake, expression of the slow oxidative fiber marker MYH7 was markedly increased in Lal-/-SM, indicating a fiber switch from glycolytic, fast-twitch fibers to oxidative, slow-twitch fibers. Proteomic analysis of the oxidative and glycolytic parts of the SM confirmed the transition between fast- and slow-twitch fibers, consistent with the decreased Lal-/- muscle size due to the "fiber paradox". Decreased oxidative capacity and ATP concentration were associated with reduced mitochondrial function of Lal-/- SM, particularly affecting oxidative phosphorylation, despite unchanged structure and number of mitochondria. Impairment in muscle function was reflected by increased exhaustion in the treadmill peak effort test in vivo. CONCLUSION We conclude that whole-body loss of LAL is associated with a profound remodeling of the muscular phenotype, manifested by fiber type switch and a decline in muscle mass, most likely due to dysfunctional mitochondria and impaired energy metabolism, at least in mice.
Collapse
Affiliation(s)
- Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Helga Hinteregger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- BioTechMed-Graz, Graz, Austria; Core Facility Ultrastructural Analysis, Medical University of Graz, Graz, Austria; Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Hansjoerg Habisch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Laura Liesinger
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Branislav Radović
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- BioTechMed-Graz, Graz, Austria; Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia
| | - Ruth Birner-Gruenberger
- BioTechMed-Graz, Graz, Austria; Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
31
|
Abdellatif M, Montégut L, Kroemer G. Actionable autophagy checkpoints in cardiovascular ageing. Eur Heart J 2023; 44:4819-4821. [PMID: 37832515 DOI: 10.1093/eurheartj/ehad661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 15 Rue de l'École de Médecine, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94805 Villejuif, France
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 15 Rue de l'École de Médecine, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, 63 Rue Gabriel Péri, 94270 Le Kremlin Bicêtre, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 15 Rue de l'École de Médecine, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 20 Rue Leblanc, 75015 Paris, France
| |
Collapse
|
32
|
Yang K, Hou R, Zhao J, Wang X, Wei J, Pan X, Zhu X. Lifestyle effects on aging and CVD: A spotlight on the nutrient-sensing network. Ageing Res Rev 2023; 92:102121. [PMID: 37944707 DOI: 10.1016/j.arr.2023.102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/12/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Aging is widespread worldwide and a significant risk factor for cardiovascular disease (CVD). Mechanisms underlying aging have attracted considerable attention in recent years. Remarkably, aging and CVD overlap in numerous ways, with deregulated nutrient sensing as a common mechanism and lifestyle as a communal modifier. Interestingly, lifestyle triggers or suppresses multiple nutrient-related signaling pathways. In this review, we first present the composition of the nutrient-sensing network (NSN) and its metabolic impact on aging and CVD. Secondly, we review how risk factors closely associated with CVD, including adverse life states such as sedentary behavior, sleep disorders, high-fat diet, and psychosocial stress, contribute to aging and CVD, with a focus on the bridging role of the NSN. Finally, we focus on the positive effects of beneficial dietary interventions, specifically dietary restriction and the Mediterranean diet, on the regulation of nutrient metabolism and the delayed effects of aging and CVD that depend on the balance of the NSN. In summary, we expound on the interaction between lifestyle, NSN, aging, and CVD.
Collapse
Affiliation(s)
- Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao 266000, China
| | - Jie Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
33
|
Chehab O, Akl E, Abdollahi A, Zeitoun R, Ambale-Venkatesh B, Wu C, Tracy R, Blumenthal RS, Post WS, Lima JAC, Rodriguez A. Higher HDL cholesterol levels are associated with increased markers of interstitial myocardial fibrosis in the MultiEthnic Study of Atherosclerosis (MESA). Sci Rep 2023; 13:20115. [PMID: 37978334 PMCID: PMC10656454 DOI: 10.1038/s41598-023-46811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Emerging research indicates that high HDL-C levels might not be cardioprotective, potentially worsening cardiovascular disease (CVD) outcomes. Yet, there is no data on HDL-C's association with other CVD risk factors like myocardial fibrosis, a key aspect of cardiac remodeling predicting negative outcomes. We therefore aimed to study the association between HDL-C levels with interstitial myocardial fibrosis (IMF) and myocardial scar measured by CMR T1-mapping and late-gadolinium enhancement (LGE), respectively. There were 1863 participants (mean age of 69 years) who had both serum HDL-C measurements and underwent CMR. Analysis was done among those with available indices of interstitial fibrosis (extracellular volume fraction [ECV]; N = 1172 and native-T1; N = 1863) and replacement fibrosis by LGE (N = 1172). HDL-C was analyzed as both logarithmically-transformed and categorized into < 40 (low),40-59 (normal), and ≥ 60mg/dL (high). Multivariable linear and logistic regression models were constructed to assess the associations of HDL-C with CMR-obtained measures of IMF, ECV% and native-T1 time, and myocardial scar, respectively. In the fully adjusted model, each 1-SD increment of log HDL-C was associated with a 1% increment in ECV% (p = 0.01) and an 18-ms increment in native-T1 (p < 0.001). When stratified by HDL-C categories, those with high HDL-C (≥ 60mg/dL) had significantly higher ECV (β = 0.5%, p = 0.01) and native-T1 (β = 7 ms, p = 0.01) compared with those with normal HDL-C levels. Those with low HDL-C were not associated with IMF. Results remained unchanged after excluding individuals with a history of myocardial infarction. Neither increasing levels of HDL-C nor any HDL-C category was associated with the prevalence of myocardial scar. Increasing levels of HDL-C were associated with increased markers of IMF, with those with high levels of HDL-C being linked to subclinical fibrosis in a community-based setting.
Collapse
Affiliation(s)
- Omar Chehab
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elie Akl
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ashkan Abdollahi
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ralph Zeitoun
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Colin Wu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Russell Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Roger S Blumenthal
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joao A C Lima
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Annabelle Rodriguez
- Center for Vascular Biology, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
34
|
Abdellatif M, Rainer PP, Sedej S, Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 2023; 20:754-777. [PMID: 37193857 DOI: 10.1038/s41569-023-00881-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- BioTechMed Graz, Graz, Austria.
| | - Peter P Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
35
|
Zhu J, Li Q, Sun Y, Zhang S, Pan R, Xie Y, Chen J, Shi L, Chen Y, Sun Z, Zhang L. Insulin-Like Growth Factor 1 Receptor Deficiency Alleviates Angiotensin II-Induced Cardiac Fibrosis Through the Protein Kinase B/Extracellular Signal-Regulated Kinase/Nuclear Factor-κB Pathway. J Am Heart Assoc 2023; 12:e029631. [PMID: 37721135 PMCID: PMC10547288 DOI: 10.1161/jaha.123.029631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
Background The renin-angiotensin system plays a crucial role in the development of heart failure, and Ang II (angiotensin II) acts as the critical effector of the renin-angiotensin system in regulating cardiac fibrosis. However, the mechanisms of cardiac fibrosis are complex and still not fully understood. IGF1R (insulin-like growth factor 1 receptor) has multiple functions in maintaining cardiovascular homeostasis, and low-dose IGF1 treatment is effective in relieving Ang II-induced cardiac fibrosis. Here, we aimed to investigate the molecular mechanism of IGF1R in Ang II-induced cardiac fibrosis. Methods and Results Using primary mouse cardiac microvascular endothelial cells and fibroblasts, in vitro experiments were performed. Using C57BL/6J mice and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated IGF1R heterozygous knockout (Igf1r+/-) mice, cardiac fibrosis mouse models were induced by Ang II for 2 weeks. The expression of IGF1R was examined by quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot. Mice heart histologic changes were evaluated using Masson and picro sirius red staining. Fibrotic markers and signal molecules indicating the function of the Akt (protein kinase B)/ERK (extracellular signal-regulated kinase)/nuclear factor-κB pathway were detected using quantitative reverse transcription polymerase chain reaction and Western blot. RNA sequencing was used to explore IGF1R-mediated target genes in the hearts of mice, and the association of IGF1R and G-protein-coupled receptor kinase 5 was identified by coimmunoprecipitation. More important, blocking IGF1R signaling significantly suppressed endothelial-mesenchymal transition in primary mouse cardiac microvascular endothelial cells and mice in response to transforming growth factor-β1 or Ang II, respectively. Deficiency or inhibition of IGF1R signaling remarkably attenuated Ang II-induced cardiac fibrosis in primary mouse cardiac fibroblasts and mice. We further observed that the patients with heart failure exhibited higher blood levels of IGF1 and IGF1R than healthy individuals. Moreover, Ang II treatment significantly increased cardiac IGF1R in wild type mice but led to a slight downregulation in Igf1r+/- mice. Interestingly, IGF1R deficiency significantly alleviated cardiac fibrosis in Ang II-treated mice. Mechanistically, the phosphorylation level of Akt and ERK was upregulated in Ang II-treated mice, whereas blocking IGF1R signaling in mice inhibited these changes of Akt and ERK phosphorylation. Concurrently, phosphorylated p65 of nuclear factor-κB exhibited similar alterations in the corresponding group of mice. Intriguingly, IGF1R directly interacted with G-protein-coupled receptor kinase 5, and this association decreased ≈50% in Igf1r+/- mice. In addition, Grk5 deletion downregulated expression of the Akt/ERK/nuclear factor-κB signaling pathway in primary mouse cardiac fibroblasts. Conclusions IGF1R signaling deficiency alleviates Ang II-induced cardiac fibrosis, at least partially through inhibiting endothelial-mesenchymal transition via the Akt/ERK/nuclear factor-κB pathway. Interestingly, G-protein-coupled receptor kinase 5 associates with IGF1R signaling directly, and it concurrently acts as an IGF1R downstream effector. This study suggests the promising potential of IGF1R as a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Jiafeng Zhu
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Qian Li
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Yan Sun
- Department of StomatologyWeifang Medical UniversityWeifangChina
| | - Shiyu Zhang
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Ruiyan Pan
- Department of PharmacologyWeifang Medical UniversityWeifangChina
| | - Yanguang Xie
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Jinyan Chen
- Department of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Lihong Shi
- Department of Rehabilitation MedicineWeifang Medical UniversityWeifangChina
| | - Yanbo Chen
- Department of Cardiology, The First Affiliated HospitalWeifang Medical UniversityWeifangChina
| | - Zhipeng Sun
- Department of PharmacologyWeifang Medical UniversityWeifangChina
| | - Lane Zhang
- Department of NursingWeifang Medical UniversityWeifangChina
| |
Collapse
|
36
|
Chehab O, Akl E, Abdollahi A, Zeitoun R, Ambale-Venkatesh B, Wu C, Tracy R, Blumenthal R, Post W, Lima J, Rodriguez A. Higher HDL Cholesterol Levels Are Associated with Increased Markers of Interstitial Myocardial Fibrosis: Insights from The Multi-Ethnic Study of Atherosclerosis. RESEARCH SQUARE 2023:rs.3.rs-3299344. [PMID: 37790448 PMCID: PMC10543254 DOI: 10.21203/rs.3.rs-3299344/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Emerging research indicates that high HDL-C levels might not be cardioprotective, potentially worsening cardiovascular disease(CVD)outcomes. Yet, there's no data on HDL-C's association with other CVD risk factors like myocardial fibrosis, a key aspect of cardiac remodeling predicting negative outcomes. We therefore aimed to study the association between HDL-C levels with interstitial myocardial fibrosis (IMF) and myocardial scar measured by CMR T1-mapping and late-gadolinium enhancement(LGE), respectively. Methods There were 1,863 participants (mean age of 69-years) who had both serum HDL-C measurements and underwent CMR. Analysis was done among those with available indices of interstitial fibrosis (extracellular volume fraction[ECV];N=1,172 and native-T1;N=1,863) and replacement fibrosis by LGE(N=1,172). HDL-C was analyzed as both logarithmically-transformed and categorized into <40 (low), 40-59 (normal), and ≥60mg/dL (high). Multivariable linear and logistic regression models were constructed to assess the associations of HDL-C with CMR-obtained measures of IMF, ECV% and native-T1 time, and myocardial scar, respectively. Results In the fully adjusted model, each 1-SD increment of log HDL-C was associated with a 1% increment in ECV%(p=0.01) and an 18-ms increment in native-T1(p<0.001). When stratified by HDL-C categories, those with high HDL-C(≥60mg/dL) had significantly higher ECV(β=0.5%,p=0.01) and native-T1(β =7ms,p=0.01) compared with those with normal HDL-C levels. Those with low HDL-C were not associated with IMF. Results remained unchanged after excluding individuals with a history of myocardial infarction. Neither increasing levels of HDL-C nor any HDL-C category was associated with the prevalence of myocardial scar. Conclusions Increasing levels of HDL-C were associated with increased markers of IMF, with those with high levels of HDL-C being linked to subclinical fibrosis in a community-based setting.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Wu
- National Heart Lung and Blood Institute
| | | | | | | | | | | |
Collapse
|
37
|
Santovito D, Steffens S, Barachini S, Madonna R. Autophagy, innate immunity, and cardiac disease. Front Cell Dev Biol 2023; 11:1149409. [PMID: 37234771 PMCID: PMC10206260 DOI: 10.3389/fcell.2023.1149409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Autophagy is an evolutionarily conserved mechanism of cell adaptation to metabolic and environmental stress. It mediates the disposal of protein aggregates and dysfunctional organelles, although non-conventional features have recently emerged to broadly extend the pathophysiological relevance of autophagy. In baseline conditions, basal autophagy critically regulates cardiac homeostasis to preserve structural and functional integrity and protect against cell damage and genomic instability occurring with aging. Moreover, autophagy is stimulated by multiple cardiac injuries and contributes to mechanisms of response and remodeling following ischemia, pressure overload, and metabolic stress. Besides cardiac cells, autophagy orchestrates the maturation of neutrophils and other immune cells, influencing their function. In this review, we will discuss the evidence supporting the role of autophagy in cardiac homeostasis, aging, and cardioimmunological response to cardiac injury. Finally, we highlight possible translational perspectives of modulating autophagy for therapeutic purposes to improve the care of patients with acute and chronic cardiac disease.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Unit of Milan, Institute for Genetic and Biomedical Research (IRGB), National Research Council, Milan, Italy
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Serena Barachini
- Hematology Division, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosalinda Madonna
- Cardiology Division, Cardio-Thoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Surgical, Medical, Molecular Pathology & Critical Care Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
38
|
Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 2023; 8:114. [PMID: 36918543 PMCID: PMC10015017 DOI: 10.1038/s41392-023-01378-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Cardiac aging is evident by a reduction in function which subsequently contributes to heart failure. The metabolic microenvironment has been identified as a hallmark of malignancy, but recent studies have shed light on its role in cardiovascular diseases (CVDs). Various metabolic pathways in cardiomyocytes and noncardiomyocytes determine cellular senescence in the aging heart. Metabolic alteration is a common process throughout cardiac degeneration. Importantly, the involvement of cellular senescence in cardiac injuries, including heart failure and myocardial ischemia and infarction, has been reported. However, metabolic complexity among human aging hearts hinders the development of strategies that targets metabolic susceptibility. Advances over the past decade have linked cellular senescence and function with their metabolic reprogramming pathway in cardiac aging, including autophagy, oxidative stress, epigenetic modifications, chronic inflammation, and myocyte systolic phenotype regulation. In addition, metabolic status is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and chronic inflammation. However, further elucidation of the metabolism involvement in cardiac degeneration is still needed. Thus, deciphering the mechanisms underlying how metabolic reprogramming impacts cardiac aging is thought to contribute to the novel interventions to protect or even restore cardiac function in aging hearts. Here, we summarize emerging concepts about metabolic landscapes of cardiac aging, with specific focuses on why metabolic profile alters during cardiac degeneration and how we could utilize the current knowledge to improve the management of cardiac aging.
Collapse
|
39
|
Abdellatif M, Madeo F, Sedej S, Kroemer G. Antagonistic pleiotropy: the example of cardiac insulin-like growth factor signaling, which is essential in youth but detrimental in age. Expert Opin Ther Targets 2023; 27:87-90. [PMID: 36749698 DOI: 10.1080/14728222.2023.2178420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le. cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,BioTechMed Graz, Graz, Austria
| | - Frank Madeo
- BioTechMed Graz, Graz, Austria.,Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria.,Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le. cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
40
|
Hedges CP, Shetty B, Broome SC, MacRae C, Koutsifeli P, Buckels EJ, MacIndoe C, Boix J, Tsiloulis T, Matthews BG, Sinha S, Arendse M, Jaiswal JK, Mellor KM, Hickey AJR, Shepherd PR, Merry TL. Dietary supplementation of clinically utilized PI3K p110α inhibitor extends the lifespan of male and female mice. NATURE AGING 2023; 3:162-172. [PMID: 37118113 DOI: 10.1038/s43587-022-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/02/2022] [Indexed: 04/30/2023]
Abstract
Diminished insulin and insulin-like growth factor-1 signaling extends the lifespan of invertebrates1-4; however, whether it is a feasible longevity target in mammals is less clear5-12. Clinically utilized therapeutics that target this pathway, such as small-molecule inhibitors of phosphoinositide 3-kinase p110α (PI3Ki), provide a translatable approach to studying the impact of these pathways on aging. Here, we provide evidence that dietary supplementation with the PI3Ki alpelisib from middle age extends the median and maximal lifespan of mice, an effect that was more pronounced in females. While long-term PI3Ki treatment was well tolerated and led to greater strength and balance, negative impacts on common human aging markers, including reductions in bone mass and mild hyperglycemia, were also evident. These results suggest that while pharmacological suppression of insulin receptor (IR)/insulin-like growth factor receptor (IGFR) targets could represent a promising approach to delaying some aspects of aging, caution should be taken in translation to humans.
Collapse
Affiliation(s)
- C P Hedges
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - B Shetty
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - S C Broome
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - C MacRae
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - P Koutsifeli
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - E J Buckels
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - C MacIndoe
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - J Boix
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - T Tsiloulis
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - B G Matthews
- Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - S Sinha
- Department of Pathology, Waikato Hospital, Hamilton, New Zealand
| | - M Arendse
- Department of Pathology, Waikato Hospital, Hamilton, New Zealand
| | - J K Jaiswal
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - K M Mellor
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - A J R Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - P R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - T L Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
41
|
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186:243-278. [PMID: 36599349 DOI: 10.1016/j.cell.2022.11.001] [Citation(s) in RCA: 1656] [Impact Index Per Article: 828.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
Aging is driven by hallmarks fulfilling the following three premises: (1) their age-associated manifestation, (2) the acceleration of aging by experimentally accentuating them, and (3) the opportunity to decelerate, stop, or reverse aging by therapeutic interventions on them. We propose the following twelve hallmarks of aging: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. These hallmarks are interconnected among each other, as well as to the recently proposed hallmarks of health, which include organizational features of spatial compartmentalization, maintenance of homeostasis, and adequate responses to stress.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Cambridge, UK
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
42
|
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35:12-35. [PMID: 36599298 DOI: 10.1016/j.cmet.2022.11.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Both aging and cancer are characterized by a series of partially overlapping "hallmarks" that we subject here to a meta-analysis. Several hallmarks of aging (i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis) are very similar to specific cancer hallmarks and hence constitute common "meta-hallmarks," while other features of aging (i.e., telomere attrition and stem cell exhaustion) act likely to suppress oncogenesis and hence can be viewed as preponderantly "antagonistic hallmarks." Disabled macroautophagy and cellular senescence are two hallmarks of aging that exert context-dependent oncosuppressive and pro-tumorigenic effects. Similarly, the equivalence or antagonism between aging-associated deregulated nutrient-sensing and cancer-relevant alterations of cellular metabolism is complex. The agonistic and antagonistic relationship between the processes that drive aging and cancer has bearings for the age-related increase and oldest age-related decrease of cancer morbidity and mortality, as well as for the therapeutic management of malignant disease in the elderly.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
43
|
Xie M, Hou L. Letter by Xie and Hou Regarding Article, "Fine-Tuning Cardiac Insulin-Like Growth Factor 1 Receptor Signaling to Promote Health and Longevity". Circulation 2022; 146:e331. [PMID: 36508496 DOI: 10.1161/circulationaha.122.061531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meiying Xie
- Guangdong Eco-Engineering Polytechnic, China (M.X.)
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Guangdong, China (L.H.)
| |
Collapse
|
44
|
Sedej S, Abdellatif M. Response by Sedej and Abdellatif to Letter Regarding Article, "Fine-Tuning Cardiac Insulin-Like Growth Factor 1 Receptor Signaling to Promote Health and Longevity". Circulation 2022; 146:e332-e333. [PMID: 36508494 DOI: 10.1161/circulationaha.122.062496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Simon Sedej
- Department of Cardiology, Medical University of Graz, Austria (S.S., M.A.).,BioTechMed Graz, Austria (S.S., M.A.).,Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia (S.S.)
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Austria (S.S., M.A.).,BioTechMed Graz, Austria (S.S., M.A.).,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France (M.A.).,Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France (M.A.)
| |
Collapse
|
45
|
Montégut L, Joseph A, Chen H, Abdellatif M, Ruckenstuhl C, Motiño O, Lambertucci F, Anagnostopoulos G, Lachkar S, Dichtinger S, Maiuri MC, Goldwasser F, Blanchet B, Fumeron F, Martins I, Madeo F, Kroemer G. High plasma concentrations of acyl-coenzyme A binding protein (ACBP) predispose to cardiovascular disease: Evidence for a phylogenetically conserved proaging function of ACBP. Aging Cell 2022; 22:e13751. [PMID: 36510662 PMCID: PMC9835587 DOI: 10.1111/acel.13751] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Autophagy defects accelerate aging, while stimulation of autophagy decelerates aging. Acyl-coenzyme A binding protein (ACBP), which is encoded by a diazepam-binding inhibitor (DBI), acts as an extracellular feedback regulator of autophagy. As shown here, knockout of the gene coding for the yeast orthologue of ACBP/DBI (ACB1) improves chronological aging, and this effect is reversed by knockout of essential autophagy genes (ATG5, ATG7) but less so by knockout of an essential mitophagy gene (ATG32). In humans, ACBP/DBI levels independently correlate with body mass index (BMI) as well as with chronological age. In still-healthy individuals, we find that high ACBP/DBI levels correlate with future cardiovascular events (such as heart surgery, myocardial infarction, and stroke), an association that is independent of BMI and chronological age, suggesting that ACBP/DBI is indeed a biomarker of "biological" aging. Concurringly, ACBP/DBI plasma concentrations correlate with established cardiovascular risk factors (fasting glucose levels, systolic blood pressure, total free cholesterol, triglycerides), but are inversely correlated with atheroprotective high-density lipoprotein (HDL). In mice, neutralization of ACBP/DBI through a monoclonal antibody attenuates anthracycline-induced cardiotoxicity, which is a model of accelerated heart aging. In conclusion, plasma elevation of ACBP/DBI constitutes a novel biomarker of chronological aging and facets of biological aging with a prognostic value in cardiovascular disease.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance,Service de médecine intensive réanimationHôpital Saint‐LouisParisFrance
| | - Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Department of CardiologyMedical University of GrazGrazAustria,BioTechMed‐GrazGrazAustria
| | | | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Faculté de Médecine, Université de Paris SaclayParisFrance
| | - Sylvie Lachkar
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Silvia Dichtinger
- Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - François Goldwasser
- Department of Medical OncologyCochin Hospital, AP‐HPParisFrance,URP4466, Université Paris CitéParisFrance
| | - Benoit Blanchet
- Pharmacokinetics and Pharmacochemistry UnitCochin Hospital, Paris Descartes University, CARPEM, AP‐HPParisFrance,UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, University of Paris, PRES Sorbonne Paris Cité, CARPEMParisFrance
| | - Frédéric Fumeron
- Institut Necker‐Enfants Malades, Université Paris Cité, INSERM UMR‐S1151, CNRS UMR‐S8253ParisFrance
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Frank Madeo
- BioTechMed‐GrazGrazAustria,Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria,Field of Excellence BioHealthUniversity of GrazGrazAustria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance,Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance,Institut du Cancer Paris CARPEM, Department of BiologyHôpital Européen Georges Pompidou, AP‐HPParisFrance
| |
Collapse
|
46
|
Li H, Zhang L, Zhang L, Han R. Autophagy in striated muscle diseases. Front Cardiovasc Med 2022; 9:1000067. [PMID: 36312227 PMCID: PMC9606591 DOI: 10.3389/fcvm.2022.1000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Impaired biomolecules and cellular organelles are gradually built up during the development and aging of organisms, and this deteriorating process is expedited under stress conditions. As a major lysosome-mediated catabolic process, autophagy has evolved to eradicate these damaged cellular components and recycle nutrients to restore cellular homeostasis and fitness. The autophagic activities are altered under various disease conditions such as ischemia-reperfusion cardiac injury, sarcopenia, and genetic myopathies, which impact multiple cellular processes related to cellular growth and survival in cardiac and skeletal muscles. Thus, autophagy has been the focus for therapeutic development to treat these muscle diseases. To develop the specific and effective interventions targeting autophagy, it is essential to understand the molecular mechanisms by which autophagy is altered in heart and skeletal muscle disorders. Herein, we summarize how autophagy alterations are linked to cardiac and skeletal muscle defects and how these alterations occur. We further discuss potential pharmacological and genetic interventions to regulate autophagy activities and their applications in cardiac and skeletal muscle diseases.
Collapse
Affiliation(s)
- Haiwen Li
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Haiwen Li,
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lei Zhang
- Department of Anatomy and Neurobiology, Shanghai Yangzhi Rehabilitation Hospital, Shanghai Sunshine Rehabilitation Center, School of Medicine, Tongji University, Shanghai, China
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, United States,Renzhi Han,
| |
Collapse
|
47
|
Cagnin S, Brugnaro M, Millino C, Pacchioni B, Troiano C, Di Sante M, Kaludercic N. Monoamine Oxidase-Dependent Pro-Survival Signaling in Diabetic Hearts Is Mediated by miRNAs. Cells 2022; 11:2697. [PMID: 36078109 PMCID: PMC9454570 DOI: 10.3390/cells11172697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 10/05/2023] Open
Abstract
Diabetes leads to cardiomyopathy and heart failure, the leading cause of death for diabetic patients. Monoamine oxidase (MAO) inhibition in diabetic cardiomyopathy prevents oxidative stress, mitochondrial and endoplasmic reticulum stress and the development of diastolic dysfunction. However, it is unclear whether, in addition to the direct effects exerted on the mitochondria, MAO activity is able to post-transcriptionally regulate cardiomyocyte function and survival in diabetes. To this aim, we performed gene and miRNA expression profiling in cardiac tissue from streptozotocin-treated mice (model of type 1 diabetes (T1D)), administered with either vehicle or MAOs inhibitor pargyline for 12 weeks. We found that inhibition of MAO activity in T1D hearts leads to profound transcriptomic changes, affecting autophagy and pro-survival pathways activation. MAO activity in T1D hearts increased miR-133a-3p, -193a-3p and -27a-3p expression. These miRNAs target insulin-like growth factor receptor 1 (Igf1r), growth factor receptor bound protein 10 and inositol polyphosphate 4 phosphatase type 1A, respectively, all components of the IGF1R/PI3K/AKT signaling pathway. Indeed, AKT activation was significantly downregulated in T1D hearts, whereas MAO inhibition restored the activation of this pro-survival pathway. The present study provides an important link between MAO activity, transcriptomic changes and activation of pro-survival signaling and autophagy in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Stefano Cagnin
- Department of Biology, University of Padova, 35131 Padova, Italy
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | - Marco Brugnaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Caterina Millino
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | - Carmen Troiano
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Neuroscience Institute, National Research Council of Italy (CNR), 35131 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy
| |
Collapse
|
48
|
Zannad F, Ferreira JP, Butler J, Filippatos G, Januzzi JL, Sumin M, Zwick M, Saadati M, Pocock SJ, Sattar N, Anker SD, Packer M. Effect of empagliflozin on circulating proteomics in heart failure: mechanistic insights into the EMPEROR programme. Eur Heart J 2022; 43:4991-5002. [PMID: 36017745 PMCID: PMC9769969 DOI: 10.1093/eurheartj/ehac495] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
AIMS Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in diverse patient populations, but their mechanism of action requires further study. The aim is to explore the effect of empagliflozin on the circulating levels of intracellular proteins in patients with heart failure, using large-scale proteomics. METHODS AND RESULTS Over 1250 circulating proteins were measured at baseline, Week 12, and Week 52 in 1134 patients from EMPEROR-Reduced and EMPEROR-Preserved, using the Olink® Explore 1536 platform. Statistical and bioinformatical analyses identified differentially expressed proteins (empagliflozin vs. placebo), which were then linked to demonstrated biological actions in the heart and kidneys. At Week 12, 32 of 1283 proteins fulfilled our threshold for being differentially expressed, i.e. their levels were changed by ≥10% with a false discovery rate <1% (empagliflozin vs. placebo). Among these, nine proteins demonstrated the largest treatment effect of empagliflozin: insulin-like growth factor-binding protein 1, transferrin receptor protein 1, carbonic anhydrase 2, erythropoietin, protein-glutamine gamma-glutamyltransferase 2, thymosin beta-10, U-type mitochondrial creatine kinase, insulin-like growth factor-binding protein 4, and adipocyte fatty acid-binding protein 4. The changes of the proteins from baseline to Week 52 were generally concordant with the changes from the baseline to Week 12, except empagliflozin reduced levels of kidney injury molecule-1 by ≥10% at Week 52, but not at Week 12. The most common biological action of differentially expressed proteins appeared to be the promotion of autophagic flux in the heart, kidney or endothelium, a feature of 6 proteins. Other effects of differentially expressed proteins on the heart included the reduction of oxidative stress, inhibition of inflammation and fibrosis, and the enhancement of mitochondrial health and energy, repair, and regenerative capacity. The actions of differentially expressed proteins in the kidney involved promotion of autophagy, integrity and regeneration, suppression of renal inflammation and fibrosis, and modulation of renal tubular sodium reabsorption. CONCLUSIONS Changes in circulating protein levels in patients with heart failure are consistent with the findings of experimental studies that have shown that the effects of SGLT2 inhibitors are likely related to actions on the heart and kidney to promote autophagic flux, nutrient deprivation signalling and transmembrane sodium transport.
Collapse
Affiliation(s)
- Faiez Zannad
- Corresponding author. Tel: +33 3 83 15 73 15, Fax: +33 3 83 15 73 24, Emails: ;
| | - João Pedro Ferreira
- Corresponding author. Tel: +33 3 83 15 73 15, Fax: +33 3 83 15 73 24, Emails: ;
| | - Javed Butler
- Heart and Vascular Research, Baylor Scott and White Research Institute, 34 Live Oak St Ste 501, Dallas, TX 75204, USA,University of Mississippi Medical Center, 2500 North State Street Jackson, MS 39216, USA
| | - Gerasimos Filippatos
- Heart Failure Unit, National and Kapodistrian University of Athens School of Medicine, Mikras Asias 75, Athina 115 27 Athens, Greece
| | - James L Januzzi
- Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114USA,The Baim Institute for Clinical Research, 930 Commonwealth Ave #3, Boston, MA 02215USA
| | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Binger Str. 173, 55218 Ingelheim am RheinGermany
| | - Matthias Zwick
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der RissGermany
| | - Maral Saadati
- Elderbrook Solutions GmbH on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riss, Germany
| | - Stuart J Pocock
- London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HTUK
| | - Naveed Sattar
- BHF, UK School of Cardiovascular and Metabolic Health, University of Glasgow, 126 University Place, Glasgow G12 8TAUK
| | - Stefan D Anker
- Department of Cardiology (CVK) Berlin Institute of Health Center for Regenerative Therapies (BCRT) German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Charité, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany,Institute of Heart Diseases, Wroclaw Medical University, Borowska Street 213, 50-556 Warsaw, Poland
| | - Milton Packer
- Baylor Heart and Vascular Hospital, Baylor University Medical Center, 621 N Hall St, Dallas, TX 75226, USA,Imperial College, London, Exhibition Rd, South Kensington, London SW7 2BX, UK
| |
Collapse
|
49
|
Abdellatif M, Eisenberg T, Heberle AM, Thedieck K, Kroemer G, Sedej S. Cardiac PI3K p110α attenuation delays aging and extends lifespan. Cell Stress 2022; 6:72-75. [PMID: 36447531 PMCID: PMC9662025 DOI: 10.15698/cst2022.08.270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) is a key component of the insulin signaling pathway that controls cellular me-tabolism and growth. Loss-of-function mutations in PI3K signaling and other downstream effectors of the insulin signaling pathway extend the lifespan of various model organisms. However, the pro-longevity effect appears to be sex-specific and young mice with reduced PI3K signaling have increased risk of cardiac disease. Hence, it remains elusive as to whether PI3K inhibition is a valid strategy to delay aging and extend healthspan in humans. We recently demonstrated that reduced PI3K activity in cardiomyocytes delays cardiac growth, causing subnormal contractility and cardiopulmonary functional capacity, as well as increased risk of mortality at young age. In stark contrast, in aged mice, experi-mental attenuation of PI3K signaling reduced the age-dependent decline in cardiac function and extended maximal lifespan, suggesting a biphasic effect of PI3K on cardiac health and survival. The cardiac anti-aging effects of reduced PI3K activity coincided with enhanced oxida-tive phosphorylation and required increased autophagic flux. In humans, explanted failing hearts showed in-creased PI3K signaling, as indicated by increased phos-phorylation of the serine/threonine-protein kinase AKT. Hence, late-life cardiac-specific targeting of PI3K might have a therapeutic potential in cardiac aging and related diseases.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France
- BioTechMed Graz, 8010 Graz, Austria
| | - Tobias Eisenberg
- BioTechMed Graz, 8010 Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Alexander Martin Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signalingg, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
- Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 7015, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
50
|
Abdellatif M, Madeo F, Kroemer G, Sedej S. Spermidine overrides INSR (insulin receptor)-IGF1R (insulin-like growth factor 1 receptor)-mediated inhibition of autophagy in the aging heart. Autophagy 2022; 18:2500-2502. [PMID: 35786404 PMCID: PMC9542397 DOI: 10.1080/15548627.2022.2095835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Although attenuated IGF1R (insulin-like growth factor 1 receptor) signaling has long been viewed to promote longevity in model organisms, adverse effects on the heart have been the subject of major concern. We observed that IGF1R is overexpressed in cardiac tissues from patients with end-stage non-ischemic heart failure, coupled to the activation of the IGF1R downstream effector AKT/protein kinase B and inhibition of ULK1 (unc-51 like autophagy activating kinase 1). Transgenic overexpression of human IGF1R in cardiomyocytes from mice initially induces physiological cardiac hypertrophy and superior function, but later in life confers a negative impact on cardiac health, causing macroautophagy/autophagy inhibition as well as impaired oxidative phosphorylation, thus reducing life expectancy. Treatment with the autophagy inducer and caloric restriction mimetic spermidine ameliorates most of these IGF1R-induced cardiotoxic effects in vivo. Moreover, inhibition of IGF1R signaling by means of a dominant-negative phosphoinositide 3-kinase (PI3K) mutant induces cardioprotective autophagy, restores myocardial bioenergetics and improves late-life survival. Hence, our results demonstrate that IGF1R exerts a dual biphasic impact on cardiac health, and that autophagy mediates the late-life geroprotective effects of IGF1R inhibition in the heart.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria.,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France.,BioTechMed Graz, 8010 Graz, Austria
| | - Frank Madeo
- BioTechMed Graz, 8010 Graz, Austria.,Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria.,Field of Excellence BioHealth - University of Graz, Graz, 8010, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France.,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 7015, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria.,Institute of Physiology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|