1
|
Mei Y, Chen Y, Wang X, Xu R, Feng X. The relationship between remnant cholesterol and the risk of testosterone deficiency in US adults: a cross-sectional study based on the NHANES database. Front Endocrinol (Lausanne) 2024; 15:1458193. [PMID: 39387048 PMCID: PMC11462545 DOI: 10.3389/fendo.2024.1458193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Background Testosterone deficiency (TD) is an urgent health issue that requires attention, associated with various adverse health outcomes including cardiovascular diseases (CVD) and metabolic syndrome. Remnant cholesterol (RC) has emerged as a potential biomarker for cardiovascular risk, but its relationship with testosterone levels and TD has not been thoroughly investigated. This study aims to explore the association between RC and TD in adult American males using data from the National Health and Nutrition Examination Survey (NHANES). Methods This cross-sectional study utilized data from three NHANES cycles (2011-2016), including 2,848 adult male participants. RC was calculated as total cholesterol minus high-density lipoprotein cholesterol (HDL) and low-density lipoprotein cholesterol (LDL). TD was defined as total testosterone levels below 300 ng/dL. Multivariable linear and logistic regression analyses, as well as smooth curve fitting and generalized additive models, were performed to assess the associations between RC and total testosterone levels and TD, adjusting for potential confounders. Subgroup analyses were conducted based on age, BMI, smoking status, diabetes, hypertension, CVD, and chronic kidney disease (CKD). Results Higher RC levels were significantly associated with lower total testosterone levels (β = -53.87, 95% CI: -77.69 to -30.06, p<0.001) and an increased risk of TD (OR = 1.85, 95% CI: 1.29 to 2.66, p=0.002) in fully adjusted models. When RC was analyzed as quartiles, participants in the highest quartile (Q4) had significantly lower total testosterone levels (β = -62.19, 95% CI: -93.62 to -30.76, p<0.001) and higher odds of TD (OR = 2.15, 95% CI: 1.21 to 3.84, p=0.01) compared to those in the lowest quartile (Q1). Subgroup analyses revealed consistent associations across different age groups, particularly strong in participants over 60 years, and in never smokers. The associations remained significant in both hypertensive and non-hypertensive groups, as well as in those with and without CKD. No significant interactions were found across subgroups. Conclusion This study demonstrates a significant inverse association between RC levels and total testosterone levels, along with a positive association with the risk of TD. These findings suggest that RC could serve as a valuable biomarker for early identification of individuals at risk for TD. Future longitudinal studies are needed to confirm these findings and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Yangyang Mei
- Department of Urology, Jiangyin People's Hospital Affiliated to Nantong University, Wuxi, Jiangsu, China
| | - Yiming Chen
- Department of Urology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaogang Wang
- Department of Urology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Renfang Xu
- Department of Urology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xingliang Feng
- Department of Urology, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Vargas-Vázquez A, Fermín-Martínez CA, Antonio-Villa NE, Fernández-Chirino L, Ramírez-García D, Dávila-López G, Díaz-Sánchez JP, Aguilar-Salinas CA, Seiglie JA, Bello-Chavolla OY. Insulin resistance potentiates the effect of remnant cholesterol on cardiovascular mortality in individuals without diabetes. Atherosclerosis 2024; 395:117508. [PMID: 38570208 DOI: 10.1016/j.atherosclerosis.2024.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND AND AIMS Remnant cholesterol (RC) and insulin resistance (IR) have been independently associated with cardiovascular risk. Here, we evaluated the role of IR and RC on cardiovascular disease (CVD) mortality. METHODS We conducted an analysis of 16,113 individuals ≥20 years without diabetes from the National Health and Nutrition Examination Survey (NHANES-III/IV). RC levels were calculated using total cholesterol, non-HDL-c, and LDL-c; IR was defined as HOMA2-IR≥2.5 and CVD mortality as a composite of cardiovascular and cerebrovascular mortality. Multiple linear regression was used to assess the relationship between HOMA2-IR and RC and Cox regression models to assess their joint role in CVD mortality. Causally ordered mediation models were used to explore the mediating role of IR in RC-associated CVD mortality. RESULTS We identified an association between higher HOMA2-IR and higher RC levels. The effect of IR on CVD mortality was predominant (HR 1.32, 95%CI 1.18-1.48) and decreased at older ages (HR 0.934, 95%CI 0.918-0.959) compared to RC (HR 0.983, 95%CI 0.952-1.014). Higher risk of CVD mortality was observed in individuals with IR but normal RC (HR 1.37, 95%CI 1.25-1.50) and subjects with IR and high RC (HR 1.24, 95%CI 1.13-1.37), but not in subjects without IR but high RC. In mediation models, HOMA2-IR accounted for 78.2% (95%CI 28.11-98.89) of the effect of RC levels on CVD mortality. CONCLUSIONS Our findings suggest that RC potentiates the risk of CVD mortality through its effect on whole-body insulin sensitivity, particularly among younger individuals.
Collapse
Affiliation(s)
- Arsenio Vargas-Vázquez
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Carlos A Fermín-Martínez
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Research Division, Instituto Nacional de Geriatría, Mexico
| | | | | | - Daniel Ramírez-García
- Research Division, Instituto Nacional de Geriatría, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Gael Dávila-López
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Research Division, Instituto Nacional de Geriatría, Mexico
| | - Juan Pablo Díaz-Sánchez
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Research Division, Instituto Nacional de Geriatría, Mexico
| | - Carlos A Aguilar-Salinas
- División de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Jacqueline A Seiglie
- Diabetes Unit, Massachusetts General Hospital, Harvard Medical School, Mexico; Department of Medicine, Harvard Medical School, Mexico
| | | |
Collapse
|
3
|
Keles U, Ow JR, Kuentzel KB, Zhao LN, Kaldis P. Liver-derived metabolites as signaling molecules in fatty liver disease. Cell Mol Life Sci 2022; 80:4. [PMID: 36477411 PMCID: PMC9729146 DOI: 10.1007/s00018-022-04658-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
Excessive fat accumulation in the liver has become a major health threat worldwide. Unresolved fat deposition in the liver can go undetected until it develops into fatty liver disease, followed by steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Lipid deposition in the liver is governed by complex communication, primarily between metabolic organs. This can be mediated by hormones, organokines, and also, as has been more recently discovered, metabolites. Although how metabolites from peripheral organs affect the liver is well documented, the effect of metabolic players released from the liver during the development of fatty liver disease or associated comorbidities needs further attention. Here we focus on interorgan crosstalk based on metabolites released from the liver and how these molecules act as signaling molecules in peripheral tissues. Due to the liver's specific role, we are covering lipid and bile mechanism-derived metabolites. We also discuss the high sucrose intake associated with uric acid release from the liver. Excessive fat deposition in the liver during fatty liver disease development reflects disrupted metabolic processes. As a response, the liver secretes a variety of signaling molecules as well as metabolites which act as a footprint of the metabolic disruption. In the coming years, the reciprocal exchange of metabolites between the liver and other metabolic organs will gain further importance and will help to better understand the development of fatty liver disease and associated diseases.
Collapse
Affiliation(s)
- Umur Keles
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Katharina Barbara Kuentzel
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden. .,Lund University Diabetes Centre (LUDC), Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
4
|
Lee S, Usman TO, Yamauchi J, Chhetri G, Wang X, Coudriet GM, Zhu C, Gao J, McConnell R, Krantz K, Rajasundaram D, Singh S, Piganelli J, Ostrowska A, Soto-Gutierrez A, Monga SP, Singhi AD, Muzumdar RH, Tsung A, Dong HH. Myeloid FoxO1 depletion attenuates hepatic inflammation and prevents nonalcoholic steatohepatitis. J Clin Invest 2022; 132:154333. [PMID: 35700043 PMCID: PMC9282937 DOI: 10.1172/jci154333] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatic inflammation is culpable for the evolution of asymptomatic steatosis to nonalcoholic steatohepatitis (NASH). Hepatic inflammation results from abnormal macrophage activation. We found that FoxO1 links overnutrition to hepatic inflammation by regulating macrophage polarization and activation. FoxO1 was upregulated in hepatic macrophages, correlating with hepatic inflammation, steatosis and fibrosis in mice and patients with NASH. Myeloid cell-conditional FoxO1 knockout skewed macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes, accompanied by the reduction of macrophage infiltration in liver. These effects mitigated overnutrition-induced hepatic inflammation and insulin resistance, contributing to improved hepatic metabolism and increased energy expenditure in myeloid cell FoxO1 knockout mice on HFD. When fed a NASH-inducing diet, myeloid cell FoxO1 knockout mice were protected from developing NASH, culminating in the reduction of hepatic inflammation, steatosis and fibrosis. Mechanistically, FoxO1 counteracts Stat6 to skew macrophage polarization from M2 toward M1 signatures to perpetuate hepatic inflammation in NASH. FoxO1 appears as a pivotal mediator of macrophage activation in response to overnutrition and a therapeutic target for ameliorating hepatic inflammation to stem the disease progression from benign steatosis to NASH.
Collapse
Affiliation(s)
- Sojin Lee
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Taofeek O Usman
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jun Yamauchi
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Goma Chhetri
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Xingchun Wang
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Gina M Coudriet
- Department of Surgery, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Cuiling Zhu
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jingyang Gao
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Riley McConnell
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Kyler Krantz
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Jon Piganelli
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Radhika H Muzumdar
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Allan Tsung
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, United States of America
| | - H Henry Dong
- Department of Pediatrics, Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| |
Collapse
|
5
|
Ioannidou A, Fisher RM, Hagberg CE. The multifaceted roles of the adipose tissue vasculature. Obes Rev 2022; 23:e13403. [PMID: 34866318 DOI: 10.1111/obr.13403] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022]
Abstract
The prevalence of obesity and its associated pathologies continue to increase, which has led to a renewed interest in our major weight-regulating organ, the white adipose tissue. It has become clear that its development, expansion, and physiological function depend on proper crosstalk between each of its cellular constituents, with a central role for the vascular endothelium lining the blood vessels. Although first considered a mere barrier, the endothelium has emerged as a dynamic unit modulating many critical adipose tissue functions. It not only oversees the uptake of all nutrients to be stored in the adipocytes but also provides an important growth niche for adipocyte progenitors and regulates the expandability of the tissue during overfeeding and obesity. In this review, we describe the reciprocal relationship between endothelial cells, adipocytes, and obesity. We present recent studies that support an important role for endothelial cells as central mediators of many of the physiological and pathological functions of the adipose tissue and highlight several unknown aspects of adipose tissue vascular biology. This new perspective could present exciting opportunities to develop new therapeutic approaches against obesity-related pathologies and is thus of great interest in our increasingly obese society.
Collapse
Affiliation(s)
- Anna Ioannidou
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Rachel M Fisher
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Solna, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Rocchetti G, Vitali M, Zappaterra M, Righetti L, Sirri R, Lucini L, Dall’Asta C, Davoli R, Galaverna G. A molecular insight into the lipid changes of pig Longissimus thoracis muscle following dietary supplementation with functional ingredients. PLoS One 2022; 17:e0264953. [PMID: 35324931 PMCID: PMC8947141 DOI: 10.1371/journal.pone.0264953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, the Longissimus thoracis pig skeletal muscle was used as a model to investigate the impact of two different diets, supplemented with n-3 polyunsaturated fatty acids from extruded linseed (L) and polyphenols from grape skin and oregano extracts (L+P), on the lipidomic profile of meat. A standard diet for growing-finishing pigs (CTRL) was used as a control. Changes in lipids profile were investigated through an untargeted lipidomics and transcriptomics combined investigation. The lipidomics identified 1507 compounds, with 195 compounds fitting with the MS/MS spectra of LipidBlast database. When compared with the CTRL group, the L+P diet significantly increased 15 glycerophospholipids and 8 sphingolipids, while the L diet determined a marked up-accumulation of glycerolipids. According to the correlations outlined between discriminant lipids and genes, the L diet may act preventing adipogenesis and the related inflammation processes, while the L+P diet promoted the expression of genes involved in lipids' biosynthesis and adipogenic extracellular matrix formation and functioning.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marika Vitali
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Laura Righetti
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| | - Rubina Sirri
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Chiara Dall’Asta
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| | - Roberta Davoli
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Gianni Galaverna
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| |
Collapse
|
7
|
Jin BR, Lee M, An HJ. Nodakenin represses obesity and its complications via the inhibition of the VLDLR signalling pathway in vivo and in vitro. Cell Prolif 2021; 54:e13083. [PMID: 34165214 PMCID: PMC8349651 DOI: 10.1111/cpr.13083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives Nodakenin (NK) is a coumarin glucoside that is found in the roots of Angelicae gigas. A limited number of studies have been conducted on the pharmacological activities of NK. Although NK is an important natural resource having anti‐inflammatory and antioxidant effects, no investigation has been conducted to examine the effects of NK on obesity and obesity‐induced inflammation. Materials and Methods The present study investigated the therapeutic effects of NK treatment on obesity and its complications, and its mechanism of action using differentiated 3T3‐L1 adipocytes and high‐fat diet (HFD)‐induced obese mice. Oil red O staining, western blot assay, qRT‐PCR assay, siRNA transfection, enzyme‐linked immunosorbent assay, H&E staining, immunohistochemistry, molecular docking and immunofluorescence staining were utilized. Results Treatment with NK demonstrated anti‐adipogenesis effects via the regulation of adipogenic transcription factors and genes associated with triglyceride synthesis in differentiated 3T3‐L1 adipocytes. Compared with the control group, the group administered NK showed a suppression in weight gain, dyslipidaemia and the development of fatty liver in HFD‐induced obese mice. In addition, NK administration inhibited adipogenic differentiation and obesity‐induced inflammation and oxidative stress via the suppression of the VLDLR and MEK/ERK1/2 pathways. This is the first study that has documented the interaction between NK and VLDLR structure. Conclusion These results demonstrate the potential of NK as a natural product‐based therapeutic candidate for the treatment of obesity and its complications by targeting adipogenesis and adipose tissue inflammation‐associated markers.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang-si, Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Korea
| |
Collapse
|
8
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
9
|
Wang G, Yu Y, Cai W, Batista TM, Suk S, Noh HL, Hirshman M, Nigro P, Li ME, Softic S, Goodyear L, Kim JK, Kahn CR. Muscle-Specific Insulin Receptor Overexpression Protects Mice From Diet-Induced Glucose Intolerance but Leads to Postreceptor Insulin Resistance. Diabetes 2020; 69:2294-2309. [PMID: 32868340 PMCID: PMC7576573 DOI: 10.2337/db20-0439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Skeletal muscle insulin resistance is a prominent early feature in the pathogenesis of type 2 diabetes. In attempt to overcome this defect, we generated mice overexpressing insulin receptors (IR) specifically in skeletal muscle (IRMOE). On normal chow, IRMOE mice have body weight similar to that of controls but an increase in lean mass and glycolytic muscle fibers and reduced fat mass. IRMOE mice also show higher basal phosphorylation of IR, IRS-1, and Akt in muscle and improved glucose tolerance compared with controls. When challenged with high-fat diet (HFD), IRMOE mice are protected from diet-induced obesity. This is associated with reduced inflammation in fat and liver, improved glucose tolerance, and improved systemic insulin sensitivity. Surprisingly, however, in both chow and HFD-fed mice, insulin-stimulated Akt phosphorylation is significantly reduced in muscle of IRMOE mice, indicating postreceptor insulin resistance. RNA sequencing reveals downregulation of several postreceptor signaling proteins that contribute to this resistance. Thus, enhancing early insulin signaling in muscle by overexpression of the IR protects mice from diet-induced obesity and its effects on glucose metabolism. However, chronic overstimulation of this pathway leads to postreceptor desensitization, indicating the critical balance between normal signaling and hyperstimulation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Yingying Yu
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Weikang Cai
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY
| | - Thiago M Batista
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Sujin Suk
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Hye Lim Noh
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Michael Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Mengyao Ella Li
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Divisions of Pediatric Gastroenterology and Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY
| | - Laurie Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Jason K Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Lee SD, Priest C, Bjursell M, Gao J, Arneson DV, Ahn IS, Diamante G, van Veen JE, Massa MG, Calkin AC, Kim J, Andersén H, Rajbhandari P, Porritt M, Carreras A, Ahnmark A, Seeliger F, Maxvall I, Eliasson P, Althage M, Åkerblad P, Lindén D, Cole TA, Lee R, Boyd H, Bohlooly-Y M, Correa SM, Yang X, Tontonoz P, Hong C. IDOL regulates systemic energy balance through control of neuronal VLDLR expression. Nat Metab 2019; 1:1089-1100. [PMID: 32072135 PMCID: PMC7028310 DOI: 10.1038/s42255-019-0127-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity.
Collapse
Affiliation(s)
- Stephen D Lee
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Priest
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mikael Bjursell
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jie Gao
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas V Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna C Calkin
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Kim
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harriet Andersén
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelle Porritt
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alba Carreras
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pernilla Eliasson
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Åkerblad
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tracy A Cole
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Richard Lee
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca; Cambridge Science Park, Cambridge, UK
| | | | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Yang D, Wan Y. Molecular determinants for the polarization of macrophage and osteoclast. Semin Immunopathol 2019; 41:551-563. [PMID: 31506868 PMCID: PMC6815265 DOI: 10.1007/s00281-019-00754-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022]
Abstract
Emerging evidence suggest that macrophage and osteoclast are two competing differentiation outcomes from myeloid progenitors. In this review, we summarize recent advances in the understanding of the molecular mechanisms controlling the polarization of macrophage and osteoclast. These include nuclear receptors/transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and estrogen-related receptor α (ERRα), their transcription cofactor PPARγ coactivator 1-β (PGC-1β), metabolic factors such as mitochondrial complex I (CI) component NADH:ubiquinone oxidoreductase iron-sulfur protein 4 (Ndufs4), as well as transmembrane receptors such as very-low-density-lipoprotein receptor (VLDLR). These molecular rheostats promote osteoclast differentiation but suppress proinflammatory macrophage activation and inflammation, by acting lineage-intrinsically, systemically or cross generation. These findings provide new insights to the understanding of the interactions between innate immunity and bone remodeling, advancing the field of osteoimmunology.
Collapse
Affiliation(s)
- Dengbao Yang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
12
|
Roberts BL, Bennett BJ, Bennett CM, Carroll JM, Dalbøge LS, Hall C, Hassouneh W, Heppner KM, Kirigiti MA, Lindsley SR, Tennant KG, True CA, Whittle A, Wolf AC, Roberts CT, Tang-Christensen M, Sleeman MW, Cowley MA, Grove KL, Kievit P. Reelin is modulated by diet-induced obesity and has direct actions on arcuate proopiomelanocortin neurons. Mol Metab 2019; 26:18-29. [PMID: 31230943 PMCID: PMC6667498 DOI: 10.1016/j.molmet.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022] Open
Abstract
Objective Reelin (RELN) is a large glycoprotein involved in synapse maturation and neuronal organization throughout development. Deficits in RELN signaling contribute to multiple psychological disorders, such as autism spectrum disorder, schizophrenia, and bipolar disorder. Nutritional stress alters RELN expression in brain regions associated with these disorders; however, the involvement of RELN in the neural circuits involved in energy metabolism is unknown. The RELN receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR) are involved in lipid metabolism and expressed in the hypothalamus. Here we explored the involvement of RELN in hypothalamic signaling and the impact of diet-induced obesity (DIO) on this system. Methods Adult male mice were fed a chow diet or maintained on a high-fat diet (HFD) for 12–16 weeks. HFD-fed DIO mice exhibited decreased ApoER2 and VLDLR expression and increased RELN protein in the hypothalamus. Electrophysiology was used to determine the mechanism by which the central fragment of RELN (CF-RELN) acts on arcuate nucleus (ARH) satiety-promoting proopiomelanocortin (POMC) neurons and the impact of DIO on this circuitry. Results CF-RELN exhibited heterogeneous presynaptic actions on inhibitory inputs onto ARH-POMC-EGFP neurons and consistent postsynaptic actions. Additionally, central administration of CF-RELN caused a significant increase in ARH c-Fos expression and an acute decrease in food intake and body weight. Conclusions We conclude that RELN signaling is modulated by diet, that RELN is involved in synaptic signaling onto ARH-POMC neurons, and that altering central CF-RELN levels can impact food intake and body weight. Diet-induced obesity alters reelin protein levels and expression of ApoER2 and VLDLR. Reelin has direct, but divergent actions on GABAergic inputs onto POMC neurons. Central administration of reelin protein decreases food intake and body weight.
Collapse
Affiliation(s)
- Brandon L Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Baylin J Bennett
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Camdin M Bennett
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Julie M Carroll
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | | | - Colin Hall
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Wafa Hassouneh
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | | | - Melissa A Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Sarah R Lindsley
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Katherine G Tennant
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Cadence A True
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Andrew Whittle
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Anitra C Wolf
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | | | - Mark W Sleeman
- Department of Physiology, Monash University Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Michael A Cowley
- Department of Physiology, Monash University Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Kevin L Grove
- Obesity Research Center, Novo Nordisk, Seattle, WA, 98109, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, 97006, USA.
| |
Collapse
|
13
|
Nakajima K, Tokita Y, Tanaka A, Takahashi S. The VLDL receptor plays a key role in the metabolism of postprandial remnant lipoproteins. Clin Chim Acta 2019; 495:382-393. [PMID: 31078566 DOI: 10.1016/j.cca.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
A new concept to account for the process of postprandial remnant lipoprotein metabolism is proposed based on the characteristics of lipoprotein particles and their receptors. The characteristics of remnant lipoprotein (RLP) were investigated using an immuno-separation method. The majority of the postprandial lipoproteins increased after fat intake was shown to be VLDL remnants, not chylomicron (CM) remnants, based on the significantly high ratio of apoB100/apoB48 in the RLP and the high degree of similarity in the particle size of the apoB48 and apoB100 carrying lipoproteins, which fluctuate in parallel during a 6 h period after fat intake. The VLDL receptor was discovered as a receptor for TG-rich lipoprotein metabolism and is located in peripheral tissues such as skeletal muscle, adipose tissue, etc., but not in the liver. Postprandial VLDL particles are strongly bound and internalized into cells expressing the VLDL receptor. Ligands that bind to VLDL receptor, such as LPL and Lp(a), present in RLP. The presence of various specific ligands in VLDL remnants may enhance the capacity for binding to the VLDL receptor, which play the role primarily for energy delivery to the peripheral tissues, but is also a causal factor in atherogenic diseases when excessively and/or continuously remained in plasma.
Collapse
Affiliation(s)
- Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan.
| | - Yoshiharu Tokita
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Akira Tanaka
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| | - Sadao Takahashi
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Division of Diabetes, Ageo Central General Hospital, Saitama, Japan
| |
Collapse
|
14
|
Zarei M, Barroso E, Palomer X, Escolà-Gil JC, Cedó L, Wahli W, Vázquez-Carrera M. Pharmacological PPARβ/δ activation upregulates VLDLR in hepatocytes. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2019; 31:111-118. [PMID: 30987865 DOI: 10.1016/j.arteri.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
The very low-density lipoprotein receptor (VLDLR) plays an important function in the control of serum triglycerides and in the development of non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the role of peroxisome proliferator-activated receptor (PPAR)β/δ activation in hepatic VLDLR regulation. Treatment of mice fed a high-fat diet with the PPARβ/δ agonist GW501516 increased the hepatic expression of Vldlr. Similarly, exposure of human Huh-7 hepatocytes to GW501516 increased the expression of VLDLR and triglyceride accumulation, the latter being prevented by VLDLR knockdown. Finally, treatment with another PPARβ/δ agonist increased VLDLR levels in the liver of wild-type mice, but not PPARβ/δ-deficient mice, confirming the regulation of hepatic VLDLR by this nuclear receptor. Our results suggest that upregulation of hepatic VLDLR by PPARβ/δ agonists might contribute to the hypolipidemic effect of these drugs by increasing lipoprotein delivery to the liver. Overall, these findings provide new effects by which PPARβ/δ regulate VLDLR levels and may influence serum triglyceride levels and NAFLD development.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lidia Cedó
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
15
|
The Reelin Receptors Apolipoprotein E receptor 2 (ApoER2) and VLDL Receptor. Int J Mol Sci 2018; 19:ijms19103090. [PMID: 30304853 PMCID: PMC6213145 DOI: 10.3390/ijms19103090] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/28/2023] Open
Abstract
Apolipoprotein E receptor 2 (ApoER2) and VLDL receptor belong to the low density lipoprotein receptor family and bind apolipoprotein E. These receptors interact with the clathrin machinery to mediate endocytosis of macromolecules but also interact with other adapter proteins to perform as signal transduction receptors. The best characterized signaling pathway in which ApoER2 and VLDL receptor (VLDLR) are involved is the Reelin pathway. This pathway plays a pivotal role in the development of laminated structures of the brain and in synaptic plasticity of the adult brain. Since Reelin and apolipoprotein E, are ligands of ApoER2 and VLDLR, these receptors are of interest with respect to Alzheimer’s disease. We will focus this review on the complex structure of ApoER2 and VLDLR and a recently characterized ligand, namely clusterin.
Collapse
|
16
|
Yang D, Huynh H, Wan Y. Milk lipid regulation at the maternal-offspring interface. Semin Cell Dev Biol 2018; 81:141-148. [PMID: 29051053 PMCID: PMC5916746 DOI: 10.1016/j.semcdb.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
Milk lipids provide a large proportion of energy, nutrients, essential fatty acids, and signaling molecules for the newborns, the synthesis of which is a tightly controlled process. Dysregulated milk lipid production and composition may be detrimental to the growth, development, health and survival of the newborns. Many genetically modified animal models have contributed to our understanding of milk lipid regulation in the lactating mammary gland. In this review, we discuss recent advances in our knowledge of the mechanisms that control milk lipid biosynthesis and secretion during lactation, and how maternal genetic and dietary defects impact milk lipid composition and consequently offspring traits.
Collapse
Affiliation(s)
- Dengbao Yang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Nakajima K, Tokita Y, Tanaka A. Hypothesis: Postprandial remnant lipoproteins are the causal factors that induce the insulin resistance associated with obesity. Clin Chim Acta 2018; 485:126-132. [PMID: 29958888 DOI: 10.1016/j.cca.2018.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 11/17/2022]
Abstract
We have long thought that remnant lipoproteins (RLP) in plasma are significantly increased as the result of disturbed lipoprotein metabolism followed by obesity and insulin resistance. Therefore, it was believed that insulin resistance causes and enhances RLP formation. In contrast, this hypothesis states that RLP induces insulin resistance as the result of obesity associated with the excessive fat intake. The majority of plasma TG increased after fat intake is TG in RLP (RLP-TG) and the majority of postprandial RLP is VLDL remnants, not CM remnants. RLP is newly formed lipoproteins primarily for energy supply against starvation, like blood sugar after carbohydrate intake. Since RLP bearing apoE, LPL and Lp(a) function as ligands for the VLDL receptor, RLP interacts with the VLDL receptor in visceral fat adipocytes and stored as TG similar to excessive blood sugar. However, the excessive VLDL remnants induces obesity and its associated insulin resistance, which plays a major role as the initiator of metabolic domino effects, similar to blood sugar primarily serving as an energy supply to protect against starvation.
Collapse
Affiliation(s)
- Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan.
| | - Yoshiharu Tokita
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan; Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Akira Tanaka
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| |
Collapse
|
18
|
Zarei M, Barroso E, Palomer X, Dai J, Rada P, Quesada-López T, Escolà-Gil JC, Cedó L, Zali MR, Molaei M, Dabiri R, Vázquez S, Pujol E, Valverde ÁM, Villarroya F, Liu Y, Wahli W, Vázquez-Carrera M. Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic fatty liver disease. Mol Metab 2017; 8:117-131. [PMID: 29289645 PMCID: PMC5985050 DOI: 10.1016/j.molmet.2017.12.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Objective The very low-density lipoprotein receptor (VLDLR) plays an important role in the development of hepatic steatosis. In this study, we investigated the role of Peroxisome Proliferator-Activated Receptor (PPAR)β/δ and fibroblast growth factor 21 (FGF21) in hepatic VLDLR regulation. Methods Studies were conducted in wild-type and Pparβ/δ-null mice, primary mouse hepatocytes, human Huh-7 hepatocytes, and liver biopsies from control subjects and patients with moderate and severe hepatic steatosis. Results Increased VLDLR levels were observed in liver of Pparβ/δ-null mice and in Pparβ/δ-knocked down mouse primary hepatocytes through mechanisms involving the heme-regulated eukaryotic translation initiation factor 2α (eIF2α) kinase (HRI), activating transcription factor (ATF) 4 and the oxidative stress-induced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways. Moreover, by using a neutralizing antibody against FGF21, Fgf21-null mice and by treating mice with recombinant FGF21, we show that FGF21 may protect against hepatic steatosis by attenuating endoplasmic reticulum (ER) stress-induced VLDLR upregulation. Finally, in liver biopsies from patients with moderate and severe hepatic steatosis, we observed an increase in VLDLR levels that was accompanied by a reduction in PPARβ/δ mRNA abundance and DNA-binding activity compared with control subjects. Conclusions Overall, these findings provide new mechanisms by which PPARβ/δ and FGF21 regulate VLDLR levels and influence hepatic steatosis development. PPARβ/δ deficiency leads to increased levels of hepatic VLDLR levels. FGF21 protects against hepatic steatosis by attenuating ER stress-induced VLDLR upregulation. Human hepatic steatosis is accompanied by increased levels of VLDLR and reduced expression of PPARβ/δ. PPARβ/δ and FGF21 may influence NAFLD development by regulating VLDLR levels.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Barcelona, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Barcelona, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Barcelona, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jianli Dai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Patricia Rada
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Barcelona, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | - Tania Quesada-López
- Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine and IBUB, University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBEROBN)-Instituto de Salud Carlos III, Spain
| | - Joan Carles Escolà-Gil
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Barcelona, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lidia Cedó
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Barcelona, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Molaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Dabiri
- lnternal Medicine Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Santiago Vázquez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Eugènia Pujol
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Ángela M Valverde
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Barcelona, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | - Francesc Villarroya
- Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine and IBUB, University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBEROBN)-Instituto de Salud Carlos III, Spain
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Barcelona, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
19
|
Ming-liang C, Cong W, Xuan D, Lu L, Tang-jie Z. A Novel Polymorphism of VLDLR Signal Peptide Coding Region and Its Association with Growth and Abdominal Fat Traits of Gaoyou Domestic Ducks. ACTA ACUST UNITED AC 2017. [DOI: 10.1590/1806-9061-2016-0272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - W Cong
- Yangzhou University, China
| | - D Xuan
- Yangzhou University, China
| | - L Lu
- Yangzhou University, China
| | | |
Collapse
|
20
|
Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat Commun 2017; 8:1087. [PMID: 29057873 PMCID: PMC5651811 DOI: 10.1038/s41467-017-01232-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/25/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is closely associated with increased adipose tissue macrophages (ATMs), which contribute to systemic insulin resistance and altered lipid metabolism by creating a pro-inflammatory environment. Very low-density lipoprotein receptor (VLDLR) is involved in lipoprotein uptake and storage. However, whether lipid uptake via VLDLR in macrophages affects obesity-induced inflammatory responses and insulin resistance is not well understood. Here we show that elevated VLDLR expression in ATMs promotes adipose tissue inflammation and glucose intolerance in obese mice. In macrophages, VLDL treatment upregulates intracellular levels of C16:0 ceramides in a VLDLR-dependent manner, which potentiates pro-inflammatory responses and promotes M1-like macrophage polarization. Adoptive transfer of VLDLR knockout bone marrow to wild-type mice relieves adipose tissue inflammation and improves insulin resistance in diet-induced obese mice. These findings suggest that increased VLDL-VLDLR signaling in ATMs aggravates adipose tissue inflammation and insulin resistance in obesity. VLDLR regulates cellular lipoprotein uptake and storage. Here, the authors show that VLDLR, expressed on adipose tissue macrophages, is upregulated in obesity and promotes adipose tissue inflammation by upregulating ceramide production and facilitating M1-like macrophage polarization.
Collapse
|
21
|
Zhang M, Li Y, Wei X, Tian F, Ouyang F, Zhao S, Liu L. Indispensable role of lipoprotein bound-ApoE in adipogenesis and endocytosis induced by postprandial TRL. Biochem Biophys Res Commun 2017; 493:298-305. [PMID: 28893538 DOI: 10.1016/j.bbrc.2017.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Diet-associated obesity is coexisted with postprandial hypertriglyceridemia that indicates increased number of triglyceride-rich lipoproteins (TRL). This study aimed to investigate the effect of postprandial TRL-bound apolipoprotein E (ApoE) on adipogenesis and potential mechanisms. 3T3-L1 cells were cultured with (i) human TRL (h-TRL) with or without insulin, or (ii) TRL from wild type mice (WT-TRL) or ApoE knock-out mice (EKO-TRL) and insulin. The differentiating adipocytes were incubated with different kinds of TRL labeled by red fluorescence and confocal microscopy was performed. Receptor associated protein (RAP), heparin or both were added to inhibit low density lipoprotein receptor family receptors, heparan sulfate proteoglycan or both, respectively. With the aid of insulin, postprandial h-TRL or WT-TRL, instead of EKO-TRL, successfully induced adipogenesis. Confocal microscopy revealed red fluorescence in the differentiating adipocytes treated with h-TRL or WT-TRL, but not with EKO-TRL. RAP markedly reduced red fluorescence within the differentiating adipocytes, while heparin had little impact. The low density lipoprotein receptor related protein 1 protein showed upward trend with the increase of TRL concentrations. Taken together, lipoprotein-bound ApoE was required in both postprandial TRL-induced adipogenesis and TRL endocytosis by the differentiating adipocytes, the latter could be partially through low density lipoprotein receptor family dependent-pathway.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Department of Cardiovascular Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yanhong Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Department of Cardiovascular Medicine, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, PR China
| | - Xuehong Wei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China
| | - Feng Tian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China
| | - Fan Ouyang
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, PR China
| | - Shuiping Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
22
|
Pan S, Wang C, Dong X, Chen M, Xing H, Zhang T. Association of VLDLR haplotypes with abdominal fat trait in ducks. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-175-2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. This study aimed to determine the correlation among VLDLR (very low-density lipoprotein receptor) gene polymorphisms, body weight and abdominal fat deposition of Gaoyou ducks. A total of 267 Gaoyou ducks from one pure line was employed for testing. The polymorphisms of the VLDLR gene were screened by polymerase chain reaction and DNA sequencing. Four novel single nucleotide polymorphisms (SNPs) (g.151G > A, g.170C > T, g.206A > G and g.278–295del) were identified in the 5'-UTR and signal peptide region. Furthermore, eight haplotypes were identified based on the four SNPs. The H8 was the most common haplotype with a frequency of more than 31 %. The four SNPs and their haplotype combinations were shown to be significantly associated with body weight at 6–10 weeks of age (P < 0. 05 or P < 0. 01) and abdominal fat percentage (AFP) (P < 0. 05 or P < 0. 01). Remarkably, the H1H1 diplotype had an effect on increasing body weight and decreasing AFP from the 6th to the 10th weeks of age. However, increasing positive effects of the H5H8 diplotype were observed for both body weight and AFP. This study suggests that the VLDLR gene plays an important role in the regulation of body weight and fat-related traits and may serve as a potential marker for the marker-assisted selection program during duck breeding.
Collapse
|
23
|
Parséus A, Sommer N, Sommer F, Caesar R, Molinaro A, Ståhlman M, Greiner TU, Perkins R, Bäckhed F. Microbiota-induced obesity requires farnesoid X receptor. Gut 2017; 66:429-437. [PMID: 26740296 PMCID: PMC5534765 DOI: 10.1136/gutjnl-2015-310283] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/09/2015] [Accepted: 10/29/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. DESIGN We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr-/- mice a high-fat diet (HFD) for 10 weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr-deficient mice to GF wild-type mice. RESULTS The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr-/- and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr-/- and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. CONCLUSIONS Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition.
Collapse
Affiliation(s)
- Ava Parséus
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Nina Sommer
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Felix Sommer
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Robert Caesar
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Thomas U Greiner
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rosie Perkins
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden,Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Evans RD, Hauton D. The role of triacylglycerol in cardiac energy provision. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1481-91. [DOI: 10.1016/j.bbalip.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
|
25
|
Pek SLT, Sum CF, Lin MX, Cheng AKS, Wong MTK, Lim SC, Tavintharan S. Circulating and visceral adipose miR-100 is down-regulated in patients with obesity and Type 2 diabetes. Mol Cell Endocrinol 2016; 427:112-23. [PMID: 26973292 DOI: 10.1016/j.mce.2016.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/30/2022]
Abstract
Obesity is a major public health problem conferring substantial excess risk for Type 2 diabetes (T2D). The role of microRNAs (miRNAs) in obesity and adipose tissue is not clearly defined. We hypothesize that circulating miRNA expression profiles vary according to differences in body mass index (BMI) and T2D and circulating miRNAs may reflect adipose tissue expression. Compared to healthy, lean individuals, circulating miR-100 was significantly lower in obese normoglycemic subjects and subjects with T2D. In visceral adipose tissue, expression of miR-100 was lower from obese subjects with T2D compared to obese subjects without T2D. miR-100 expression was significantly lower after adipogenic induction in human visceral, subcutaneous adipocytes and 3T3-L1 adipocytes. miR-100 reduced expression of mammalian target of rapamycin (mTOR) and Insulin Growth Factor Receptor (IGFR) directly. Differentiation of 3T3-L1 was accelerated by inhibition of miR-100 and reduced by miR-100 mimic transfection. Our data provide the first evidence of an association of circulating miR-100 with obesity and diabetes. Additionally, our in-vitro findings, and the miR-100 expression patterns in site-specific adipose tissue suggest miR-100 to modulate IGFR, mTOR and mediate adipogenesis.
Collapse
Affiliation(s)
| | - Chee Fang Sum
- Diabetes Centre, Khoo Teck Puat Hospital, 768828, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, 768828, Singapore.
| | | | | | | | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828, Singapore; Diabetes Centre, Khoo Teck Puat Hospital, 768828, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, 768828, Singapore.
| | - Subramaniam Tavintharan
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828, Singapore; Diabetes Centre, Khoo Teck Puat Hospital, 768828, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, 768828, Singapore.
| |
Collapse
|
26
|
Etxebarria A, Benito-Vicente A, Stef M, Ostolaza H, Palacios L, Martin C. Activity-associated effect of LDL receptor missense variants located in the cysteine-rich repeats. Atherosclerosis 2014; 238:304-12. [PMID: 25545329 DOI: 10.1016/j.atherosclerosis.2014.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND The LDL receptor (LDLR) is a Class I transmembrane protein critical for the clearance of cholesterol-containing lipoprotein particles. The N-terminal domain of the LDLR harbours the ligand-binding domain consisting of seven cysteine-rich repeats of approximately 40 amino acids each. Mutations in the LDLR binding domain may result in loss of receptor activity leading to familial hypercholesterolemia (FH). In this study the activity of six mutations located in the cysteine-rich repeats of the LDLR has been investigated. METHODS CHO-ldlA7 transfected cells with six different LDLR mutations have been used to analyse in vitro LDLR expression, lipoprotein binding and uptake. Immunoblotting of cell extracts, flow cytometry and confocal microscopy have been performed to determine the effects of these mutations. In silico analysis was also performed to predict the mutation effect. RESULTS AND CONCLUSION From the six mutations, p.Arg257Trp turned out to be a non-pathogenic LDLR variant whereas p.Cys116Arg, p.Asp168Asn, p.Asp172Asn, p.Arg300Gly and p.Asp301Gly were classified as binding-defective LDLR variants whose effect is not as severe as null allele mutations.
Collapse
Affiliation(s)
- A Etxebarria
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
| | - A Benito-Vicente
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
| | - M Stef
- Progenika Biopharma, a Grifols Company, Derio, Spain
| | - H Ostolaza
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
| | - L Palacios
- Progenika Biopharma, a Grifols Company, Derio, Spain
| | - C Martin
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
| |
Collapse
|
27
|
Lee K, Shin Y, Cheng R, Park K, Hu Y, McBride J, He X, Takahashi Y, Ma JX. Receptor heterodimerization as a novel mechanism for the regulation of Wnt/β-catenin signaling. J Cell Sci 2014; 127:4857-69. [PMID: 25271056 DOI: 10.1242/jcs.149302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Wnt pathway plays important roles in multiple physiological and pathophysiological processes. Here, we report a novel mechanism that regulates the Wnt pathway through heterodimerization of the Wnt co-receptor low-density lipoprotein-receptor-related protein 6 (LRP6) and very low-density lipoprotein receptor (VLDLR); the latter belongs to the same protein family as LRP6 and was originally known as a receptor for lipoproteins. Knockdown of Vldlr expression elevated LRP6 protein levels and activated Wnt/β-catenin signaling, whereas overexpression of Vldlr suppressed Wnt signaling. Moreover, we demonstrate that the VLDLR ectodomain is essential and sufficient for inhibition of Wnt signaling. The VLDLR ectodomain accelerated internalization and degradation of LRP6 through heterodimerization with the LRP6 extracellular domain. Monoclonal antibodies specific for the VLDLR ectodomain blocked VLDLR-LRP6 heterodimerization, resulting in enhanced Wnt/β-catenin signaling in vitro and in vivo. Taken together, these findings suggest that heterodimerization of receptors in the membrane accelerates the turnover of LRP6, and represent a new mechanism for the regulation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Kyungwon Lee
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Younghwa Shin
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rui Cheng
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kyoungmin Park
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yang Hu
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jeffrey McBride
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xuemin He
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yusuke Takahashi
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jian-Xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
28
|
Li YH, Liu L. Apolipoprotein E synthesized by adipocyte and apolipoprotein E carried on lipoproteins modulate adipocyte triglyceride content. Lipids Health Dis 2014; 13:136. [PMID: 25148848 PMCID: PMC4156606 DOI: 10.1186/1476-511x-13-136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/18/2014] [Indexed: 01/02/2023] Open
Abstract
Excessive energy storage of adipose tissue makes contribution to the occurrence and progression of obesity, which accompanies with multiple adverse complications, such as metabolic syndrome, cardiovascular diseases. It is well known that apolipoprotein E, as a component of lipoproteins, performs a key role in maintaining plasma lipoproteins homeostasis. Interestingly, apolipoprotein E is highly expressed in adipocyte and has positive relation with body fat mass. Apolipoprotein E knock-out mice show small fat mass compared to wild type mice. Moreover, adipocyte deficiency in apolipoprotein E shows impaired lipoproeteins internalization and triglyceride accumulation. Apolipopreotein E-deficient lipoproteins can not induce preadipocyte to form round full-lipid adipocyte, whereas apolipoprotein E-containing lipoproteins can. This article mainly reviews the modulation of apolipoprotein E synthesized by adipocyte and apolipoprotein E carried on lipoproteins in adipocyte triglyceride content.
Collapse
Affiliation(s)
| | - Ling Liu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, #139 Middle Renmin Road, Changsha, Hunan 410011, PR China.
| |
Collapse
|
29
|
Gao Y, Shen W, Lu B, Zhang Q, Hu Y, Chen Y. Upregulation of hepatic VLDLR via PPARα is required for the triglyceride-lowering effect of fenofibrate. J Lipid Res 2014; 55:1622-33. [PMID: 24899625 DOI: 10.1194/jlr.m041988] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Indexed: 01/17/2023] Open
Abstract
The liver and the VLDL receptor (VLDLR) play major roles in TG and VLDL metabolism. However, the exact role of liver VLDLR is not well known because of the absence of or difficulty in detecting VLDLR in the liver. In this study, we demonstrate that fenofibrate, a PPARα agonist and widely used TG-lowering drug, markedly upregulated hepatic VLDLR, which is essential for lowering TG. This study also shows that the distinct regulatory roles of PPARα agonists on VLDLR in the liver and peripheral tissues including adipose tissues, heart, and skeletal muscles are due to the pattern of expression of PPARα. The in vivo portion of our study demonstrated that oral fenofibrate robustly increased liver VLDLR expression levels in hyperlipidemic and diabetic mice and significantly reduced the increase in serum TG observed in wt mice after feeding with high-fat diet (HFD) but not in Vldlr(-/-) mice or Pparα(-/-) mice. However, overexpression of mouse VLDLR in livers of Vldlr(-/-) mice significantly prevented the increase in serum TG induced by HFD. The in vitro portion of our study showed that fenofibrate upregulated VLDLR transcriptional activity through PPAR response element binding to the VLDLR promoter. The conclusions of our study provide a novel mechanism for the TG-lowering effects of fenofibrate in the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Wei Shen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Boyu Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yang Hu
- Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Ying Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
30
|
Fredriksson K, Mishra A, Lam JK, Mushaben EM, Cuento RA, Meyer KS, Yao X, Keeran KJ, Nugent GZ, Qu X, Yu ZX, Yang Y, Raghavachari N, Dagur PK, McCoy JP, Levine SJ. The very low density lipoprotein receptor attenuates house dust mite-induced airway inflammation by suppressing dendritic cell-mediated adaptive immune responses. THE JOURNAL OF IMMUNOLOGY 2014; 192:4497-509. [PMID: 24733846 DOI: 10.4049/jimmunol.1301234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The very low density lipoprotein receptor (VLDLR) is a member of the low-density lipoprotein receptor family that binds multiple ligands and plays a key role in brain development. Although the VLDLR mediates pleiotropic biological processes, only a limited amount of information is available regarding its role in adaptive immunity. In this study, we identify an important role for the VLDLR in attenuating house dust mite (HDM)-induced airway inflammation in experimental murine asthma. We show that HDM-challenged Vldlr(-/-) mice have augmented eosinophilic and lymphocytic airway inflammation with increases in Th2 cytokines, C-C chemokines, IgE production, and mucous cell metaplasia. A genome-wide analysis of the lung transcriptome identified that mRNA levels of CD209e (DC-SIGNR4), a murine homolog of DC-SIGN, were increased in the lungs of HDM-challenged Vldlr(-/-) mice, which suggested that the VLDLR might modify dendritic cell (DC) function. Consistent with this, VLDLR expression by human monocyte-derived DCs was increased by HDM stimulation. In addition, 55% of peripheral blood CD11c(+) DCs from individuals with allergy expressed VLDLR under basal conditions. Lastly, the adoptive transfer of HDM-pulsed, CD11c(+) bone marrow-derived DCs (BMDCs) from Vldlr(-/-) mice to the airways of wild type recipient mice induced augmented eosinophilic and lymphocytic airway inflammation upon HDM challenge with increases in Th2 cytokines, C-C chemokines, IgE production, and mucous cell metaplasia, as compared with the adoptive transfer of HDM-pulsed, CD11c(+) BMDCs from wild type mice. Collectively, these results identify a novel role for the VLDLR as a negative regulator of DC-mediated adaptive immune responses in HDM-induced allergic airway inflammation.
Collapse
Affiliation(s)
- Karin Fredriksson
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang Z, Dou X, Li S, Zhang X, Sun X, Zhou Z, Song Z. Nuclear factor (erythroid-derived 2)-like 2 activation-induced hepatic very-low-density lipoprotein receptor overexpression in response to oxidative stress contributes to alcoholic liver disease in mice. Hepatology 2014; 59:1381-92. [PMID: 24170703 PMCID: PMC3966965 DOI: 10.1002/hep.26912] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED Chronic alcohol consumption leads to hypertriglyceridemia, which is positively associated with alcoholic liver disease (ALD). However, whether and how it contributes to the development of fatty liver and liver injury are largely unknown. In this study we demonstrate that chronic alcohol exposure differently regulates the expression of very-low-density lipoprotein receptor (VLDLR) in adipose tissue and the liver. Whereas adipose tissue VLDLR is significantly down-regulated, its hepatic expression is dramatically increased after chronic alcohol feeding. While HepG2 cells stably overexpressing VLDLR manifests increased intracellular triglyceride accumulation, VLDLR-deficient mice are protective against fatty liver and liver injury after chronic alcohol exposure. Mechanistic investigations using both in vitro and in vivo systems reveal that oxidative stress-induced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation plays a critical role in alcohol-induced VLDLR up-regulation in hepatocytes, but not in adipocytes. Oxidative stress enhances VLDLR gene expression and protein abundance in primary hepatocytes, concomitant with the Nrf2 activation. Conversely, Nrf2 gene silencing abrogates oxidative stress-induced VLDLR up-regulation in the liver, but not in adipose tissue. In mice, alcohol exposure induces hepatic oxidative stress and Nrf2 activation. Supplementation of N-acetylcysteine alleviates fatty liver and liver injury induced by chronic alcohol exposure, which is associated with suppressed Nrf2 activation and attenuated VLDLR increase in the liver. Furthermore, in comparison to wild-type counterparts, Nrf2-deficient mice demonstrate attenuated hepatic VLDLR expression increase in response to chronic alcohol exposure. CONCLUSION Chronic alcohol consumption differently alters VLDLR expression in adipose tissue and the liver. Oxidative stress-induced Nrf2 activation is mechanistically involved in VLDLR overexpression in hepatocytes in response to chronic alcohol consumption. Hepatic VLDLR overexpression plays an important role in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612,College of Laboratory Medical Science, Harbin Medical University at Daqing, Daqing, Heilongjiang 163319, P. R. China
| | - Xiaobing Dou
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China
| | - Songtao Li
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Ximei Zhang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Xinguo Sun
- Center for Translational Biomedical Research, Department of Nutrition, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, Department of Nutrition, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612,Department of Pathology, University of Illinois Medical Center, Chicago, IL 60612
| |
Collapse
|
32
|
Nasarre L, Juan-Babot O, Gastelurrutia P, Llucia-Valldeperas A, Badimon L, Bayes-Genis A, Llorente-Cortés V. Low density lipoprotein receptor-related protein 1 is upregulated in epicardial fat from type 2 diabetes mellitus patients and correlates with glucose and triglyceride plasma levels. Acta Diabetol 2014; 51:23-30. [PMID: 23096408 DOI: 10.1007/s00592-012-0436-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 10/08/2012] [Indexed: 11/27/2022]
Abstract
Lipoprotein receptor expression plays a crucial role in the pathophysiology of adipose tissue in in vivo models of diabetes. However, there are no studies in diabetic patients. The aims of this study were to analyze (a) low-density lipoprotein receptor-related protein 1 (LRP1) and very low-density lipoprotein receptor (VLDLR) expression in epicardial and subcutaneous fat from type 2 diabetes mellitus compared with nondiabetic patients and (b) the possible correlation between the expression of these receptors and plasmatic parameters. Adipose tissue biopsy samples were obtained from diabetic (n = 54) and nondiabetic patients (n = 22) undergoing cardiac surgery before the initiation of cardiopulmonary bypass. Adipose LRP1 and VLDLR expression was analyzed at mRNA level by real-time PCR and at protein level by Western blot analysis. Adipose samples were also subjected to lipid extraction, and fat cholesterol ester, triglyceride, and free cholesterol contents were analyzed by thin-layer chromatography. LRP1 expression was higher in epicardial fat from diabetic compared with nondiabetic patients (mRNA 17.63 ± 11.37 versus 7.01 ± 4.86; P = 0.02; protein 11.23 ± 7.23 versus 6.75 ± 5.02, P = 0.04). VLDLR expression was also higher in epicardial fat from diabetic patients but only at mRNA level (231.25 ± 207.57 versus 56.64 ± 45.64, P = 0.02). No differences were found in the expression of LRP1 or VLDLR in the subcutaneous fat from diabetic compared with nondiabetic patients. Epicardial LRP1 and VLDLR mRNA overexpression positively correlated with plasma triglyceride levels (R(2) = 0.50, P = 0.01 and R(2) = 0.44, P = 0.03, respectively) and epicardial LRP1 also correlated with plasma glucose levels (R(2) = 0.33, P = 0.03). These results suggest that epicardial overexpression of certain lipoprotein receptors such as LRP1 and VLDLR expression may play a key role in the alterations of lipid metabolism associated with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- L Nasarre
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, UAB, Sant Antoni Mª Claret, 167, 08025, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Nguyen A, Tao H, Metrione M, Hajri T. Very low density lipoprotein receptor (VLDLR) expression is a determinant factor in adipose tissue inflammation and adipocyte-macrophage interaction. J Biol Chem 2013; 289:1688-703. [PMID: 24293365 DOI: 10.1074/jbc.m113.515320] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Obesity is associated with adipose tissue remodeling, characterized by adipocyte hypertrophy and macrophage infiltration. Previously, we have shown that very low density lipoprotein receptor (VLDLR) is virtually absent in preadipocytes but is strongly induced during adipogenesis and actively participates in adipocyte hypertrophy. In this study, we investigated the role of VLDLR in adipose tissue inflammation and adipocyte-macrophage interactions in wild type and VLDLR-deficient mice fed a high fat diet. The results show that VLDLR deficiency reduced high fat diet-induced inflammation and endoplasmic reticulum (ER) stress in adipose tissue in conjunction with reduced macrophage infiltration, especially those expressing pro-inflammatory markers. In adipocyte culture, VLDLR deficiency prevented adipocyte hypertrophy and strongly reduced VLDL-induced ER stress and inflammation. Likewise, cultures of primary peritoneal macrophages show that VLDLR deficiency reduced lipid accumulation and inflammation but did not alter chemotactic response of macrophages to adipocyte signals. Moreover, VLDLR deficiency tempered the synergistic inflammatory interactions between adipocytes and macrophages in a co-culture system. Collectively, these results show that VLDLR contributes to adipose tissue inflammation and mediates VLDL-induced lipid accumulation and induction of inflammation and ER stress in adipocytes and macrophages.
Collapse
Affiliation(s)
- Andrew Nguyen
- From the Department of Surgery, Hackensack University Medical Center, Hackensack, New Jersey 07601 and
| | | | | | | |
Collapse
|
34
|
Jo H, Choe SS, Shin KC, Jang H, Lee JH, Seong JK, Back SH, Kim JB. Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the hepatic very low-density lipoprotein receptor. Hepatology 2013; 57:1366-77. [PMID: 23152128 DOI: 10.1002/hep.26126] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/20/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Recent evidence suggests that obese animals exhibit increased endoplasmic reticulum (ER) stress in the liver and adipose tissue. Although ER stress is closely associated with lipid homeostasis, it is largely unknown how ER stress contributes to hepatic steatosis. In this study, we demonstrate that the induction of ER stress stimulates hepatic steatosis through increased expression of the hepatic very low-density lipoprotein receptor (VLDLR). Among the unfolded protein response sensors, the protein kinase RNA-like ER kinase-activating transcription factor 4 signaling pathway was required for hepatic VLDLR up-regulation. In primary hepatocytes, ER stress-dependent VLDLR expression induced intracellular triglyceride accumulation in the presence of very low-density lipoprotein. Moreover, ER stress-dependent hepatic steatosis was diminished in the livers of VLDLR-deficient and apolipoprotein E-deficient mice compared with wild-type mice. In addition, the VLDLR-deficient mice exhibited decreased hepatic steatosis upon high-fat diet feeding. CONCLUSION These data suggest that ER stress-dependent expression of hepatic VLDLR leads to hepatic steatosis by increasing lipoprotein delivery to the liver, which might be a novel mechanism explaining ER stress-induced hepatic steatosis.
Collapse
Affiliation(s)
- Hyunsun Jo
- School of Biological Sciences, Institute of Molecular Biology and Genetics, University of Ulsan, Ulsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kuhel DG, Konaniah ES, Basford JE, McVey C, Goodin CT, Chatterjee TK, Weintraub NL, Hui DY. Apolipoprotein E2 accentuates postprandial inflammation and diet-induced obesity to promote hyperinsulinemia in mice. Diabetes 2013; 62:382-91. [PMID: 22961083 PMCID: PMC3554349 DOI: 10.2337/db12-0390] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genetic studies have revealed the association between the ε2 allele of the apolipoprotein E (apoE) gene and greater risk of metabolic diseases. This study compared C57BL/6 mice in which the endogenous mouse gene has been replaced by the human APOE2 or APOE3 gene (APOE2 and APOE3 mice) to identify the mechanism underlying the relationship between ε2 and obesity and diabetes. In comparison with APOE3 mice, the APOE2 mice had elevated fasting plasma lipid and insulin levels and displayed prolonged postprandial hyperlipidemia accompanied by increased granulocyte number and inflammation 2 h after being fed a lipid-rich meal. In comparison with APOE3 mice, the APOE2 mice also showed increased adiposity when maintained on a Western-type, high-fat, high-cholesterol diet. Adipose tissue dysfunction with increased macrophage infiltration, abundant crown-like structures, and inflammation were also observed in adipose tissues of APOE2 mice. The severe adipocyte dysfunction and tissue inflammation corresponded with the robust hyperinsulinemia observed in APOE2 mice after being fed the Western-type diet. Taken together, these data showed that impaired plasma clearance of apoE2-containing, triglyceride-rich lipoproteins promotes lipid redistribution to neutrophils and adipocytes to accentuate inflammation and adiposity, thereby accelerating the development of hyperinsulinemia that will ultimately lead to advanced metabolic diseases.
Collapse
Affiliation(s)
- David G. Kuhel
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Eddy S. Konaniah
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joshua E. Basford
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Courtney McVey
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Colleen T. Goodin
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tapan K. Chatterjee
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Neal L. Weintraub
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Y. Hui
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Corresponding author: David Y. Hui,
| |
Collapse
|
36
|
Nault R, Kim S, Zacharewski TR. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague-Dawley rats and C57BL/6 mice. Toxicol Appl Pharmacol 2012; 267:184-91. [PMID: 23238561 DOI: 10.1016/j.taap.2012.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/16/2022]
Abstract
Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague-Dawley rats were gavaged daily with 20μg/kg TCDD for 1, 3 and 5days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7days after a single oral gavage of 30μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change|≥1.5, P1(t)≥0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4×44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets.
Collapse
Affiliation(s)
- Rance Nault
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
37
|
Kim OY, Lee SM, Chung JH, Do HJ, Moon J, Shin MJ. Arginase I and the very low-density lipoprotein receptor are associated with phenotypic biomarkers for obesity. Nutrition 2012; 28:635-9. [DOI: 10.1016/j.nut.2011.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 02/04/2023]
|
38
|
Kozak LP, Koza RA, Anunciado-Koza R, Mendoza T, Newman S. Inherent plasticity of brown adipogenesis in white fat of mice allows for recovery from effects of post-natal malnutrition. PLoS One 2012; 7:e30392. [PMID: 22383960 PMCID: PMC3286483 DOI: 10.1371/journal.pone.0030392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/20/2011] [Indexed: 12/31/2022] Open
Abstract
Interscapular brown adipose tissue (iBAT) is formed during fetal development and stable for the life span of the mouse. In addition, brown adipocytes also appear in white fat depots (wBAT) between 10 and 21 days of age in mice maintained at a room temperature of 23 °C. However, this expression is transient. By 60 days of age the brown adipocytes have disappeared, but they can re-emerge if the adult mouse is exposed to the cold (5 °C) or treated with β3-adrenergic agonists. Since the number of brown adipocytes that can be induced in white fat influences the capacity of the mouse to resist the obese state, we determined the effects of the nutritional conditions on post-natal development (birth to 21 days) of wBAT and its long-term effects on diet-induced obesity (DIO). Under-nutrition caused essentially complete suppression of wBAT in inguinal fat at 21 days of age, as indicated by expression of Ucp1 and genes of mitochondrial structure and function based upon microarray and qRT-PCR analysis, whereas over-nutrition had no discernible effects on wBAT induction. Surprisingly, the suppression of wBAT at 21 days of age did not affect DIO in adult mice maintained at 23 °C, nor did it affect the reduction in obesity or cold tolerance when DIO mice were exposed to the cold at 5 °C for one week. Gene expression analysis indicated that mice raised under conditions that suppressed wBAT at 21 days of age were able to normally induce wBAT as adults. Therefore, neither severe hypoleptinemia nor hypoinsulinemia during suckling permanently impaired brown adipogenesis in white fat. In addition, energy balance studies of DIO mice exposed to cold indicates that mice with reduced adipose stores preferentially increased food intake, whereas those with larger adipose tissue depots preferred to utilize energy from their adipose stores.
Collapse
Affiliation(s)
- Leslie P Kozak
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland.
| | | | | | | | | |
Collapse
|
39
|
Very low density lipoprotein receptor promotes adipocyte differentiation and mediates the proadipogenic effect of peroxisome proliferator-activated receptor gamma agonists. Biochem Pharmacol 2011; 82:1950-62. [DOI: 10.1016/j.bcp.2011.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/30/2011] [Accepted: 09/02/2011] [Indexed: 11/24/2022]
|
40
|
Clemente-Postigo M, Queipo-Ortuño MI, Fernandez-Garcia D, Gomez-Huelgas R, Tinahones FJ, Cardona F. Adipose tissue gene expression of factors related to lipid processing in obesity. PLoS One 2011; 6:e24783. [PMID: 21966368 PMCID: PMC3178563 DOI: 10.1371/journal.pone.0024783] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/17/2011] [Indexed: 12/03/2022] Open
Abstract
Background Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). Methods and Principal Findings VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. Conclusions Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.
Collapse
Affiliation(s)
- Mercedes Clemente-Postigo
- Laboratorio de Investigaciones Biomédicas del Hospital Virgen de la Victoria, Málaga (Fundación IMABIS), Spain
| | - Maria Isabel Queipo-Ortuño
- Laboratorio de Investigaciones Biomédicas del Hospital Virgen de la Victoria, Málaga (Fundación IMABIS), Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
| | - Diego Fernandez-Garcia
- CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
- Servicio Endocrinología y Nutrición del Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Ricardo Gomez-Huelgas
- CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
- Servicio de Medicina Interna del Hospital Regional Carlos Haya, Spain
| | - Francisco J. Tinahones
- CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
- Servicio Endocrinología y Nutrición del Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Fernando Cardona
- Laboratorio de Investigaciones Biomédicas del Hospital Virgen de la Victoria, Málaga (Fundación IMABIS), Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición, Spain
- * E-mail:
| |
Collapse
|
41
|
Johnson LA, Arbones-Mainar JM, Fox RG, Pendse AA, Altenburg MK, Kim HS, Maeda N. Apolipoprotein E4 exaggerates diabetic dyslipidemia and atherosclerosis in mice lacking the LDL receptor. Diabetes 2011; 60:2285-94. [PMID: 21810592 PMCID: PMC3161311 DOI: 10.2337/db11-0466] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/29/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We investigated the differential roles of apolipoprotein E (apoE) isoforms in modulating diabetic dyslipidemia-a potential cause of the increased cardiovascular disease risk of patients with diabetes. RESEARCH DESIGN AND METHODS Diabetes was induced using streptozotocin (STZ) in human apoE3 (E3) or human apoE4 (E4) mice deficient in the LDL receptor (LDLR(-/-)). RESULTS Diabetic E3LDLR(-/-) and E4LDLR(-/-) mice have indistinguishable levels of plasma glucose and insulin. Despite this, diabetes increased VLDL triglycerides and LDL cholesterol in E4LDLR(-/-) mice twice as much as in E3LDLR(-/-) mice. Diabetic E4LDLR(-/-) mice had similar lipoprotein fractional catabolic rates compared with diabetic E3LDLR(-/-) mice but had larger hepatic fat stores and increased VLDL secretion. Diabetic E4LDLR(-/-) mice demonstrated a decreased reliance on lipid as an energy source based on indirect calorimetry. Lower phosphorylated acetyl-CoA carboxylase content and higher gene expression of fatty acid synthase in the liver indicated reduced fatty acid oxidation and increased fatty acid synthesis. E4LDLR(-/-) primary hepatocytes cultured in high glucose accumulated more intracellular lipid than E3LDLR(-/-) hepatocytes concomitant with a 60% reduction in fatty acid oxidation. Finally, the exaggerated dyslipidemia in diabetic E4LDLR(-/-) mice was accompanied by a dramatic increase in atherosclerosis. CONCLUSIONS ApoE4 causes severe dyslipidemia and atherosclerosis independent of its interaction with LDLR in a model of STZ-induced diabetes. ApoE4-expressing livers have reduced fatty acid oxidation, which contributes to the accumulation of tissue and plasma lipids.
Collapse
Affiliation(s)
- Lance A. Johnson
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jose M. Arbones-Mainar
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Raymond G. Fox
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Avani A. Pendse
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael K. Altenburg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hyung-Suk Kim
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
42
|
Marrades MP, González-Muniesa P, Martínez JA, Moreno-Aliaga MJ. A dysregulation in CES1, APOE and other lipid metabolism-related genes is associated to cardiovascular risk factors linked to obesity. Obes Facts 2010; 3:312-8. [PMID: 20975297 PMCID: PMC6452131 DOI: 10.1159/000321451] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the relationship between the differential expression of genes related to lipid metabolism in subcutaneous adipose tissue and metabolic syndrome features in lean and obese subjects with habitual high fat intake. METHODS Microarray and RT-PCR analysis were used to analyze and validate differential gene expression in subcutaneous abdominal adipose tissue samples from lean and obese phenotype subjects. RESULTS Several genes and transcripts involved in lipolysis were down-regulated, such as AKAP1, PRKAR2B, Gi and CIDEA, whereas NPY1R and CES1 were up-regulated, when comparing obese to lean subjects. Similarly, transcripts associated with cholesterol and lipoprotein metabolism showed a differential expression, with APOE and ABCA being decreased and VLDLR being increased in obese versus lean subjects. In addition, positive correlations were found between different markers of the metabolic syndrome and CES1 and NPY1R mRNA expressions, while APOE showed an inverse association with some of them. CONCLUSION Different expression patterns in transcripts encoding for proteins involved in lipolysis and lipoprotein metabolism were found between lean and obese subjects. Moreover, the dysregulation of genes such as CES1 and APOE seems to be associated with some physiopathological markers of insulin resistance and cardiovascular risk factors in obesity.
Collapse
Affiliation(s)
| | | | | | - María J. Moreno-Aliaga
- *Dr. María J. Moreno-Aliaga, Department of Nutrition, Food Sciences, Physiology and Toxicology., University of Navarra, 31008 Pamplona, Spain, Tel. +34 948 4256–00, Fax -49,
| |
Collapse
|
43
|
Sato A, Kawano H, Notsu T, Ohta M, Nakakuki M, Mizuguchi K, Itoh M, Suganami T, Ogawa Y. Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: importance of hepatic lipogenesis. Diabetes 2010; 59:2495-504. [PMID: 20682690 PMCID: PMC3279525 DOI: 10.2337/db09-1554] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Given the pleiotropic effect of eicosapentaenoic acid (EPA), it is interesting to know whether EPA is capable of improving obesity. Here we examined the anti-obesity effect of EPA in mice with two distinct models of obesity. RESEARCH DESIGN AND METHODS Male C57BL/6J mice were fed a high-fat/high-sucrose diet (25.0% [w/w] fat, 32.5% [w/w] sucrose) (HF/HS group) or a high-fat diet (38.1% [w/w] fat, 8.5% [w/w] sucrose) (HF group) for 4-20 weeks. A total of 5% EPA was administered by partially substituting EPA for fat in the HF/HS + EPA and HF + EPA groups. RESULTS Both the HF/HS and HF groups similarly developed obesity. EPA treatment strongly suppresses body weight gain and obesity-related hyperglycemia and hyperinsulinemia in HF/HS-fed mice (HF/HS + EPA group), where hepatic triglyceride content and lipogenic enzymes are increased. There is no appreciable effect of EPA on body weight in HF-fed mice (HF + EPA group) without enhanced expression of hepatic lipogenic enzymes. Moreover, EPA is capable of reducing hepatic triglyceride secretion and changing VLDL fatty acid composition in the HF/HS group. By indirect calorimetry analysis, we also found that EPA is capable of increasing energy consumption in the HF/HS + EPA group. CONCLUSIONS This study is the first demonstration that the anti-obesity effect of EPA in HF/HS-induced obesity is associated with the suppression of hepatic lipogenesis and steatosis. Because the metabolic syndrome is often associated with hepatic lipogenesis and steatosis, the data suggest that EPA is suited for treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Ayumi Sato
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical, Shizuoka, Japan
| | - Hiroyuki Kawano
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical, Shizuoka, Japan
- Corresponding author: Hiroyuki Kawano,
| | - Tatsuto Notsu
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical, Shizuoka, Japan
| | - Masahiko Ohta
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical, Shizuoka, Japan
| | - Masanori Nakakuki
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical, Shizuoka, Japan
| | - Kiyoshi Mizuguchi
- Development Research, Pharmaceutical Research Center, Mochida Pharmaceutical, Shizuoka, Japan
| | - Michiko Itoh
- Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
44
|
Kozak LP, Newman S, Chao PM, Mendoza T, Koza RA. The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure. PLoS One 2010; 5:e11015. [PMID: 20574519 PMCID: PMC2888576 DOI: 10.1371/journal.pone.0011015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 05/14/2010] [Indexed: 01/11/2023] Open
Abstract
While the phenomenon linking the early nutritional environment to disease susceptibility exists in many mammalian species, the underlying mechanisms are unknown. We hypothesized that nutritional programming is a variable quantitative state of gene expression, fixed by the state of energy balance in the neonate, that waxes and wanes in the adult animal in response to changes in energy balance. We tested this hypothesis with an experiment, based upon global gene expression, to identify networks of genes in which expression patterns in inguinal fat of mice have been altered by the nutritional environment during early post-natal development. The effects of over- and under-nutrition on adiposity and gene expression phenotypes were assessed at 5, 10, 21 days of age and in adult C57Bl/6J mice fed chow followed by high fat diet for 8 weeks. Under-nutrition severely suppressed plasma insulin and leptin during lactation and diet-induced obesity in adult mice, whereas over-nourished mice were phenotypically indistinguishable from those on a control diet. Food intake was not affected by under- or over-nutrition. Microarray gene expression data revealed a major class of genes encoding proteins of the caveolae and cytoskeleton, including Cav1, Cav2, Ptrf (Cavin1), Ldlr, Vldlr and Mest, that were highly associated with adipose tissue expansion in 10 day-old mice during the dynamic phase of inguinal fat development and in adult animals exposed to an obesogenic environment. In conclusion gene expression profiles, fat mass and adipocyte size in 10 day old mice predicted similar phenotypes in adult mice with variable diet-induced obesity. These results are supported by phenotypes of KO mice and suggest that when an animal enters a state of positive energy balance adipose tissue expansion is initiated by coordinate changes in mRNA levels for proteins required for modulating the structure of the caveolae to maximize the capacity of the adipocyte for lipid storage.
Collapse
Affiliation(s)
- Leslie P Kozak
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.
| | | | | | | | | |
Collapse
|
45
|
Dahlman I, Mejhert N, Linder K, Agustsson T, Mutch DM, Kulyte A, Isaksson B, Permert J, Petrovic N, Nedergaard J, Sjölin E, Brodin D, Clement K, Dahlman-Wright K, Rydén M, Arner P. Adipose tissue pathways involved in weight loss of cancer cachexia. Br J Cancer 2010; 102:1541-8. [PMID: 20407445 PMCID: PMC2869165 DOI: 10.1038/sj.bjc.6605665] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: The regulatory gene pathways that accompany loss of adipose tissue in cancer cachexia are unknown and were explored using pangenomic transcriptome profiling. Methods: Global gene expression profiles of abdominal subcutaneous adipose tissue were studied in gastrointestinal cancer patients with (n=13) or without (n=14) cachexia. Results: Cachexia was accompanied by preferential loss of adipose tissue and decreased fat cell volume, but not number. Adipose tissue pathways regulating energy turnover were upregulated, whereas genes in pathways related to cell and tissue structure (cellular adhesion, extracellular matrix and actin cytoskeleton) were downregulated in cachectic patients. Transcriptional response elements for hepatic nuclear factor-4 (HNF4) were overrepresented in the promoters of extracellular matrix and adhesion molecule genes, and adipose HNF4 mRNA was downregulated in cachexia. Conclusions: Cancer cachexia is characterised by preferential loss of adipose tissue; muscle mass is less affected. Loss of adipose tissue is secondary to a decrease in adipocyte lipid content and associates with changes in the expression of genes that regulate energy turnover, cytoskeleton and extracellular matrix, which suggest high tissue remodelling. Changes in gene expression in cachexia are reciprocal to those observed in obesity, suggesting that regulation of fat mass at least partly corresponds to two sides of the same coin.
Collapse
Affiliation(s)
- I Dahlman
- Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm SE-141 86, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chiu HK, Qian K, Ogimoto K, Morton GJ, Wisse BE, Agrawal N, McDonald TO, Schwartz MW, Dichek HL. Mice lacking hepatic lipase are lean and protected against diet-induced obesity and hepatic steatosis. Endocrinology 2010; 151:993-1001. [PMID: 20056822 PMCID: PMC2840680 DOI: 10.1210/en.2009-1100] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatic lipase (HL)-mediated lipoprotein hydrolysis provides free fatty acids for energy, storage, and nutrient signaling and may play a role in energy homeostasis. Because HL-activity increases with increased visceral fat, we hypothesized that increased HL-activity favors weight gain and obesity and consequently, that HL deficiency would reduce body fat stores and protect against diet-induced obesity. To test this hypothesis, we compared wild-type mice (with endogenous HL) and mice genetically deficient in HL with respect to daily body weight and food intake, body composition, and adipocyte size on both chow and high-fat (HF) diets. Key determinants of energy expenditure, including rate of oxygen consumption, heat production, and locomotor activity, were measured by indirect calorimetry. HL-deficient mice exhibited reduced weight gain on both diets (by 32%, chow; by 50%, HF; both P < 0.0001, n = 6-7 per genotype), effects that were associated with reduced average daily food intake (by 22-30% on both diets, P < 0.0001) and a modest increase in the rate of oxygen consumption (by 25%, P < 0.003) during the light cycle. Moreover, in mice fed the HF diet, HL deficiency reduced both body fat (by 30%, P < 0.0001) and adipocyte size (by 53%, P < 0.01) and fully prevented the development of hepatic steatosis. Also, HL deficiency reduced adipose tissue macrophage content, consistent with reduced inflammation and a lean phenotype. Our results demonstrate that in mice, HL deficiency protects against diet-induced obesity and its hepatic sequelae. Inhibition of HL-activity may therefore have value in the prevention and/or treatment of obesity.
Collapse
Affiliation(s)
- Harvey K Chiu
- Department of Pediatrics, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tao H, Aakula S, Abumrad NN, Hajri T. Peroxisome proliferator-activated receptor-gamma regulates the expression and function of very-low-density lipoprotein receptor. Am J Physiol Endocrinol Metab 2010; 298:E68-79. [PMID: 19861583 PMCID: PMC2806108 DOI: 10.1152/ajpendo.00367.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Very-low-density lipoprotein receptor (VLDLR) is a member of the low-density receptor family, highly expressed in adipose tissue, heart, and skeletal muscle. It binds apolipoprotein E-triglyceride-rich lipoproteins and plays a significant role in triglyceride metabolism. PPARgamma is a primary regulator of lipid metabolism in adipocytes and controls the expression of an array of genes involved in lipid trafficking in adipocytes. However, it is not known whether VLDLR is also under the control of PPARgamma. In this study, we investigated the role of PPARgamma in the regulation of VLDLR expression and function in vivo and in vitro. During the differentiation of 3T3-L1 preadipocytes, the levels of VLDLR protein and mRNA increased in parallel with the induction of PPARgamma expression and reached maximum in mature adipocytes. Treatment of differentiated adipocytes with PPARgamma agonist pioglitazone upregulated VLDLR expression in dose- and time-dependent manners. In contrast, specific inhibition of PPARgamma significantly downregulated the protein level of VLDLR. Induction of VLDLR is also demonstrated in vivo in adipose tissue of wild-type (WT) mice treated with pioglitazone. In addition, pioglitazone increased plasma triglyceride-rich lipoprotein clearance and increased epididymal fat mass in WT mice but failed to induce similar effects in vldlr(-/-) mice. These results were further corroborated by the finding that pioglitazone treatment enhanced adipogenesis and lipid deposition in preadipocytes of WT mice, while its effect in VLDLR-null preadipocytes was significantly blunted. These findings provide direct evidence that VLDLR expression is regulated by PPARgamma and contributes in lipid uptake and adipogenesis.
Collapse
Affiliation(s)
- Huan Tao
- Department of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
48
|
Changes in white muscle transcriptome induced by dietary energy levels in two lines of rainbow trout (Oncorhynchus mykiss) selected for muscle fat content. Br J Nutr 2009; 103:629-42. [PMID: 19874644 DOI: 10.1017/s0007114509992340] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Energy intake and genetic background are major determinants of muscle fat content in most animals, including man. We combined genetic selection and dietary energy supply to study the metabolic pathways involved in genetic and nutritional control of fat deposition in the muscle of rainbow trout (Oncorhynchus mykiss). Two experimental lines of rainbow trout, selected for lean (L) or fat (F) muscle, were fed with diets containing either 10 or 23 % lipids from the first feeding, up to 6 months. At the end of the trial, trout exhibited very different values of muscle fat content (from 4.2 to 10.1 % wet weight). Using microarrays made from a rainbow trout multi-tissue cDNA library, we analysed the molecular changes occurring in the muscle of the two lines when fed the low-energy or high-energy diet. The results from microarray analysis revealed that eleven metabolism-related genes were differentially expressed according to the diet while selection resulted in expression change for twenty-six genes. The most striking observation was the increased level of transcripts encoding the VLDL receptor and fatty acid translocase/CD36 following both the high-fat diet and upward selection for muscle fat content, suggesting that these two genes are relevant molecular markers of fat deposition in the white muscle of rainbow trout.
Collapse
|
49
|
Huang ZH, Minshall RD, Mazzone T. Mechanism for endogenously expressed ApoE modulation of adipocyte very low density lipoprotein metabolism: role in endocytic and lipase-mediated metabolic pathways. J Biol Chem 2009; 284:31512-22. [PMID: 19767394 DOI: 10.1074/jbc.m109.004754] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triglyceride-rich lipoproteins distribute energy in the form of fatty acids to peripheral tissues. We have previously shown that the absence of endogenous adipocyte apoE expression impairs adipocyte triglyceride acquisition from apoE-containing triglyceride-rich lipoproteins in vitro and in vivo. Studies were performed to evaluate the mechanism(s) for this impairment. We excluded a role for secreted apoE in accounting for the difference in very low density lipoprotein (VLDL)-induced adipocyte triglyceride accumulation using cross-incubation studies to show that secreted apoE did not enhance triglyceride synthesis in apoE knockout (EKO) adipocytes incubated with apoE-containing VLDL. Subsequent experiments established that both endocytic and lipase-mediated pathways for lipid acquisition from VLDL were impaired in EKO adipocytes. Binding and internalization of VLDL to EKO adipocytes were significantly lower due to decreased expression or redistribution of low density lipoprotein receptor family proteins. An important role for the VLDL receptor for contributing to differences in VLDL binding between wild-type and EKO adipocytes was identified. Lipoprotein lipase-dependent adipocyte lipogenesis was also significantly decreased in EKO adipocytes even though they secreted as much or more lipolytic activity. This decrease was related to impaired fatty acid internalization in EKO cells. Evaluation of potential mechanisms revealed reduced caveolin-1 and plasma membrane raft expression in EKO adipocytes. Increasing caveolin expression in EKO adipocytes increased fatty acid internalization. Our results establish a role for endogenous adipocyte apoE in VLDL-induced adipocyte lipogenesis by impacting both endocytic and lipoprotein lipase-mediated metabolic pathways. Reduced adipocyte apoE expression, for example that accompanying obesity, will suppress adipocyte acquisition of lipid from apoE-containing VLDL.
Collapse
Affiliation(s)
- Zhi Hua Huang
- Department of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
50
|
Kypreos KE, Karagiannides I, Fotiadou EH, Karavia EA, Brinkmeier MS, Giakoumi SM, Tsompanidi EM. Mechanisms of obesity and related pathologies: role of apolipoprotein E in the development of obesity. FEBS J 2009; 276:5720-8. [PMID: 19754875 DOI: 10.1111/j.1742-4658.2009.07301.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Apolipoprotein E is a polymorphic glycoprotein in humans with a molecular mass of 34.5 kDa. It is a component of chylomicron remnants, very low density lipoprotein, low density lipoprotein and high density lipoprotein, and is primarily responsible for maintaining plasma lipid homeostasis. In addition to these well-documented functions, recent studies in experimental mouse models, as well as population studies, show that apolipoprotein E also plays an important role in the development of obesity and insulin resistance. It is widely accepted that disruption in homeostasis between food intake and energy expenditure, and the subsequent deposition of excess fatty acids into fat cells in the form of triglycerides, leads to the development of obesity. Despite the pivotal role of obesity and dyslipidemia in the development of the metabolic syndrome and heart disease, the functional interactions between adipose tissue and components of the lipoprotein transport system have not yet been investigated thoroughly. In this minireview, we focus on the current literature pertinent to the involvement of apolipoprotein E in the development of pathologies associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Kyriakos E Kypreos
- Department of Medicine, Pharmacology Unit, University of Patras Medical School, Rio, Greece.
| | | | | | | | | | | | | |
Collapse
|