1
|
Ferreira de Araujo N, Nobrega NRC, Reis Costa DEFD, Simplicio JA, Assis Rabelo Ribeiro ND, Tirapelli CR, Bonaventura D. Sodium nitrite induces tolerance in the mouse aorta: involvement of the renin-angiotensin system, nitric oxide synthase, and reactive oxygen species. Eur J Pharmacol 2024:177056. [PMID: 39427861 DOI: 10.1016/j.ejphar.2024.177056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Nitrites have emerged as promising therapeutic agents for cardiovascular diseases, alongside nitrates. While chronic use of organic nitrates is well recognized to lead to vascular tolerance, the tolerance associated with nitrite therapy remains incompletely understood. The aim of the present study was to investigate vascular tolerance to sodium nitrite and the underlying molecular mechanisms. Endothelium-denuded aortic rings isolated from male Balb/C mice were incubated with either the EC50 (10-4 mol/L) or EC100 (10-2 mol/L) concentration of sodium nitrite for 15 min to induce tolerance. The EC100 concentration of sodium nitrite induced vascular tolerance. Pre-incubation with captopril and losartan effectively reversed sodium nitrite-induced tolerance. Similarly, pre-incubation with L-NAME and L-arginine prevented sodium nitrite-induced tolerance. Increased levels of reactive oxidative species (ROS) and reduced bioavailability of nitric oxide (NO) were observed in tolerant aortas. Increased superoxide dismutase (SOD) activity and decreased catalase activity were also verified in tolerant aortas. Both captopril and L-NAME prevented the increased levels of ROS observed in tolerant aortas. Furthermore, pre-incubation with catalase effectively prevented sodium nitrite-induced tolerance. Our findings suggest that sodium nitrite induces vascular tolerance through a signaling pathway involving the renin-angiotensin system, nitric oxide synthase, and ROS. This study contributes to the understanding of the interactions between nitrites and vascular tolerance and highlights potential targets to overcome or prevent this phenomenon.
Collapse
Affiliation(s)
- Natalia Ferreira de Araujo
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Natalia Ribeiro Cabacinha Nobrega
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Daniela Esteves Ferreira Dos Reis Costa
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Janaina Aparecida Simplicio
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, Nursing School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Naiara de Assis Rabelo Ribeiro
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Carlos Renato Tirapelli
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, Nursing School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Daniella Bonaventura
- Laboratory of Vascular Pharmacology, Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil.
| |
Collapse
|
2
|
Abdelgadir EH, Al-Baladi AHK, Al-Ahmari SKSA, Alshehri SA, Kumar S. Repeated dose, 28-day oral toxicity study of curcumin, anthocyanins, and sodium nitrite in Wistar rats. Toxicon 2024; 248:108048. [PMID: 39053814 DOI: 10.1016/j.toxicon.2024.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The goal of the present study was to examine the repeated dose 28-day oral toxicity of curcumin, anthocyanins, and sodium nitrite in Wistar rats. METHODS For this purpose, forty-eight male Wistar rats were randomly divided into 8 groups (n = 6 each), encompassing untreated controls and experimental groups treated with curcumin, anthocyanins, and sodium nitrite. Three rats from each group were sacrificed by cervical dislocation under di-ethyl ether anesthesia after 2 and 4 weeks of therapy, respectively. Blood samples were collected for serum chemistry. All of the animals' livers, hearts, and kidneys were removed and sent for histopathological examination. RESULTS After two weeks of inquiry, certain groups displayed higher hematological values, while others had lower values compared to the control group. AST, CK, and LDH enzyme activity were higher in groups 2-8, but urea concentrations were higher in groups 6 and 8. After four weeks, the Hb, MCH, and MCHC values in group 4 were greater, as were the WBC levels in groups 4 and 6, whereas other groups had lower MCV and WBC values. The weekly body weight gain was insignificantly different between treatment groups. Throughout the experiment, none of the animals perished. Male rats' liver, kidney, and heart underwent histopathological changes after ingesting curcumin, sodium nitrite, and anthocyanin. CONCLUSION Based on the findings, rats were more detrimental when curcumin, sodium nitrite, and anthocyanin were ingested together than when they were consumed individually, as evidenced by histopathological abnormalities in the liver, kidneys, and heart.
Collapse
Affiliation(s)
- Elkhatim H Abdelgadir
- Department of Forensic Science, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Ayman H K Al-Baladi
- Department of Forensic Science, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Salman K S A Al-Ahmari
- Department of Forensic Science, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Saad A Alshehri
- Department of Forensic Science, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Sachil Kumar
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Borlaug BA, Koepp KE, Reddy YNV, Obokata M, Sorimachi H, Freund M, Haberman D, Sweere K, Weber KL, Overholt EA, Safe BA, Omote K, Omar M, Popovic D, Acker NG, Gladwin MT, Olson TP, Carter RE. Inorganic Nitrite to Amplify the Benefits and Tolerability of Exercise Training in Heart Failure With Preserved Ejection Fraction: The INABLE-Training Trial. Mayo Clin Proc 2024; 99:206-217. [PMID: 38127015 PMCID: PMC10872737 DOI: 10.1016/j.mayocp.2023.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To determine whether nitrite can enhance exercise training (ET) effects in heart failure with preserved ejection fraction (HFpEF). METHODS In this multicenter, double-blind, placebo-controlled, randomized trial conducted at 1 urban and 9 rural outreach centers between November 22, 2016, and December 9, 2021, patients with HFpEF underwent ET along with inorganic nitrite 40 mg or placebo 3 times daily. The primary end point was peak oxygen consumption (VO2). Secondary end points included Kansas City Cardiomyopathy Questionnaire overall summary score (KCCQ-OSS, range 0 to 100; higher scores reflect better health status), 6-minute walk distance, and actigraphy. RESULTS Of 92 patients randomized, 73 completed the trial because of protocol modifications necessitated by loss of drug availability. Most patients were older than 65 years (80%), were obese (75%), and lived in rural settings (63%). At baseline, median peak VO2 (14.1 mL·kg-1·min-1) and KCCQ-OSS (63.7) were severely reduced. Exercise training improved peak VO2 (+0.8 mL·kg-1·min-1; 95% CI, 0.3 to 1.2; P<.001) and KCCQ-OSS (+5.5; 95% CI, 2.5 to 8.6; P<.001). Nitrite was well tolerated, but treatment with nitrite did not affect the change in peak VO2 with ET (nitrite effect, -0.13; 95% CI, -1.03 to 0.76; P=.77) or KCCQ-OSS (-1.2; 95% CI, -7.2 to 4.9; P=.71). This pattern was consistent across other secondary outcomes. CONCLUSION For patients with HFpEF, ET administered for 12 weeks in a predominantly rural setting improved exercise capacity and health status, but compared with placebo, treatment with inorganic nitrite did not enhance the benefit from ET. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02713126.
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| | - Katlyn E Koepp
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Hidemi Sorimachi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Monique Freund
- Mayo Clinic Community Cardiology Southwest Wisconsin, La Crosse
| | - Doug Haberman
- Mayo Clinic Community Cardiology Southwest Wisconsin, La Crosse
| | - Kara Sweere
- Mayo Clinic Community Cardiology Southeast Minnesota, Albert Lea
| | - Kari L Weber
- Mayo Clinic Community Cardiology Southeast Minnesota, Austin
| | | | - Bethany A Safe
- Mayo Clinic Community Cardiology Southeast Minnesota, Red Wing
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Massar Omar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Dejana Popovic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Nancy G Acker
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Mark T Gladwin
- Department of Medicine, Maryland School of Medicine, Baltimore
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
4
|
Majerczak J, Drzymala‐Celichowska H, Grandys M, Kij A, Kus K, Celichowski J, Krysciak K, Molik WA, Szkutnik Z, Zoladz JA. Exercise Training Decreases Nitrite Concentration in the Heart and Locomotory Muscles of Rats Without Changing the Muscle Nitrate Content. J Am Heart Assoc 2024; 13:e031085. [PMID: 38214271 PMCID: PMC10926815 DOI: 10.1161/jaha.123.031085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Skeletal muscles are postulated to be a potent regulator of systemic nitric oxide homeostasis. In this study, we aimed to evaluate the impact of physical training on the heart and skeletal muscle nitric oxide bioavailability (judged on the basis of intramuscular nitrite and nitrate) in rats. METHODS AND RESULTS Rats were trained on a treadmill for 8 weeks, performing mainly endurance running sessions with some sprinting runs. Muscle nitrite (NO2-) and nitrate (NO3-) concentrations were measured using a high-performance liquid chromatography-based method, while amino acids, pyruvate, lactate, and reduced and oxidized glutathione were determined using a liquid chromatography coupled with tandem mass spectrometry technique. The content of muscle nitrite reductases (electron transport chain proteins, myoglobin, and xanthine oxidase) was assessed by western immunoblotting. We found that 8 weeks of endurance training decreased basal NO2- in the locomotory muscles and in the heart, without changes in the basal NO3-. In the slow-twitch oxidative soleus muscle, the decrease in NO2- was already present after the first week of training, and the content of nitrite reductases remained unchanged throughout the entire period of training, except for the electron transport chain protein content, which increased no sooner than after 8 weeks of training. CONCLUSIONS Muscle NO2- level, opposed to NO3-, decreases in the time course of training. This effect is rapid and already visible in the slow-oxidative soleus after the first week of training. The underlying mechanisms of training-induced muscle NO2- decrease may involve an increase in the oxidative stress, as well as metabolite changes related to an increased muscle anaerobic glycolytic activity contributing to (1) direct chemical reduction of NO2- or (2) activation of muscle nitrite reductases.
Collapse
Affiliation(s)
- Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| | - Hanna Drzymala‐Celichowska
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
- Department of Physiology and Biochemistry, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Marcin Grandys
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Jan Celichowski
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Katarzyna Krysciak
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Weronika A. Molik
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
- University of FloridaGainesvilleFLUSA
| | | | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| |
Collapse
|
5
|
Pinaffi-Langley ACDC, Dajani RM, Prater MC, Nguyen HVM, Vrancken K, Hays FA, Hord NG. Dietary Nitrate from Plant Foods: A Conditionally Essential Nutrient for Cardiovascular Health. Adv Nutr 2024; 15:100158. [PMID: 38008359 PMCID: PMC10776916 DOI: 10.1016/j.advnut.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Under specific conditions, such as catabolic stress or systemic inflammation, endogenous nutrient production becomes insufficient and exogenous supplementation (for example, through dietary intake) is required. Herein, we propose consideration of a dietary nitrate from plant foods as a conditionally essential nutrient for cardiovascular health based on its role in nitric oxide homeostasis. Nitrate derived from plant foods may function as a conditionally essential nutrient, whereas nitrate obtained from other dietary sources, such as drinking water and cured/processed meats, warrants separate consideration because of the associated health risks. We have surveyed the literature and summarized epidemiological evidence regarding the effect of dietary nitrate on cardiovascular disease and risk factors. Meta-analyses and population-based observational studies have consistently demonstrated an inverse association of dietary nitrate with blood pressure and cardiovascular disease outcomes. Considering the available evidence, we suggest 2 different approaches to providing dietary guidance on nitrate from plant-based dietary sources as a nutrient: the Dietary Reference Intakes developed by the National Academies of Sciences, Engineering, and Medicine, and the dietary guidelines evaluated by the Academy of Nutrition and Dietetics. Ultimately, this proposal underscores the need for food-based dietary guidelines to capture the complex and context-dependent relationships between nutrients, particularly dietary nitrate, and health.
Collapse
Affiliation(s)
- Ana Clara da C Pinaffi-Langley
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rosa M Dajani
- Nutrition and Food Services, San Francisco Health, University of California, San Francisco, CA, United States
| | - M Catherine Prater
- Department of Foods and Nutrition, Dawson Hall, University of Georgia, Athens, GA, United States
| | - Hoang Van M Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Franklin A Hays
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Norman G Hord
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
6
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
7
|
Martins LZ, da Silva MLS, Rodrigues SD, Gomes SEB, Molezini L, Rizzi E, Montenegro MF, Dias-Junior CA. Sodium Nitrite Attenuates Reduced Activity of Vascular Matrix Metalloproteinase-2 and Vascular Hyper-Reactivity and Increased Systolic Blood Pressure Induced by the Placental Ischemia Model of Preeclampsia in Anesthetized Rats. Int J Mol Sci 2023; 24:12818. [PMID: 37628999 PMCID: PMC10454117 DOI: 10.3390/ijms241612818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Preeclampsia is a maternal hypertension disorder associated with vascular dysfunction and fetal and placental growth restrictions. Placental ischemia is suggested as the primary trigger of preeclampsia-associated impairments of both endothelium-derived nitric oxide (NO) and the vascular activity of extracellular matrix metalloproteinase-2 (MMP-2). Reduced uteroplacental perfusion pressure (RUPP) is a placental ischemia model of preeclampsia. Reduction of sodium nitrite to NO may occur during ischemic conditions. However, sodium nitrite effects in the RUPP model of preeclampsia have not yet been investigated. Pregnant rats were divided into four groups: normotensive pregnant rats (Norm-Preg), pregnant rats treated with sodium nitrite (Preg + Nitrite), preeclamptic rats (RUPP), and preeclamptic rats treated with sodium nitrite (RUPP + Nitrite). Maternal blood pressure and fetal and placental parameters were recorded. Vascular function, circulating NO metabolites, and the gelatinolytic activity of vascular MMP-2 were also examined. Sodium nitrite attenuates increased blood pressure, prevents fetal and placental weight loss, counteracts vascular hyper-reactivity, and partially restores NO metabolites and MMP-2 activity. In conclusion, sodium nitrite reduction to NO may occur during RUPP-induced placental ischemia, thereby attenuating increased blood pressure, fetal and placental growth restriction, and vascular hyper-reactivity associated with preeclampsia and possibly restoring NO and MMP-2 activity, which underlie the blood pressure-lowering effects.
Collapse
Affiliation(s)
- Laisla Zanetoni Martins
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Maria Luiza Santos da Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Serginara David Rodrigues
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Sáskia Estela Biasotti Gomes
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| | - Laura Molezini
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (L.M.); (E.R.)
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirao Preto 14096-900, Brazil; (L.M.); (E.R.)
| | - Marcelo Freitas Montenegro
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden;
| | - Carlos Alan Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.Z.M.); (M.L.S.d.S.); (S.D.R.); (S.E.B.G.)
| |
Collapse
|
8
|
Zerbo S, Spanò M, Albano GD, Buscemi R, Malta G, Argo A. A fatal suicidal sodium nitrite ingestion determined six days after death. J Forensic Leg Med 2023; 98:102576. [PMID: 37597353 DOI: 10.1016/j.jflm.2023.102576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
Sodium nitrite (SN) is an inorganic salt that appears as a slightly yellowish crystalline solid, odorless, and highly soluble in water at room temperature. It is highly toxic to humans at specific doses because it can oxidize hemoglobin to methemoglobin, causing severe tissue hypoxia. A 20-year-old woman was unconscious in her bedroom and died shortly after that. Two days later, following the discovery of a jar of SN and a paper in which were written instructions on how to take it (and the website from which the procedure was learned) in the same room were death occurred, the Judicial Authority ordered the execution of the autopsy on the exhumed body of the young woman. The autopsy procedure was performed ∼ 2h after exhumation. It showed greyish-purple hypostasis, labial cyanosis, stomach distension and greenish color but empty, subpleural petechiae, brownish fluid in the pleural cavities (∼300 ml), congested and edematous lungs and diffuse visceral congestion. At autopsy, foamy liquid was observed at the lung section and subsequent squeezing. In addition, the autopsy showed edema and hemorrhagic petechiae of the laryngeal, glottal, and tracheal submucosa and green-brownish foamy liquid in the tracheal lumen. The cause of death was attributed tocardiac arrest induced by anoxia resulting from acute methemoglobinemia caused by sodium nitrite poisoning, intensified by severe malnutrition. Manner of death was suicidal.
Collapse
Affiliation(s)
- Stefania Zerbo
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy.
| | - Mario Spanò
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy.
| | - Giuseppe Davide Albano
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy.
| | - Roberto Buscemi
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy.
| | - Ginevra Malta
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy.
| | - Antonina Argo
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy.
| |
Collapse
|
9
|
Baik JS, Min JH, Ju SM, Ahn JH, Ko SH, Chon HS, Kim MS, Shin YI. Effects of Fermented Garlic Extract Containing Nitric Oxide Metabolites on Blood Flow in Healthy Participants: A Randomized Controlled Trial. Nutrients 2022; 14:5238. [PMID: 36558397 PMCID: PMC9781726 DOI: 10.3390/nu14245238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Aged or fermented garlic extract (FGE) is a natural remedy that improves vascular function through increasing vascular nitric oxide (NO) bioavailability. This is because nitrite (NO2-), a NO metabolite, can be produced through bioconversion with macrobacteria during the fermentation of foods like garlic. We aimed to evaluate the effects of NO2- in FGE on blood flow (BF), blood pressure (BP), velocity of the common carotid artery (CCA) and internal carotid artery (ICA), regional cerebral BF (rCBF), and peripheral BF (PBF). The study was divided into two parts: (1) Thirty healthy adults were divided into FGE and placebo groups to compare BP and velocity of the CCA and ICA; and (2) Twenty-eight healthy adults were divided into FGE and placebo groups to compare rCBF and PBF and determine changes before/after ingestion. Significant changes were noted in BP and the velocity of both CCA 30-60 min after FGE ingestion. FGE ingestion resulted in significant increases in rCBF and increases in body surface temperature through alterations in PBF. No detectable clinical side effects were noted. Overall, oral administration of NO2- containing FGE demonstrated acute positive effects in upregulating BF, including the CCA, BP, rCBF, and PBF. Follow-up studies with larger sample sizes and long-term ingestion may be needed.
Collapse
Affiliation(s)
- Ji Soo Baik
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Ji Hong Min
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Sung Min Ju
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jae Hyun Ahn
- Department of General Medicine, University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Sung Hwa Ko
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Rehabilitation Medicine, The Graduate School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | | | - Min Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| | - Yong Il Shin
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Rehabilitation Medicine, The Graduate School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
10
|
Turner KD, Kronemberger A, Bae D, Bock JM, Hughes WE, Ueda K, Feider AJ, Hanada S, de Sousa LGO, Harris MP, Anderson EJ, Bodine SC, Zimmerman MB, Casey DP, Lira VA. Effects of Combined Inorganic Nitrate and Nitrite Supplementation on Cardiorespiratory Fitness and Skeletal Muscle Oxidative Capacity in Type 2 Diabetes: A Pilot Randomized Controlled Trial. Nutrients 2022; 14:nu14214479. [PMID: 36364742 PMCID: PMC9654804 DOI: 10.3390/nu14214479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Nitric oxide (NO) stimulates mitochondrial biogenesis in skeletal muscle. However, NO metabolism is disrupted in individuals with type 2 diabetes mellitus (T2DM) potentially contributing to their decreased cardiorespiratory fitness (i.e., VO2max) and skeletal muscle oxidative capacity. We used a randomized, double-blind, placebo-controlled, 8-week trial with beetroot juice containing nitrate (NO3−) and nitrite (NO2−) (250 mg and 20 mg/day) to test potential benefits on VO2max and skeletal muscle oxidative capacity in T2DM. T2DM (N = 36, Age = 59 ± 9 years; BMI = 31.9 ± 5.0 kg/m2) and age- and BMI-matched non-diabetic controls (N = 15, Age = 60 ± 9 years; BMI = 29.5 ± 4.6 kg/m2) were studied. Mitochondrial respiratory capacity was assessed in muscle biopsies from a subgroup of T2DM and controls (N = 19 and N = 10, respectively). At baseline, T2DM had higher plasma NO3− (100%; p < 0.001) and lower plasma NO2− levels (−46.8%; p < 0.0001) than controls. VO2max was lower in T2DM (−26.4%; p < 0.001), as was maximal carbohydrate- and fatty acid-supported oxygen consumption in permeabilized muscle fibers (−26.1% and −25.5%, respectively; p < 0.05). NO3−/NO2− supplementation increased VO2max (5.3%; p < 0.01). Further, circulating NO2−, but not NO3−, positively correlated with VO2max after supplementation (R2= 0.40; p < 0.05). Within the NO3−/NO2− group, 42% of subjects presented improvements in both carbohydrate- and fatty acid-supported oxygen consumption in skeletal muscle (vs. 0% in placebo; p < 0.05). VO2max improvements in these individuals tended to be larger than in the rest of the NO3−/NO2− group (1.21 ± 0.51 mL/(kg*min) vs. 0.31 ± 0.10 mL/(kg*min); p = 0.09). NO3−/NO2− supplementation increases VO2max in T2DM individuals and improvements in skeletal muscle oxidative capacity appear to occur in those with more pronounced increases in VO2max.
Collapse
Affiliation(s)
- Kristen D. Turner
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Ana Kronemberger
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Dam Bae
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Joshua M. Bock
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - William E. Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew J. Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Luis G. O. de Sousa
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew P. Harris
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Sue C. Bodine
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - M. Bridget Zimmerman
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Darren P. Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
- Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Vitor A. Lira
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
- Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
11
|
Zhang Y, Xie Y, Huang L, Zhang Y, Li X, Fang Q, Wang Q. Association of Sleep Duration and Self-Reported Insomnia Symptoms with Metabolic Syndrome Components among Middle-Aged and Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11637. [PMID: 36141918 PMCID: PMC9517288 DOI: 10.3390/ijerph191811637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The study aimed to explore the association between sleep duration, insomnia symptoms and the components of metabolic syndrome (MetS) among middle-aged and older adults. A cross-sectional study was conducted in five community health centers and physical check-up centers of two comprehensive hospitals in Guangdong. We recruited 1252 participants (658 female), aged 40-96 years and with a body mass index (BMI) of 16.26-35.56 kg/m2. MetS was assessed based on the guidelines of the International Diabetes Federation. Self-reported sleep duration was evaluated by a simplified questionnaire. Compared with the participants who slept 6-8 h/day, those who slept shorter (<6 h/day) or longer (>8 h/day) periods of time with or without insomnia symptoms had significantly increased odds ratios (ORs) of high blood pressure (except for the SBP in model 2) and high triglycerides (TGs) in all models (p < 0.05), whereas the participants who slept longer (>8 h/day) or shorter (<6 h/day) periods of time with insomnia symptoms had significantly increased ORs of low HDL-C in all models (p < 0.05), but non-significant in those without insomnia symptoms. BMI is significant for insomnia symptoms but not for sleep duration. Our study indicated that the association of sleep duration with MetS components was partially associated with insomnia symptoms. These findings have significant implications to explore the appropriate sleep duration for adults.
Collapse
Affiliation(s)
- Yuting Zhang
- Health Science Centre, Shenzhen University, Shenzhen 518060, China
| | - Yingcai Xie
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Lingling Huang
- Health Science Centre, Shenzhen University, Shenzhen 518060, China
| | - Yan Zhang
- Health Science Centre, Shenzhen University, Shenzhen 518060, China
| | - Xilin Li
- Health Science Centre, Shenzhen University, Shenzhen 518060, China
| | - Qiyu Fang
- Health Science Centre, Shenzhen University, Shenzhen 518060, China
| | - Qun Wang
- Health Science Centre, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
On the Role of Dietary Nitrate in the Maintenance of Systemic and Oral Health. Dent J (Basel) 2022; 10:dj10050084. [PMID: 35621537 PMCID: PMC9139378 DOI: 10.3390/dj10050084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
The assessment of the significance of nitrates ingested with food has undergone a fundamental change in recent years after many controversial discussions. While for a long time, a diet as low in nitrates as possible was advocated on the basis of epidemiological data suggesting a cancer-promoting effect of nitrate-rich diets, more recent findings show that dietary nitrate, after its conversion to nitrite by nitrate-reducing bacteria of the oral microbiota, is an indispensable alternative source for the formation of nitric oxide (NO), which comprises a key element in the physiology of a variety of central body functions such as blood pressure control, defense against invading bacteria and maintenance of a eubiotic microbiota in the gut and oral cavity. This compact narrative review aims to present the evidence supported by clinical and in vitro studies on the ambivalent nature of dietary nitrates for general and oral health and to explain how the targeted adjuvant use of nitrate-rich diets could open new opportunities for a more cause-related control of caries and periodontal disease.
Collapse
|
13
|
Miao R, Fang X, Wei J, Wu H, Wang X, Tian J. Akt: A Potential Drug Target for Metabolic Syndrome. Front Physiol 2022; 13:822333. [PMID: 35330934 PMCID: PMC8940245 DOI: 10.3389/fphys.2022.822333] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
The serine/threonine kinase Akt, also known as protein kinase B (PKB), is one of the key factors regulating glucose and lipid energy metabolism, and is the core focus of current research on diabetes and metabolic diseases. Akt is mostly expressed in key metabolism-related organs and it is activated in response to various stimuli, including cell stress, cell movement, and various hormones and drugs that affect cell metabolism. Genetic and pharmacological studies have shown that Akt is necessary to maintain the steady state of glucose and lipid metabolism and a variety of cellular responses. Existing evidence shows that metabolic syndrome is related to insulin resistance and lipid metabolism disorders. Based on a large number of studies on Akt-related pathways and reactions, we believe that Akt can be used as a potential drug target to effectively treat metabolic syndrome.
Collapse
Affiliation(s)
- Runyu Miao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Fang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Dey S, Samadder A, Nandi S. Current Role of Nanotechnology Used in Food Processing Industry to Control Food Additives and Exploring Their Biochemical Mechanisms. Curr Drug Targets 2021; 23:513-539. [PMID: 34915833 DOI: 10.2174/1389450123666211216150355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/25/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND With the advent of food additives centuries ago, the human race has found ways to improve and maintain the safety of utility, augment the taste, color, texture, nutritional value, and appearance of the food. Since the 19th century, when the science behind food spoilage was discerned, the use of food additives in food preservation has been increasing worldwide and at a fast pace to get along with modern lifestyles. Although food additives are thought to be used to benefit the food market, some of them are found to be associated with several health issues at an alarming rate. Studies are still going on regarding the mechanisms by which food additives affect public health. Therefore, an attempt has been made to find out the remedies by exploiting technologies that may convey new properties of food additives that can only enhance the quality of food without having any systemic side effects. Thus, this review focuses on the applications of nanotechnology in the production of nano-food additives and evaluates its success regarding reduction in the health-related hazards collaterally maintaining the food nutrient value. METHODOLOGY A thorough literature study was performed using scientific databases like PubMed, Science Direct, Scopus, Web of Science for determining the design of the study, and each article was checked for citation and referred to formulate the present review article. CONCLUSION Nanotechnology can be applied in the food processing industry to control the unregulated use of food additives and to intervene in the biochemical mechanisms at a cellular and physiological level for the ensuring safety of food products. The prospective of nano-additive of chemical origin could be useful to reduce risks of hazards related to human health that are caused majorly due to the invasion of food contaminants (either intentional or non-intentional) into food, though this area still needs scientific validation. Therefore, this review provides comprehensive knowledge on different facets of food contaminants and also serves as a platform of ideas for encountering health risk problems about the design of improved versions of nano-additives.
Collapse
Affiliation(s)
- Sudatta Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235. India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235. India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (GIPER) (Affiliated to Uttarakhand Technical University). Kashipur-244713. India
| |
Collapse
|
15
|
Leo F, Suvorava T, Heuser SK, Li J, LoBue A, Barbarino F, Piragine E, Schneckmann R, Hutzler B, Good ME, Fernandez BO, Vornholz L, Rogers S, Doctor A, Grandoch M, Stegbauer J, Weitzberg E, Feelisch M, Lundberg JO, Isakson BE, Kelm M, Cortese-Krott MM. Red Blood Cell and Endothelial eNOS Independently Regulate Circulating Nitric Oxide Metabolites and Blood Pressure. Circulation 2021; 144:870-889. [PMID: 34229449 PMCID: PMC8529898 DOI: 10.1161/circulationaha.120.049606] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) through endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of RBC eNOS compared with EC eNOS for vascular hemodynamics and nitric oxide metabolism. METHODS We generated tissue-specific loss- and gain-of-function models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created 2 founder lines carrying a floxed eNOS (eNOSflox/flox) for Cre-inducible knockout (KO), and gene construct with an inactivated floxed/inverted exon (eNOSinv/inv) for a Cre-inducible knock-in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or in ECs (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and nitric oxide metabolism were compared ex vivo and in vivo. RESULTS The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation, and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or flow-mediated dilation but were hypertensive. Treatment with the nitric oxide synthase inhibitor Nγ-nitro-l-arginine methyl ester further increased blood pressure in RBC eNOS KOs, demonstrating that eNOS in both ECs and RBCs contributes to blood pressure regulation. Although both EC eNOS KOs and RBC eNOS KOs had lower plasma nitrite and nitrate concentrations, the levels of bound NO in RBCs were lower in RBC eNOS KOs than in EC eNOS KOs. Reactivation of eNOS in ECs or RBCs rescues the hypertensive phenotype of the eNOSinv/inv mice, whereas the levels of bound NO were restored only in RBC eNOS KI mice. CONCLUSIONS These data reveal that eNOS in ECs and RBCs contribute independently to blood pressure homeostasis.
Collapse
Affiliation(s)
- Francesca Leo
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tatsiana Suvorava
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sophia K. Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Barbarino
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Pharmacy, University of Pisa, Italy (F.P.)
| | - Eugenia Piragine
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rebekka Schneckmann
- Department of Pharmacology and Clinical Pharmacology (R.S., M.G.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Beate Hutzler
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miranda E. Good
- Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville (M.E.G., B.E.I.)
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.G.)
| | - Bernadette O. Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (B.O.F.)
| | - Lukas Vornholz
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephen Rogers
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore (S.R., A.D.)
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore (S.R., A.D.)
| | - Maria Grandoch
- Department of Pharmacology and Clinical Pharmacology (R.S., M.G.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology (J.S.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| | - Martin Feelisch
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Pharmacology and Clinical Pharmacology (R.S., M.G.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Nephrology (J.S.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf (M.K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Pharmacy, University of Pisa, Italy (F.P.)
- Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville (M.E.G., B.E.I.)
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.G.)
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (B.O.F.)
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore (S.R., A.D.)
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville (M.E.G., B.E.I.)
| | - Malte Kelm
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf (M.K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miriam M. Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology (F.L., T.S., S.K.H., J.L., A.L.B., F.B., E.P., B.H., L.V., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Cardiology Pneumology and Angiology (T.S., M.K., M.M.C.-K.), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (E.W., J.O.L., M.M.C.-K.)
| |
Collapse
|
16
|
Rossman MJ, Gioscia-Ryan RA, Santos-Parker JR, Ziemba BP, Lubieniecki KL, Johnson LC, Poliektov NE, Bispham NZ, Woodward KA, Nagy EE, Bryan NS, Reisz JA, D'Alessandro A, Chonchol M, Sindler AL, Seals DR. Inorganic Nitrite Supplementation Improves Endothelial Function With Aging: Translational Evidence for Suppression of Mitochondria-Derived Oxidative Stress. Hypertension 2021; 77:1212-1222. [PMID: 33641356 DOI: 10.1161/hypertensionaha.120.16175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Jessica R Santos-Parker
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Brian P Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Kara L Lubieniecki
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Lawrence C Johnson
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Natalie E Poliektov
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Nina Z Bispham
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Kayla A Woodward
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Erzsebet E Nagy
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | | | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics (J.A.R., A.D.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics (J.A.R., A.D.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michel Chonchol
- Department of Medicine, Division of Renal Diseases and Hypertension (M.C.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Amy L Sindler
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| |
Collapse
|
17
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|
18
|
Bahadoran Z, Norouzirad R, Mirmiran P, Gaeini Z, Jeddi S, Shokri M, Azizi F, Ghasemi A. Effect of inorganic nitrate on metabolic parameters in patients with type 2 diabetes: A 24-week randomized double-blind placebo-controlled clinical trial. Nitric Oxide 2020; 107:58-65. [PMID: 33340674 DOI: 10.1016/j.niox.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
AIM In this randomized placebo-controlled clinical trial, effect of oral inorganic nitrate (NO3-) on metabolic parameters was assessed in patients with type 2 diabetes mellitus (T2DM). METHODS Seventy-four eligible patients with T2DM were randomly assigned to NO3--rich beetroot powder (5 g/d contains ~250 mg NO3-) and placebo groups to complete intervention over a 24-week period. Blood HbA1c, fasting serum glucose, insulin, C-peptide, as well as lipid profile were assessed at baseline and again at weeks 4, 12, and 24; indices of insulin resistance were also calculated. To assess safety of long-term oral NO3-, liver and renal function tests were measured. An intention-to-treat approach was used for data analysis. To compare effect of intervention over time between the groups (time×group), repeated measures generalized estimating equation (GEE) linear regression models were used. RESULTS Mean age of the participants was 54.0 ± 8.5 (47.9% were male) and mean duration of diabetes was 8.5 ± 6.1 years. A total of 64 patients (n = 35 in beetroot group and n = 29 in placebo group) completed at least two visits and were included in the analyses. No significant difference was observed between the groups for glycemic and lipid parameters over time. Liver and renal function tests, as safety outcome measures, showed no undesirable changes during the study follow-up. CONCLUSION Supplementation with inorganic NO3- had no effect on metabolic parameters in patients with T2DM.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- Department of Biochemistry, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Gaeini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Shokri
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Anand CR, Bhavya B, Jayakumar K, Harikrishnan VS, Gopala S. Inorganic nitrite alters mitochondrial dynamics without overt changes in cell death and mitochondrial respiration in cardiomyoblasts under hyperglycemia. Toxicol In Vitro 2020; 70:105048. [PMID: 33161133 DOI: 10.1016/j.tiv.2020.105048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
Inorganic nitrate or nitrite supplementation has been reported to demonstrate positive outcomes in rodent models of obesity and diabetes as well as in type 2 diabetic humans and even included in clinical trials pertaining to cardiovascular diseases in the recent decade. However, there are contrasting data regarding the useful and toxic effects of the anions. The primary scope of this study was to analyze the beneficial/detrimental alterations in redox status, mitochondrial dynamics and function, and cellular fitness in cardiomyoblasts inflicted by nitrite under hyperglycemic conditions compared with normoglycemia. Nitrite supplementation in H9c2 myoblasts under high glucose diminishes the Bcl-xL expression and mitochondrial ROS levels without significant initiation of cell death or decline in total ROS levels. Concomitantly, there are tendencies towards lowering of mitochondrial membrane potential, but without noteworthy changes in mitochondrial biogenesis and respiration. The study also revealed that under high glucose stress, nitrite may alter mitochondrial dynamics by Drp1 activation possibly via Akt1-Pim1 axis. Moreover, the study revealed differential effects of Drp1 silencing and/or nitrite under the above glycemic conditions. Overall, the study warrants more research regarding the effects of nitrite therapy in cardiac cells exposed to hyperglycemia.
Collapse
Affiliation(s)
- C R Anand
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Bharathan Bhavya
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - K Jayakumar
- Department of Cardiovascular and Thoracic Surgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| | - V S Harikrishnan
- Division of Laboratory Animal Sciences, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| |
Collapse
|