1
|
Erickson MA, Mahankali AP. Interactions of Serum Amyloid A Proteins with the Blood-Brain Barrier: Implications for Central Nervous System Disease. Int J Mol Sci 2024; 25:6607. [PMID: 38928312 PMCID: PMC11204325 DOI: 10.3390/ijms25126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Serum amyloid A (SAA) proteins are highly conserved lipoproteins that are notoriously involved in the acute phase response and systemic amyloidosis, but their biological functions are incompletely understood. Recent work has shown that SAA proteins can enter the brain by crossing the intact blood-brain barrier (BBB), and that they can impair BBB functions. Once in the central nervous system (CNS), SAA proteins can have both protective and harmful effects, which have important implications for CNS disease. In this review of the thematic series on SAA, we discuss the existing literature that relates SAA to neuroinflammation and CNS disease, and the possible roles of the BBB in these relations.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA;
| | - Anvitha P. Mahankali
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA;
| |
Collapse
|
2
|
Tsujita M, Melchior JT, Yokoyama S. Lipoprotein Particles in Cerebrospinal Fluid. Arterioscler Thromb Vasc Biol 2024; 44:1042-1052. [PMID: 38545782 PMCID: PMC11342562 DOI: 10.1161/atvbaha.123.318284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The brain is the most lipid-rich organ in the body, and the intricate interplay between lipid metabolism and pathologies associated with neurodegenerative disorders is being increasingly recognized. The brain is bathed in cerebrospinal fluid (CSF), which, like plasma, contains lipid-protein complexes called lipoproteins that are responsible for extracellular lipid transport. Multiple CSF lipoprotein populations exist, some of which are produced de novo in the central nervous system and others that appear to be generated from protein constituents that are produced in the periphery. These CSF lipoproteins are thought to play key roles in maintaining lipid homeostasis in the central nervous system, while little else is known due to their limited accessibility and their low abundance in CSF. Recent work has provided new insights into the compositional complexity of CSF lipoprotein families and their metabolism in cerebral circulation. The purpose of this review is to summarize our current state of knowledge on the composition, origin, and metabolism of CSF lipoproteins.
Collapse
|
3
|
Ashkarran AA, Tadjiki S, Lin Z, Hilsen K, Ghazali N, Krikor S, Sharifi S, Asgari M, Hotchkin M, Dorfman A, Ho KS, Mahmoudi M. Protein Corona Composition of Gold Nanocatalysts. ACS Pharmacol Transl Sci 2024; 7:1169-1177. [PMID: 38633595 PMCID: PMC11020068 DOI: 10.1021/acsptsci.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
The interaction between nanoparticles (NPs) and biological environments is profoundly influenced by a stable, strongly adsorbed "hard" protein corona. This corona significantly determines the NPs' pharmacokinetics and biological destiny. Our study delves into the mechanisms by which colloidal Au nanocrystals that are synthesized electrochemically without surface-capping organic ligands, known as CNM-Au8, traverse the blood-brain barrier (BBB) and target human brain tissue for treating neurodegenerative disorders. We discovered that upon interaction with human plasma, CNM-Au8 gold nanocrystals (AuNCs) effectively attract a variety of crucial apolipoproteins, notably apolipoproteins E, to their surfaces. This interaction likely facilitates their passage through the BBB. Furthermore, the coronas of these AuNCs exhibit a substantial presence of albumin and a notable absence of opsonin-based proteins, contributing to prolonged blood circulation. These characteristics align well with the clinical performance observed for the CNM-Au8 NCs. This study highlights that AuNCs with intentionally engineered structures and surfactant-free surfaces can create a distinct protein corona composition. This finding holds significant promise for the development of advanced therapeutic agents aimed at combating neurodegenerative diseases.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Soheyl Tadjiki
- Postnova
Analytics Inc., Salt Lake City, Utah 84102, United States
| | - Zijin Lin
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kylie Hilsen
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Noor Ghazali
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sarah Krikor
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shahriar Sharifi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Meisam Asgari
- Department
of Medical Engineering, University of South
Florida, Tampa, Florida 33620, United States
| | - Michael Hotchkin
- Clene
Nanomedicine, Inc., Salt Lake City, Utah 84121, United States
| | - Adam Dorfman
- Clene
Nanomedicine, Inc., Salt Lake City, Utah 84121, United States
| | - Karen S. Ho
- Clene
Nanomedicine, Inc., Salt Lake City, Utah 84121, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
Caron NS, Aly AEE, Findlay Black H, Martin DDO, Schmidt ME, Ko S, Anderson C, Harvey EM, Casal LL, Anderson LM, Rahavi SMR, Reid GSD, Oda MN, Stanimirovic D, Abulrob A, McBride JL, Leavitt BR, Hayden MR. Systemic delivery of mutant huntingtin lowering antisense oligonucleotides to the brain using apolipoprotein A-I nanodisks for Huntington disease. J Control Release 2024; 367:27-44. [PMID: 38215984 DOI: 10.1016/j.jconrel.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biology, University of Waterloo, Ontario, Canada
| | - Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Emily M Harvey
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Seyed M R Rahavi
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregor S D Reid
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Abedelnasser Abulrob
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Li S, Xie X, Zeng X, Wang S, Lan J. Serum apolipoprotein B to apolipoprotein A-I ratio predicts mortality in patients with heart failure. ESC Heart Fail 2024; 11:99-111. [PMID: 37822135 PMCID: PMC10804159 DOI: 10.1002/ehf2.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
AIMS Apolipoproteins have been reported to be involved in many cardiovascular diseases. The aim of our study was to investigate the prognostic value of apolipoprotein B (ApoB) to apolipoprotein A-I (ApoA-I) ratio (ApoB/ApoA-I) in patients with heart failure (HF). METHODS AND RESULTS We randomly assigned 2400 HF patients into the training cohort (n = 1400) and the validation cohort (n = 1000). Using a receiver operating characteristic curve, we identified the optimal cut-off value of the ApoB/ApoA-I in the training cohort as 0.69, which was further validated in the validation cohort. A propensity score matching (PSM) analysis was conducted to eliminate the imbalance in the baseline characteristics of the high and low ApoB/ApoA-I group. A total of 2242 HF patients were generated in the PSM cohort. We also validated our results with an independent cohort (n = 838). Univariate and multivariate analyses were conducted to explore the independent prognostic value of ApoB/ApoA-I in the training cohort (n = 1400), the validation cohort (n = 1000), the PSM cohort (n = 2242), and the independent cohort (n = 838). Patients with high ApoB/ApoA-I ratio had significantly poorer prognosis compared with those with low ApoB/ApoA-I ratio in the training cohort, the validation cohort, the PSM cohort, and the independent cohort (P < 0.05). Multivariate analysis indicated that the ApoB/ApoA-I was an independent prognostic factor for HF in the training cohort [hazard ratio (HR) = 1.637, 95% confidence interval (CI) = 1.201-2.231, P = 0.002], the validation cohort (HR = 1.54, 95% CI = 1.051-2.257, P = 0.027), the PSM cohort (HR = 1.645, 95% CI = 1.273-2.125, P < 0.001), and the independent cohort (HR = 1.987, 95% CI = 1.251-3.155, P = 0.004). CONCLUSIONS Serum ApoB/ApoA-I ratio is an independent predictor for the prognosis of HF patients.
Collapse
Affiliation(s)
- Shiyang Li
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
- Panzhihua Central Hospital affiliated to Dali UniversityYunnanChina
| | - Xiaoshuang Xie
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Xiaobin Zeng
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Shihai Wang
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Jianjun Lan
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| |
Collapse
|
6
|
Choi S, Choi SH, Bastola T, Park Y, Oh J, Kim KY, Hwang S, Miller YI, Ju WK. AIBP: A New Safeguard against Glaucomatous Neuroinflammation. Cells 2024; 13:198. [PMID: 38275823 PMCID: PMC10814024 DOI: 10.3390/cells13020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Glaucoma is a group of ocular diseases that cause irreversible blindness. It is characterized by multifactorial degeneration of the optic nerve axons and retinal ganglion cells (RGCs), resulting in the loss of vision. Major components of glaucoma pathogenesis include glia-driven neuroinflammation and impairment of mitochondrial dynamics and bioenergetics, leading to retinal neurodegeneration. In this review article, we summarize current evidence for the emerging role of apolipoprotein A-I binding protein (AIBP) as an important anti-inflammatory and neuroprotective factor in the retina. Due to its association with toll-like receptor 4 (TLR4), extracellular AIBP selectively removes excess cholesterol from the plasma membrane of inflammatory and activated cells. This results in the reduced expression of TLR4-associated, cholesterol-rich lipid rafts and the inhibition of downstream inflammatory signaling. Intracellular AIBP is localized to mitochondria and modulates mitophagy through the ubiquitination of mitofusins 1 and 2. Importantly, elevated intraocular pressure induces AIBP deficiency in mouse models and in human glaucomatous retina. AIBP deficiency leads to the activation of TLR4 in Müller glia, triggering mitochondrial dysfunction in both RGCs and Müller glia, and compromising visual function in a mouse model. Conversely, restoring AIBP expression in the retina reduces neuroinflammation, prevents RGCs death, and protects visual function. These results provide new insight into the mechanism of AIBP function in the retina and suggest a therapeutic potential for restoring retinal AIBP expression in the treatment of glaucoma.
Collapse
Affiliation(s)
- Seunghwan Choi
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
| | - Younggun Park
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jonghyun Oh
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sinwoo Hwang
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
| | - Yury I. Miller
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (S.C.); (T.B.); (Y.P.)
| |
Collapse
|
7
|
Ma L, Yuan YX, Cheng FJ, Liu Y, Wei Q, Peng YF, Wang Y. The association between blood lipids and cognitive impairment in type 2 diabetes mellitus. Eur J Med Res 2024; 29:1. [PMID: 38167163 PMCID: PMC10763275 DOI: 10.1186/s40001-023-01574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE The study was performed to explore the association between blood lipids and cognitive impairment in patients with type 2 diabetes mellitus (T2DM). METHODS This study included 336 patients with T2DM. Relevant clinical data including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), apolipoprotein A1, apolipoprotein B were collected, and the Mini-Mental State Examination (MMSE) score and Montreal Cognitive Assessment (MoCA) score were used to assess the cognitive function in patients with T2DM. RESULTS Serum apolipoprotein A1 levels were significantly increased in T2DM patients with cognitive impairment compared with T2DM patients without cognitive impairment (p = 0.017). Serum apolipoprotein A1 levels were significantly negatively correlated with MoCA score (r = - 0.143, p = 0.009) and MMSE score (r = - 0.132, p = 0.016) in patients with T2DM. In multivariable-adjusted regression model, serum apolipoprotein A1 was independently associated with cognitive impairment in patients with T2DM (OR = 5.201, p = 0.024). CONCLUSION Serum apolipoprotein A1 is associated with cognitive impairment in patients with T2DM, but not TC, TG, HDL-C, LDL-C, and apolipoprotein B, indicating that increased serum apolipoprotein A1 may be a risk factor of cognitive impairment in patients with T2DM.
Collapse
Affiliation(s)
- Li Ma
- Department of Rehabilitative Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yue-Xing Yuan
- Department of Endocrinology and Metabolism, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Feng-Jin Cheng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, Jiangsu, China
| | - Yan Liu
- Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qiong Wei
- Department of Endocrinology and Metabolism, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu, China.
| | - You-Fan Peng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Yao Wang
- Department of Endocrinology and Metabolism, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
8
|
Liang N, Harsch BA, Zhou S, Borkowska A, Shearer GC, Kaddurah-Daouk R, Newman JW, Borkowski K. Oxylipin transport by lipoprotein particles and its functional implications for cardiometabolic and neurological disorders. Prog Lipid Res 2024; 93:101265. [PMID: 37979798 DOI: 10.1016/j.plipres.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Lipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both cardiometabolic and neurological disorders. Despite the substantial investigation into the composition, structure and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their potential biological implications are unclear. Lipoproteins carry most of the circulating oxylipins. Importantly, lipoprotein-mediated oxylipin transport allows for endocrine signaling by these lipid mediators, long considered to have only autocrine and paracrine functions. Alterations in plasma lipoprotein oxylipin composition can directly impact inflammatory responses of lipoprotein metabolizing cells. Similar investigations of CNS lipoprotein oxylipins are non-existent to date. However, as APOE4 is associated with Alzheimer's disease-related microglia dysfunction and oxylipin dysregulation, ApoE4-dependent lipoprotein oxylipin modulation in neurological pathologies is suggested. Such investigations are crucial to bridge knowledge gaps linking oxylipin- and lipoprotein-related disorders in both periphery and CNS. Here, after providing a summary of existent literatures on lipoprotein oxylipin analysis methods, we emphasize the importance of lipoproteins in oxylipin transport and argue that understanding the compartmentalization and distribution of lipoprotein oxylipins may fundamentally alter our consideration of the roles of lipoprotein in cardiometabolic and neurological disorders.
Collapse
Affiliation(s)
- Nuanyi Liang
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Brian A Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sitong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis, Davis, CA 95616, USA
| | - Alison Borkowska
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, 27708, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Nutrition, University of California - Davis, Davis, CA 95616, USA; Western Human Nutrition Research Center, United States Department of Agriculture - Agriculture Research Service, Davis, CA 95616, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Plaschke K, Kopitz J, Gebert J, Wolf ND, Wolf RC. Proteomic Analysis Reveals Potential Exosomal Biomarkers in Patients With Sporadic Alzheimer Disease. Alzheimer Dis Assoc Disord 2023; 37:315-321. [PMID: 38015424 DOI: 10.1097/wad.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/18/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Despite substantial progress made in the past decades, the pathogenesis of sporadic Alzheimer disease (sAD) and related biological markers of the disease are still controversially discussed. Cerebrospinal fluid and functional brain imaging markers have been established to support the clinical diagnosis of sAD. Yet, due to the invasiveness of such diagnostics, less burdensome markers have been increasingly investigated in the past years. Among such markers, extracellular vesicles may yield promise in (early) diagnostics and treatment monitoring in sAD. MATERIALS AND METHODS In this pilot study, we collected the blood plasma of 18 patients with sAD and compared the proteome of extracted extracellular vesicles with the proteome of 11 age-matched healthy controls. The resulting proteomes were characterized by Gene Ontology terms and between-group statistics. RESULTS Ten distinct proteins were found to significantly differ between sAD patients and controls (P<0.05, False Discovery Rate, corrected). These proteins included distinct immunoglobulins, fibronectin, and apolipoproteins. CONCLUSIONS These findings lend further support for exosomal changes in neurodegenerative disorders, and particularly in sAD. Further proteomic research could decisively advance our knowledge of sAD pathophysiology as much as it could foster the development of clinically meaningful biomarkers.
Collapse
Affiliation(s)
| | | | | | - Nadine D Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Aly AEE, Caron NS, Black HF, Schmidt ME, Anderson C, Ko S, Baddeley HJE, Anderson L, Casal LL, Rahavi RSM, Martin DDO, Hayden MR. Delivery of mutant huntingtin-lowering antisense oligonucleotides to the brain by intranasally administered apolipoprotein A-I nanodisks. J Control Release 2023; 360:913-927. [PMID: 37468110 DOI: 10.1016/j.jconrel.2023.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Lowering mutant huntingtin (mHTT) in the central nervous system (CNS) using antisense oligonucleotides (ASOs) is a promising approach currently being evaluated in clinical trials for Huntington disease (HD). However, the therapeutic potential of ASOs in HD patients is limited by their inability to cross the blood-brain barrier (BBB). In non-human primates, intrathecal infusion of ASOs results in limited brain distribution, with higher ASO concentrations in superficial regions and lower concentrations in deeper regions, such as the basal ganglia. To address the need for improved delivery of ASOs to the brain, we are evaluating the therapeutic potential of apolipoprotein A-I nanodisks (apoA-I NDs) as novel delivery vehicles for mHTT-lowering ASOs to the CNS after intranasal administration. Here, we have demonstrated the ability of apoA-I nanodisks to bypass the BBB after intranasal delivery in the BACHD model of HD. Following intranasal administration of apoA-I NDs, apoA-I protein levels were elevated along the rostral-caudal brain axis, with highest levels in the most rostral brain regions including the olfactory bulb and frontal cortex. Double-label immunohistochemistry indicates that both the apoA-I and ASO deposit in neurons. Most importantly, a single intranasal dose of apoA-I ASO-NDs significantly reduces mHTT levels in the brain regions most affected in HD, namely the cortex and striatum. This approach represents a novel non-invasive means for improving delivery and brain distribution of oligonucleotide therapies and enhancing likelihood of efficacy. Improved ASO delivery to the brain has widespread application for treatment of many other CNS disorders.
Collapse
Affiliation(s)
- Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Helen J E Baddeley
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Lisa Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Reza S M Rahavi
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's a Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; Department of Biology, University of Waterloo, Ontario, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
11
|
Huntoon K, Anderson SK, Ballman KV, Twohy E, Dooley K, Jiang W, An Y, Li J, von Roemeling C, Qie Y, Ross OA, Cerhan JH, Whitton AC, Greenspoon JN, Parney IF, Ashman JB, Bahary JP, Hadjipanayis C, Urbanic JJ, Farace E, Khuntia D, Laack NN, Brown PD, Roberge D, Kim BYS. Association of circulating markers with cognitive decline after radiation therapy for brain metastasis. Neuro Oncol 2023; 25:1123-1131. [PMID: 36472389 PMCID: PMC10237411 DOI: 10.1093/neuonc/noac262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A recent phase III trial (NCT01372774) comparing use of stereotactic radiosurgery [SRS] versus whole-brain radiation therapy [WBRT] after surgical resection of a single brain metastasis revealed that declines in cognitive function were more common with WBRT than with SRS. A secondary endpoint in that trial, and the primary objective in this secondary analysis, was to identify baseline biomarkers associated with cognitive impairment after either form of radiotherapy for brain metastasis. Here we report our findings on APOE genotype and serum levels of associated proteins and their association with radiation-induced neurocognitive decline. METHODS In this retrospective analysis of prospectively collected samples from a completed randomized clinical trial, patients provided blood samples every 3 months that were tested by genotyping and enzyme-linked immunosorbent assay, and results were analyzed in association with cognitive impairment. RESULTS The APOE genotype was not associated with neurocognitive impairment at 3 months. However, low serum levels of ApoJ, ApoE, or ApoA protein (all P < .01) and higher amyloid beta (Aβ 1-42) levels (P = .048) at baseline indicated a greater likelihood of neurocognitive decline at 3 months after SRS, whereas lower ApoJ levels were associated with decline after WBRT (P = .014). CONCLUSIONS Patients with these pretreatment serum markers should be counseled about radiation-related neurocognitive decline.
Collapse
Affiliation(s)
- Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - S Keith Anderson
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Karla V Ballman
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biostatistics and Epidemiology, Weill Medical College of Cornell University, New York, New York, USA
| | - Erin Twohy
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Katharine Dooley
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas,USA
| | - Yi An
- Department of Therapeutic Radiology, Yale-New Haven Hospital, North Haven, Connecticut, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas,USA
| | | | - Yaqing Qie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jane H Cerhan
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| | - Anthony C Whitton
- Department of Radiation Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey N Greenspoon
- Department of Radiation Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathan B Ashman
- Department of Radiation Oncology, Mayo Clinic, Phoenix/Scottsdale, Arizona, USA
| | - Jean-Paul Bahary
- Department of Radiation Oncology, CHUM, Montreal, Quebec, Canada
| | | | - James J Urbanic
- Department of Radiation Oncology, University of California San Diego, Moores Cancer Center, La Jolla, California, USA
| | - Elana Farace
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Deepak Khuntia
- Department of Radiation Oncology, Precision Cancer Specialists and Varian Medical Systems, Palo Alto, California, USA
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - David Roberge
- Department of Radiation Oncology, CHUM, Montreal, Quebec, Canada
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
12
|
Martinez AE, Weissberger G, Kuklenyik Z, He X, Meuret C, Parekh T, Rees JC, Parks BA, Gardner MS, King SM, Collier TS, Harrington MG, Sweeney MD, Wang X, Zlokovic BV, Joe E, Nation DA, Schneider LS, Chui HC, Barr JR, Han SD, Krauss RM, Yassine HN. The small HDL particle hypothesis of Alzheimer's disease. Alzheimers Dement 2023; 19:391-404. [PMID: 35416404 PMCID: PMC10563117 DOI: 10.1002/alz.12649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 01/03/2023]
Abstract
We propose the hypothesis that small high-density lipoprotein (HDL) particles reduce the risk of Alzheimer's disease (AD) by virtue of their capacity to exchange lipids, affecting neuronal membrane composition and vascular and synaptic functions. Concentrations of small HDLs in cerebrospinal fluid (CSF) and plasma were measured in 180 individuals ≥60 years of age using ion mobility methodology. Small HDL concentrations in CSF were positively associated with performance in three domains of cognitive function independent of apolipoprotein E (APOE) ε4 status, age, sex, and years of education. Moreover, there was a significant correlation between levels of small HDLs in CSF and plasma. Further studies will be aimed at determining whether specific components of small HDL exchange across the blood, brain, and CSF barriers, and developing approaches to exploit small HDLs for therapeutic purposes.
Collapse
Affiliation(s)
- Ashley E. Martinez
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gali Weissberger
- The Interdisciplinary Department of Social Sciences, Bar Ilan University, Israel
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xulei He
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Cristiana Meuret
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Trusha Parekh
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jon C. Rees
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bryan A. Parks
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael S. Gardner
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah M. King
- Departments of Pediatrics and Medicine, University of California, San Francisco, California, USA
| | | | - Michael G. Harrington
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Melanie D. Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Elizabeth Joe
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Daniel A. Nation
- Irvine, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Lon S. Schneider
- Department of Neurology, University of Southern California, Los Angeles, California, USA
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, USA
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - John R. Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S. Duke Han
- Department of Family Medicine, University of Southern California, Los Angeles, California, USA
| | - Ronald M. Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, California, USA
| | - Hussein N. Yassine
- Department of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Zhong J, Yang HC, Shelton EL, Matsusaka T, Clark AJ, Yermalitsky V, Mashhadi Z, May-Zhang LS, Linton MF, Fogo AB, Kirabo A, Davies SS, Kon V. Dicarbonyl-modified lipoproteins contribute to proteinuric kidney injury. JCI Insight 2022; 7:161878. [PMID: 36125905 PMCID: PMC9675465 DOI: 10.1172/jci.insight.161878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Lipoprotein modification by reactive dicarbonyls, including isolevuglandin (IsoLG), produces dysfunctional particles. Kidneys participate in lipoprotein metabolism, including tubular uptake. However, the process beyond the proximal tubule is unclear, as is the effect of kidney injury on this pathway. We found that patients and animals with proteinuric injury have increased urinary apolipoprotein AI (apoAI), IsoLG, and IsoLG adduct enrichment of the urinary apoAI fraction compared with other proteins. Proteinuric mice, induced by podocyte-specific injury, showed more tubular absorption of IsoLG-apoAI and increased expression of lipoprotein transporters in proximal tubular cells compared with uninjured animals. Renal lymph reflects composition of the interstitial compartment and showed increased apoAI and IsoLG in proteinuric animals, supporting a tubular cell-interstitium-lymph pathway for renal handling of lipoproteins. IsoLG-modified apoAI was not only a marker of renal injury but also directly damaged renal cells. IsoLG-apoAI increased inflammatory cytokines in cultured tubular epithelial cells (TECs), activated lymphatic endothelial cells (LECs), and caused greater contractility of renal lymphatic vessels than unmodified apoAI. In vivo, inhibition of IsoLG by a dicarbonyl scavenger reduced both albuminuria and urinary apoAI and decreased TEC and LEC injury, lymphangiogenesis, and interstitial fibrosis. Our results indicate that IsoLG-modified apoAI is, to our knowledge, a novel pathogenic mediator and therapeutic target in kidney disease.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics and,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pediatrics and,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Taiji Matsusaka
- Institute of Medical Sciences and Department of Molecular Life Sciences, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | - Zahra Mashhadi
- Department of Pharmacology, Division of Clinical Pharmacology
| | | | | | - Agnes B. Fogo
- Department of Pediatrics and,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, and
| | - Annet Kirabo
- Department of Pharmacology, Division of Clinical Pharmacology,,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean S. Davies
- Department of Pharmacology, Division of Clinical Pharmacology
| | | |
Collapse
|
14
|
Pedrini S, Doecke JD, Hone E, Wang P, Thota R, Bush AI, Rowe CC, Dore V, Villemagne VL, Ames D, Rainey‐Smith S, Verdile G, Sohrabi HR, Raida MR, Taddei K, Gandy S, Masters CL, Chatterjee P, Martins R. Plasma high-density lipoprotein cargo is altered in Alzheimer's disease and is associated with regional brain volume. J Neurochem 2022; 163:53-67. [PMID: 36000528 PMCID: PMC9804612 DOI: 10.1111/jnc.15681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023]
Abstract
Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia
| | - James D. Doecke
- Australian E‐Health Research CentreCSIROBrisbaneQueenslandAustralia
| | - Eugene Hone
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia
| | - Penghao Wang
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rohith Thota
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Ashley I. Bush
- CRC for Mental HealthMelbourneVictoriaAustralia,The Florey Institute, The University of MelbourneParkvilleVictoriaAustralia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PETAustin HealthHeidelbergVictoriaAustralia
| | - Vincent Dore
- Department of Nuclear Medicine and Centre for PETAustin HealthHeidelbergVictoriaAustralia
| | | | - David Ames
- National Ageing Research InstituteParkvilleVictoriaAustralia,University of Melbourne Academic unit for Psychiatry of Old AgeSt George's HospitalKewVictoriaAustralia
| | - Stephanie Rainey‐Smith
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Giuseppe Verdile
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia,Curtin Health Innovation Research InstituteCurtin UniversityBentleyWestern AustraliaAustralia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Manfred R. Raida
- Life Science Institute, Singapore Lipidomics IncubatorNational University of SingaporeSingapore CitySingapore
| | - Kevin Taddei
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia
| | - Sam Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - Colin L. Masters
- The Florey Institute, The University of MelbourneParkvilleVictoriaAustralia
| | - Pratishtha Chatterjee
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Ralph N. Martins
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia,Faculty of Medicine, Health and Human Sciences, Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia,School of Psychiatry and Clinical NeurosciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | | |
Collapse
|
15
|
Zlatic SA, Duong D, Gadalla KK, Murage B, Ping L, Shah R, Fink JJ, Khwaja O, Swanson LC, Sahin M, Rayaprolu S, Kumar P, Rangaraju S, Bird A, Tarquinio D, Carpenter R, Cobb S, Faundez V. Convergent cerebrospinal fluid proteomes and metabolic ontologies in humans and animal models of Rett syndrome. iScience 2022; 25:104966. [PMID: 36060065 PMCID: PMC9437849 DOI: 10.1016/j.isci.2022.104966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/30/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
MECP2 loss-of-function mutations cause Rett syndrome, a neurodevelopmental disorder resulting from a disrupted brain transcriptome. How these transcriptional defects are decoded into a disease proteome remains unknown. We studied the proteome of Rett cerebrospinal fluid (CSF) to identify consensus Rett proteome and ontologies shared across three species. Rett CSF proteomes enriched proteins annotated to HDL lipoproteins, complement, mitochondria, citrate/pyruvate metabolism, synapse compartments, and the neurosecretory protein VGF. We used shared Rett ontologies to select analytes for orthogonal quantification and functional validation. VGF and ontologically selected CSF proteins had genotypic discriminatory capacity as determined by receiver operating characteristic analysis in Mecp2 -/y and Mecp2 -/+ . Differentially expressed CSF proteins distinguished Rett from a related neurodevelopmental disorder, CDKL5 deficiency disorder. We propose that Mecp2 mutant CSF proteomes and ontologies inform putative mechanisms and biomarkers of disease. We suggest that Rett syndrome results from synapse and metabolism dysfunction.
Collapse
Affiliation(s)
| | - Duc Duong
- Departments of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Kamal K.E. Gadalla
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Brenda Murage
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Lingyan Ping
- Departments of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Ruth Shah
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King’s Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | | - Omar Khwaja
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lindsay C. Swanson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Sruti Rayaprolu
- Departments of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Prateek Kumar
- Departments of Neurology, Emory University, Atlanta, GA 30322, USA
| | | | - Adrian Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King’s Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | | | | - Stuart Cobb
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
KANG JB, KOH PO. Identification of changed proteins by retinoic acid in cerebral ischemic damage: a proteomic study. J Vet Med Sci 2022; 84:1194-1204. [PMID: 35831120 PMCID: PMC9523306 DOI: 10.1292/jvms.22-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke is a severe neurodegenerative disease with a high mortality rate. Retinoic acid is a representative metabolite of vitamin A. It has many beneficial effects including anti-inflammatory, anti-apoptotic, and neuroprotective effects. The purpose of this study is to identify specific proteins that are regulated by retinoic acid in ischemic stroke. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected intraperitoneally into male rats for four days prior to MCAO operation. Neurobehavioral tests were performed 24 hr after MCAO and the cerebral cortex was collected for proteomic study. Retinoic acid alleviates neurobehavioral deficits and histopathological changes caused by MCAO. Furthermore, we identified various proteins that were altered by retinoic acid in MCAO damage. Among these identified proteins, adenosylhomocysteinase, isocitrate dehydrogenase [NAD+] subunit α, glycerol-3-phosphate dehydrogenase, Rab GDP dissociation inhibitor β, and apolipoprotein A1 were down-regulated in MCAO animals with vehicle treatment, whereas retinoic acid treatment alleviated these reductions. However, heat shock protein 60 was up-regulated in MCAO animals with vehicle, while retinoic acid treatment attenuated this increase. The changes in these expressions were confirmed by reverse transcription-PCR. These proteins regulate cell metabolism and mediate stress responses. Our results demonstrated that retinoic acid attenuates the neuronal damage by MCAO and regulates the various protein expressions that are involved in the survival of cells. Thus, we can suggest that retinoic acid exerts neuroprotective effects on focal cerebral ischemia by modulation of specific proteins.
Collapse
Affiliation(s)
- Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
17
|
Lam SM, Huang X, Shui G. Neurological aspects of SARS-CoV-2 infection: lipoproteins and exosomes as Trojan horses. Trends Endocrinol Metab 2022; 33:554-568. [PMID: 35613979 PMCID: PMC9058057 DOI: 10.1016/j.tem.2022.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily targets lipid-producing cells for viral tropism. In this review, we connect systemic lipid couriers, particularly high-density lipoproteins (HDLs) and exosomes, with the neurological facets of SARS-CoV-2 infection. We discuss how SARS-CoV-2 preferentially targets lipid-secreting cells and usurps host cell lipid metabolism for efficient replication and systemic spreading. Besides providing natural veils for viral materials against host immunity, the inherent properties of some of these endogenous lipid particles to traverse the blood-brain barrier (BBB) also offer alternative routes for SARS-CoV-2 neurotropism. Importantly, virus-driven neurological aberrations mediated by HDLs and exosomes are fueled by lipid rafts, which are implicated in the production and transmigration of these lipid particles across the BBB. Finally, we discuss how repurposing existing drugs targeting lipid rafts and cholesterol homeostasis may be beneficial toward alleviating the global coronavirus disease 2019 (COVID-19) disease burden.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu Province, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
The Cholesteryl Ester Transfer Protein (CETP) raises Cholesterol Levels in the Brain. J Lipid Res 2022; 63:100260. [PMID: 35921880 PMCID: PMC9464954 DOI: 10.1016/j.jlr.2022.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
The cholesteryl ester transfer protein (CETP) is a lipid transfer protein responsible for the exchange of cholesteryl esters and triglycerides between lipoproteins. Decreased CETP activity is associated with longevity, cardiovascular health, and maintenance of good cognitive performance. Interestingly, mice lack the CETP-encoding gene and have very low levels of LDL particles compared with humans. Currently, the molecular mechanisms induced because of CETP activity are not clear. To understand how CETP activity affects the brain, we utilized CETP transgenic (CETPtg) mice that show elevated LDL levels upon induction of CETP expression through a high-cholesterol diet. CETPtg mice on a high-cholesterol diet showed up to 22% higher cholesterol levels in the brain. Using a microarray on mostly astrocyte-derived mRNA, we found that this cholesterol increase is likely not because of elevated de novo synthesis of cholesterol. However, cholesterol efflux is decreased in CETPtg mice along with an upregulation of the complement factor C1Q, which plays a role in neuronal cholesterol clearance. Our data suggest that CETP activity affects brain health through modulating cholesterol distribution and clearance. Therefore, we propose that CETPtg mice constitute a valuable research tool to investigate the impact of cholesterol metabolism on brain function.
Collapse
|
19
|
Abstract
The brain, as one of the most lipid-rich organs, heavily relies on lipid transport and distribution to maintain homeostasis and neuronal function. Lipid transport mediated by lipoprotein particles, which are complex structures composed of apolipoproteins and lipids, has been thoroughly characterized in the periphery. Although lipoproteins in the central nervous system (CNS) were reported over half a century ago, the identification of APOE4 as the strongest genetic risk factor for Alzheimer's disease has accelerated investigation of the biology and pathobiology of lipoproteins in the CNS. This review provides an overview of the different components of lipoprotein particles, in particular apolipoproteins, and their involvements in both physiological functions and pathological mechanisms in the CNS.
Collapse
Affiliation(s)
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| |
Collapse
|
20
|
Ageing related thyroid deficiency increases brain-targeted transport of liver-derived ApoE4-laden exosomes leading to cognitive impairment. Cell Death Dis 2022; 13:406. [PMID: 35468877 PMCID: PMC9039072 DOI: 10.1038/s41419-022-04858-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer’s disease (AD) is the prevalent cause of dementia in the ageing world population. Apolipoprotein E4 (ApoE4) allele is the key genetic risk factor for AD, although the mechanisms linking ApoE4 with neurocognitive impairments and aberrant metabolism remains to be fully characterised. We discovered a significant increase in the ApoE4 content of serum exosomes in old healthy subjects and AD patients carrying ApoE4 allele as compared with healthy adults. Elevated exosomal ApoE4 demonstrated significant inverse correlation with serum level of thyroid hormones and cognitive function. We analysed effects of ApoE4-containing peripheral exosomes on neural cells and neurological outputs in aged or thyroidectomised young mice. Ageing-associated hypothyroidism as well as acute thyroidectomy augmented transport of liver-derived ApoE4 reach exosomes into the brain, where ApoE4 activated nucleotide-binding oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome by increasing cholesterol level in neural cells. This, in turn, affected cognition, locomotion and mood. Our study reveals pathological potential of exosomes-mediated relocation of ApoE4 from the periphery to the brain, this process can represent potential therapeutic target.
Collapse
|
21
|
Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159123. [PMID: 35151900 DOI: 10.1016/j.bbalip.2022.159123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
Abstract
High-density lipoproteins (HDLs play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDLs, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).
Collapse
|
22
|
Gibson CM, Kazmi SHA, Korjian S, Chi G, Phillips AT, Montazerin SM, Duffy D, Zheng B, Heise M, Liss C, Deckelbaum LI, Wright SD, Gille A. CSL112 (Apolipoprotein A-I [Human]) Strongly Enhances Plasma Apoa-I and Cholesterol Efflux Capacity in Post-Acute Myocardial Infarction Patients: A PK/PD Substudy of the AEGIS-I Trial. J Cardiovasc Pharmacol Ther 2022; 27:10742484221121507. [DOI: 10.1177/10742484221121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction: Cholesterol efflux capacity (CEC) is impaired following acute myocardial infarction (AMI). CSL112 is an intravenous preparation of human plasma-derived apoA-I formulated with phosphatidylcholine (PC). CSL112 is intended to improve CEC and thereby prevent early recurrent cardiovascular events following AMI. AEGIS-I (ApoA-I Event Reducing in Ischemic Syndromes I) was a multicenter, randomized, double-blind, placebo-controlled, dose-ranging phase 2b study, designed to evaluate the hepatic and renal safety of CSL112. Here, we report an analysis of a pharmacokinetic (PK) and pharmacodynamic (PD) substudy of AEGIS-I. Methods: AMI patients were stratified by renal function and randomized 3:3:2 to 4, weekly, 2-hour infusions of low- and high-dose (2 g and 6 g) CSL112, or placebo. PK/PD assessments included plasma concentrations of apoA-I and PC, and measures of total and ABCA1-dependent CEC, as well as lipids/lipoproteins including high density lipoprotein cholesterol (HDL-C), non-HDL-C, low density lipoprotein cholesterol (LDL-C), ApoB, and triglycerides. Inflammatory and cardio-metabolic biomarkers were also evaluated. Results: The substudy included 63 subjects from AEGIS-I. CSL112 infusions resulted in rapid, dose-dependent increases in baseline corrected apoA-I and PC, which peaked at the end of the infusion (Tmax ≈ 2 hours). Similarly, there was a dose-dependent elevation in both total CEC and ABCA1-mediated CEC. Mild renal impairment did not affect the PK or PD of CSL112. CSL112 administration was also associated with an increase in plasma levels of HDL-C but not non-HDL-C, LDL-C, apoB, or triglycerides. No dose-effects on inflammatory or cardio-metabolic biomarkers were observed. Conclusion: Among patients with AMI, impaired CEC was rapidly elevated by CSL112 infusions in a dose-dependent fashion, along with an increase in apoA-I plasma concentrations. Findings from the current sub-study of the AEGIS-I support a potential atheroprotective benefit of CSL112 for AMI patients.
Collapse
Affiliation(s)
- C. Michael Gibson
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Syed Hassan A. Kazmi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Serge Korjian
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerald Chi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adam T. Phillips
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sahar Memar Montazerin
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Bo Zheng
- CSL Behring, King of Prussia, PA, USA
| | | | | | | | | | | |
Collapse
|
23
|
Endres K. Apolipoprotein A1, the neglected relative of Apolipoprotein E and its potential role in Alzheimer's disease. Neural Regen Res 2021; 16:2141-2148. [PMID: 33818485 PMCID: PMC8354123 DOI: 10.4103/1673-5374.310669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 01/23/2023] Open
Abstract
Lipoproteins are multi-molecule assemblies with the primary function of transportation and processing of lipophilic substances within aqueous bodily fluids (blood, cerebrospinal fluid). Nevertheless, they also exert other physiological functions such as immune regulation. In particular, neurons are both sensitive to uncontrolled responses of the immune system and highly dependent on a controlled and sufficient supply of lipids. For this reason, the role of certain lipoproteins and their protein-component (apolipoproteins, Apo's) in neurological diseases is perceivable. ApoE, for example, is well-accepted as one of the major risk factors for sporadic Alzheimer's disease with a protective allele variant (ε2) and a risk-causing allele variant (ε4). ApoA1, the major protein component of high-density lipoproteins, is responsible for transportation of excess cholesterol from peripheral tissues to the liver. The protein is synthesized in the liver and intestine but also can enter the brain via the choroid plexus and thereby might have an impact on brain lipid homeostasis. This review focuses on the role of ApoA1 in Alzheimer's disease and discusses whether its role within this neurodegenerative disorder is specific or represents a general neuroprotective mechanism.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
| |
Collapse
|
24
|
Van Valkenburgh J, Meuret C, Martinez AE, Kodancha V, Solomon V, Chen K, Yassine HN. Understanding the Exchange of Systemic HDL Particles Into the Brain and Vascular Cells Has Diagnostic and Therapeutic Implications for Neurodegenerative Diseases. Front Physiol 2021; 12:700847. [PMID: 34552500 PMCID: PMC8450374 DOI: 10.3389/fphys.2021.700847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
High-density lipoproteins (HDLs) are complex, heterogenous lipoprotein particles, consisting of a large family of apolipoproteins, formed in subspecies of distinct shapes, sizes, and functions and are synthesized in both the brain and the periphery. HDL apolipoproteins are important determinants of Alzheimer’s disease (AD) pathology and vascular dementia, having both central and peripheral effects on brain amyloid-beta (Aβ) accumulation and vascular functions, however, the extent to which HDL particles (HLD-P) can exchange their protein and lipid components between the central nervous system (CNS) and the systemic circulation remains unclear. In this review, we delineate how HDL’s structure and composition enable exchange between the brain, cerebrospinal fluid (CSF) compartment, and vascular cells that ultimately affect brain amyloid metabolism and atherosclerosis. Accordingly, we then elucidate how modifications of HDL-P have diagnostic and therapeutic potential for brain vascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Cristiana Meuret
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ashley E Martinez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vibha Kodancha
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Victoria Solomon
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
25
|
Interactions of Lipids, Lipoproteins, and Apolipoproteins with the Blood-Brain Barrier. Pharm Res 2021; 38:1469-1475. [PMID: 34518942 DOI: 10.1007/s11095-021-03098-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Lipids and lipoproteins are a diverse group of substances and their interactions with the blood-brain barrier (BBB) is similarly diverse. Some lipoproteins such as high density lipoprotein (HDL), apolipoprotein (apo) A-I, apoJ, some free fatty acids, and triglycerides cross the BBB whereas others such as apoE do not. Some forms of cholesterol can cross the BBB and others do not. Lipids can have effects on BBB preservation and function: HDL may protect the BBB during multiple sclerosis, cholesterol can disrupt the BBB, and triglycerides inhibit the transport of leptin across the BBB and the activation of the hypothalamic leptin receptor. ApoE is associated with many effects on the BBB, with the specific isoform apoE4 having detrimental effects. In summary, the diverse ways in which lipids, lipoproteins, and apolipoproteins interact with the BBB is important in both health and disease.
Collapse
|
26
|
Pedrini S, Hone E, Gupta VB, James I, Teimouri E, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Rainey-Smith S, Verdile G, Sohrabi HR, Raida MR, Wenk MR, Taddei K, Chatterjee P, Martins I, Laws SM, Martins RN. Plasma High Density Lipoprotein Small Subclass is Reduced in Alzheimer's Disease Patients and Correlates with Cognitive Performance. J Alzheimers Dis 2021; 77:733-744. [PMID: 32741823 PMCID: PMC7592676 DOI: 10.3233/jad-200291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: The link between cholesterol and Alzheimer’s disease (AD) has received much attention, as evidence suggests high levels of cholesterol might be an AD risk factor. The carriage of cholesterol and lipids through the body is mediated via lipoproteins, some of which, particularly apolipoprotein E (ApoE), are intimately linked with AD. In humans, high density lipoprotein (HDL) is regarded as a “good” lipid complex due to its ability to enable clearance of excess cholesterol via ‘cholesterol reverse transport’, although its activities in the pathogenesis of AD are poorly understood. There are several subclasses of HDL; these range from the newly formed small HDL, to much larger HDL. Objective: We examined the major subclasses of HDL in healthy controls, mild cognitively impaired, and AD patients who were not taking statins to determine whether there were HDL profile differences between the groups, and whether HDL subclass levels correlated with plasma amyloid-β (Aβ) levels or brain Aβ deposition. Methods: Samples from AIBL cohort were used in this study. HDL subclass levels were assessed by Lipoprint while Aβ1–42 levels were assessed by ELISA. Brain Aβ deposition was assessed by PET scan. Statistical analysis was performed using parametric and non-parametric tests. Results: We found that small HDL subclass is reduced in AD patients and it correlates with cognitive performance while plasma Aβ concentrations do not correlate with lipid profile or HDL subfraction levels. Conclusion: Our data indicate that AD patients exhibit altered plasma HDL profile and that HDL subclasses correlate with cognitive performances.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Eugene Hone
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Veer B Gupta
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elham Teimouri
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ashley I Bush
- CRC for Mental Health, Carlton South, Victoria, Australia.,The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia.,University of Melbourne Academic unit for Psychiatry of Old Age, St George's Hospital, Kew, Victoria, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Hamid R Sohrabi
- Centre for Healthy Ageing, School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia
| | - Manfred R Raida
- Life Science Institute, Singapore Lipidomics Incubator, National University of Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kevin Taddei
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Pratishtha Chatterjee
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Simon M Laws
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Ralph N Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
27
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxon CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002085. [PMID: 34105297 PMCID: PMC8188209 DOI: 10.1002/advs.202002085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/06/2021] [Indexed: 05/04/2023]
Abstract
The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood-brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Andrew G. Leach
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- Division of Pharmacy and OptometryThe University of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUK
| | - Jayden Smith
- Cambridge Innovation Technologies Consulting (CITC) LimitedSt. John's Innovation CentreCowley RoadCambridgeCB4 0WSUK
| | - Stefano Pluchino
- Department of Clinical NeurosciencesClifford Allbutt Building – Cambridge Biosciences Campus and NIHR Biomedical Research CentreUniversity of CambridgeHills RoadCambridgeCB2 0HAUK
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityWilliam Perkin BuildingEdinburghEH14 4ASUK
| | - Muttuswamy Sivakumaran
- Department of HaematologyPeterborough City HospitalEdith Cavell CampusBretton Gate PeterboroughPeterboroughPE3 9GZUK
| | - James Downing
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Amos A. Fatokun
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 10Barcelona08028Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| |
Collapse
|
28
|
B Uribe K, Benito-Vicente A, Martin C, Blanco-Vaca F, Rotllan N. (r)HDL in theranostics: how do we apply HDL's biology for precision medicine in atherosclerosis management? Biomater Sci 2021; 9:3185-3208. [PMID: 33949389 DOI: 10.1039/d0bm01838d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-density lipoproteins (HDL) are key players in cholesterol metabolism homeostasis since they are responsible for transporting excess cholesterol from peripheral tissues to the liver. Imbalance in this process, due to either excessive accumulation or impaired clearance, results in net cholesterol accumulation and increases the risk of cardiovascular disease (CVD). Therefore, significant effort has been focused on the development of therapeutic tools capable of either directly or indirectly enhancing HDL-guided reverse cholesterol transport (RCT). More recently, in light of the emergence of precision nanomedicine, there has been renewed research interest in attempting to take advantage of the development of advanced recombinant HDL (rHDL) for both therapeutic and diagnostic purposes. In this review, we provide an update on the different approaches that have been developed using rHDL, focusing on the rHDL production methodology and rHDL applications in theranostics. We also compile a series of examples highlighting potential future perspectives in the field.
Collapse
Affiliation(s)
- Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
| | - Asier Benito-Vicente
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Francisco Blanco-Vaca
- Servei de Bioquímica, Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain. and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain and Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Spain and Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
| | - Noemi Rotllan
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain and Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
| |
Collapse
|
29
|
Robert J, Osto E, von Eckardstein A. The Endothelium Is Both a Target and a Barrier of HDL's Protective Functions. Cells 2021; 10:1041. [PMID: 33924941 PMCID: PMC8146309 DOI: 10.3390/cells10051041] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelium serves as a barrier between the intravascular and extravascular compartments. High-density lipoproteins (HDL) have two kinds of interactions with this barrier. First, bloodborne HDL must pass the endothelium to access extravascular tissues, for example the arterial wall or the brain, to mediate cholesterol efflux from macrophages and other cells or exert other functions. To complete reverse cholesterol transport, HDL must even pass the endothelium a second time to re-enter circulation via the lymphatics. Transendothelial HDL transport is a regulated process involving scavenger receptor SR-BI, endothelial lipase, and ATP binding cassette transporters A1 and G1. Second, HDL helps to maintain the integrity of the endothelial barrier by (i) promoting junction closure as well as (ii) repair by stimulating the proliferation and migration of endothelial cells and their progenitor cells, and by preventing (iii) loss of glycocalix, (iv) apoptosis, as well as (v) transmigration of inflammatory cells. Additional vasoprotective functions of HDL include (vi) the induction of nitric oxide (NO) production and (vii) the inhibition of reactive oxygen species (ROS) production. These vasoprotective functions are exerted by the interactions of HDL particles with SR-BI as well as specific agonists carried by HDL, notably sphingosine-1-phophate (S1P), with their specific cellular counterparts, e.g., S1P receptors. Various diseases modify the protein and lipid composition and thereby the endothelial functionality of HDL. Thorough understanding of the structure-function relationships underlying the multiple interactions of HDL with endothelial cells is expected to elucidate new targets and strategies for the treatment or prevention of various diseases.
Collapse
Affiliation(s)
| | | | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, 8091 Zurich, Switzerland; (J.R.); (E.O.)
| |
Collapse
|
30
|
Sulliman NC, Ghaddar B, Gence L, Patche J, Rastegar S, Meilhac O, Diotel N. HDL biodistribution and brain receptors in zebrafish, using HDLs as vectors for targeting endothelial cells and neural progenitors. Sci Rep 2021; 11:6439. [PMID: 33742021 PMCID: PMC7979862 DOI: 10.1038/s41598-021-85183-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
High density lipoproteins (HDLs) display pleiotropic functions such as anti-inflammatory, antioxidant, anti-protease, and anti-apoptotic properties. These effects are mediated by four main receptors: SCARB1 (SR-BI), ABCA1, ABCG1, and CD36. Recently, HDLs have emerged for their potential involvement in brain functions, considering their epidemiological links with cognition, depression, and brain plasticity. However, their role in the brain is not well understood. Given that the zebrafish is a well-recognized model for studying brain plasticity, metabolic disorders, and apolipoproteins, it could represent a good model for investigating the role of HDLs in brain homeostasis. By analyzing RNA sequencing data sets and performing in situ hybridization, we demonstrated the wide expression of scarb1, abca1a, abca1b, abcg1, and cd36 in the brain of adult zebrafish. Scarb1 gene expression was detected in neural stem cells (NSCs), suggesting a possible role of HDLs in NSC activity. Accordingly, intracerebroventricular injection of HDLs leads to their uptake by NSCs without modulating their proliferation. Next, we studied the biodistribution of HDLs in the zebrafish body. In homeostatic conditions, intraperitoneal injection of HDLs led to their accumulation in the liver, kidneys, and cerebral endothelial cells in zebrafish, similar to that observed in mice. After telencephalic injury, HDLs were diffused within the damaged parenchyma and were taken up by ventricular cells, including NSCs. However, they failed to modulate the recruitment of microglia cells at the injury site and the injury-induced proliferation of NSCs. In conclusion, our results clearly show a functional HDL uptake process involving several receptors that may impact brain homeostasis and suggest the use of HDLs as delivery vectors to target NSCs for drug delivery to boost their neurogenic activity.
Collapse
Affiliation(s)
- Nora Cassam Sulliman
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Jessica Patche
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021, Karlsruhe, Germany
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis de La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.
| |
Collapse
|
31
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
32
|
Tsujita M, Vaisman B, Chengyu L, Vickers KC, Okuhira KI, Braesch-Andersen S, Remaley AT. Apolipoprotein A-I in mouse cerebrospinal fluid derives from the liver and intestine via plasma high-density lipoproteins assembled by ABCA1 and LCAT. FEBS Lett 2020; 595:773-788. [PMID: 33020907 DOI: 10.1002/1873-3468.13950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Apolipoprotein (apo) A-I, the major structural protein of high-density lipoprotein (HDL), is present in human and mouse cerebrospinal fluid (CSF) despite its lack of expression in brain cells. To identify the origin of apoA-I in CSF, we generated intestine-specific and liver-specific Apoa1 knockout mice (Apoa1ΔInt and Apoa1Δliv mice, respectively). Lipoprotein profiles of Apoa1ΔInt and Apoa1ΔLiv mice resembled those of control littermates, whereas knockout of Apoa1 in both intestine and liver (Apoa1ΔIntΔLiv ) resulted in a 60-percent decrease in HDL-cholesterol levels, thus strongly mimicking the Apoa1-/- mice. Immunoassays revealed that mouse apoA-I was not present in the CSF of the Apoa1ΔIntΔLiv mice. Furthermore, apoA-I levels in CSF were highly correlated with plasma spherical HDL levels, which were regulated by ABCA1 and LCAT. Collectively, these results suggest that apoA-I protein in CSF originates in liver and small intestine and is taken up from the plasma.
Collapse
Affiliation(s)
- Maki Tsujita
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Boris Vaisman
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Liu Chengyu
- Transgenic Core facility, NHLBI, NIH, Bethesda, MD, USA
| | - Kasey C Vickers
- Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
33
|
Bryniarski MA, Ren T, Rizvi AR, Snyder AM, Morris ME. Targeting the Choroid Plexuses for Protein Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12100963. [PMID: 33066423 PMCID: PMC7602164 DOI: 10.3390/pharmaceutics12100963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Delivery of therapeutic agents to the central nervous system is challenged by the barriers in place to regulate brain homeostasis. This is especially true for protein therapeutics. Targeting the barrier formed by the choroid plexuses at the interfaces of the systemic circulation and ventricular system may be a surrogate brain delivery strategy to circumvent the blood-brain barrier. Heterogenous cell populations located at the choroid plexuses provide diverse functions in regulating the exchange of material within the ventricular space. Receptor-mediated transcytosis may be a promising mechanism to deliver protein therapeutics across the tight junctions formed by choroid plexus epithelial cells. However, cerebrospinal fluid flow and other barriers formed by ependymal cells and perivascular spaces should also be considered for evaluation of protein therapeutic disposition. Various preclinical methods have been applied to delineate protein transport across the choroid plexuses, including imaging strategies, ventriculocisternal perfusions, and primary choroid plexus epithelial cell models. When used in combination with simultaneous measures of cerebrospinal fluid dynamics, they can yield important insight into pharmacokinetic properties within the brain. This review aims to provide an overview of the choroid plexuses and ventricular system to address their function as a barrier to pharmaceutical interventions and relevance for central nervous system drug delivery of protein therapeutics. Protein therapeutics targeting the ventricular system may provide new approaches in treating central nervous system diseases.
Collapse
|
34
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
35
|
Swaminathan SK, Zhou AL, Ahlschwede KM, Curran GL, Lowe VJ, Li L, Kandimalla KK. High-Density Lipoprotein Mimetic Peptide 4F Efficiently Crosses the Blood-Brain Barrier and Modulates Amyloid- β Distribution between Brain and Plasma. J Pharmacol Exp Ther 2020; 375:308-316. [PMID: 32778535 DOI: 10.1124/jpet.120.265876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Treatments to elevate high-density lipoprotein (HDL) levels in plasma have decreased cerebrovascular amyloid -β (Aβ) deposition and mitigated cognitive decline in Alzheimer disease (AD) transgenic mice. Since the major protein component of HDL particles, apolipoprotein A-I (ApoA-I), has very low permeability at the blood-brain barrier (BBB), we investigated 4F, an 18-amino-acid ApoA-I/HDL mimetic peptide, as a therapeutic alternative. Specifically, we examined the BBB permeability of 4F and its effects on [125I]Aβ trafficking from brain to blood and from blood to brain. After systemic injection in mice, the BBB permeability of [125I]4F, estimated as the permeability-surface area (PS) product, ranged between 2 and 5 × 10-6 ml/g per second in various brain regions. The PS products of [125I]4F were ∼1000-fold higher compared with those determined for [125I]ApoA-I. Moreover, systemic infusion with 4F increased the brain efflux of intracerebrally injected [125I]Aβ42. Conversely, 4F infusion decreased the brain influx of systemically injected [125I]Aβ42. Interestingly, 4F did not significantly alter the brain influx of [125I]Aβ40. To corroborate the in vivo findings, we evaluated the effects of 4F on [125I]Aβ42 transcytosis across polarized human BBB endothelial cell (hCMEC/D3) monolayers. Treatment with 4F increased the abluminal-to-luminal flux and decreased the luminal-to-abluminal flux of [125I]Aβ42 across the hCMEC/D3 monolayers. Additionally, 4F decreased the endothelial accumulation of fluorescein-labeled Aβ42 in the hCMEC/D3 monolayers. These findings provide a mechanistic interpretation for the reductions in brain Aβ burden reported in AD mice after oral 4F administration, which represents a novel strategy for treating AD and cerebral amyloid angiopathy. SIGNIFICANCE STATEMENT: The brain permeability of the ApoA-I mimetic peptide 4F was estimated to be ∼1000-fold greater than ApoA-I after systemic injection of radiolabeled peptide/protein in mice. Further, 4F treatment increased the brain efflux of amyloid -β and also decreased its brain influx, as evaluated in mice and in blood-brain barrier cell monolayers. Thus, 4F represents a potential therapeutic strategy to mitigate brain amyloid accumulation in cerebral amyloid angiopathy and Alzheimer disease.
Collapse
Affiliation(s)
- Suresh K Swaminathan
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Andrew L Zhou
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Kristen M Ahlschwede
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Geoffry L Curran
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Val J Lowe
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Ling Li
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| |
Collapse
|
36
|
Stoye NM, Dos Santos Guilherme M, Endres K. Alzheimer's disease in the gut-Major changes in the gut of 5xFAD model mice with ApoA1 as potential key player. FASEB J 2020; 34:11883-11899. [PMID: 32681583 DOI: 10.1096/fj.201903128rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) affects around 33 million people worldwide, which makes it the most prominent form of dementia. The main focus of AD research has been on the central nervous system (CNS) for long, but in recent years, the gut gained more attention. The intestinal tract is innervated by the enteric nervous system (ENS), built of numerous different types of neurons showing great similarity to neurons of the CNS. It already has been demonstrated that the amyloid precursor protein, which plays a major role in AD pathology, is also expressed in these cells. We analyzed gut tissue of AD model mice (5xFAD) and the respective wild-type littermates at different pathological stages: pre-pathological, early pathological and late pathological. Our results show significant difference in function of the intestine of 5xFAD mice as compared to wild-type mice. Using a pathway array detecting 84 AD-related gene products, we found ApoA1 expression significantly altered in colon tissue of 5xFAD mice. Furthermore, we unveil ApoA1's beneficial impact on cell viability and calcium homeostasis of cultured enteric neurons of 5xFAD animals. With this study, we demonstrate that the intestine is altered in AD-like pathology and that ApoA1 might be one key player within the gut.
Collapse
Affiliation(s)
- Nicolai M Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
37
|
Kaiser K, Bryja V. Choroid Plexus: The Orchestrator of Long-Range Signalling Within the CNS. Int J Mol Sci 2020; 21:E4760. [PMID: 32635478 PMCID: PMC7369786 DOI: 10.3390/ijms21134760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023] Open
Abstract
Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment-in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP-CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.
Collapse
Affiliation(s)
- Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
38
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
39
|
Loving BA, Bruce KD. Lipid and Lipoprotein Metabolism in Microglia. Front Physiol 2020; 11:393. [PMID: 32411016 PMCID: PMC7198855 DOI: 10.3389/fphys.2020.00393] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Microglia, once viewed as static bystanders with limited homeostatic functions, are now considered key players in the development of neuroinflammatory and neurodegenerative diseases. Microglial activation is a salient feature of neuroinflammation involving a dynamic process that generates multitudinous microglial phenotypes that can respond to a variety of situational cues in the central nervous system. Recently, a flurry of single cell RNA-sequencing studies have defined microglial phenotypes in unprecedented detail, and have highlighted robust changes in the expression of genes involved in lipid and lipoprotein metabolism. Increased expression of genes such as Apolipoprotein E (ApoE), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) and Lipoprotein Lipase (LPL) in microglia during development, damage, and disease, suggest that increased lipid metabolism is needed to fuel protective cellular functions such as phagocytosis. This review describes our current understanding of lipid and lipoprotein metabolism in microglia, and highlights microglial lipid metabolism as a modifiable target for the treatment of neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Bailey A. Loving
- School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
40
|
Robert J, Button EB, Martin EM, McAlary L, Gidden Z, Gilmour M, Boyce G, Caffrey TM, Agbay A, Clark A, Silverman JM, Cashman NR, Wellington CL. Cerebrovascular amyloid Angiopathy in bioengineered vessels is reduced by high-density lipoprotein particles enriched in Apolipoprotein E. Mol Neurodegener 2020; 15:23. [PMID: 32213187 PMCID: PMC7093966 DOI: 10.1186/s13024-020-00366-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.
Collapse
Affiliation(s)
- Jerome Robert
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada. .,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada. .,Present address: Institute of Clinical Chemistry, University Hospital Zurich, 8000, Zurich, Switzerland.
| | - Emily B Button
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Emma M Martin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Luke McAlary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zoe Gidden
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Megan Gilmour
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Guilaine Boyce
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Tara M Caffrey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Andrew Agbay
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Amanda Clark
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Judith M Silverman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Neurology, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Neil R Cashman
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, V5Z 1M9, Canada
| |
Collapse
|
41
|
Koch M, DeKosky ST, Goodman M, Sun J, Furtado JD, Fitzpatrick AL, Mackey RH, Cai T, Lopez OL, Kuller LH, Mukamal KJ, Jensen MK. High density lipoprotein and its apolipoprotein-defined subspecies and risk of dementia. J Lipid Res 2019; 61:445-454. [PMID: 31892526 DOI: 10.1194/jlr.p119000473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
Whether HDL is associated with dementia risk is unclear. In addition to apoA1, other apolipoproteins are found in HDL, creating subspecies of HDL that may have distinct metabolic properties. We measured apoA1, apoC3, and apoJ levels in plasma and apoA1 levels in HDL that contains or lacks apoE, apoJ, or apoC3 using a modified sandwich ELISA in a case-cohort study nested within the Ginkgo Evaluation of Memory Study. We included 995 randomly selected participants and 521 participants who developed dementia during a mean of 5.1 years of follow-up. The level of total apoA1 was not significantly related to dementia risk, regardless of the coexistence of apoC3, apoJ, or apoE. Higher levels of total plasma apoC3 were associated with better cognitive function at baseline (difference in Modified Mini-Mental State Examination scores tertile 3 vs. tertile 1: 0.60; 95% CI: 0.23, 0.98) and a lower dementia risk (adjusted hazard ratio tertile 3 vs. tertile 1: 0.73; 95% CI: 0.55, 0.96). Plasma concentrations of apoA1 in HDL and its apolipoprotein-defined subspecies were not associated with cognitive function at baseline or with the risk of dementia during follow-up. Similar studies in other populations are required to better understand the association between apoC3 and Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Manja Koch
- Departments of Nutrition Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Matthew Goodman
- Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jiehuan Sun
- Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jeremy D Furtado
- Departments of Nutrition Harvard T.H. Chan School of Public Health, Boston, MA
| | - Annette L Fitzpatrick
- Departments of Family Medicine, Epidemiology, and Global Health, University of Washington, Seattle, WA
| | - Rachel H Mackey
- Departments of Family Medicine, Epidemiology, and Global Health, University of Washington, Seattle, WA
| | - Tianxi Cai
- Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Oscar L Lopez
- Department of Neurology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Lewis H Kuller
- School of Medicine, and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Majken K Jensen
- Departments of Nutrition Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Medicine, Channing Division of Network Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
42
|
Jin U, Park SJ, Park SM. Cholesterol Metabolism in the Brain and Its Association with Parkinson's Disease. Exp Neurobiol 2019; 28:554-567. [PMID: 31698548 PMCID: PMC6844833 DOI: 10.5607/en.2019.28.5.554] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second most progressive neurodegenerative disorder of the aging population after Alzheimer’s disease (AD). Defects in the lysosomal systems and mitochondria have been suspected to cause the pathogenesis of PD. Nevertheless, the pathogenesis of PD remains obscure. Abnormal cholesterol metabolism is linked to numerous disorders, including atherosclerosis. The brain contains the highest level of cholesterol in the body and abnormal cholesterol metabolism links also many neurodegenerative disorders such as AD, PD, Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). The blood brain barrier effectively prevents uptake of lipoprotein-bound cholesterol from blood circulation. Accordingly, cholesterol level in the brain is independent from that in peripheral tissues. Because cholesterol metabolism in both peripheral tissue and the brain are quite different, cholesterol metabolism associated with neurodegeneration should be examined separately from that in peripheral tissues. Here, we review and compare cholesterol metabolism in the brain and peripheral tissues. Furthermore, the relationship between alterations in cholesterol metabolism and PD pathogenesis is reviewed.
Collapse
Affiliation(s)
- Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Cardiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW We review current knowledge regarding HDL and Alzheimer's disease, focusing on HDL's vasoprotective functions and potential as a biomarker and therapeutic target for the vascular contributions of Alzheimer's disease. RECENT FINDINGS Many epidemiological studies have observed that circulating HDL levels associate with decreased Alzheimer's disease risk. However, it is now understood that the functions of HDL may be more informative than levels of HDL cholesterol (HDL-C). Animal model studies demonstrate that HDL protects against memory deficits, neuroinflammation, and cerebral amyloid angiopathy (CAA). In-vitro studies using state-of-the-art 3D models of the human blood-brain barrier (BBB) confirm that HDL reduces vascular Aβ accumulation and attenuates Aβ-induced endothelial inflammation. Although HDL-based therapeutics have not been tested in clinical trials for Alzheimer's disease , several HDL formulations are in advanced phase clinical trials for coronary artery disease and atherosclerosis and could be leveraged toward Alzheimer's disease . SUMMARY Evidence from human studies, animal models, and bioengineered arteries supports the hypothesis that HDL protects against cerebrovascular dysfunction in Alzheimer's disease. Assays of HDL functions relevant to Alzheimer's disease may be desirable biomarkers of cerebrovascular health. HDL-based therapeutics may also be of interest for Alzheimer's disease, using stand-alone or combination therapy approaches.
Collapse
Affiliation(s)
- Emily B. Button
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jérôme Robert
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tara M. Caffrey
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenchen Zhao
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Recent studies demonstrate an important role of the secreted apolipoprotein A-I binding protein (AIBP) in regulation of cholesterol efflux and lipid rafts. The article discusses these findings in the context of angiogenesis and inflammation. RECENT FINDINGS Lipid rafts are cholesterol-rich and sphingomyelin-rich membrane domains in which many receptor complexes assemble upon activation. AIBP mediates selective cholesterol efflux, in part via binding to toll-like receptor-4 (TLR4) in activated macrophages and microglia, and thus reverses lipid raft increases in activated cells. Recent articles report AIBP regulation of vascular endothelial growth factor receptor-2, Notch1 and TLR4 function. In zebrafish and mouse animal models, AIBP deficiency results in accelerated angiogenesis, increased inflammation and exacerbated atherosclerosis. Spinal delivery of recombinant AIBP reduces neuraxial inflammation and reverses persistent pain state in a mouse model of chemotherapy-induced polyneuropathy. Inhalation of recombinant AIBP reduces lipopolysaccharide-induced acute lung injury in mice. These findings are discussed in the perspective of AIBP's proposed other function, as an NAD(P)H hydrate epimerase, evolving into a regulator of cholesterol trafficking and lipid rafts. SUMMARY Novel findings of AIBP regulatory circuitry affecting lipid rafts and related cellular processes may provide new therapeutic avenues for angiogenic and inflammatory diseases.
Collapse
Affiliation(s)
- Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist, 6550 Fannin St, TX77030
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 407 E 61st St, New York, NY 10065
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
45
|
Dal Magro R, Simonelli S, Cox A, Formicola B, Corti R, Cassina V, Nardo L, Mantegazza F, Salerno D, Grasso G, Deriu MA, Danani A, Calabresi L, Re F. The Extent of Human Apolipoprotein A-I Lipidation Strongly Affects the β-Amyloid Efflux Across the Blood-Brain Barrier in vitro. Front Neurosci 2019; 13:419. [PMID: 31156358 PMCID: PMC6532439 DOI: 10.3389/fnins.2019.00419] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Much evidence suggests a protective role of high-density lipoprotein (HDL) and its major apolipoprotein apoA-I, in Alzheimer's disease (AD). The biogenesis of nascent HDL derived from a first lipidation of apoA-I, which is synthesized by the liver and intestine but not in the brain, in a process mediated by ABCA1. The maturation of nascent HDL in mature spherical HDL is due to a subsequent lipidation step, LCAT-mediated cholesterol esterification, and the change of apoA-I conformation. Therefore, different subclasses of apoA-I-HDL simultaneously exist in the blood circulation. Here, we investigated if and how the lipidation state affects the ability of apoA-I-HDL to target and modulate the cerebral β-amyloid (Aβ) content from the periphery, that is thus far unclear. In particular, different subclasses of HDL, each with different apoA-I lipidation state, were purified from human plasma and their ability to cross the blood-brain barrier (BBB), to interact with Aβ aggregates, and to affect Aβ efflux across the BBB was assessed in vitro using a transwell system. The results showed that discoidal HDL displayed a superior capability to promote Aβ efflux in vitro (9 × 10-5 cm/min), when compared to apoA-I in other lipidation states. In particular, no effect on Aβ efflux was detected when apoA-I was in mature spherical HDL, suggesting that apoA-I conformation, and lipidation could play a role in Aβ clearance from the brain. Finally, when apoA-I folded its structure in discoidal HDL, rather than in spherical ones, it was able to cross the BBB in vitro and strongly destabilize the conformation of Aβ fibrils by decreasing the order of the fibril structure (-24%) and the β-sheet content (-14%). These data suggest that the extent of apoA-I lipidation, and consequently its conformation, may represent crucial features that could exert their protective role in AD pathogenesis.
Collapse
Affiliation(s)
- Roberta Dal Magro
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Sara Simonelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Alysia Cox
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Beatrice Formicola
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Roberta Corti
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Valeria Cassina
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Luca Nardo
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Francesco Mantegazza
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Domenico Salerno
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| | - Gianvito Grasso
- Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| | - Marco Agostino Deriu
- Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| | - Andrea Danani
- Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| | - Laura Calabresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Francesca Re
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
46
|
Contu L, Carare RO, Hawkes CA. Knockout of apolipoprotein A-I decreases parenchymal and vascular β-amyloid pathology in the Tg2576 mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2019; 45:698-714. [PMID: 31002190 DOI: 10.1111/nan.12556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
AIMS Apolipoprotein A-I (apoA-I), the principal apolipoprotein associated with high-density lipoproteins in the periphery, is also found at high concentrations in the cerebrospinal fluid. Previous studies have reported either no impact or vascular-specific effects of apoA-I knockout (KO) on β-amyloid (Aβ) pathology. However, the putative mechanism(s) by which apoA-I may influence Aβ deposition is unknown. METHODS We evaluated the effect of apoA-I deletion on Aβ pathology, Aβ production and clearance from the brain in the Tg2576 mouse model of Alzheimer's disease (AD). RESULTS Contrary to previous reports, deletion of the APOA1 gene significantly reduced concentrations of insoluble Aβ40 and Aβ42 and reduced plaque load in both the parenchyma and blood vessels of apoA-I KO × Tg2576 mice compared to Tg2576 animals. This was not due to decreased Aβ production or alterations in Aβ species. Levels of soluble clusterin/apoJ were significantly higher in neurons of apoA-I KO mice compared to both wildtype (WT) and apoA-I KO × Tg2576 mice. In addition, clearance of Aβ along intramural periarterial drainage pathways was significantly higher in apoA-I KO mice compared to WT animals. CONCLUSION These data suggest that deletion of apoA-I is associated with increased clearance of Aβ and reduced parenchymal and vascular Aβ pathology in the Tg2576 model. These results suggest that peripheral dyslipidaemia can modulate the expression of apolipoproteins in the brain and may influence Aβ clearance and aggregation in AD.
Collapse
Affiliation(s)
- L Contu
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, UK
| | - R O Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C A Hawkes
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, UK
| |
Collapse
|
47
|
Button EB, Boyce GK, Wilkinson A, Stukas S, Hayat A, Fan J, Wadsworth BJ, Robert J, Martens KM, Wellington CL. ApoA-I deficiency increases cortical amyloid deposition, cerebral amyloid angiopathy, cortical and hippocampal astrogliosis, and amyloid-associated astrocyte reactivity in APP/PS1 mice. ALZHEIMERS RESEARCH & THERAPY 2019; 11:44. [PMID: 31084613 PMCID: PMC6515644 DOI: 10.1186/s13195-019-0497-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/22/2019] [Indexed: 12/22/2022]
Abstract
Background Alzheimer’s disease (AD) is defined by amyloid beta (Aβ) plaques and neurofibrillary tangles and characterized by neurodegeneration and memory loss. The majority of AD patients also have Aβ deposition in cerebral vessels known as cerebral amyloid angiopathy (CAA), microhemorrhages, and vascular co-morbidities, suggesting that cerebrovascular dysfunction contributes to AD etiology. Promoting cerebrovascular resilience may therefore be a promising therapeutic or preventative strategy for AD. Plasma high-density lipoproteins (HDL) have several vasoprotective functions and are associated with reduced AD risk in some epidemiological studies and with reduced Aβ deposition and Aβ-induced inflammation in 3D engineered human cerebral vessels. In mice, deficiency of apoA-I, the primary protein component of HDL, increases CAA and cognitive dysfunction, whereas overexpression of apoA-I from its native promoter in liver and intestine has the opposite effect and lessens neuroinflammation. Similarly, acute peripheral administration of HDL reduces soluble Aβ pools in the brain and some studies have observed reduced CAA as well. Here, we expand upon the known effects of plasma HDL in mouse models and in vitro 3D artery models to investigate the interaction of amyloid, astrocytes, and HDL on the cerebrovasculature in APP/PS1 mice. Methods APP/PS1 mice deficient or hemizygous for Apoa1 were aged to 12 months. Plasma lipids, amyloid plaque deposition, Aβ protein levels, protein and mRNA markers of neuroinflammation, and astrogliosis were assessed using ELISA, qRT-PCR, and immunofluorescence. Contextual and cued fear conditioning were used to assess behavior. Results In APP/PS1 mice, complete apoA-I deficiency increased total and vascular Aβ deposition in the cortex but not the hippocampus compared to APP/PS1 littermate controls hemizygous for apoA-I. Markers of both general and vascular neuroinflammation, including Il1b mRNA, ICAM-1 protein, PDGFRβ protein, and GFAP protein, were elevated in apoA-I-deficient APP/PS1 mice. Additionally, apoA-I-deficient APP/PS1 mice had elevated levels of vascular-associated ICAM-1 in the cortex and hippocampus and vascular-associated GFAP in the cortex. A striking observation was that astrocytes associated with cerebral vessels laden with Aβ or associated with Aβ plaques showed increased reactivity in APP/PS1 mice lacking apoA-I. No behavioral changes were observed. Conclusions ApoA-I-containing HDL can reduce amyloid pathology and astrocyte reactivity to parenchymal and vascular amyloid in APP/PS1 mice. Electronic supplementary material The online version of this article (10.1186/s13195-019-0497-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily B Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Guilaine K Boyce
- Department of Surgery, Providence Health Care Research Institute, Vancouver, BC, V6Z 1Y6, Canada
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Arooj Hayat
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Brennan J Wadsworth
- Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Kris M Martens
- Department of Psychology, West Virginia University, Morgantown, WV, 26506, USA
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada. .,Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
48
|
Zhou AL, Swaminathan SK, Curran GL, Poduslo JF, Lowe VJ, Li L, Kandimalla KK. Apolipoprotein A-I Crosses the Blood-Brain Barrier through Clathrin-Independent and Cholesterol-Mediated Endocytosis. J Pharmacol Exp Ther 2019; 369:481-488. [PMID: 30971477 DOI: 10.1124/jpet.118.254201] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Abstract
Recent studies suggest that apolipoprotein A-I (ApoA-I), the major protein constituent of high-density lipoprotein particles, plays a critical role in preserving cerebrovascular integrity and reducing Alzheimer's risk. ApoA-I present in brain is thought to be primarily derived from the peripheral circulation. Although plasma-to-brain delivery of ApoA-I is claimed to be handled by the blood-cerebrospinal fluid barrier (BCSFB), a contribution by the blood-brain barrier (BBB), which serves as a major portal for protein delivery to brain, cannot be ruled out. In this study, we assessed the permeability-surface area product (PS) of radioiodinated ApoA-I (125I-ApoA-I) in various brain regions of wild-type rats after an intravenous bolus injection. The PS value at the cortex, caudate putamen, hippocampus, thalamus, brain stem, and cerebellum was found to be 0.39, 0.28, 0.28, 0.36, 0.69, and 0.76 (ml/g per second × 10-6), respectively. Solutes delivered into brain via the BCSFB are expected to show greater accumulation in the thalamus due to its periventricular location. The modest permeability for 125I-ApoA-I into the thalamus relative to other regions suggests that BCSFB transport accounts for only a portion of total brain uptake and thus BBB transport cannot be ruled out. In addition, we show that Alexa Flour 647-labeled ApoA-I (AF647-ApoA-I) undergoes clathrin-independent and cholesterol-mediated endocytosis in transformed human cerebral microvascular endothelial cells (hCMEC/D3). Further, Z-series confocal images of the hCMEC/D3 monolayers and Western blot detection of intact ApoA-I on the abluminal side demonstrated AF647-ApoA-I transcytosis across the endothelium. These findings implicate the BBB as a significant portal for ApoA-I delivery into brain.
Collapse
Affiliation(s)
- Andrew L Zhou
- Department of Pharmaceutics and Brain Barriers Research Center (A.L.Z., S.K.S., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), College of Pharmacy, University of Minnesota, Minneapolis, Minnesota; and Department of Radiology (G.L.C., V.J.L.) and Department of Neurology (G.L.C., J.F.P.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Suresh K Swaminathan
- Department of Pharmaceutics and Brain Barriers Research Center (A.L.Z., S.K.S., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), College of Pharmacy, University of Minnesota, Minneapolis, Minnesota; and Department of Radiology (G.L.C., V.J.L.) and Department of Neurology (G.L.C., J.F.P.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Geoffry L Curran
- Department of Pharmaceutics and Brain Barriers Research Center (A.L.Z., S.K.S., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), College of Pharmacy, University of Minnesota, Minneapolis, Minnesota; and Department of Radiology (G.L.C., V.J.L.) and Department of Neurology (G.L.C., J.F.P.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Joseph F Poduslo
- Department of Pharmaceutics and Brain Barriers Research Center (A.L.Z., S.K.S., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), College of Pharmacy, University of Minnesota, Minneapolis, Minnesota; and Department of Radiology (G.L.C., V.J.L.) and Department of Neurology (G.L.C., J.F.P.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Val J Lowe
- Department of Pharmaceutics and Brain Barriers Research Center (A.L.Z., S.K.S., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), College of Pharmacy, University of Minnesota, Minneapolis, Minnesota; and Department of Radiology (G.L.C., V.J.L.) and Department of Neurology (G.L.C., J.F.P.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Ling Li
- Department of Pharmaceutics and Brain Barriers Research Center (A.L.Z., S.K.S., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), College of Pharmacy, University of Minnesota, Minneapolis, Minnesota; and Department of Radiology (G.L.C., V.J.L.) and Department of Neurology (G.L.C., J.F.P.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center (A.L.Z., S.K.S., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), College of Pharmacy, University of Minnesota, Minneapolis, Minnesota; and Department of Radiology (G.L.C., V.J.L.) and Department of Neurology (G.L.C., J.F.P.), Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
49
|
Kaiser K, Gyllborg D, Procházka J, Salašová A, Kompaníková P, Molina FL, Laguna-Goya R, Radaszkiewicz T, Harnoš J, Procházková M, Potěšil D, Barker RA, Casado ÁG, Zdráhal Z, Sedláček R, Arenas E, Villaescusa JC, Bryja V. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat Commun 2019; 10:1498. [PMID: 30940800 PMCID: PMC6445127 DOI: 10.1038/s41467-019-09298-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system.
Collapse
Affiliation(s)
- Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Daniel Gyllborg
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Jan Procházka
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v. v. i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - Alena Salašová
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
- Danish Research Institute of Translational Neuroscience, Department of Biomedicine, Aarhus University, Aarhus, C 8000, Denmark
| | - Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Francisco Lamus Molina
- Departamento de Anatomía y Radiología, Facultad de medicina, Universidad de Valladolid, Ramón y Cajal 5, 47005, Valladolid, Spain
| | - Rocio Laguna-Goya
- John van Geest Centre for Brain Repair and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Tomasz Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Michaela Procházková
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v. v. i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, 625 00, Brno, Czech Republic
| | - Roger A Barker
- John van Geest Centre for Brain Repair and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Ángel Gato Casado
- Departamento de Anatomía y Radiología, Facultad de medicina, Universidad de Valladolid, Ramón y Cajal 5, 47005, Valladolid, Spain
| | - Zbyněk Zdráhal
- Central European Institute of Technology, 625 00, Brno, Czech Republic
| | - Radislav Sedláček
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v. v. i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - Ernest Arenas
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - J Carlos Villaescusa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic.
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
- Psychiatric Stem Cell Group, Neurogenetics Unit, Center for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, 171 76, Sweden.
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
50
|
Liu S, Suzuki H, Ito H, Korenaga T, Akatsu H, Meno K, Uchida K. Serum levels of proteins involved in amyloid-β clearance are related to cognitive decline and neuroimaging changes in mild cognitive impairment. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:85-97. [PMID: 30671532 PMCID: PMC6335589 DOI: 10.1016/j.dadm.2018.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction Amyloid-β (Aβ) clearance is important for damage prevention in Alzheimer's disease. We investigated the utility of Aβ clearance proteins as biomarkers for mild cognitive impairment (MCI). Methods Serum apolipoprotein (apo) A-I, compliment protein C3 (C3), transthyretin, and cholesterol levels were measured in 273 subjects, and we analyzed the relationship between these levels and brain atrophy and cerebral blood flow in 63 clinically diagnosed mild cognitive impairment, Alzheimer's disease, and nondemented disease control subjects. Results ApoA-I and transthyretin levels and the active form of C3:native form of C3 ratio achieved an area under the curve of 0.89 (sensitivity: 83%, specificity: 90%) for detecting late mild cognitive impairment. Atrophy was associated with decreased apoA-I and high-density lipoprotein levels. Subjects with reduced cerebral blood flow had lower levels of active form of C3, apoA-I, high-density lipoprotein, and total cholesterol. Low native form of C3 and high active form of C3 levels were found in the hippocampi of patients with Alzheimer's disease. Discussion Aβ clearance proteins in the serum are potential biomarkers for mild cognitive impairment evaluation.
Collapse
Affiliation(s)
- Shan Liu
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideaki Suzuki
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Hitomi Ito
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Tatsumi Korenaga
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | | | - Kohji Meno
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Kazuhiko Uchida
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding author. Tel.: +81-29-853-3210; Fax: +81-50-3730-7456.
| |
Collapse
|